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Introduction
Superconcentrators
A superconcentrator was defined by Valiant [1975] as a variant of concentra-
tion networks, also called concentrators. Concentrators were originally studied
as a telephone network model – such a network has inputs, crosspoints, and out-
puts, all of them connected by wires. By the original definition, a concentrator
is a network with n inputs and m outputs, such that any k ≤ m inputs can be
connected to some k outputs, while every wire or crosspoint can be used only for
one connection. In the language of graph theory, the network can be viewed as
a graph, in which we connect input and output vertices by vertex-disjoint paths.

A superconcentrator is a network with n input vertices and n output vertices,
such that for any set S of k ≤ n input vertices and any set T of k output vertices,
there are k vertex-disjoint paths between S and T . One can easily imagine an ap-
plication in computer networks – we have k requests on the inputs (from k clients),
and we need to route the requests to some k servers while utilizing the network
evenly. Valiant’s goal was to use superconcentrators for proving lower bounds
on the running time of algorithms for certain arithmetic problems. By this, he
(along with others) started a new era of using concentrators, superconcentrators,
and other related networks in computational complexity theory.

By the size of a superconcentrator, we mean the number of its edges with
respect to the number n of the input vertices. Valiant [1975] proved the existence
of a superconcentrator of linear size, and many authors later tried to achieve
better and better constants in size. However, in many applications, the depth
(longest path from an input to an output vertex) of the superconcentrator is also
a relevant parameter. In our thesis, as the title suggests, we focus on the tradeoff
between the size and the depth of superconcentrators.

Most of the time, we talk about the existence of superconcentrators of ap-
propriate size and depth. However, for some applications, one needs to have
an efficient algorithm for finding such a superconcentrator. Such superconcen-
trators with an algorithm are called explicit, and we dedicate the final part of
the thesis to them.

Structure of the thesis
As far as we know, the only tool for superconcentrator constructions are graphs
called expanders. Generally, in expanders, subsets of vertices have many neigh-
bours. That’s why they are useful in superconcentrator constructions – if the ver-
tices with requests in them have enough neighbours, we can route the requests to
other vertices and consequently find the required vertex-disjoint paths. However,
there are many different definitions of expanders, so we spend the first chap-
ter defining different kinds of expanders and examining their properties (mostly
the tradeoff between the average degree and the expansion properties).

In the second chapter, we stay with the expanders and look closely at the rela-
tionships between different kinds of them – we prove that if a graph is an expander
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of one type, it is usually to some extent also an expander of another type, and we
also show some techniques of constructing one type of an expander from another.

In the third chapter, we finally get to the superconcentrators. Using the ex-
panders from the first chapter, we construct a bounded-depth superconcentrator
of asymptotically optimal size for every depth.

After that, in chapter four, we again come back to the expanders, particularly
to the explicit constructions. We also use there the relationships from chapter
two to get explicit expanders of one kind from explicit expanders of another one.

In the last chapter, we use the explicit expanders to construct explicit super-
concentrators, and we state some open problems concerning mostly the explicit
expander constructions.

Basic definitions and notation
We state a few notes to the notation.

• In the whole thesis we usually denote reals by greek letters (α, β, γ, . . . ),
integers by lowercase letters (a, b, c, . . . ) and sets by capitals (A, B, C, . . . ).

• For integer x, we denote the set {1, 2, . . . , x} by [x]. We denote the vertices
in a graph by numbers 1, 2, . . . n, so the set of all vertices of a graph is [n].

• By multigraph, we mean an undirected graph, in which we allow multiple
edges and loops (unless we explicitly state “directed multigraph”).

• By biregular multigraph, we mean a bipartite multigraph with all left ver-
tices of degree d and all right vertices of degree d′ for some integers d, d′.

• For multigraph G(E, V ) and X ⊆ V , we denote the set of all neighbours
of X by N(X) def= {v | ∃u ∈ V : {v, u} ∈ E}. Note that the intersection
X ∩ N(X) can be nonempty.

• We denote the natural logarithm of α by log α and the Euler’s number by
e.
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1. Building blocks – expanders
Expander graphs, shortly expanders are the key (and maybe only) building block
of superconcentrator constructions. They have various applications in many dif-
ferent fields, which in turn require different versions of expanders and different
settings of parameters. Below, we provide an overview of several expander-like
graphs, which are useful for us. We define all the expanders as undirected multi-
graphs (however, some authors use directed multigraphs).

We start the chapter with perhaps the most “standard” expanders – vertex
expanders. In vertex expanders, every set |S| ≤ k of vertices “expands” – it has
at least γ |S| neighbours for some fixed γ.

The k-expanding graphs are somehow opposite to the vertex expanders – in
a k-expanding graph, every two sets of vertices of size k share an edge.

We also present a generalization of bipartite k-expanding graphs – disperser
graphs.

The chapter is concluded with spectral expanders. These are graphs with
a large spectral gap – the difference between the two largest eigenvalues of the ad-
jacency matrix (in magnitude). From the definition, it is not clear why to call
them expanders, but in Chapter 2, we prove that spectral expanders have prop-
erties of vertex expanders and k-expanding graphs (to some extent).

Of course, there are more types of expanders that we do not cover in our
thesis, e.g. boundary expanders, in which every set S of size s ≤ k has at least
γs neighbours outside S, or edge expanders in which for a set of vertices of size
s ≤ k, there are at least γs edges leaving the set.

In Table 1.1, we summarize the dependence of the best-known sizes of these
graphs on relevant parameters. These sizes are often based on so-called “prob-
abilistic constructions” – proof that a random graph has desired property with
nonzero probability. Explicit constructions of these graphs usually don’t achieve
these values; we discuss them in Chapter 4.

1.1 Vertex expanders
Informally, in expander graphs, every sufficiently large subset of vertices “ex-
pands” – in the meaning that it “has many neighbours”. This is captured by
the definition of vertex expanders below.

1.1.1 Definitions
Definition 1 (Vertex expander). For positive integers k ≤ n and a real γ > 0,
a multigraph on n vertices is a vertex (k, γ)-expander, if for every set S of at
most k vertices, |N(S)| ≥ γ |S|.

It is clear that we must always have γk ≤ n; otherwise, we would require some
set to have more than n neighbours.

To distinguish it from bipartite versions defined below, we sometimes call it
general vertex expander.
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Table 1.1: Existence of expanders with (left) degree d or average (left) degree d̄

We must note that there is also an alternative definition of vertex expanders,
which says that |N(S) \ S| ≥ γ |S|. Some call these expanders boundary ex-
panders. Theorems 2 and 10 do not hold for the boundary expanders, so we
stick to our original definition. However, for the bipartite cases, the definitions
coincide, so the difference is, in fact, not important for the applications in the con-
structions of superconcentrators (as we use the bipartite expanders in them).

We also remark that by the above definition, the complete graph is the best
expander in both relevant parameters γ and k (it has for every k the highest
possible expansion factor γ). What interests us is usually the tradeoff between
the expansion properties and the number of edges, which is typically expressed
by maximal or average degree. We denote the maximal degree d, the average
degree d̄ and the number of vertices n, so the size of the expander is O(dn), or
O(d̄n).

By bipartite vertex expander, we mean any bipartite multigraph with left side
of size n and right side of size m ≤ n satisfying vertex expander property. How-
ever, we only require this property to hold for S chosen from the left side. We
denote the maximum left degree d, maximum right degree d′ and average left and
right degree d̄ and d̄

′. Again, we denote the sets of vertices [n] and [m].

Definition 2 (Bipartite vertex expander). For positive integers n, m, k; n ≥
m; n ≥ k and a real γ > 0, a bipartite multigraph with left side of size n and
right side of size m is a bipartite vertex (k, γ)-expander, if for every subset S of
at most k left side vertices, |N(S)| ≥ γ |S|.

Analogously to the general case, we must always have γk ≤ m in the bipartite
case.

If the parts are of the same size, we denote by n the size of each part and call
the graph balanced vertex expander. For balanced vertex expanders, achieving
γ = 1 is trivial with d = 1 for every k; we just define the graph as a matching
between the two parts.

If the parts have different sizes, we call such expanders unbalanced vertex
expanders. For unbalanced expanders (besides maximizing k and γ), we usually
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try to minimize m. Intuitively, it makes sense that the smaller m, the harder it
is to achieve the same expansion factor, as we are expanding to a smaller space.

For γ = 1, unbalanced expanders correspond to depth-1 concentrators. When
every set |S| ≤ k of left vertices has at least |S| neighbours, it follows from Hall’s
Marriage Theorem, that for every set |T | ≤ k of left vertices, there is a matching
from T to the right side which covers T . Therefore, if we have some ≤ k “requests”
on the left side, the matching will “concentrate” them to the right (smaller) side.
The concentrator property is useful in the superconcentrator constructions, so in
unbalanced vertex expanders, the case γ = 1 is the most interesting for us. We
define the concentrators formally in Chapter 3 (Definition 16).

1.1.2 Upper and lower bounds
We now show a probabilistic construction of bipartite expanders. It is based
on construction by Alon and Pudlák [1994]. However, the original theorem was
stated only for k ≤ m

2 and γ = 1; we generalized it for all γ and we require only
γk ≤ m (which is important in the constructions later).1

We also note that the result is meaningless for γk close to m (or to n in
the general case), as the theorems then yield arbitrarily large d, even though it
must be always enough to have d = m (or d = n).
Theorem 1 (Lemma 4.2 in Alon and Pudlák [1994]). Let there be three positive
integers n, m, k and a real number γ > 0, such that n ≥ k and n ≥ m > γk. If
γ ≥ m

en
, there is a bipartite vertex (k, γ)-expander with left degree d for every

d ≥ (γ + 1)
log
(︂

e2n
k

)︂
log
(︂

m
γk

)︂ .

If γ ≤ m
en

, there is a bipartite vertex (k, γ)-expander with left degree d for every

d ≥ 3.

Note, that in Section 2.6, we will see a technique for constructing an unbal-
anced vertex expander from a balanced one. When n

m
is an integer, we can achieve

γ ≤ m
n

with d = 1 using this technique on trivial balanced vertex expander with
γ = 1. For the details, see Section 2.6.
Proof. We construct a random multigraph G on n + m vertices with left degree
d as follows. For each vertex v ∈ [n], we choose randomly with replacement d
neighbours in m. Let X ⊆ [n], be a counterexample to the expansion property,
i.e. |X| ≤ k and |N(X)| < γ |X|. We now show, that the expected value E
of the number of such counterexample sets in G is less than one, which means,
that there exists at least one multigraph with degree d and no counterexample –
the desired (k, γ)-expander.

