
Complexity Measures and Decision TreeComplexity: A SurveyHarry Buhrman a;1 Ronald de Wolf a;b;1aCWI, P.O. Box 94079, Amsterdam, The Netherlands,fbuhrman,rdewolfg@cwi.nl.bUniversity of AmsterdamAbstractWe discuss several complexity measures for Boolean functions: certi�cate complex-ity, sensitivity, block sensitivity, and the degree of a representing or approximatingpolynomial. We survey the relations and biggest gaps known between these mea-sures, and show how they give bounds for the decision tree complexity of Booleanfunctions on deterministic, randomized, and quantum computers.
1 IntroductionComputational Complexity is the sub�eld of Theoretical Computer Sciencethat aims to understand \how much" computation is necessary and su�cientto perform certain computational tasks. For example, given a computationalproblem it tries to establish tight upper and lower bounds on the length ofthe computation (or on other resources, like space).Unfortunately, for many, practically relevant, computational problems no tightbounds are known. An illustrative example is the well known P versus NPproblem: for all NP-complete problems the current upper and lower boundslie exponentially far apart. That is, the best known algorithms for these com-putational problems need exponential time (in the size of the input) but thebest lower bounds are of a linear nature.One of the general approaches towards solving a hard problem (mathematicalor otherwise) is to set the goals a little bit lower and try to tackle a simpler1 Partially supported by the EU �fth framework project QAIP, IST{1999{11234.Preprint submitted to Elsevier Preprint 16 November 2000

problem �rst. The hope is that understanding of the simpler problem will leadto a better understanding of the original, more di�cult, problem.This approach has been taken with respect to Computational Complexity:simpler and more limited models of computation have been studied. Perhapsthe simplest model of computation is the decision tree. The goal here is tocompute a Boolean function f : f0; 1gn ! f0; 1g using queries to the input. Inthe most simple form a query asks for the value of the bit xi and the answer isthis value. (The queries may be more complicated. In this survey we will onlydeal with this simple type of query.) The algorithm is adaptive, that is the kthquery may depend on the answers of the k�1 previous queries. The algorithmcan therefore be described by a binary tree, whence its name `decision tree'.For a Boolean function f we de�ne its deterministic decision tree complexity,D(f), as the minimum number of queries that an optimal deterministic al-gorithm for f needs to make on any input. This measure corresponds to thedepth of the tree that an optimal algorithm induces. Once the computationalpower of decision trees is better understood, one can extend this notion tomore powerful models of query algorithms. This results in randomized andeven quantum decision trees.In order to get a handle on the computational power of decision trees (whetherdeterministic, randomized, or quantum), other measures of the complexity ofBoolean functions have been de�ned and studied. Some prime examples arecerti�cate complexity, sensitivity, block sensitivity, the degree of a representingpolynomial, and the degree of an approximating polynomial. We survey theknown relations and biggest gaps between these complexity measures and showhow they apply to decision tree complexity, giving proofs of some of the centralresults. The main results say that all of these complexity measures (with thepossible exception of sensitivity) are polynomially related to each other andto the decision tree complexities in each of the classical, randomized, andquantum settings. We also identify some of the main remaining open questions.The complexity measures discussed here also have interesting relations withcircuit complexity [47,4,7], parallel computing [10,41,31,47], communicationcomplexity [33,9], and the construction of oracles in computational complexitytheory [6,43,15,16], which we will not discuss here.The paper is organized as follows. In Section 2 we introduce some notationconcerning Boolean functions and multivariate polynomials. In Section 3 wede�ne the three main variants of decision trees that we discuss: determin-istic decision trees, randomized decision trees, and quantum decision trees.In Section 4 we introduce certi�cate complexity, sensitivity, block sensitivity,and the degree of a representing or approximating polynomial. We survey themain relations and known upper and lower bounds between these measures.In Section 5 we show how the complexity measures of Section 4 imply upper2

and lower bounds on deterministic, randomized, and quantum decision treecomplexity. This section gives bounds that apply to all Boolean functions.Finally, in Section 6 we examine some special subclasses of Boolean functionsand tighten the general bounds of Section 5 for those special cases.2 Boolean Functions and Polynomials2.1 Boolean functionsA Boolean function is a function f : f0; 1gn ! f0; 1g. Note that f is total,i.e. de�ned on all n-bit inputs. For an input x 2 f0; 1gn, we use xi to denoteits ith bit, so x = x1 : : : xn. We use jxj to denote the Hamming weight of x(its number of 1s). If S is a set of (indices of) variables, then we use xS todenote the input obtained by ipping the S-variables in x. We abbreviate xfigto xi. For example, if x = 0011, then xf2;3g = 0101 and x4 = 0010. We callf symmetric if f(x) only depends on jxj. Some common symmetric functionsthat we will refer to are:� ORn(x) = 1 i� jxj � 1� ANDn(x) = 1 i� jxj = n� PARITYn(x) = 1 i� jxj is odd� MAJn(x) = 1 i� jxj > n=2We call f monotone (increasing) if f(x) cannot decrease if we set more vari-ables of x to 1. A function that we will refer to sometimes is the \addressfunction". This is a function on n = k + 2k variables, where the �rst k bitsof the input provide an index in the last 2k bits. The value of the indexedvariable is the output of the function. Wegener [46] gives a monotone versionof the address function.2.2 Multilinear polynomialsIf S is a set of (indices of) variables, then the monomial XS is the product ofvariables XS = �i2Sxi. The degree of this monomial is the cardinality of S. Amultilinear polynomial on n variables is a function p : Rn ! C which can bewritten as p(x) = PS�[n] cSXS for some complex numbers cS. We call cS thecoe�cient of the monomial XS in p. The degree of p is the degree of its largestmonomial: deg(p) = maxfjSj j cS 6= 0g. Note that if we restrict attention tothe Boolean domain f0; 1gn, then xi = xki for all k > 1, so considering onlymultilinear polynomials is no restriction when dealing with Boolean inputs.3

The next lemma implies that if multilinear polynomials p and q are equal onall Boolean inputs, then they are identical:Lemma 1 Let p; q : Rn ! R be multilinear polynomials of degree at most d.If p(x) = q(x) for all x 2 f0; 1gn with jxj � d, then p = q.Proof De�ne r(x) = p(x) � q(x). Suppose r is not identically zero. LetV be a minimal-degree term in r with non-zero coe�cient c, and x be theinput where xj = 1 i� xj occurs in V . Then jxj � d, and hence p(x) = q(x).However, since all monomials in r except for V evaluate to 0 on x, we haver(x) = c 6= 0 = p(x) � q(x), which is a contradiction. It follows that r isidentically zero and p = q. 2Below we sketch the method of symmetrization, due to Minsky and Papert [28](see also [4, Section 4]). Let p : Rn ! R be a polynomial. If � is somepermutation and x = x1 : : : xn, then �(x) = (x�(1); : : : ; x�(n)). Let Sn be theset of all n! permutations. The symmetrization psym of p averages over allpermutations of the input, and is de�ned as:psym(x) = P�2Sn p(�(x))n! :Note that psym is a polynomial of degree at most the degree of p. Symmetrizingmay actually lower the degree: if p = x1 � x2, then psym = 0. The followinglemma allows us to reduce an n-variate polynomial to a single-variate one.Lemma 2 (Minsky & Papert) If p : Rn ! R is a multilinear polynomial,then there exists a single-variate polynomial q : R! R, of degree at most thedegree of p, such that psym(x) = q(jxj) for all x 2 f0; 1gn.Proof Let d be the degree of psym, which is at most the degree of p. Let Vjdenote the sum of all �nj� products of j di�erent variables, so V1 = x1+: : :+xn,V2 = x1x2 + x1x3 + : : : + xn�1xn, etc. Since psym is symmetrical, it is easilyshown by induction that it can be written aspsym(x) = c0 + c1V1 + c2V2 + : : :+ cdVd;with ci 2 R. Note that Vj assumes value �jxjj � = jxj(jxj�1)(jxj�2) : : : (jxj�j+1)=j! on x, which is a polynomial of degree j of jxj. Therefore the single-variatepolynomial q de�ned byq(jxj) = c0 + c1 jxj1 !+ c2 jxj2 !+ : : :+ cd jxjd !satis�es the lemma. 24