So, let’s first express the expected number of counterexamples as a sum of
indicator random variables:

E =
k∑︂

|X|=1

(︄
n

|X|

)︄
P [|N(X)| < γ |X|]

1At least for the case γ = 1 this is not a new result, only in most articles the proof is omitted
as “it can be shown by standard probabilistic argument”.
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Let’s denote j = |X|. For every counterexample X, there are at most
(︂

m
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ways of choosing a set Z of cardinality ⌊γj⌋ containing all the neighbours of X

and for every such Z the probability that all the neighbours lie in Z is
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)︂jd
.
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Now, we use standard estimate on binomials and rewrite the term as a power
of e:
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We would also like to get rid of the floor function. As we are bounding E
from above, we can write −jd log
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instead of −jd log
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≥ ⌊γj⌋ log
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)︂
. That is indeed true, because

function β log α
β

is non-decreasing function of β for α
β

≥ e (as the derivative is
log α

β
− 1). Substituting α = em, β = ⌊γj⌋ (or γj), we get the true condition

m ≥ γj ≥ ⌊γj⌋. That gives us following upper bound on E :

E ≤
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j=1
ej(log( en

j )+γ log( em
γj )−d log( m
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Now, we would like to prove, that the exponent is at most −j. Then, we will
have E ≤ ∑︁k

j=1 e−j < 1. That means, that we only need following inequality to
hold:
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Now, we consider both settings of parameter γ from the theorem statement and
for both of them find appropriate d for which the Inequality 1.1 holds.

Let’s start with the case γ ≥ m
en

. We put d on the right side and incorporate
the −1 term to the logarithm:
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And at the end, we realize, that the whole term is increasing with j for e2n ≥
m
γ

, which is true by the assumption γ ≥ m
en

. So we only require the following
inequality to hold:

(1 + γ)
log
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For the second case, let γ ≤ m
en

. We again rearrange the Inequality 1.1:
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− d log
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We notice that both the second and the third term are increasing with γ so
we can substitute γ = m

n
to the second one (as it is more than the maximum

value of γ) and γ = m
en

to the third one:
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And as log
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en
j
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≥ 1, it is clearly enough to have d ≥ 3.

We would like to prove an analogous statement for the general (non-bipartite)
case. However, we can’t make a random d regular multigraph by the technique we
used for the bipartite case, as we are choosing the source vertices and the target
vertices from the same set, so there can be a vertex with a large degree. We
make a simple workaround – we construct oriented multigraph with all vertices
of outdegree d0, and we prove that the expander property holds for “oriented
neighbours”. In other words, u is the neighbour of v iff there is an oriented
edge from v to u. It is easy to see that if we later convert the graph to non-
oriented by cancelling the edge orientation, the expander property is preserved,
and the average degree d̄ = 2d0. Apart from this little workaround, the proof is
completely analogous, so we do not repeat it there.

Theorem 2. Let there be positive integers n, k and a real number γ > 0, such
that n ≥ k and n > γk. If γ ≥ 1

e
, there is a vertex (k, γ)-expander with average

degree d̄ = 2d0 for every integer

d0 ≥ (γ + 1)
log
(︂
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k

)︂
log
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n
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)︂ .

If γ ≤ 1
e
, there is a vertex (k, γ)-expander with average degree d̄ = 2d0 for every

integer
d0 ≥ 3.
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To conclude the section, we present a lower bound for bipartite expanders,
which for constant γ matches the upper bound. It was noted by Guruswami
et al. [2009], and it is based on lower bound on dispersers by Radhakrishnan and
Ta-Shma [2000]. We discuss it more in Section 1.3.

Proposition 3 (Lower bounds on unbalanced vertex expanders). For every un-
balanced vertex expander, if left average degree d̄ ≤ γk

2 and γk ≤ m, then

d ∈ Ω
⎛⎝ log

(︂
n
k

)︂
log
(︂

m
γk

)︂
⎞⎠ .

1.2 k-expanding graphs
Definition 3 (k-expanding graph). For an integer k ≥ 1, a multigraph G is
k-expanding if for every two sets |S| ≥ k and |T | ≥ k of its vertices, there is
an edge connecting a vertex from S with some vertex from T .

The definition can be rephrased as: In multigraph on n vertices, every set of
size k has more than n − 2k neighbours. So, it means that contrary to vertex
expanders, we only require sufficiently large sets to expand, but we want the ex-
pansion to be huge. It also means that k-expanding graphs are useful only for
large k. For example, for k ≈

√
n, we still need d ≈

√
n, so we usually set k = n

c

for some constant c.
For the bipartite versions, we only require the property to hold for a set S

chosen from the left and set T chosen from the right side (again, we talk about
the balanced and unbalanced case). We then need k ≤ m for the definition to
still make sense, so we usually set k = m

c
in the unbalanced case.

Definition 4 (Bipartite k-expanding graph). For integers n ≥ m ≥ k ≥ 1,
a bipartite multigraph G with left part [n] and right part [m] is k-expanding if for
every set |S| ≥ k of left vertices and set |T | ≥ k of right vertices, there is an edge
connecting a vertex from S with some vertex from T .

There is a simple probabilistic construction of k-expanding graphs by Alon
and Pudlák [1994]. Later, in Section 2.4, we show that the construction yields
asymptotically optimal results for both the bipartite and the general case. Again,
we start with the bipartite one.

Theorem 4 (Lemma 4.1 in Alon and Pudlák [1994]). For every three integers
n ≥ m ≥ k, there is a bipartite k-expanding graph with n left and m right vertices
and with left degree d for every

d ≥ 2m

k
log

(︄
e
√

nm

k

)︄
.

Proof. For the case k = m, the statement is trivially true, so let k < m for
the rest of the proof to avoid dividing by zero. The principle of the proof is
the same as in the construction of vertex expanders. We again construct random
bipartite multigraph G on n+m vertices, by choosing randomly with replacement
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d neighbours in [m] for every vertex v from [n]. Again, we show that the expected
number of counterexamples in the random graph is smaller than one. There are(︂

n
k

)︂(︂
m
k

)︂
ways of choosing a set |S| = k of left vertices and set |T | = k of right

vertices and for every vertex v ∈ S, the probability it has no edge in T is (1− k
m

)d.
So we again express the expected value as a sum of indicator random variables

and use standard estimate on binomial coefficients.

E =
(︄

n

k

)︄(︄
m

k

)︄(︄
m − k

m

)︄kd

≤
(︃

en

k

)︃k (︃em

k

)︃k
(︄

m − k

m

)︄kd

=
(︄

e
√

nm

k

)︄2k (︄
m − k

m

)︄kd

We would like to prove, that E < 1:(︄
e
√

nm

k

)︄2k (︄
m − k

m

)︄kd
?
< 1

As in the construction of vertex expanders, we rearrange the inequality to find
the sufficient bound on d: (︄

e
√

nm

k

)︄2

<
(︃

m

m − k

)︃d

We take logarithms of both sides:

2 log
(︄

e
√

nm

k

)︄
< d log

(︃
m

m − k

)︃

And finally, we use the fact, that k
m

< log
(︂

1
1−k/m

)︂
= log

(︂
m

m−k

)︂
. This is true,

because α < log
(︂

1
1−α

)︂
for every 0 < α < 1, which in turn follows from a standard

estimate αeα ≥ eα − 1. By substituting k
m

for log
(︂

m
m−k

)︂
, we get the desired

sufficient bound on d:
2m

k
log
(︄

e
√

nm

k

)︄
≤ d

Now, we would like to prove an analogous bound for the non-bipartite case.
We use the same trick as with the vertex expanders – we construct a random di-
rected multigraph with outdegree d0 of every vertex, and after proving the expan-
sion property in the directed case, we cancel the orientation and get k-expanding
graph with d̄ = 2d0. Besides that, the proof is completely the same as for the bi-
partite case, so we don’t repeat it there.

Theorem 5. For every two integers n ≥ k, there is an k-expanding graph on n
vertices with average degree d̄ = 2d0 for every integer

d0 ≥ 2n

k
log

(︃
en

k

)︃
.
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1.3 Disperser graph
Definition 5 (Disperser graph). Let G be a bipartite multigraph with n left and
m right vertices and let there be integer k ≤ n. Graph G is (k, ε)-disperser graph,
if every k vertices from the left side have at least (1 − ε)m neighbours.

Notice, that disperser graphs are just generalization of unbalanced k-expanding
graphs – every k-expanding graph is also (k, k

m
)-disperser graph. That means,

among other things, that also the disperser graphs have a high degree for small k,
so again, we usually choose a k as a fraction of m. We talk about the equivalence
more in Section 2.4.

The name comes from the fact that disperser graphs are closely connected
with disperser function (in fact, they are just graph-theoretic view on that func-
tion), which is in turn just a relaxed version of a seeded randomness extractor.
These objects are beyond the scope of this thesis; however, only the rapid de-
velopment of the theory of pseudorandomness (where they belong) in the last
years has enabled the existence of explicit construction of superconcentrator of
polylogarithmic degree, which we present in Chapter 5. On this topic, we highly
recommend the survey Pseudorandomness by Vadhan [2012].

Radhakrishnan and Ta-Shma [2000] showed the following upper bound on
dispersers:

Theorem 6 (Thm. 1.10 in Radhakrishnan and Ta-Shma [2000]). For all integers
1 < k ≤ n, 0 < m and real ε > 0, there exists a (k, ε)-disperser graph with
maximum left degree d for every

d ≥ 1
ε

log
(︃

en

k

)︃
+ m

k
log
(︃

e

ε

)︃
.

The proof is again by probabilistic construction, and we don’t repeat it here,
as it doesn’t need any modification and is explained in the article in detail. In
the same article, they also provide lower bounds matching their construction up
to constant factors.

These lower bounds can also be used to prove the lower bound on the un-
balanced vertex expander mentioned in Section 1.1. It is easy to see that every(︂
k, γ = m(1−ε)

k

)︂
unbalanced vertex expander is also (k, ε)-disperser graph. That’s

why the lower bound on unbalanced expander is a direct consequence of the fol-
lowing theorem:

Theorem 7 (Thm. 1.5 in Radhakrishnan and Ta-Shma [2000]). Let G be a dis-
perser graph with k < n and ⌊d̄⌋ ≤ (1−ε)m

2 . If 1
m

≤ ε ≤ 1
2 , then

d̄ ∈ Ω
⎛⎝ log

(︂
n
k

)︂
ε

⎞⎠ ,

and if ε > 1
2 , then

d̄ ∈ Ω
⎛⎝ log

(︂
n
k

)︂
log
(︂

1
1−ε

)︂
⎞⎠ .
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1.4 Spectral expanders
Definition 6 (Random-walk matrix). Let G be a connected d-regular multigraph
on n vertices. Let’s denote E(i, j) the number of edges between vertices i and j.
We define the random-walk matrix of G as M ∈ Rn×n, where

Mi,j = E(i, j)
d

.

We point out a few important properties of M:

• M has n eigenvectors, which form an orthonormal basis.

• A constant vector is an eigenvector of M, the corresponding eigenvalue is
1, and all the other eigenvalues are strictly smaller.

• All eigenvalues of M have size at least −1. There is at most one eigenvalue
of size −1; it occurs if and only if G is bipartite and it corresponds to
an eigenvector with half entries α and half entries −α.

The first property follows from the spectral theorem and from the fact that
M is symmetric. The remaining two properties follow from the connectedness of
G and from the fact that all the row sums of G equal 1. We leave the proof as
an exercise.

Definition 7 (General spectral expander). Let G be a connected non-bipartite
d-regular multigraph and M be its random-walk matrix. Further, let |λ1| ≥ |λ2| ≥
· · · ≥ |λn| be the eigenvalues of M. Then, we denote λ

def= |λ2|. Graph G is then
spectral λ-expander.

We note that the smaller is the parameter λ, the better are the expansion
properties. That is a bit unintuitive, so the spectral expansion is often expressed
in terms of the spectral gap def= 1−λ (so the better expanders have a larger spectral
gap).

At first sight, spectral expanders don’t seem to have anything in common
with vertex expanders, and it is not clear why to even call them expanders.
However, there is a strong connection to both vertex expanders and k-expanding
graphs, which we show in Chapter 2. The connection to vertex expanders is based
on some interesting properties of spectral expanders concerning random walks –
that’s why M is called random-walk matrix.

From the properties of M above, it is clear that the definition would be
meaningless for the bipartite graphs, as λ2 always equals −1, so the spectral gap
would always be zero. We leave the bipartite case undefined for now – we define
it in Chapter 2 after explaining the connection to random walks.

Spectral expanders are also sometimes defined in the non-normalized form.
We can use the adjacency matrix of G, so all the row sums of the matrix equal d
and all the eigenvalues are d-times larger than in our definition. The spectral gap
is then defined as d − λ. We used the normalized version, as it is more suitable
for the proofs in Chapter 2.

The main reason for our interest in spectral expanders is, that due to their
rather algebraic definition, the situation with lower and upper bounds and explicit

13



constructions is quite clear. Nilli [1991] proved, that in every d-regular multigraph
on n vertices, λ2 ≥ 2

√
d−1
d

− o(1) (where the o(1) notation is with respect do n).
Multigraphs, for which this bound is tight, are called Ramanujan graphs and
there are explicit constructions of these graphs for both general and balanced
case (more on the constructions in Chapter 4).

The unbalanced version of spectral expanders does not often occur in liter-
ature, and we did not find the bounds anywhere, hence the question mark in
the table.
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2. Relationships between
expanders
In this chapter, we introduce a few relationships between different types of ex-
panders. The main reason for doing this is that if we can explicitly construct
one type of expander, we would like to either find some way to modify it to get
an expander of another type or prove it also has another “expander-like” prop-
erty (as we promised we will do for spectral expanders). These conversions are
hardly lossless – for example, as we mentioned earlier, we can explicitly construct
the best possible spectral expanders, and we prove below that every spectral ex-
pander is also a vertex expander; however, an explicit construction of optimal
vertex expanders is still unknown. The conversions between different types of
expanders are summarized in Figure 2.1

2.1 Spectral expander → vertex expander
As promised, we now show that good spectral expanders are good vertex ex-
panders. First, we show the connection between spectral expanders and random
walks, and we define the bipartite spectral expanders, which we left undefined
in Chapter 1. Then, we use the random walks to prove the vertex expander
property.

2.1.1 Random walks
Consider that we start a walk at one vertex of a connected multigraph. At every
step, we choose uniformly at random one of the incident edges, and we move to
the next vertex using this edge. Now, we are interested in the number t of steps
needed, so the probabilities of us being at any vertex are approximately the same.
This quantity t is called the mixing time of a graph, and we usually want it to
be small.1

First, we realize that the random-walk matrix M tells us for every vertex v
the probabilities of moving to either of its neighbours (see Definition 6). In other
words, Mi,j is the probability that if we stand at vertex i, we will move to vertex
j in the next step.

After k steps of a random walk, we can assign to every vertex the probability
that we stand at it. That gives us probability distribution π on n vertices. If we
write π as a row vector, we can use the properties of M to get the distribution
after next step, which is simply πM, because (πM)j = ∑︁

i πiMi,j.
Above, we wanted for the probabilities of us being in either vertex to be ap-

proximately the same after not too many steps. This can be rephrased: we would
like πMk to converge to uniform distribution with k (and the faster, the better).
So we denote by u the row vector with each entry 1

n
– it represents the uniform

distribution on n vertices. Note, that uM = u, as u is constant vector with
1Note, that it is intuitively true, that mixing time and expansion properties are somehow

connected – if every set of vertices has many neighbours, then mixing will be faster and vice
versa.
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Figure 2.1: Conversions between expanders

eigenvalue 1. Now, we define the following quantity, which expresses our wish of
getting closer to uniform distribution with every step (we will call it convergence
rate).

Definition 8 (Def. 2.50 in Vadhan [2012]). For a regular multigraph G and its
random-walk matrix M,

λ(G) def= max
π

∥πM − u∥
∥π − u∥

= max
x⊥u

∥xM∥
∥x∥

,

where ∥x∥ is the euclidean norm, the first maximization is over all distributions
π on n vertices and the second one is over all vectors x ∈ Rn orthogonal to u.

The first expression says, how much closer to the normal distribution do we
get in one step. To show that the second expression is equivalent, first check
that for every π, x = π − u is orthogonal to u, so the right maximization is
over all the elements from the left one. On the other hand, for every x⊥u,
the vector π = u + αx is a probability distribution for small enough α, so the left
maximization is over all the elements from the right side and the expressions are
equal.

The notation λ(G) is not a coincidence; we will now show that the convergence
rate equals λ from the definition of general spectral expanders (Definition 7).

Lemma 8 (Lemma 2.55 in Vadhan [2012]). For a regular multigraph G and it’s
random-walk matrix M,

λ = max
x⊥u

∥xM∥
∥x∥

= λ(G).
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Proof. M is real symmetric n×n matrix, so its eigenvectors form the orthonormal
basis v1, v2, . . . , vn. As we mentioned earlier, a constant vector is among the eigen-
vectors (it corresponds to λ1 = 1), so without loss of generality, let v1 be the con-
stant vector. Then, every vector x⊥u, can be expressed as x = c2v2 + · · · + cnvn,
and ⟨x, x⟩ = ∥x∥2 = c2

2 + · · · + c2
n Then:

∥xM∥2 = ∥λ2c2v2 + · · · + λncnvn∥2

= λ2
2c

2
2 + · · · + λ2

nc2
n ≤ λ2

2(c2
2 + · · · + c2

n) = λ2
2 ∥x∥2

The equality occurs for x = v2. So λ = |λ2| = maxx⊥u
∥xM∥

∥x∥ = λ(G)

Bipartite cases

It remains to define the bipartite versions of spectral expanders. The same defi-
nition as for general case doesn’t work for several reasons. First, as we mentioned
earlier, for the balanced case, λ2 equals −1, so λ would always be 1 by our first
definition. Second, unbalanced graphs can’t be really d-regular (left and right
degrees must differ), so the row sums in M wouldn’t be equal. And most impor-
tantly, the definition of λ(G) also wouldn’t make sense because it would always
be at least 1; just consider uniform distribution on all vertices from one side –
after one step, we get uniform distribution on the other side. Therefore we define
a different version of the random-walk matrix for bipartite graphs.

Definition 9 (Bipartite random-walk matrix). Let G be a connected biregular
multigraph with left part [n], right part [m] and left and right degree d and d′.
Again, let E(u, v) denote the number of edges between vertices u and v. For
i ∈ [n] and j ∈ [m], we define the left bipartite random-walk matrix of G as
A ∈ Rn×m, where

Ai,j = E(i, j)
d

,

and the right bipartite random-walk matrix of G as A′ ∈ Rm×n, where

A′
j,i = E(j, i)

d′ .

We now alter a bit the rules of the random walk. We start the walk on one
side of the graph, and in every step, we move to the other side. That means that
after every step, we have a probability distribution on one side of the graph, so
we only require to be close to the normal distribution on the current side.

The matrix A tells us for every vertex v ∈ [n] the probabilities of moving to
either of its neighbours and the matrix A′ tells the same for every vertex u ∈ [m].
That means, that if se start the random walk with distribution π on left side,
the distribution after another k steps is π(AA′)k/2 for even k and πA(A′A)(k−1)/2

for odd k.
For the bipartite expanders, we require only the left side of the graph to

expand. That’s why we define the left convergence rate, which expresses how
much the graph “mixes” in one step from left to right.

17



Definition 10 (Left convergence rate). For a biregular multigraph G and its left
bipartite random-walk matrix A,

λℓ(G) def= max
π

∥πA − um∥
∥π − un∥

= max
x⊥u

∥xA∥
∥x∥

,

where un and um are uniform distributions on left and right sides.

Now, we would like to define the bipartite λ-expander so that λ equals λℓ(G).
It turns out that the right choice is to take the square root of the second eigenvalue
of AAT in magnitude. The matrix M′ def= AAT has similar properties as M:

• M′ has n eigenvectors, which form an orthonormal basis.

• Constant vector is an eigenvector of M′; the corresponding eigenvalue is d′

d
,

and all the other eigenvalues are strictly smaller in magnitude.

We again leave the proof of the properties as an exercise.

Definition 11 (Tanner [1984]). Let G be a connected biregular multigraph with
left and right degrees d and d′ and left random-walk matrix A. For the n × n
matrix AAT , let’s denote its eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Then we
denote λ

def=
√︂

|λ2| and we say that G is bipartite spectral λ-expander.