3 Decision Tree Complexity on Various Machine ModelsBelow we de�ne decision tree complexity for three di�erent kinds of machinemodels: deterministic, randomized, and quantum.3.1 DeterministicA deterministic decision tree is a rooted ordered binary tree T . Each internalnode of T is labeled with a variable xi and each leaf is labeled with a value 0or 1. Given an input x 2 f0; 1gn, the tree is evaluated as follows. Start at theroot. If this is a leaf then stop. Otherwise, query the variable xi that labelsthe root. If xi = 0, then recursively evaluate the left subtree, if xi = 1 thenrecursively evaluate the right subtree. The output of the tree is the value (0 or1) of the leaf that is reached eventually. Note that an input x deterministicallydetermines the leaf, and thus the output, that the procedure ends up in.We say a decision tree computes f if its output equals f(x), for all x 2 f0; 1gn.Clearly there are many di�erent decision trees that compute the same f . Thecomplexity of such a tree is its depth, i.e. the number of queries made on theworst-case input. We de�ne D(f), the decision tree complexity of f , as thedepth of an optimal (= minimal-depth) decision tree that computes f .3.2 RandomizedAs in many other models of computation, we can add the power of random-ization to decision trees. There are two ways to view a randomized decisiontree. Firstly, we can add (possibly biased) coin ips as internal nodes to thetree. That is, the tree may contain internal nodes labeled by a bias p 2 [0; 1],and when the evaluation procedure reaches such a node, it will ip a coin withbias p and will go to the left child on outcome `heads' and to the right childon `tails'. Now an input x no longer determines with certainty which leaf ofthe tree will be reached, but instead induces a probability distribution overthe set of all leaves. Thus the tree outputs 0 or 1 with a certain probability.The complexity of the tree is the number of queries on the worst-case inputand worst-case outcome of the coin ips. A second way to de�ne a randomizeddecision tree is as a probability distribution � over deterministic decision trees.The tree is evaluated by choosing a deterministic decisions tree according to�, which is then evaluated as before. The complexity of the randomized treein this second de�nition is the depth of the deepest T that has �(T) > 0. Itis not hard to see that these two de�nitions are equivalent.5

We say that a randomized decision tree computes f with bounded-error ifits output equals f(x) with probability at least 2/3, for all x 2 f0; 1gn. R2(f)denotes the complexity of the optimal randomized decision tree that computesf with bounded error. 23.3 QuantumWe briey sketch the framework of quantum computing, referring to [30] formore details. The classical unit of computation is a bit, which can take onthe values 0 or 1. In the quantum case, the unit of computation is a quantumbit or qubit which is a linear combination or superposition of the two classicalvalues: �0j0i+ �1j1i:More generally, an m-qubit state j�i is a superposition of all classical m-bitstrings: j�i = Xi2f0;1gm �ijii:Here �i is a complex number which is called the amplitude of basis statejii. We require Pi j�ij2 = 1. Mathematically speaking, the set of m-qubitquantum states is the set of all unit vectors in the Hilbert spaced that hasfjii j i 2 f0; 1gmg as an orthonormal basis.There are two things we can do to such a state: measure it or apply a unitarytransformation to it. One of the axioms of quantum mechanics says that if wemeasure them-qubit register j�i, then we will see the basis state jii with prob-ability j�ij2. Since Pi j�ij2 = 1, we thus have a valid probability distributionover the classical m-bit strings. After the measurement, j�i has \collapsed"to the speci�c observed basis state jii and all other information in the statewill be lost.Apart from measuring j�i, we can also apply a unitary transformation toit. That is, viewing the 2m amplitudes of j�i as a vector in C2m , we canobtain some new state j i = Pi2f0;1gm �ijii by multiplying j�i with a unitarymatrix U : j i = U j�i. A matrix U is unitary i� its inverse U�1 equals theconjugate transpose matrix U�. Because unitarity is equivalent to preservingEuclidean norm, the new state j i will still have Pi j�ij2 = 1. There is anextensive literature on how such large U can be obtained from small unitarytransformations (\quantum gates") on few qubits at a time, see [30].2 The subscript `2' in R2(f) refers to the 2-sided error of the algorithm: it mayerr on 0-inputs as well as on 1-inputs. We will not discuss zero-error (Las Vegas)or one-sided error randomized decision trees here. See [38,31,22,23,20,8] for someresults concerning such trees. 6

We formalize a query to an input x 2 f0; 1gn as a unitary transformation Owhich maps ji; b; zi to ji; b � xi; zi. Here ji; b; zi is some m-qubit basis state,where i takes dlogne bits, b is one bit, z denotes the (m � dlogne � 1)-bit\workspace" of the quantum computer, which is not a�ected by the query,and � denotes exclusive-or. This clearly generalizes the classical setting wherea query inputs an i into a black-box, which returns the bit xi: if we apply Oto the basis state ji; 0; zi we get ji; xi; zi, from which the ith bit of the inputcan be read. Because O has to be unitary, we specify that it maps ji; 1; zi toji; 1�xi; zi. Note that a quantum computer can make queries in superposition:applying O once to the state 1pnPni=1 ji; 0; zi gives 1pnPni=1 ji; xi; zi, which insome sense contains all bits of the input.A quantum decision tree has the following form: we start with anm-qubit statej~0i where every bit is 0. Then we apply a unitary transformation U0 to thestate, then we apply a query O, then another unitary transformation U1, etc. AT -query quantum decision tree thus corresponds to a big unitary transforma-tion A = UTOUT�1 : : : OU1OU0. Here the Ui are �xed unitary transformations,independent of the input x. The �nal state Aj~0i depends on the input x onlyvia the T applications of O. The output is obtained by measuring the �nalstate and outputting the rightmost bit of the observed basis state (withoutloss of generality we can assume there are no intermediate measurements).We say that a quantum decision tree computes f exactly if the output equalsf(x) with probability 1, for all x 2 f0; 1gn. The tree computes f with bounded-error if the output equals f(x) with probability at least 2/3, for all x 2 f0; 1gn.QE(f) denotes the number of queries of an optimal quantum decision tree thatcomputes f exactly, Q2(f) is the number of queries of an optimal quantumdecision tree that computes f with bounded-error. Note that we just countthe number of queries, not the complexity of the Ui.Unlike the classical deterministic or randomized decision trees, the quantumalgorithms are not really trees anymore (the names `quantum query algo-rithm' or `quantum black-box algorithm' are also in use). Nevertheless weprefer the term `quantum decision tree', because such quantum algorithmsgeneralize classical trees in the sense that they can simulate them, as sketchedbelow. Consider a T -query deterministic decision tree. It �rst determines whichvariable it will query initially; then it determines the next query dependingupon its history, and so on for T queries. Eventually it outputs an output-bitdepending on its total history. The basis states of the corresponding quan-tum algorithm have the form ji; b; h; ai, where i; b is the query-part, h rangesover all possible histories of the classical computation (this history includesall previous queries and their answers), and a is the rightmost qubit, whichwill eventually contain the output. Let U0 map the initial state j~0; 0;~0; 0i toji; 0;~0; 0i, where xi is the �rst variable that the classical tree would query. Nowthe quantum algorithm applies O, which turns the state into ji; xi;~0; 0i. Then7

the algorithm applies a transformation U1 which maps ji; xi;~0; 0i to jj; 0; h; 0i,where h is the new history (which includes i and xi) and xj is the variable thatthe classical tree would query given the outcome of the previous query. Thenthe quantum tree applies O for the second time, it applies a transformationU2 which updates the workspace and determines the next query, etc. Finally,after T queries the quantum tree sets the answer bit to 0 or 1 depending onits total history. All operations Ui performed here are injective mappings frombasis states to basis states, hence they can be extended to permutations ofbasis states, which are unitary transformations. Thus a T -query determinis-tic decision tree can be simulated by an exact T -query quantum algorithm.Similarly a T -query randomized decision tree can be simulated by a T -queryquantum decision tree with the same error probability (basically because a su-perposition can \simulate" a probability distribution). Accordingly, we haveQ2(f) � R2(f) � D(f) � n and Q2(f) � QE(f) � D(f) � n for all f .4 Some Complexity MeasuresLet f : f0; 1gn ! f0; 1g be a Boolean function. We can associate severalmeasures of complexity with such functions, whose de�nitions and relationsare surveyed below.4.1 Certi�cate complexityCerti�cate complexity measures how many of the n variables have to be givena value in order to �x the value of f .De�nition 1 Let C be an assignment C : S ! f0; 1g of values to some subsetS of the n variables. We say that C is consistent with x 2 f0; 1gn if xi = C(i)for all i 2 S.For b 2 f0; 1g, a b-certi�cate for f is an assignment C such that f(x) = bwhenever x is consistent with C. The size of C is jSj, the cardinality of S.The certi�cate complexity Cx(f) of f on x is the size of a smallest f(x)-certi�cate that is consistent with x. The certi�cate complexity of f is C(f) =maxxCx(f). The 1-certi�cate complexity of f is C(1)(f) = maxfxjf(x)=1g Cx(f),and similarly we de�ne C(0)(f).For example, C(1)(ORn) = 1 since it su�ces to set one variable xi = 1 to forcethe OR-function to 1. On the other hand, C(OR)n) = C(0)(ORn) = n.8

4.2 Sensitivity and block sensitivitySensitivity and block sensitivity measure how sensitive the value of f is tochanges in the input. Sensitivity was introduced in [10] (under the name ofcritical complexity) and block sensitivity in [31]. 3De�nition 2 The sensitivity sx(f) of f on x is the number of variables xi forwhich f(x) 6= f(xi). The sensitivity of f is s(f) = maxx sx(f).The block sensitivity bsx(f) of f on x is the maximum number b such that thereare disjoint sets B1; : : : ; Bb for which f(x) 6= f(xBi). The block sensitivity off is bs(f) = maxx bsx(f). (If f is constant, we de�ne s(f) = bs(f) = 0.)Note that sensitivity is just block sensitivity with the size of the blocks Birestricted to 1. Simon [41] gave a general lower bound on s(f):Theorem 1 (Simon) If f depends on all n variables, then we have s(f) �12 logn� 12 log logn + 12 .Wegener [46] proved that this theorem is tight up to the O(log logn)-term forthe monotone address function.We now prove some relations between C(f), s(f), and bs(f). Clearly, for all xwe have sx(f) � bsx(f) and bsx(f) � Cx(f) (since a certi�cate for x will haveto contain at least one variable of each sensitive block). Hence:Proposition 1 s(f) � bs(f) � C(f).The biggest gap known between s(f) and bs(f) is quadratic and was exhibitedby Rubinstein [37]:Example 1 Let n = 4k2. Divide the n variables in pn disjoint blocks of pnvariables: the �rst block B1 contains x1; : : : ; xpn, the second block B2 containsxpn+1; : : : ; x2pn, etc. De�ne f such that f(x) = 1 i� there is at least oneblock Bi where two consecutive variables have value 1 and the other pn � 2variables are 0. It is easy to see that s(f) = pn and bs(f) = n=2, so we havea quadratic gap between s(f) and bs(f). Since bs(f) � C(f), this is also aquadratic gap between s(f) and C(f) (Wegener and Z�adori give a di�erentfunction with a smaller gap between s(f) and C(f) [48]).It has been open for quite a while whether bs(f) can be upper bounded by apolynomial in s(f). It may well be true that bs(f) 2 O(s(f)2).3 There has also been some work on average (block) sensitivity [5] and its appli-cations [7,40,2]. In particular, Shi [40] has shown that the average sensitivity of atotal function f is a lower bound on its approximate degreegdeg(f).9

Open problem 1 Is bs(f) 2 O(s(f)k) for some k?We proceed to give Nisan's proof [31] that C(f) is bounded by bs(f)2.Lemma 3 If B is a minimal sensitive block for x, then jBj � s(f).Proof If we ip one of the B-variables in xB, then the function value must ipfrom f(xB) to f(x) (otherwise B would not be minimal), so every B-variableis sensitive for f on input xB. Hence jBj � sxB(f) � s(f). 2Theorem 2 (Nisan) C(f) � s(f)bs(f).Proof Consider an input x 2 f0; 1gn and let B1; : : : ; Bb be disjoint minimalsets of variables that achieve the block sensitivity b = bsx(f) � bs(f). Wewill show that C : [iBi ! f0; 1g which sets variables according to x is asu�ciently small certi�cate for f(x).If C is not an f(x)-certi�cate, then let x0 be an input that is consistent withC, such that f(x0) 6= f(x). De�ne Bb+1 by x0 = xBb+1 . Now f is sensitive toBb+1 on x and Bb+1 is disjoint from B1; : : : ; Bb, which contradicts b = bsx(f).Hence C is an f(x)-certi�cate. By the previous lemma we have jBij � s(f)for all i, hence the size of this certi�cate is j [i Bij � s(f)bs(f). 2No quadratic gap between bs(f) and C(f) seems to be known. Some sub-quadratic gaps may be found in [48, Section 3].4.3 Degree of representing polynomialDe�nition 3 A polynomial p : Rn ! R represents f if p(x) = f(x) for allx 2 f0; 1gn.Note that since x2 = x for x 2 f0; 1g, we can restrict attention to multilinearpolynomials for representing f . It is easy to see that each f can be representedby a multilinear polynomial p. Lemma 1 implies that this polynomial is unique,which allows us to de�ne:De�nition 4 The degree deg(f) of f is the degree of the multilinear polyno-mial that represents f .For example, deg(ANDn) = n, because the representing polynomial is themonomial x1 : : : xn. The degree deg(f) may be signi�cantly larger than s(f),bs(f), and C(f): 10