It remains to prove, that really λ = λℓ(G). We do it similarly to the general
case.

Lemma 9. For a biregular multigraph G and it’s left bipartite random-walk ma-
trix A,

λ = max
x⊥u

∥xA∥
∥x∥

= λℓ(G).

Proof. Again the eigenvectors of AAT form the orthonormal basis v1, v2, . . . , vn

with constant vector v1. Then, every vector x⊥u, can be expressed as x =
c2v2 + · · · + cnvn, and ⟨x, x⟩ = ∥x∥2 = c2

2 + · · · + c2
n Thus:

∥xA∥2 = xAAT x =
∑︂
i=2

c2
i λi ≤ λ2(c2

2 + · · · + c2
n) = λ2 ∥x∥2

Again, the equality occurs for x = v2. So λ =
√︂

|λ2| = maxx⊥u
∥xA∥
∥x∥ = λℓ(G)

Note about the definition of balanced spectral expanders

There is an alternative definition of balanced spectral expanders. For the balanced
case, d = d′, so A′ = AT and the random-walk matrix M of size 2n × 2n and
with eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λ2n| can be defined in the same way as for
the general case. Then we can denote λ′ = maxi{|λi| : |λi| < 1}. (We already
know, that it is equal to |λ3|). This definition is usually used in literature (e. g.
for the Ramanujan graphs), so the relationships between the two definitions are
important to us.
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It turns out, that if we define also the right convergence rate λr(G) in an obvi-
ous way, then λ′ = max{λℓ(G), λr(G)}, so the alternative definition just expresses
both-side expansion. To realize that it is true, consider the matrix M2. Its 2n
eigenvalues are exactly the second powers of eigenvalues of M (corresponding
to the same eigenvectors). At the same time, the 2n eigenvalues of M2 exactly
correspond to the disjoint union of eigenvalues of AAT and A′A′T = AT A.

That means that the alternative definition is stricter, so every balanced spec-
tral λ′-expander by the alternative definition is also balanced spectral λ-expander
by our definition with λ ≤ λ′.

2.1.2 Spectral expanders are vertex expanders
As promised, we now present the proof that good spectral expanders are good
vertex expanders, using the equivalence between λ and the convergence rate. We
took the proof from Vadhan [2012] (as Thm. 4.6). He stated it only for the general
case, for the bipartite version, see Tanner [1984] (Thm. 2.1).

Theorem 10. For every multigraph G, if G is a general spectral λ-expander, it
is also a general vertex (k, γ)-expander for every k ≤ n and

γ = 1
k
n

+ λ2(1 − k
n
)
.

If G is a bipartite spectral λ-expander, it is also a bipartite vertex (k, γ)-expander
for every k ≤ n and

γ = 1
k
m

+ λ2(1 − k
n
)
.

For the proof, we need a simple technical proposition. The proof of the propo-
sition is left as an exercise.

Definition 12 (Definition 4.7 in Vadhan [2012]). For a probability distribution π,
the collision probability of π is defined to be the probability that two independent
samples from π are equal, namely CP(π) = ∑︁

x π2
x. The support of π is Supp(π) def=

{x : πx > 0}.

Proposition 11 (Lemma 4.8 in Vadhan [2012]). For every probability distribution
π ∈ [0, 1]n we have:

CP(π) = ∥π∥2 = ∥π − u∥2 + 1
n

, (2.1)

where u is the uniform distribution on [n].

CP(π) ≥ 1
|Supp(π)| , (2.2)

with equality iff π is uniform on Supp(π).

We state the proof only for the bipartite version; the other versions are com-
pletely analogous.
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Proof of Theorem 10 (by Vadhan [2012]). First, we use the first part of the Propo-
sition 11 on the definition of λℓ(G), together with the fact that λ = λℓ(G) (π is
any distribution on left vertices):

CP(πA) − 1
m

( 2.1)= ∥πA − um∥2 ≤ λ2 ∥π − un∥2 ( 2.1)= λ2
(︃

CP(π) − 1
n

)︃
Now, let S be any subset of the left vertices of size at most k and π the uniform
distribution on S. Then, by the second part of Proposition 11, CP(π) = 1

|S| and
CP(πA) ≥ 1

|Supp(πA)| = 1
|N(S)| . After plugging into the inequality, we get:

1
|N(S)| − 1

m
≤ λ2

(︄
1

|S|
− 1

n

)︄

|N(S)| ≥ |S|
|S|

(︂
1
m

− λ2

n

)︂
+ λ2

and after using k ≥ |S|, we have |N(S)| ≥ |S|
k
m

+λ2(1− k
n) , so γ ≥ 1

k
m

+λ2(1− k
n) .

If we now use the theorem on the known spectral expanders with λ = 2√
d
,

after the substitution we get general or balanced vertex expanders for any

d ≥ 2n − k
n
γ

− k
∈ Ω

(︄
γ

n − k

n − γk

)︄
,

whereas from the probabilistic constructions, we got

d ∈ Ω
(︄

γ
log n − log k

log n − log γk

)︄
.

2.2 Spectral expander → k-expanding graph
(Mixing lemma)

There is a well-known claim about spectral expanders called Expander mixing
lemma, which among others implies, that spectral expanders are also k-expanding.
We omit the proof, as it is mostly technical; it can be found in a survey by Vadhan
[2012] as proof of a Lemma 4.15 (it is again stated only for the general case, but
the bipartite version is completely analogous).

Theorem 12 (Expander mixing lemma). Let G be a spectral λ-expander. If G is
bipartite, let’s take subset S of left vertices, subset T of right vertices and denote
α = |S| /n, β = |T | /m. If G is non-bipartite, take any subsets of vertices S, T
and denote α = |S| /n, β = |T | /n. For both cases, let e(S, T ) denote the number
of edges between sets S, T , counting edges in intersection S ∩ T twice. Then,
the following holds:⃓⃓⃓⃓

⃓e(S, T )
nd

− αβ

⃓⃓⃓⃓
⃓ ≤ λ

√︂
α(1 − α)β(1 − β) ≤ λ

√︂
αβ
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Note that αβ is the expected fraction of all edges that goes between S and T
in a random graph, whereas e(S,T )

nd
is the actual fraction. So the Mixing lemma

says that for a good spectral expander, the expected and actual number of edges
between S and T is somehow “close”. It makes intuitively sense, as we already
know, that random graphs are good expanders (for various expander definitions).
Mixing lemma goes in the opposite direction – good spectral expanders are similar
to random graphs. However, the word close is in quotes, as there is a quadratic
loss due to the square root on the right side, so in fact, the terms are close only
when |S| , |T | are close to n. Then, α and β are close to 1, and so the square root
does not have much effect. This also makes sense in the context of k-expanding
graphs, about which we already know, that we need k to be large:

Corollary 13 (Spectral expanders are k-expanding). If for a bipartite spectral
λ-expander G and some integer 0 ≤ k ≤ m it holds

λ <
k√︂

(n − k)(m − k)
,

then G is also k-expanding. Particularly, it suffices to have λ ≤ k√
nm

, so every λ

bipartite expander is also k-expanding for every k ≥ λ
√

nm.
Analogously, if for a general spectral λ-expander G and some integer 0 ≤ k ≤ n

it holds
λ <

k

n − k
,

then, G is also k-expanding. Again, every general λ expander is therefore k-
expanding for every k ≥ λn.

Proof. Let |S| = |T | = k. For k-expanding graphs, we require S, T to be con-
nected by edge, which is equivalent to e(S,T )

nd
> 0. For the expression to be

positive, it suffices to have its distance from positive number αβ be smaller than
αβ, so we only need

⃓⃓⃓
e(S,T )

nd
− αβ

⃓⃓⃓
< αβ. Now, by the Mixing lemma, we just need

λ
√︂

α(1 − α)β(1 − β) < αβ. By substitution for α and β from definition, we get
the corollary. For the weaker bounds k > λ

√
nm and k > λn it suffices to use

the rightmost part of the Mixing lemma (so λ
√

αβ < αβ).

If we use the corollary on the balanced spectral expander from Section 1.4,
we have k > λn and λ ≤ 2√

d
, so we get k-expanding graph for every k > 2n√

d
.

That means that it suffices to have d ≥ 4n2

k2 . In comparison, we have 2n
k

log
(︂

en
k

)︂
by the probabilistic method. That means that the degree we got from spectral
expanders is less than a second power of the degree from the optimal proba-
bilistic construction, which is quite good. However, for the unbalanced case, we
get d ≥ 4nm

k2 , compared to m
k

log
(︂

e
√

nm
k

)︂
probabilistically. So, with a small m,

the difference can be much larger in the unbalanced case.
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2.3 General k-expanding graph → bipartite
k-expanding graph

There is a simple way of constructing any bipartite k-expanding graph from
the general one. For a general k-expanding graph with n + m vertices and maxi-
mum degree d, we just arbitrarily split the vertices into two groups of sizes n ≥ m
(the left and right part) and remove all the edges within the groups. As we require
the k-expanding property to hold only for S ⊆ [n] and T ⊆ [m], the edges which
connected S and T in the original graph were not deleted, as they go between
the groups, so we really got bipartite k-expanding graph. The maximum degree
of the new graph is still d, so the average degree on the left side is m

n
d.

Proposition 14 (Lemma 4.2 in Wigderson and Zuckerman [1993]). If there is
a general k-expanding graph on n + m vertices (n ≥ m) with maximum degree d0,
there is also a bipartite k-expanding graph with n left and m right vertices with
maximum right and left degree d′ = d = d0 and average left degree d̄ = m

n
d0.

That means, that from the general k-expanding graph from Section 1.2 with
d̄0 = 4n

k
log
(︂

en
k

)︂
, we can get bipartite k-expanding graph with d̄ = 4m

k
log
(︂

en
k

)︂
,

which is asymptotically the same as the bound we got by probabilistic construc-
tion, which was d = 2m

k
log
(︂

e
√

nm
k

)︂
.