Example 2 Let f on n = k2 variables be the AND of k ORs of k variableseach. Both ANDk and ORk are represented by degree-k polynomials, so the rep-resenting polynomial of f has degree deg(f) = k2 = n. On the other hand, it isnot hard to see that s(f) = bs(f) = C(f) = pn. Thus deg(f) is quadraticallylarger than s(f), bs(f), and C(f) in this case. 4On the other hand, deg(f) may also be signi�cantly smaller than s(f) andbs(f), as the next example from Nisan and Szegedy [32] shows.Example 3 Consider the function E12 de�ned by E12(x1; x2; x3) = 1 i� jxj 2f1; 2g. This function is represented by the following degree-2 polynomial:E12(x1; x2; x3) = x1 + x2 + x3 � x1x2 � x1x3 � x2x3:De�ne Ek12 as the function on n = 3k variables obtained by building a com-plete recursive ternary tree of depth k, where the 3k leaves are the variablesand each node is the E12-function of its three children. For k > 1, the rep-resenting polynomial for Ek12 is obtained by substituting independent copiesof the Ek�112 -polynomial in the above polynomial for E12. This shows thatdeg(f) = 2k = n1= log 3. On the other hand, it is easy to see that ippingany variable in the input ~0 ips the function value from 0 to 1, hence s(f) =bs(f) = C(f) = n = deg(f)log 3 (Kushilevitz has found a slightly bigger gap,based on the same technique with a slightly more complex polynomial, see [33,footnote 1 on p.560]).Below we give Nisan and Szegedy's proof that deg(f) can be no more thanquadratically smaller than bs(f) [32]. This shows that the gap of the lastexample is close to optimal. The proof uses the following theorem from [12,36]:Theorem 3 (Ehlich & Zeller; Rivlin & Cheney) Let p : R ! R be apolynomial such that b1 � p(i) � b2 for every integer 0 � i � n, and its deriva-tive has jp0(x)j � c for some real 0 � x � n. Then deg(p) � qcn=(c+ b2 � b1).Theorem 4 (Nisan & Szegedy) bs(f) � 2 deg(f)2.Proof Let polynomial p of degree d represent f . Let b = bs(f), and a andB1; : : : ; Bb be the input and sets which achieve the block sensitivity. We as-sume without loss of generality that f(a) = 0. We transform p(x1; : : : ; xN)into a polynomial q(y1; : : : ; yb) by replacing every xj in p as follows:(1) xj = yi if aj = 0 and j 2 Bi4 It will follow from Theorem 10 and Corollary 2 that deg(f) � C(f)2, so thisquadratic gap between deg(f) and C(f) is optimal. Theorem 10 and Corollary 1will imply deg(f) � bs(f)3, but the quadratic gap between deg(f) and bs(f) of thisexample is the best we know of. 11

(2) xj = 1� yi if aj = 1 and j 2 Bi(3) xj = aj if j 62 Bi for every iNow it is easy to see that q has the following properties:(1) q is a multilinear polynomial of degree � d(2) q(y) 2 f0; 1g for all y 2 f0; 1gb(3) q(~0) = p(x) = f(x) = 0(4) q(ei) = p(xBi) = f(xBi) = 1 for all unit vectors ei 2 f0; 1gbLet r be the single-variate polynomial of degree � d obtained from symmetriz-ing q over f0; 1gb. Note that 0 � r(i) � 1 for every integer 0 � i � b, and forsome x 2 [0; 1] we have r0(x) � 1 because r(0) = 0 and r(1) = 1. ApplyingTheorem 3 we get d � qb=2. 2The following two theorems give, respectively, a weak bound for all functions,and a strong bound for almost all functions. We state the �rst without proof(see [32]).Theorem 5 (Nisan & Szegedy) If f depends on all n variables, then wehave deg(f) � logn�O(log logn).The address function on n = k+2k variables has deg(f) = k+1, which showsthat the previous theorem is tight up to the O(log logn)-term.For the second result, de�ne Xeven1 = fx j jxj is even and f(x) = 1g, similarlyfor Xodd1 . Let X1 = Xeven1 [Xodd1 . Let p = PS cSXS be the unique polynomialrepresenting f , with cS the coe�cient of the monomial XS = �i2Sxi. TheMoebius inversion formula (see [4]) says:cS = XT�S(�1)jSj�jT jf(T);where f(T) is the value of f on the input where exactly the variables in Tare 1. We learned about the next lemma via personal communication withYaoyun Shi.Lemma 4 (Shi & Yao) deg(f) = n i� jXeven1 j 6= jXodd1 j.Proof Applying the Moebius formula with S = f1; : : : ; ng, we getcS = XT�S(�1)jSj�jT jf(T) = (�1)n Xx2X1(�1)jxj = (�1)n �jXeven1 j � jXodd1 j� :Since deg(f) = n i� the monomial x1 : : : xn has non-zero coe�cient, the lemmafollows. 212

As a consequence, we can exactly count the number of functions that haveless than full degree:Theorem 6 The number of total f that have deg(f) < n equals � 2n2n�1� forodd n and � 2n2n�1�2n=2�1� for even n.Proof We will count the number E of f for which jXeven1 j = jXodd1 j; byLemma 4 these are exactly the f with deg(f) < n. If n is odd, then thereare 2n�1 inputs x with jxj even and 2n�1 x with jxj odd. Suppose we want toassign f -value 1 to exactly i of the even x. There are �2n�1i � ways to do this.If we want jXeven1 j = jXodd1 j, then there are only �2n�1i � ways to choose thef -values of the odd x. HenceE = 2n�1Xi=0 2n�1i ! 2n�1i ! = 2n2n�1!:The second equality is Vandermonde's convolution [18, p.174]. For even n theproof is analogous but slightly more complicated. 2Note that � 2n2n�1� 2 �(22n=p2n) by Stirling's formula. Since there are 22nBoolean functions on n variables, we see that the fraction of functions withdegree < n is o(1). Thus almost all functions have full degree.4.4 Degree of approximating polynomialApart from representing a function f exactly by means of a polynomial, wemay also only approximate it with a polynomial, which can sometimes be ofa smaller degree. 5De�nition 5 A polynomial p : Rn ! R approximates f if jp(x)�f(x)j � 1=3for all x 2 f0; 1gn. The approximate degree gdeg(f) of f is the minimum degreeamong all multilinear polynomials that approximate f .As a simple example: 23x1 + 23x2 approximates OR2, so gdeg(OR2) = 1. Incontrast, deg(OR2) = 2. Note that there may be many di�erent minimal-degree polynomials that approximate f , whereas there is only one polynomialthat represents f .5 Also non-deterministic polynomials for f have been studied [49], but we will notcover that notion in this survey. 13