2.4 Disperser graph ↔ bipartite k-expanding
graph

The connection between disperser graphs and k-expanding graphs is quite simple.
Recall that in (k, ε)-disperser graph, every set |S| ≥ k of left vertices has at least
(1 − ε)m neighbours. In bipartite k-expanding graphs, every set |S| ≥ k of left
vertices shares an edge with every set |T | ≥ k of right vertices. So, in other words,
S has at least m − k neighbours. It means that bipartite k-expanding graphs are
just special case of disperser graphs:

Proposition 15. Every bipartite k-expanding graph is also (k, ε = k
m

)-disperser
graph. Every (k, ε)-disperser with ε ≤ k

m
is also bipartite k-expanding graph.

If we compare the probabilistic upper bounds for ε = k
m

, the bound for
k-expanding graphs is 2m

k
log
(︂

e
√

nm
k

)︂
whereas for the disperser graph we have

m
k

(︂
log
(︂

en
k

)︂
+ log

(︂
em
k

)︂)︂
= 2m

k
log
(︂

e
√

nm
k

)︂
, so the sizes are exactly the same. This

is interesting, as we already know, that the bound on disperser graphs is asymp-
totically optimal, so it implies, that the probabilistic construction of bipartite
k-expanding graphs from Section 1.2 is also asymptotically optimal.

In Section 2.3, we showed that from the general k-expanding graph from
Section 1.2, we can get bipartite k-expanding graph with the asymptotically same
size as from the probabilistic construction, so it follows that the probabilistic
construction of general k-expanding graph is also asymptotically optimal.
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2.5 Disperser graph → unbalanced vertex
expander

We now show a technique of constructing an unbalanced vertex expander from
a disperser graph. It was invented by Wigderson and Zuckerman [1993], and
it is important to us because both best known explicit a non-explicit depth-2
superconcentrator constructions are based on the same idea.

Disperser graphs are somehow opposite to unbalanced vertex expanders – for
disperser graphs, every set of size at least k expands, so it covers most of the right
part, whereas, for vertex expanders, every set of size at most kv expands, so it
gets γ times bigger. Therefore, we need a sequence of disperser graphs with
different parameters k and different sizes m of the right part – the resulting
vertex expander will be a union of these disperser graphs. Particularly, for every
S ⊆ [n] of size |S| ≤ kv, we will need to have some disperser graph with k ≤ |S|
and (1 − ε)m ≥ γ |S|. That ensures that every S ≤ kv can expand γ times
through one of the disperser graphs.

The construction

Formally, we will construct unbalanced vertex (kv, γ)-expander U with n left ver-
tices mv right vertices and maximum left degree dv as follows. Let D0, D1, . . . , Dℓ

be sequence of disperser graphs, where Di is (ki, εi)-disperser graph with n left
vertices, mi right vertices and maximum left degree di. Further, let m0 ≤ m1 ≤
· · · ≤ mℓ = mv, and let 1 = k0 ≤ k1 ≤ · · · ≤ kℓ ≤ kv

def= kℓ+1. The resulting
vertex expander U is a union of all the disperser graphs Di obtained by identify-
ing the left side of disperser Di with the left side of U and the right side of Di

with the first mi vertices of the right side of U . The set of edges of U is disjoint
union of all edges of all the disperser graphs (so dv = ∑︁ℓ

i=0 di). The construction
is shown in Figure 2.2.

Now, let S ⊆ [n] and |S| ≤ kv. There must be some i so that ki ≤ |S| ≤ ki+1.
We need to ensure, that N(S) ≥ γ |S|. By the properties of di, we know, that
N(S) ≥ mi(1 − εi) and because ki+1 ≥ |S|, it is enough to require:

mi(1 − εi) ≥ γki+1 ∀i ∈ {0, . . . , ℓ}.

Proposition 16. If there is a sequence of disperser graphs D0, D1, . . . , Dℓ so that
Di is a (ki, εi)-disperser graph with n right and mi left vertices and degree di and
m0 ≤ m1 ≤ · · · ≤ mℓ

def= mv, 1 = k0 ≤ k1 ≤ · · · ≤ kℓ ≤ kv
def= kℓ+1 and

mi(1 − εi) ≥ γki+1 ∀i ∈ {0, . . . , ℓ},

then, there is also an unbalanced vertex (kv, γ)-expander with n left and mv right
vertices and with left degree dv = ∑︁ℓ

i=0 di

Use with optimal dispersers

Let’s now try this technique with optimal disperser graphs from Chapter 1. For
simplicity, we set γ = 1 and εi = ε for all i (and we also omit the ceiling function).
We have:

di = 1
ε

log
(︃

en

ki

)︃
+ mi

ki

log
(︃

e

ε

)︃
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Figure 2.2: Construction of an unbalanced vertex expander from ℓ disperser
graphs
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After substitution for mi = ki+1
1−ε

(from the main condition of the proposition), we
get

di = 1
ε

log
(︃

en

ki

)︃
+ ki+1

ki(1 − ε) log
(︃

e

ε

)︃
We now choose ki = logi(kv) and substitute:

di = 1
ε

log
(︄

en

logi(k)

)︄
+ log(k)

1 − ε
log
(︃

e

ε

)︃

We have kv = kℓ+1 = logℓ+1 (kv), so ℓ = log(k)
log(log(k)) − 1. Then we can calculate

degree d:

ℓ∑︂
i=0

di ≤ log(k)
log(log(k))

⎛⎝ log(en)
ε

+
log(k) log

(︂
e
ε

)︂
1 − ε

⎞⎠− log(log(k))
ε

ℓ∑︂
i=0

i =

= log(k)
log(log(k))

⎛⎝ log(en) − 1
2 log(k) + 1

2 log(log(k))
ε

+
log(k) log

(︂
e
ε

)︂
1 − ε

⎞⎠
Assuming ε is constant, we get d ∈ O

(︂
log(k) log(n)
log(log(k))

)︂
. Note, that this is not

optimal, as for γ = 1 and m
k

constant, optimal probabilistic construction from
Chapter 1 yields d ∈ O

(︂
log n

k

)︂
.

2.6 Balanced vertex expander → unbalanced
vertex expander

We conclude this chapter with a simple tradeoff between γ and m in bipartite
vertex expanders. We just take bipartite vertex (kb, γb)-expander with n ≥ mb

and “shrink” its right side ℓ-times. The resulting unbalanced expander has right
side of size m = mb

ℓ
, expansion factor γ = γb

ℓ
and k = kb. For mb = n, this can be

used to construct unbalanced vertex expander from balanced vertex expanders.
Formally, let there be bipartite vertex (kb, γb)-expander with left part of size

n and right part of size mb = mℓ ≤ n. Let’s divide the right vertices into m
groups of size ℓ and for every group, join all its vertices into one, so the resulting
graph has m right vertices. And finally, let’s keep all the edges, so the maximum
left degree stays the same.

If we now choose set |S| ≤ k of left vertices, it had at least γb |S| neighbours
in the original graph, so by the pigeonhole principle it had some neighbour in
at least γb|S|

ℓ
groups, so it has at least γb|S|

ℓ
neighbours in the new graph. That

proves, that the new graphs with n left and m right vertices is unbalanced vertex
(k = kb, γ = γb

ℓ
)-expander.

Proposition 17. If there is a bipartite vertex (k, γ)-expander with n left and mℓ
right vertices, there is also an unbalanced vertex (k, γ

ℓ
)-expander with n left and

m right vertices.

We note that we took this construction from article Self-routing superconcen-
trators (Pippenger [1996]); however, Pippenger, instead of shrinking one bipartite
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expander, composes ℓ bipartite expanders by identifying the right sides and tak-
ing a disjoint union of the left sides. This method results in ℓ-times smaller k than
in our construction. It is probably because he only needed ℓ = 2, so the difference
was not important.

Let’s again try to use this construction to get unbalanced vertex expander with
γ = 1 from the balanced vertex expander from Section 1.1. Recall that there is
balanced expander for every d ≥ (γb+1) log(en/k)

log(n/γbk) . We will construct unbalanced
expander with γ = 1 and m = n

ℓ
, so we need to set γb = ℓ. After substitution,

we get d ≥ (ℓ + 1) log(en/k)
log(m/k) , which is (ℓ + 1) times worse then the probabilistic

construction. From that, we can see, that the construction works fine for constant
ℓ and is useless for ℓ close to n.
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3. Non-explicit
superconcentrator constructions
In this chapter, we present known constructions of bounded-depth superconcen-
trators of asymptotically optimal size for every depth h and also a construction
of a linear-size superconcentrator of asymptotically optimal depth. In all the con-
structions, we use upper bounds on sizes of expanders from Chapter 1, which were
mostly achieved by non-explicit methods, and so the superconcentrator construc-
tions are also non-explicit.

We start the chapter with definitions of networks and some functions needed
for determining the sizes of the superconcentrators. In the second section, we
present the lower bounds for the sizes of all bounded-depth superconcentrators.
In the third section, we recall some useful expanders from previous chapters and
then, in section 3.4 we finally present the constructions.

To keep the constructions simple and clear, we determine the sizes of super-
concentrators only asymptotically, and we also omit the ceiling function in this
and the next chapter.

3.1 Definitions
3.1.1 Networks
Definition 13 (Network). An (n : m)-network is a directed acyclic multigraph
with n vertices with zero indegree labeled as inputs and m vertices with zero out-
degree labeled as outputs.

We sometimes refer to the vertices in a network that are not labeled as inputs
or outputs as middle vertices. It is also sometimes useful to think of the network
as layered. For us, level of a vertex v will be the length of the longest directed
path from some input to v. We refer to all the vertices of a certain level as a layer.
The depth of a network is the length of the longest directed path in the network,
so it corresponds to the highest layer. The size of a network is the number of its
edges.

In all networks in this thesis, the inputs have always level 0 (so there are no
paths between them), and the outputs are always all on the highest level.

Following Pinsker [1973], we define some operations on networks (see Fig-
ure 3.1):

Inversion
The inversion X of a network X is obtained by reversing the direction of
all the edges and switching inputs and outputs.

Multiplication
Let X and Y be networks of depths hx, hy and sizes sx sy, where the number
of outputs of X equals the number of inputs of Y (and X, Y has no common
vertices). Then, Z

def= X ×Y is the network of depth hx +hy and size sx +sy

27



× =X

X ×X

Y

X ×X + Y

+ =

X

X

X

X ×X

X

X

X

X

Y

Figure 3.1: Operations on networks

obtained by identifying the outputs of X with the inputs of Y and taking
a disjoint union of all the remaining vertices and edges.

Addition
Let X and Y be both (n : m)-networks of depths hx, hy and sizes sx sy

(again with no common vertex). Then Z
def= X + Y is the network of

depth max(hx, hy) and size sx +sy obtained by identifying inputs of X with
inputs of Y , outputs of X with outputs of Y and taking disjoint union of
all the remaining vertices and edges.

Definition 14 (Superconcentrator). An (n : n)-network is a superconcentrator
if, for every set of k inputs X and every set of k outputs Y , the number of directed
vertex-disjoint paths from X to Y is at least k.

We will shorten “Superconcentrator(s)” to “SC(s)” for the rest of the thesis.
As the title suggests, we are mostly interested in SCs of limited depth and

the smallest possible size. We will often think of the superconcentrator property
as “handling requests” – we have k requests on both sides of the SC, and we handle
them by connecting them through vertex-disjoint paths. We denote SCh (n) a SC
with n inputs and depth h. The smallest possible size of the SC is then |SCh (n)|.

A weakening of SCs, that we need for the constructions are partial supercon-
centrators. We shortly refer to them as partial SC(s).
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Definition 15 (Partial superconcentrator). An (n : n)-network is a partial (p,
q)-superconcentrator if for every k ≤ p and every set of k inputs X and every set
of k outputs Y , the number of directed vertex-disjoint paths from X to Y is at
least k − q.

We denote partial (p, q)-superconcentrator of depth h and with n inputs as
SCh (n, p, q). It means, that SCh (n) = SCh (n, n, 0). We denote |SCh (n, p, q)|
the smallest possible size of the partial SC.

Note that for k ≤ q, the condition is always met. That means that we are
only interested in the behavior of the network for p ≥ k > q.

Definition 16 (Concentrator). An depth-h (n : m)-network for n ≥ m is k-
concentrator, denoted by Ch (n : m, k), if for every set |S| ≤ k of inputs there are
|S| vertex-disjoint paths from S to some |S| outputs.

All concentrators in this thesis have depth 1, so we omit this fact later and just
denote them “concentrators” instead of “depth-1 concentrators”. In the depth-1
case, the vertex-disjoint paths correspond to edges, so the definition says we have
a matching of S inputs to some outputs. As the SCs are symmetric and the con-
centrators are not, we usually need also the inverse C1 (n : m, k) for the construc-
tions. Again, we denote |C1 (n : m, k)| the smallest possible size of a concentrator.

3.1.2 Slowly growing functions
To determine the sizes of bounded-depth SCs, we need to define a family of
functions with low enough growth rate. The same definition was used by Pudlák
[1994] (who proved the optimal lower bounds) and by Dolev et al. [1983], who
constructed the upper bounds.

For a function f , and integer i ≥ 0 let’s denote f (i)(x) an i-th iteration of
f , so that f (0)(x) = x, and f (i+1)(x) = f(f (i)(x)). Further, for function g, let
g∗(x) = mini≥0{i : g(i)(x) ≤ 1}.

Definition 17 (Inverse Ackermann function). Let λi(j) be a family of func-
tions defined for all non-negative integers as follows: λ0(j) =

⌈︂
j
2

⌉︂
, and otherwise

λi(j) = λ∗
i−1(j).

It’s easy to see that λ0 ≈ x
2 , λ1 ≈ log2 x, λ2 ≈ log∗

2 x, and so on.
To determine the depth of a linear-size SC, we need a function β, which grows

even more slowly.

Definition 18. For all integers i ≥ 1, x ≥ 1:

β(x) = min
i≥0

{i : λi(x) ≤ i}

For the proofs, we also need the Ackermann function. There exist several
definitions; this one is originally by Tarjan [1975] and was used by Dolev et al.
[1983] (from whom we use the constructions of optimal SCs for all h ≥ 4).

Definition 19 (Ackermann function). Let Ai(j) be a family of functions defined
for all non-negative integers i, j as follows: A0(j) = 2j, and otherwise Ai(j) =
A(j)

i−1(1).
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In the proofs, we also use a few properties of these functions:

λ2(x) ≈ log∗
2 x; A2(x) = 2x (3.1)

λi(Ai(x)) = x; Ai(λi(x)) ≥ x (3.2)

The Property 3.1 is immediate from the definitions. The Property 3.2 follows
from the fact, that λi is discrete inverse of Ai. In other words, λi(x) = minj≥0{j :
Ai(j) ≥ x}. This can be easily proved by induction – the base case i = 0 is true,
and for the induction step:

λi(x) = λ∗
i−1(x) = min{j : λ

(j)
i−1(x) ≤ 1} ind=

ind= min{j : A
(j)
i−1(1) ≥ x} = min{j : Ai(j) ≥ x}

Note that this also implies, that β is so called “diagonal function” of A: β(x) =
min{j : Aj(j) ≥ x}.

3.2 Lower bounds
We mention there the known lower bounds on sizes of SCs for every constant depth
and also a lower bound on the depth of a SC of linear size. In Section 3.4, we will
show constructions of all these SCs that match the lower bound up to constant
factors. That’s how we know that both the lower bounds and the constructions
are asymptotically optimal. The optimal sizes are summarized in Table 3.1.

The SC of depth 1 is trivial as it is just a complete bipartite graph. Pudlák
[1994] developed a nice general framework for proving lower bounds on differ-
ent communication circuits, which yields asymptotically optimal lower bound for
every SC of depth h ≥ 3. Moreover, his bounds work also for partial SCs.

Theorem 18 (Thm. 3 in Pudlák [1994]). For every constant h ≥ 2, for every
two positive integers n ≥ r,⃓⃓⃓⃓

SC3

(︃
n, n,

n

r

)︃⃓⃓⃓⃓
∈ Ω(n log log r),⃓⃓⃓⃓

SC2h

(︃
n, n,

n

r

)︃⃓⃓⃓⃓
∈ Ω(n λh(r)),⃓⃓⃓⃓

SC2h+1

(︃
n, n,

n

r

)︃⃓⃓⃓⃓
∈ Ω(n λh(r)).

Note that by substituting r = n, we get SCi (n, n, 1), which can be easily
modified to SCi (n, n, 0) = SCi (n) by adding one special vertex v and edge from
every input to v and from v to every output. This doesn’t change the asymptotic
size, so we use this fact also further in construction and omit the last one request,
as it can be easily handled without asymptotic change in size.

Also note that for h = 2 Pudlák [1994] got lower bound n log n, and soon, he
improved it to n log3/2 n by different technique (Alon and Pudlák [1994]).

The asymptotically optimal lower bound for h = 2 was found by Radhakrish-
nan and Ta-Shma [2000] using lower bounds on disperser graphs mentioned in Sec-
tion 1.3, which in turn are a consequence of the upper bound on the Zarankiewicz
problem by Kövari et al. [1954] known as Kővári-Sós-Turán theorem.
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Deptha Size

2 Θ
(︂
n log2 n

log log n

)︂
3 Θ (n log log n)

2h Θ (n λh(n))2h + 1
Θ (β(n)) n

aFor all integers h ≥ 2

Table 3.1: Optimal sizes of superconcentrators of different depths

Theorem 19 (Thm. 1.1 in Radhakrishnan and Ta-Shma [2000]). For every
positive integer n,

|SC2 (n)| ∈ Ω
(︄

n
log2 n

log log n

)︄
.

The lower bound for depth of a linear-size superconcentrator was found by
Dolev et al. [1983] and it uses the even slower growing function β:

Theorem 20 (Corollary 2.2 in Dolev et al. [1983]). For every postitive integer
n, ⃓⃓⃓

SCh(n) (n)
⃓⃓⃓
∈ O (n) ⇒ h(n) ∈ Ω (β(n)) .

3.3 Useful bipartite expanders
Now, let’s recall a few important tools from previous chapters.

For any unbalanced vertex expander with γ = 1, we can direct the edges
from left to right to obtain C1 (n : m, k). That’s true, because according to Hall’s
marriage theorem, the matching of any |S| ≤ k inputs to some outputs (from
definition of a concentrator) exists iff every subset S ′ ⊆ S of size i has at least
i neighbours in m. That is guaranteed by the vertex expander property. Using
the upper bound on unbalanced vertex expanders, we get the following proposi-
tion:

Proposition 21.

|C1 (n : m, k)| ∈ O

⎛⎝n
log
(︂

n
k

)︂
log
(︂

m
k

)︂
⎞⎠

A balanced k-expanding graph is a bipartite multigraph, in which every pair
of subsets |S| ≥ k of left vertices and |T | ≥ k of right vertices is connected by
an edge. There are balanced k-expanding graphs of size O

(︂
n2

k
log
(︂

n
k

)︂)︂
.

Let’s realize that if we direct all the edges from left to right, k-expanding
graphs correspond to SC1 (n, n, k). To prove it by contradiction, let there be a set
|S| = i > k of left vertices (inputs) with less than i−k neighbours (distinct neigh-
bours correspond to vertex-disjoint paths in depth-1 networks). Then, the subset
T of right vertices (outputs) with no neighbour in S has size |T | > n−(i−k) > k,
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which contradicts the k-expanding property. So, the graph is really SC1 (n, n, k)
and so the following proposition holds.

Proposition 22.
|SC1 (n, n, q)| ∈ O

(︄
n2

q
log
(︄

n

q

)︄)︄

A (k, ε)-Disperser graph is a bipartite multigraph with left and right part sizes
n, m, so that every set of left vertices of size at least k has at least (1−ε)m neigh-
bours. For constant epsilon, there are disperser graphs of size O

(︂
log
(︂

n
k

)︂
+ m

k

)︂
.

For the purpose of the constructions, we direct the edges in disperser graph from
left to right to form disperser network D1 (n : m, ε, k).

Proposition 23. For ε constant,

|D1 (n : m, ε, k)| ∈ O
(︃

n
(︃

log
(︃

n

k

)︃
+ m

k

)︃)︃
.

3.4 The Constructions
3.4.1 General construction for all depths
We start with the general construction by Dolev et al. [1983], which yields
asymptotically optimal results for all depths greater than three. In fact, for
every h ≥ 2, we construct the partial SCs from Theorem 18, which satisfies⃓⃓⃓
SC2h

(︂
n, n, n

r

)︂⃓⃓⃓
∈ O (n λh(r)) (and we omit the last one request, as explained

above).
For the construction, we need two types of concentrators. For the construction

of depth-2 SC, we need a concentrator with k = 3
4m of size O (n log r) and for

the recursive construction of SCs of the remaining depths from the depth-2 SC,
we need a linear concentrator with m = n

r
and k = n

r2 . The sizes are guaranteed
by the Proposition 21.