By the same technique as Theorem 4, Nisan and Szegedy [32] showedTheorem 7 (Nisan & Szegedy) bs(f) � 6 gdeg(f)2.The approximate degree of f can sometimes be signi�cantly smaller than thedegree of f . Nisan and Szegedy [32] constructed a degree-O(pn) polynomialwhich approximates ORn. Since bs(ORn) = n, the previous theorem impliesthat this degree is optimal. Since deg(ORn) = n we have a quadratic gapbetween deg(f) and gdeg(f). This is the biggest gap known.Ambainis [1] showed that almost all functions have high approximate degree:Theorem 8 (Ambainis) Almost all f have gdeg(f) � n=2� O(pn logn).5 Application to Decision Tree ComplexityThe complexity measures discussed above are intimately related to the decisiontree complexity of f in various models. In fact, D(f), R2(f), QE(f), Q2(f),bs(f), C(f), deg(f), and gdeg(f) are all polynomially related.5.1 DeterministicWe start with two simple lower bounds on D(f).Theorem 9 bs(f) � D(f).Proof On input x with disjoint sensitive blocks B1; : : : ; Bbs(f), a deterministicdecision tree must query at least one variable in each block Bi, for otherwise wecould ip that block (and hence the correct output) without the tree noticingit. Thus the tree must make at least bs(f) queries on input x. 2Theorem 10 deg(f) � D(f).Proof Consider a decision tree for f of depth D(f). Let L be a 1-leaf (i.e. aleaf with output 1) and x1; : : : ; xr be the queries on the path to L, with valuesb1; : : : ; br. De�ne the polynomial pL(x) = �i:bi=1xi�i:bi=0(1�xi). Then pL hasdegree r � D(f). Furthermore, pL(x) = 1 if leaf L is reached on input x, andpL(x) = 0 otherwise. Let p = PL pL be the sum of all pL over all 1-leaves.Then p has degree � D(f), and p(x) = 1 i� a 1-leaf is reached on input x, sop represents f . 214

Below we give some upper bounds on D(f) in terms of bs(f), C(f), deg(f),and gdeg(f). Beals et.al. [3] proveTheorem 11 D(f) � C(1)(f)bs(f).Proof The following describes an algorithm to compute f(x), querying atmost C(1)(f)bs(f) variables of x (in the algorithm, by a \consistent" certi�cateC or input y at some point we mean a C or y that agrees with the values ofall variables queried up to that point).(1) Repeat the following at most bs(f) times:Pick a consistent 1-certi�cate C and query those of its variables whosex-values are still unknown (if there is no such C, then return 0 andstop); if the queried values agree with C then return 1 and stop.(2) Pick a consistent y 2 f0; 1gn and return f(y).The nondeterministic \pick a C" and \pick a y" can easily be made determin-istic by choosing the �rst C resp. y in some �xed order. Call this algorithm A.Since A runs for at most bs(f) stages and each stage queries at most C(1)(f)variables, A queries at most C(1)(f)bs(f) variables.It remains to show that A always returns the right answer. If it returns ananswer in step (1), this is either because there are no consistent 1-certi�catesleft (and hence f(x) must be 0) or because x is found to agree with a particular1-certi�cate C. In both cases A gives the right answer.Now consider the case where A returns an answer in step (2). We will showthat all consistent y must have the same f -value. Suppose not. Then thereare consistent y; y0 with f(y) = 0 and f(y0) = 1. A has queried b = bs(f) 1-certi�cates C1; C2; : : : ; Cb. Furthermore, y0 contains a consistent 1-certi�cateCb+1. We will derive from these Ci disjoint sets Bi such that f is sensitiveto each Bi on y. For every 1 � i � b + 1, de�ne Bi as the set of variableson which y and Ci disagree. Clearly, each Bi is non-empty, for otherwise theprocedure would have returned 1 in step (1). Note that yBi agrees with Ci, sof(yBi) = 1, which shows that f is sensitive to each Bi on y. Suppose variablek occurs in some Bi (1 � i � b), then xk = yk 6= Ci(k). If j > i, then Cj hasbeen chosen consistent with all variables queried up to that point (includingxk), so we cannot have xk = yk 6= Cj(k). This shows that k 62 Bj, hence allBi and Bj are disjoint. But then f is sensitive to bs(f) + 1 disjoint sets on y,which is a contradiction. Accordingly, all consistent y in step 2 must have thesame f -value, and A returns the right value f(y) = f(x) in step 2, because xis one of those consistent y. 2Combining with C(1) � C(f) � s(f)bs(f) (Theorem 2) we obtain:15

Corollary 1 D(f) � s(f)bs(f)2 � bs(f)3.It might be possible to improve this to D(f) � bs(f)2. This would be optimal,since the function f of Example 2 has bs(f) = pn and D(f) = n.Open problem 2 Is D(f) 2 O(bs(f)2)?Of course, Theorem 11 also holds with C(0) instead of C(1). Since bs(f) �maxfC(0)(f); C(1)(f)g, we also obtain the following result, due to [6,21,43].Corollary 2 D(f) � C(0)(f)C(1)(f).Now we will show that D(f) is upper bounded by deg(f)4 and gdeg(f)6. The�rst result is due to Nisan and Smolensky, below we give their (previouslyunpublished) proof. It improves the earlier result D(f) 2 O(deg(f)8) of Nisanand Szegedy [32]. Here a maxonomial of f is a monomial with maximal degreein f 's representing polynomial p.Lemma 5 (Nisan & Smolensky) For every maxonomial M of f , there isa set B of variables in M such that f(~0B) 6= f(~0).Proof Obtain a restricted function g from f by setting all variables outsideof M to 0. This g cannot be constant 0 or 1, because its unique polynomialrepresentation (as obtained from p) contains M . Thus there is some subset Bof the variables in M which makes g(~0B) 6= g(~0) and hence f(~0B) 6= f(~0). 2Lemma 6 (Nisan & Smolensky) There exists a set of deg(f)bs(f) vari-ables that intersects each maxonomial of f .Proof Greedily take all variables in maxonomials of f , as long as there isa maxonomial that is still disjoint from those taken so far. Since each suchmaxonomial will contain a sensitive block for ~0, and there can be at mostbs(f) disjoint sensitive blocks, this procedure can go on for at most bs(f)maxonomials. Since each maxonomial contains deg(f) variables, the lemmafollows. 2Theorem 12 (Nisan & Smolensky) D(f) � deg(f)2bs(f) � 2deg(f)4.Proof By the previous lemma, there is a set of deg(f)bs(f) variables thatintersects each maxonomial of f . Query all these variables. This induces arestriction g of f on the remaining variables, such that deg(g) < deg(f) (be-cause the degree of each maxonomial in the representation of f drops at leastone) and bs(g) � bs(f). Repeating this inductively for at most deg(f) times,we reach a constant function and learn the value of f . This algorithm uses at16