Note that the constants in the concentrators are not important – in the first
concentrator we can have any real from

(︂
1
2 , 1

)︂
instead of 3

4 and its size could be
O (n logα r) for any positive constant α. In the second concentrator, we can have
any positive integer instead of 2 in the term r2.

Overview of the construction

Let’s summarize the construction before we go into the details.
To construct a depth-2 SC, we take a product of a concentrator and its inverse

to form a depth-two (n, n)-network with small middle layer of size m ≤ n with
k = 3

4m. We use the concentrators to concentrate at most k requests from both
sides of the network to the small middle layer. If we pair all requests which
meet each other in the middle layer, there can remain only at most m

2 unhandled
requests on each side. So, for k = 3

4m, we leave at most 2
3k of requests unhandled.

Using this trick twice, we build SC2

(︂
n, n

r
, n

2r

)︂
of size O (n log r).

Then, by taking sum of log2 s instances of this SC for every r = 2i, we
build SC2

(︂
n, n, n

s

)︂
of size O

(︂
n log2 s

)︂
. This size is close enough to optimum
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for the rest of the construction to work (any power of log2 s would suffice, as
mentioned earlier).

Then, from the almost-optimal depth-2 SC and the linear concentrator, we
build linear SC4

(︂
n, n

t
, n

2t

)︂
. The trick for this construction is to first use the lin-

ear concentrator and its inverse to concentrate the requests from both sides to
layers of size n√

t
and then use the one almost-optimal SC2

(︂
n√

t
, n√

t
, n

t4

)︂
of size

O
(︂

n√
t
log2

(︂
t7/2

)︂)︂
⊆ O (n) in the middle. Again, we must use this trick twice and

take the sum of the results to achieve the desired partial SC.
As in the depth-2 construction, we can now take sum of λ2(u) ≈ log∗

2 u in-
stances of such partial SC for every t = 1, 2, 22, 222

, 2222
. . . to get SC4

(︂
n, n, n

u

)︂
of size O (n λ2(u)), which is asymptotically optimal by Theorem 18.

Then, we take the depth-4 SC as a base case for induction and prove that
we can repeat the procedure any number of times. By the induction, we get
the general relation

⃓⃓⃓
SC2h

(︂
n, n, n

r

)︂⃓⃓⃓
∈ O (n λh(r)). From that, it is easy to see,

that also
⃓⃓⃓
SC2h+1

(︂
n, n, n

r

)︂⃓⃓⃓
∈ O (n λh(r)).

Depth of 2 (suboptimal)

First, we present a construction of depth-2 SC. It is not optimal; however, the re-
cursive construction for greater depths based on this depth-2 SC still yields
asymptotically optimal results. For the optimal construction of depth-2 SC, see
Section 3.4.3.

Lemma 24. For all positive integers r ≤ n,⃓⃓⃓⃓
SC2

(︃
n,

n

r
,

n

2r

)︃⃓⃓⃓⃓
∈ O (n log r) .

Corollary 25. For all positive integers s ≤ n,⃓⃓⃓⃓
SC2

(︃
n, n,

n

s

)︃⃓⃓⃓⃓
∈ O

(︂
n log2 s

)︂
.

Proof of Lemma 24. In the case r = 1, the construction is trivial even for depth
1; just take a matching between inputs and outputs. For the rest of the proof,
let r ≥ 2. We construct the SC from the lemma as a sum of two depth-2 partial
SCs – let’s call them SCa and SC ′

a:

SCa
def= SC2

(︃
n,

n

r
,
2
3

n

r

)︃
; SC ′

a
def= SC2

(︃
n,

2
3

n

r
,

n

2r

)︃
First, we construct SCa as a product of a concentrator and its inverse:

SCa = C1

(︃
n : 4

3
n

r
,
n

r

)︃
× C1

(︃
n : 4

3
n

r
,
n

r

)︃
.

Why does the construction works? Let’s denote the size of the middle layer of
the network m, so that m = 4

3
n
r
. The concentrators concentrate any at most

n
r

= 3
4m requests from inputs and outputs to the middle layer. If some pair

of the requests from input and output matches the same vertex, we connect
them by a path through that vertex. After we connect all such pairs, there can

33



remain at most m
2 unhandled requests on each side, as the number of unhandled

request on the left and the right side is the same and every unhandled request
corresponds to a middle vertex matched only from one side. So, on every side
there remains at most m

2 = 2
3

n
r

unhandled requests and therefore the network is
really SC2

(︂
n, n

r
, 2

3
n
r

)︂
.

We construct SC ′
a in a similar way:

SC ′
a = C1

(︃
n : 8

9
n

r
,
2
3

n

r

)︃
× C1

(︃
n : 8

9
n

r
,
2
3

n

r

)︃
Again we denote m′ the size of the middle layer, so m′ = 8

9
n
r
. By the same

reasoning, from any at most 2
3

n
r

= 3
4m′ requests, at most m′

2 of them remains
unahndled. As m′

2 = 4
9

n
r

≤ 1
2

n
r
, the network is really SC2

(︂
n, 2

3
n
r
, n

2r

)︂
.

We obtain the partial SC from the statement of the lemma by taking the sum
SCa + SC ′

a:

SC2

(︃
n,

n

r
,

n

2r

)︃
= SC2

(︃
n,

n

r
,
2
3

n

r

)︃
+ SC2

(︃
n,

2
3

n

r
,

n

2r

)︃
The SCa takes at most n

r
requests and lets at most 2

3
n
r

of requests unhandled
and SC ′

a takes at most 2
3

n
r

requests and lets at most 1
2

n
r

requests unhandled. So,
we first let operate SCa to reduce the number of requests to at most 2

3
n
r

and then
use SC ′

a to to reduce the rest to at most 1
2

n
r
, so the network really is the desired

SC2

(︂
n, n

r
, n

2r

)︂
of size O (n log r). The whole construction is shown in Figure 3.2.

By the Proposition 21, the concentrators used in the construction have size
O (n log r), so the lemma is proved.

Proof of Corollary 25. Let s ∈ [n] and i ∈ {0, 1, . . . log2(s) − 1}. For each i we
take an instance of SC2

(︂
n, n

r
, n

2r

)︂
with r = 2i which we have from the Lemma 24

and we build a network as a sum of all of these log2(s) instances. In this new
network, for any at most n

s
requests, we first use the SC2

(︂
n, n

1 , n
2

)︂
to handle a half

of them, then the SC2

(︂
n, n

2 , n
4

)︂
to handle a half of the remaining and generally,

we use SC2

(︂
n, n

2i ,
n

2i+1

)︂
to push the number of unhandled requests under n

2i+1 , so
at the end, we have at most n

2log2(s) = n
s

requests left.
As for all the used partial SCs, we have r ≤ s, every one of the SCs has size

O (n log s), so the size of the whole network is O
(︂
n log2 s

)︂
.

Depth of 4

Now, we use the depth-2 SC from Corollary 25 to construct optimal depth-4 SC.
Then, we prove by induction that the same procedure can be iterated to achieve
optimal SCs for all greater depths.

Lemma 26. For all positive integers t ≤ n,⃓⃓⃓⃓
SC4

(︃
n,

n

t
,

n

2t

)︃⃓⃓⃓⃓
∈ O (n) .
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r
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at most n
2r

unhandled requests

m′ = 8
9

n
r

m = 4
3

n
r

C1
(︁
n : 4

3
n
r

, n
r

)︁
C1

(︁
n : 8

9
n
r

, 2
3

n
r
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C1
(︁
n : 4

3
n
r

, n
r

)︁
C1

(︁
n : 8

9
n
r

, 2
3

n
r

)︁

Figure 3.2: SC2

(︂
n, n

r
, n

2r

)︂
as a sum of SCa and SC ′

a.

Corollary 27. For all positive integers u ≤ n,⃓⃓⃓⃓
SC4

(︃
n, n,

n

u

)︃⃓⃓⃓⃓
∈ O (n λ2(u)) .

Proof of Lemma 26. The construction is somewhat similar to the one for depth
2 – we again construct the desired SC as a sum of two depth-4 partial SCs, let’s
call them SCb and SC ′

b:

SCb
def= SC4

(︃
n,

n

t
,

n

t4

)︃
; SC ′

b
def= SC4

(︃
n,

n

t4 ,
n

2t

)︃
We start with the construction of SCb. For the construction, we use two con-

centrators to concentrate the requests from inputs and outputs, and in the center,
we use one depth-2 partial SC to route the concentrated requests:

SCb = C1

(︄
n : n√

t
,
n

t

)︄
× SC2

(︄
n√
t
,

n√
t
,

n

t4

)︄
× C1

(︄
n : n√

t
,
n

t

)︄

Any at most n
t

requests are moved by the concentrators to the SC and the SC can
take all the concentrated requests and left only n

t4 of them unhandled, so the net-
work is really SC4

(︂
n, n

t
, n

t4

)︂
. The concentrators are linear by the Proposition 21

and by the Corollary 25, the partial SC in the middle has size O
(︂

n√
t
log2

(︂
t7/2

)︂)︂
⊆

O (n), so SCb has linear size.
Now, we construct SC ′

b in a similar way:

SC ′
b = C1

(︃
n : n

t2 ,
n

t4

)︃
× SC2

(︃
n

t2 ,
n

t2 ,
n

2t

)︃
× C1

(︃
n : n

t2 ,
n

t4

)︃
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t2
, n
t4

)︁

C1

(︂
n : n√

t
, n

t

)︂
C1

(︁
n : n

t2
, n
t4

)︁

m = n
t2

m = n√
t

SC2

(︂
n√
t
, n√

t
, n
t4

)︂
SC2

(︁
n
t2 ,

n
t2 ,

n
2t

)︁
m = n√

t m = n
t2

Figure 3.3: SC4

(︂
n, n

t
, n

2t

)︂
as a sum of SCb and SC ′

b.

The construction works for the same reason as for the SCb, the concentrators
are again linear by Proposition 21 and the partial SC in the middle has size
O
(︂

n
t2 log2

(︂
2t

t2

)︂)︂
⊆ O (n) by the Corollary 25, so SC ′

b is also linear.
To get the SC from the statement of the lemma, we take the sum SCb + SC ′

b:

SC4

(︃
n,

n

t
,

n

2t

)︃
= SC4

(︃
n,

n

t
,

n

t4

)︃
+ SC4

(︃
n,

n

t4 ,
n

2t

)︃
The SCb takes care of all but n

t4 requests and from the remaining requests SC ′
b

handles all but n
2t , so the network is SC4

(︂
n, n

t
, n

2t

)︂
and as both SCb and SC ′

b

are linear, the whole network is linear. You can see the whole construction in
Figure 3.3.