most deg(f)2bs(f) queries, hence D(f) � deg(f)2bs(f). Theorem 4 gives thesecond inequality of the theorem. 2Combining Corollary 1 and Theorem 7 we obtain the following result from [3](improving the earlier D(f) 2 O(gdeg(f)8) result of Nisan and Szegedy [32]):Theorem 13 D(f) 2 O(gdeg(f)6).Finally, since deg(f) may be polynomially larger or smaller than bs(f), thefollowing theorem may be weaker or stronger than Theorem 11. The proofuses an idea similar to the above Nisan-Smolensky proof.Theorem 14 D(f) � C(1)(f)deg(f).Proof Let p be the representing polynomial for f . Choose some certi�cate C :S ! f0; 1g of size � C(1)(f). If we �ll in the S-variables according to C, then pmust reduce to a constant function (constant 0 if C is a 0-certi�cate, constant1 if C is a 1-certi�cate). Hence the certi�cate has to intersect each maxonomialof p. Accordingly, querying all variables in S reduces the polynomial degreeof the function by at least 1. Repeating this deg(f) times, we end up with aconstant function and hence know f(x). In all, this algorithm takes at mostC(1)(f)deg(f) queries. 2
5.2 RandomizedHere we show thatD(f), R2(f), bs(f), and gdeg(f) are all polynomially related.We �rst give the bounded-error analogues of Theorems 10 and 9:Theorem 15 gdeg(f) � R2(f).Proof Consider a randomized decision tree for f of depth R2(f), viewed as aprobability distribution � over di�erent deterministic decision trees T , each ofdepth at most R2(f). Using the technique of Theorem 10, we can write eachof those T as a 0/1-valued polynomial pT of degree at most R2(f). De�nep = PT �(T)pT , which has degree at most R2(f). Then it is easy to see thatp gives the acceptance probability of R, so p approximates f . 2Nisan [31] provedTheorem 16 (Nisan) bs(f) � 3 R2(f).17

Proof Consider an algorithm with R2(f) queries, and an input x whichachieves the block sensitivity. For every set S such that f(x) 6= f(xS), theprobability that the algorithm queries a variable in S must be� 1=3, otherwisethe algorithm could not \see" the di�erence between x and xS with su�cientprobability. Hence on input x the algorithm has to make an expected numberof at least 1=3 queries in each of the bs(f) sensitive blocks, so the total expectednumber of queries on input x must be at least bs(f)=3. Since the worst-casenumber of queries on input x is at the least the expected number of querieson x, the theorem follows. 2Combined with Corollary 1 we see that the gap between D(f) and R2(f) canbe at most cubic [31]:Corollary 3 (Nisan) D(f) � 27 R2(f)3.There may be some room for improvement here, because the biggest gap knownbetween D(f) and R2(f) is much less than cubic:Example 4 Let f on n = 2k variables be the complete binary AND-OR-treeof depth k. For instance, for k = 2 we have f(x) = (x1 _ x2) ^ (x3 _ x4). It iseasy to see that deg(f) = n and hence D(f) = n. There is a simple randomizedalgorithm for f [42,38]: randomly choose one of the two subtrees of the rootand recursively compute the value of that subtree; if its value is 0 then output 0,otherwise compute the other subtree and output its value. It can be shown thatthis algorithm always gives the correct answer with expected number of queriesO(n�), where � = log((1 + p33)=4) � 0:7537 : : : . Saks and Wigderson [38]showed that this is asymptotically optimal for zero-error algorithms for thisfunction, and Santha [39] proved the same for bounded-error algorithms. Thuswe have D(f) = n = �(R2(f)1:3:::).Open problem 3 What is the biggest gap between D(f) and R2(f)?5.3 QuantumAs in the classical case, deg(f) and gdeg(f) give lower bounds on quantumquery complexity. The next lemma from [3] is also implicit in the combinationof some proofs in [15,16].Lemma 7 Let A be a quantum decision tree that makes T queries. Then thereexist complex-valued n-variate multilinear polynomials �i of degree at most T ,18

such that the �nal state of A is Xi2f0;1gm �i(x)jii;for every input x 2 f0; 1gn.Proof Let j�ki be the state of quantum decision tree (on input x) just beforethe kth query. Note that j�k+1i = UkOj�ki. The amplitudes in j�0i dependon the initial state and on U0 but not on x, so they are polynomials of x ofdegree 0. A query maps basis state ji; b; zi to ji; b� xi; zi, so if the amplitudeof ji; 0; zi in j�0i is � and the amplitude of ji; 1; zi is �, then the amplitude ofji; 0; zi after the query becomes (1� xi)� + xi� and the amplitude of ji; 1; zibecomes xi� + (1 � xi)�, which are polynomials of degree 1. (In general,if the amplitudes before a query are polynomials of degree � j, then theamplitudes after the query will be polynomials of degree � j + 1.) Betweenthe �rst and the second query lies the unitary transformation U1. However, theamplitudes after applying U1 are just linear combinations of the amplitudesbefore applying U1, so the amplitudes in j�1i are polynomials of degree at most1. Continuing inductively, the amplitudes of the �nal state are found to bepolynomials of degree at most T . We can make these polynomials multilinearwithout a�ecting their values on x 2 f0; 1gn, by replacing all xmi by xi. 2Theorem 17 deg(f) � 2 QE(f).Proof Consider an exact quantum algorithm for f with QE(f) queries. LetS be the set of basis states corresponding to a 1-output. Then the acceptanceprobability is P (x) = Pk2S j�k(x)j2. By the previous lemma, the �k are poly-nomials of degree � QE(f), so P (x) is a polynomial of degree � 2QE(f). ButP represents f , so it has degree deg(f) and hence deg(f) � 2QE(f). 2By a similar proof:Theorem 18 gdeg(f) � 2 Q2(f).Both theorems are tight for f = PARITYn: here we have deg(f) = gdeg(f) =n [28] and QE(f) = Q2(f) = dn=2e [3,13]. No f is known withQE(f) > deg(f)or Q2(f) > gdeg(f), so the following question presents itself:Open problem 4 Are QE(f) 2 O(deg(f)) and Q2(f) 2 O(gdeg(f))?Note that the degree lower bounds of Theorems 6 and 8 now imply stronglower bounds on the quantum decision tree complexities of almost all f . Inparticular, Theorem 8 implies that Q2(f) � n=4� O(pn logn) for almost all19

f . In contrast, Van Dam [45] has shown that Q2(f) � n=2 +pn for all f .Combining Theorems 17 and 18 with Theorems 12 and 13 we obtain thepolynomial relations between classical and quantum complexities of [3]:Corollary 4 D(f) 2 O(QE(f)4) and D(f) 2 O(Q2(f)6).Some other quantum lower bounds via degree lower bounds may be foundin [3,1,29,14,8].The biggest gap that is known between D(f) and QE(f) is only a factor of2: D(PARITYn) = n and QE(PARITYn) = dn=2e. The biggest gap we knowbetween D(f) and Q2(f) is quadratic:D(ORn) = n and Q2(ORn) 2 �(pn) byGrover's quantum search algorithm [19]. Also, R2(ORn) 2 �(n), deg(ORn) =n, gdeg(ORn) 2 �(pn).Open problem 5 What are the biggest gaps between the classicalD(f), R2(f)and their quantum analogues QE(f), Q2(f)?The previous two open problems are connected via the function f = Ek12 onn = 3k variables (Example 3): this has D(f) = s(f) = n but deg(f) = n1= log 3.The complexity QE(f) is unknown; it must lie between n1= log 3=2 and n. How-ever, it must either show a gap between D(f) and QE(f) (partly answeringthe last question) or between deg(f) and QE(f) (answering the penultimatequestion).6 Some Special Classes of FunctionsHere we look more closely at several special classes of Boolean functions.6.1 Symmetric functionsRecall that a function is symmetric if f(x) only depends on the Hammingweight jxj of its input, so permuting the input does not change the value of thefunction. A symmetric f is fully described by giving a vector (f0; f1; : : : ; fn) 2f0; 1gn+1, where fk is the value of f(x) for jxj = k. Because of this andLemma 2, there is a close relationship between polynomials that representsymmetric functions, and single-variate polynomials that assume values 0 or 1on f0; 1; : : : ; ng. Using this relationship, von zur Gathen and Roche [17] provedeg(f) = (1� o(1))n for all symmetric f :Theorem 19 (von zur Gathen & Roche) If f is non-constant and sym-20

metric, then deg(f) = n � O(n0:548). If, furthermore, n + 1 is prime, thendeg(f) = n.In fact, von zur Gathen and Roche conjecture that deg(f) = n� O(1) for allsymmetric f . The biggest gap they found is deg(f) = n� 3 for some speci�cf and n. Via Theorems 10 and 17, the above degree lower bounds give stronglower bounds on D(f) and QE(f).For the case of approximate degrees of symmetric f , Paturi [34] gave thefollowing tight characterization. De�ne �(f) = minfj2k� n+ 1j : fk 6= fk+1g.Informally, this quantity measures the length of the interval around Hammingweight n=2 where fk is constant.Theorem 20 (Paturi) If f is non-constant and symmetric, then gdeg(f) =�(qn(n� �(f))).Paturi's result implies lower bounds on R2(f) and Q2(f). For Q2(f) thesebounds are in fact tight (a matching upper bound was shown in [3]), but forR2(f) a stronger bound can be obtained from Theorem 16 and the followingresult [44]:Proposition 2 (Tur�an) If f is non-constant and symmetric, then s(f) �dn+12 e.Proof Let k be such that fk 6= fk+1, and jxj = k. Without loss of generalityassume k � b(n� 1)=2c (otherwise give the same argument with 0s and 1sreversed). Note that ipping any of the n�k 0-variables in x ips the functionvalue. Hence s(f) � sx(f) � n� k � d(n+ 1)=2e. 2This lemma is tight, since s(MAJn) = d(n+ 1)=2e.Collecting the previous results, we have tight characterizations of the variousdecision tree complexities of all symmetric f :Theorem 21 If f is non-constant and symmetric, then� D(f) = (1� o(1))n� R2(f) = �(n)� QE(f) = �(n)� Q2(f) = �(qn(n� �(f))) 21

6.2 Monotone functionsOne nice property of monotone functions was shown in [31]:Proposition 3 (Nisan) If f is monotone, then C(f) = s(f) = bs(f).Proof Since s(f) � bs(f) � C(f) for all f , we only have to prove C(f) �s(f). Let C : S ! f0; 1g be a minimal certi�cate for some x with jSj = C(f).Without loss of generality we assume f(x) = 0. For each i 2 S it musthold that xi = 0 and f(xi) = 1, for otherwise i could be dropped from thecerti�cate, contradicting minimality. Thus each variable in S is sensitive in x,hence C(f) � sx(f) � s(f). 2Theorem 11 now implies:Corollary 5 If f is monotone, then D(f) � s(f)2.This corollary is exactly tight, since the function f of Example 2 has D(f) = nand s(f) = pn and is monotone.Also, the lower bound of Theorem 4 can be improved toProposition 4 If f is monotone, then s(f) � deg(f).Proof Let x be an input on which the sensitivity of f equals s(f). Assumewithout loss of generality that f(x) = 0. All sensitive variables must be 0 inx, and setting one or more of them to 1 changes the value of f from 0 to 1.Hence by �xing all variables in x except for the s(f) sensitive variables, weobtain the OR function on s(f) variables, which has degree s(f). Thereforedeg(f) must be at least s(f). 2The above two results strengthen some of the previous bounds for monotonefunctions:Corollary 6 If f is monotone, then D(f) 2 O(R2(f)2), D(f) 2 O(QE(f)2),and D(f) 2 O(Q2(f)4).For the special case where f is both monotone and symmetric, we have:Proposition 5 If f is non-constant, symmetric, and monotone, then deg(f) =n. 22

Proof Note that f is simply a threshold function: f(x) = 1 i� jxj � t for somet. Let p : R! R be the non-constant single-variate polynomial obtained fromsymmetrizing f . This has degree � deg(f) � n and p(i) = 0 for i 2 f0; : : : ; t�1g, p(i) = 1 for i 2 ft; : : : ; ng. Then the derivative p0 must have zeroes in eachof the n � 1 intervals (0; 1); (1; 2); : : : ; (t � 2; t � 1); (t; t + 1); : : : ; (n � 1; n).Hence p0 has degree at least n � 1, which implies that p has degree n anddeg(f) = n. 26.3 Monotone graph propertiesAn interesting and well studied subclass of the monotone functions are themonotone graph properties. Consider an undirected graph on n vertices. Thereare N = �n2� possible edges, each of which may be present or absent, so wecan pair up the set of all graphs with the set of all N -bit strings. A graphproperty P is a set of graphs which is closed under permutation of the edges(so isomorphic graphs have the same properties). The property is monotoneif it is closed under the addition of an edge. We are now interested in thequestion: At how many edges must we look in order to determine if a graphhas the property P ? This is just the decision-tree complexity of P if we viewP as a total Boolean function on N bits.A property P is called evasive if D(P) = N , so if we have to look at alledges in the worst case. The evasiveness conjecture (also sometimes calledAanderaa-Karp-Rosenberg conjecture) says that all non-constant monotonegraph properties P are evasive. This conjecture is still open; see [27] for anoverview. The conjecture has been proved for graphs where the number ofvertices is a prime power [25], but the best known general bound is D(P) 2
(N) [35,25,26]. This bound also follows from a degree-bound by Dodis andKhanna [11, Theorem 2]:Theorem 22 (Dodis & Khanna) If P is a non-constant monotone graphproperty, then deg(P) 2
(N).Corollary 7 If P is a non-constant monotone graph property, then D(P) 2
(N) and QE(P) 2
(N).Thus the evasiveness conjecture holds up to a constant factor for both de-terministic classical and exact quantum algorithms. D(P) = N may actuallyhold for all monotone graph properties P , but [8] exhibit a monotone P withQE(P) < N . Only much weaker lower bounds are known for the bounded-errorcomplexity of such properties [26,20,8].Open problem 6 Are D(P) = N and R2(P) 2
(N) for all non-constant23

monotone graph properties P?There is no P known with R2(P) 2 o(N), but the OR-problem can triviallybe turned into a monotone graph property P with Q2(P) 2 o(N), in factQ2(P) 2 �(n) [8].Finally we mention a result about sensitivity from [46]:Theorem 23 (Wegener) s(P) � n�1 for all non-constant monotone graphproperties P .This theorem is tight, as witnessed by the property \No vertex is isolated" [44].AcknowledgmentsWe thank NoamNisan for permitting us to include his and Roman Smolensky'sproof of Theorem 12, and an anonymous referee for some useful commentswhich improved the presentation of the paper.References[1] A. Ambainis. A note on quantum black-box complexity of almost allBoolean functions. Information Processing Letters, 71(1):5{7, 1999. Also athttp://arxiv.org/abs/quant-ph/9811080.[2] A. Ambainis and R. de Wolf. Average-case quantum query complexity. InProceedings of 17th Annual Symposium on Theoretical Aspects of ComputerScience (STACS'2000), volume 1770 of Lecture Notes in Computer Science,pages 133{144. Springer, 2000. quant-ph/9904079.[3] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lowerbounds by polynomials. In Proceedings of 39th FOCS, pages 352{361, 1998.quant-ph/9802049.[4] R. Beigel. The polynomial method in circuit complexity. In Proceedings of the8th IEEE Structure in Complexity Theory Conference, pages 82{95, 1993.[5] A. Bernasconi. Sensitivity vs. block sensitivity (an average-case study).Information Processing Letters, 59(3):151{157, 1996.[6] M. Blum and R. Impagliazzo. Generic oracles and oracle classes (extendedabstract). In Proceedings of 28th FOCS, pages 118{126, 1987.[7] R. B. Boppana. The average sensitivity of bounded-depth circuits. InformationProcessing Letters, 63(5):257{261, 1997.24

[8] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for small-error andzero-error quantum algorithms. In Proceedings of 40th FOCS, pages 358{368,1999. cs.CC/9904019.[9] H. Buhrman and R. de Wolf. Communication complexity lower bounds bypolynomials. cs.CC/9910010, 1999.[10] S. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds forparallel random access machines without simultaneous writes. SIAM Journalon Computing, 15:87{97, 1986.[11] Y. Dodis and S. Khanna. Space-time tradeo�s for graph properties. InProceedings of 26th ICALP, pages 291{300, 1999.[12] H. Ehlich and K. Zeller. Schwankung von Polynomen zwischen Gitterpunkten.Mathematische Zeitschrift, 86:41{44, 1964.[13] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed ofquantum computation in determining parity. Physical Review Letters, 81:5442{5444, 1998. quant-ph/9802045.[14] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. How many functions canbe distinguished with k quantum queries? quant-ph/9901012, 7 Jan 1999.[15] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder's toolkit. InProceedings of the 8th IEEE Structure in Complexity Theory Conference, pages120{131, 1993.[16] L. Fortnow and J. Rogers. Complexity limitations on quantum computation.Journal of Computer and Systems Sciences, 59(2):240{252, 1999. Earlier versionin Complexity'98. cs.CC/9811023.[17] J. von zur Gathen and J. R. Roche. Polynomials with two values.Combinatorica, 17(3):345{362, 1997.[18] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: AFoundation for Computer Science. Addison-Wesley, 1989.[19] L. K. Grover. A fast quantum mechanical algorithm for database search. InProceedings of 28th STOC, pages 212{219, 1996. quant-ph/9605043.[20] P. Hajnal. An n4=3 lower bound on the randomized complexity of graphproperties. Combinatorica, 11:131{143, 1991. Earlier version in Structures'90.[21] J. Hartmanis and L.A. Hemachandra. One-way functions, robustness and thenon-isomorphism of NP-complete sets. In Proceedings of the 2nd IEEE Structurein Complexity Theory Conference, pages 160{174, 1987.[22] R. Heiman, I. Newman, and A. Wigderson. On read-once threshold formulaeand their randomized decision tree complexity. Theoretical Computer Science,107(1):63{76, 1993. Earlier version in Structures'90.25

[23] R. Heiman and A. Wigderson. Randomized vs. deterministic decision treecomplexity for read-once Boolean functions. Computational Complexity, 1:311{329, 1991. Earlier version in Structures'91.[24] J. Kahn, G. Kalai, and N. Linial. The inuence of variables on Booleanfunctions. In Proceedings of 29th FOCS, pages 68{80, 1988.[25] J. Kahn, M. Saks, and D. Sturtevant. A topological approach to evasiveness.Combinatorica, 4:297{306, 1984. Earlier version in FOCS'83.[26] V. King. Lower bounds on the complexity of graph properties. In Proceedingsof 20th STOC, pages 468{476, 1988.[27] L. Lov�asz and N. Young. Lecture notes on evasiveness of graphproperties. Technical report, Princeton University, 1994. Available athttp://www.uni-paderborn.de/fachbereich/AG/agmadh/WWW/english/scripts.html.[28] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1968.Second, expanded edition 1988.[29] A. Nayak and F. Wu. The quantum query complexity of approximating themedian and related statistics. In Proceedings of 31st STOC, pages 384{393,1999. quant-ph/9804066.[30] M. A. Nielsen and I. L. Chuang. Quantum Computation and QuantumInformation. Cambridge University Press, 2000.[31] N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing,20(6):999{1007, 1991. Earlier version in STOC'89.[32] N. Nisan and M. Szegedy. On the degree of Boolean functions as realpolynomials. Computational Complexity, 4(4):301{313, 1994. Earlier versionin STOC'92.[33] N. Nisan and A. Wigderson. On rank vs. communication complexity.Combinatorica, 15(4):557{565, 1995. Earlier version in FOCS'94.[34] R. Paturi. On the degree of polynomials that approximate symmetric Booleanfunctions (preliminary version). In Proceedings of 24th STOC, pages 468{474,1992.[35] R. Rivest and S. Vuillemin. On recognizing graph properties from adjacencymatrices. Theoretical Computer Science, 3:371{384, 1976.[36] T. J. Rivlin and E. W. Cheney. A comparison of uniform approximations onan interval and a �nite subset thereof. SIAM Journal on Numerical Analysis,3(2):311{320, 1966.[37] D. Rubinstein. Sensitivity vs. block sensitivity of Boolean functions.Combinatorica, 15(2):297{299, 1995.[38] M. Saks and A. Wigderson. Probabilistic Boolean decision trees and thecomplexity of evaluating game trees. In Proceedings of 27th FOCS, pages 29{38,1986. 26

[39] M. Santha. On the Monte Carlo decision tree complexity of read-once formulae.In Proceedings of the 6th IEEE Structure in Complexity Theory Conference,pages 180{187, 1991.[40] Y. Shi. Lower bounds of quantum black-box complexity and degree ofapproximating polynomials by inuence of Boolean variables. InformationProcessing Letters, 75(1{2):79{83, 2000. quant-ph/9904107.[41] H. U. Simon. A tight
(log log n)-bound on the time for parallel RAM's tocompute non-degenerate Boolean functions. In Symposium on Foundations ofComputation Theory, volume 158 of Lecture Notes in Computer Science, pages439{444. Springer, 1983.[42] M. Snir. Lower bounds for probabilistic linear decision trees. TheoreticalComputer Science, 38:69{82, 1985.[43] G. Tardos. Query complexity, or why is it di�cult to separate NPA \ coNPAfrom PA by random oracles A? Combinatorica, 9(4):385{392, 1989.[44] G. Tur�an. The critical complexity of graph properties. Information ProcessingLetters, 18:151{153, 1984.[45] W. van Dam. Quantum oracle interrogation: Getting all information for almosthalf the price. In Proceedings of 39th FOCS, pages 362{367, 1998. quant-ph/9805006.[46] I. Wegener. The critical complexity of all (monotone) Boolean functions andmonotone graph properties. Information and Control, 67:212{222, 1985.[47] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner Series inComputer Science, 1987.[48] I. Wegener and L. Z�adori. A note on the relations between critical andsensitive complexity. Journal of Information Processing and Cybernetics (EIK),25(8/9):417{421, 1989.[49] R. de Wolf. Characterization of non-deterministic quantum query and quantumcommunication complexity. In Proceedings of 15th IEEE Conference onComputational Complexity, pages 271{278, 2000. cs.CC/0001014.

27