Proof of Corollary 27. Let u ∈ [n] and i ∈ {0, 1, . . . , λ2(u) − 1}. For each i, take
an instance of SC4

(︂
n, n

t
, n

2t

)︂
for t = A(i)

1 (1) = A2(i), which is linear the Lemma 26
and take sum of all these instances. The first partial SC takes care of all but n

2
requests, the second handles all the rest but n

22 , the third the rest but n

222 and so
on, to the last one, which lets n

A2(λ2(u)) ≤ n
u

requests unhandled.
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Depth of 2h

Now, we prove by induction on h that by the same procedure, we can achieve
optimal SCs of all greater even depths. That solves also all odd depths greater
than 3, as by Theorem 18, the lower bounds for depths 2h and 2h+1 are the same
for all h ≥ 2.

Theorem 28 (Proposition 1.3 in Dolev et al. [1983]). For every constant h ≥ 2,
for all integers n ≥ 1 and v, w ∈ [n]:⃓⃓⃓⃓

⃓SC2h

(︄
n,

n

v
,

n

Ah−1(v)

)︄⃓⃓⃓⃓
⃓ ∈ O (n) (3.3)

⃓⃓⃓⃓
SC2h

(︃
n, n,

n

w

)︃⃓⃓⃓⃓
∈ O (n λh(w)) (3.4)

Proof. In the Lemma 26 and in the Corollary 27, we have already proven ( 3.3)
and ( 3.4) for the case h = 2. That means, that the base case is true and it remains
to prove the induction step. So, let’s first construct ( 3.3) using the induction
hypothesis

⃓⃓⃓
SC2(h−1)

(︂
np, np, np

r

)︂⃓⃓⃓
∈ O (np λh−1(r)). The construction is analogous

to the one for depth-4 case above, so it is a sum of two linear SCs SCc + SC ′
c:

SCc = SC2h

(︃
n,

n

v
,

n

v2

)︃
; SC ′

c = SC2h

(︄
n,

n

v2 ,
n

Ah−1(v)

)︄

First, we construct SCc:

SCc = C1

(︄
n : n√

v
,
n

v

)︄
× SC2(h−1)

(︄
n√
v

,
n√
v

,
n

v2

)︄
× C1

(︄
n : n√

v
,
n

v

)︄

The concentrators are linear by the Proposition 21 and by the induction hypoth-
esis, the partial SC has size O

(︂
n√
v

λh−1(v3/2)
)︂

⊆ O
(︂

n√
v

log
(︂
v3/2

)︂)︂
⊆ O (n), so

the whole SCc is linear.
In the same manner, we construct SC ′

c:

SC ′
c = C1

(︃
n : n

v
,

n

v2

)︃
× SC2(h−1)

(︄
n

v
,
n

v
,

n

Ah−1(v)

)︄
× C1

(︃
n : n

v
,

n

v2

)︃

Once again, the concentrators are linear by Proposition 21 and by the induction
hypothesis, the partial SC has size O

(︂
n
v

λh−1(Ah−1(v))
)︂

= O (n), as λi(Ai(x)) =
x, so SC ′

c is linear.
Taking the sum SCc + SC ′

c, we obtain
⃓⃓⃓
SC2h

(︂
n, n

v
, n

Ah−1(v)

)︂⃓⃓⃓
∈ O (n), so ( 3.3)

is proven.
The second part ( 3.4) follows from ( 3.3). Let i ∈ {0, 1, . . . , λh(w) − 1} and

for each i, take instance of SC2h

(︂
n, n

v
, n

Ah−1(v)

)︂
for v = A(i)

h−1(1) = Ah(i) and build
the final network by taking sum of all the instances. The final network leaves
only n

Ah(λh(w)) ≤ n
w

requests unhandled, so it is
⃓⃓⃓
SC2h

(︂
n, n, n

w

)︂⃓⃓⃓
∈ O (n λh(w)).
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3.4.2 Depth of 3
Below, we present asymptotically optimal depth-3 SC construction by Alon and
Pudlák [1994]. As the general depth above, this construction also works for partial
SCs, so we construct

⃓⃓⃓
SC3

(︂
n, n, n

u

)︂⃓⃓⃓
∈ O (n log log(u)) (which matches the lower

bound from Theorem 18).
The principle is the same as in the construction for depth 4. For constants r,

q, we construct linear SC3

(︂
n, n

rqi , n

rqi+1

)︂
using two concentrators to concentrate

the inputs and outputs, and then one partial SC in the middle to route the re-
quests to the next side. We just use depth-1 partial SC instead of the depth-2
one to save one level. Then, we use a sum of O (log log u) instances of this linear
partial SC to get the final partial SC.

Note that we could use this depth-3 partial SC instead of the depth-2 one in
the general construction to get all the partial SCs of the same sizes only with
the depth larger by one.

Theorem 29. For all positive integers u ≤ n,⃓⃓⃓⃓
SC4

(︃
n, n,

n

u

)︃⃓⃓⃓⃓
∈ O (n log log u) .

Lemma 30. There is a real constant α > 1 and an integer constant r ≥ 1, so
that for all integers i ≥ 0 and n ≥ 1,⃓⃓⃓⃓

SC3

(︃
n,

n

rαi ,
n

rαi+1

)︃⃓⃓⃓⃓
∈ O (n) .

Proof of Lemma 30. In addition to the constants from the statement of
the lemma, let there be also a real constant 0 < β < 1 (we determine the exact
values later). We build the desired linear partial SC from two concentrators and
one partial SC:

SC3

(︃
n,

n

rαi ,
n

rαi+1

)︃
=

= C1

(︃
n : n

rβαi ,
n

rαi

)︃
× SC1

(︃
n

rβαi ,
n

rβαi ,
n

rαi+1

)︃
× C1

(︃
n : n

rβαi ,
n

rαi

)︃
The concentrators concentrate any at most n

rαi requests and the partial SC lets
at most n

rαi+1 of them unhandled, so the construction works (see the Figure 3.4).
By the Proposition 21, the concentrators have size O

(︂
n log(n/k)

log(m/k)

)︂
which for

k = n

rαi and m = n

rβαi equals O
(︂
n 1

1−β

)︂
= O (n).

According to Proposition 22, the partial SC has size O
(︂

n2
0

k
log
(︂

n0
k

)︂)︂
which

for n0 = n

rβαi and k = n

rαi+1 equals O
(︂
nrαi(α−2β)αi(α−β) log(r)

)︂
. We need to set

the values of the constant so that the size is linear. Such setting exists, for ex-
ample α = 7

6 , β = 2
3 and r = 4. So we have linear SC3

(︂
n, n

rαi , n

rαi+1

)︂
for all i.

Proof of Theorem 29. Let u ∈ [n] and i ∈ {0, 1, . . . , logα logr u − 1}. For each
i, take an instance of the SC from Lemma 30 and take sum of all the instances.
Resulting network is clearly SC3

(︂
n, n

r
, n

u

)︂
. If we add an

⃓⃓⃓
SC1

(︂
n, n, n

r

)︂⃓⃓⃓
∈ O (n) to
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k ≤ n

rα
iat most n

rα
i+1

unhandled requests

C1

(︂
n : n

rβαi ,
n

rαi

)︂

C1

(︂
n : n

rβαi ,
n

rα
i

)︂

m = n

rβαi

SC1

(︂
n

rβαi ,
n

rβαi ,
n

rαi+1

)︂
m = n

rβαi

Figure 3.4: Construction of SC3

(︂
n, n

rαi , n

rαi+1

)︂
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the network, we get the desired SC3

(︂
n, n, n

u

)︂
, and as logα logr u ∈ O (log log u),

it has size O (n log log u).

3.4.3 Depth of 2
The construction which we present here is analogous to the one from Section 3.4.1;
however, it is based on disperser networks instead of concentrators. It was first
used by Wigderson and Zuckerman [1993], but they focused on the explicit con-
struction and so didn’t achieve the optimal size (they also used it to construct
concentrators, see Section 2.4). Later, Radhakrishnan and Ta-Shma [2000] used
the same construction with optimal disperser graphs and got the asymptotically
optimal depth-2 SC of size O

(︂
n log2 n

log log n

)︂
.

Before the construction, we need to prove the following lemma. It was origi-
nally stated by Meshulam [1984] for SCs, but we state it for partial SCs:

Lemma 31 (Thm. 1 in Meshulam [1984]). Let G be a depth-2 (n : n)-network
with no edge between inputs and outputs. Then, G is SC2 (n, p, q) iff for every
i ≤ p and for every sets S of i inputs and set T of i outputs, the number of
common neighbours of S and T is at least i − q.

Proof. It is clear that the condition is necessary, as every one of the i − q vertex-
disjoint paths from the definition of partial SC must contain a middle vertex. To
prove the sufficiency, we use the Mengers’s theorem, which states that the size of
a minimum vertex cut separating vertices u, v equals the maximum number of
internally vertex-disjoint paths from u to v.

We add vertices u, v to the network and then add edges from u to every
vertex of S and from every vertex of T to v. The theorem holds for undirected
graphs; however, the undirected internally vertex-disjoint u – v paths correspond
to the directed vertex-disjoint paths from S to T (and the eventual multiple edges
also doesn’t matter). So it suffices to prove that if the condition from the lemma
holds, the minimum cut C separating u and v has a size of at least i − q.

Let’s denote M the middle vertices of the network. It is clear, that (M ∩C) ⊇
(N(S \ C) ∩ N(T \ C)), otherwise, there would be a path from S \ C through
M \ C to T \ C so C wouldn’t be a cut. By the condition from the lemma,
|N(S \ C) ∩ N(T \ C)| ≥ min(|S \ C| , |T \ C|) − q. That means, that

|M ∩ C| ≥ |N(S \ C) ∩ N(T \ C)| ≥ min(|S \ C| , |T \ C|) − q

And now, we can bound C from below and conclude the proof:

|C| ≥ |S ∩ C| + |T ∩ C| + |M ∩ C|
≥ |S ∩ C| + |T ∩ C| + min(|S \ C| , |T \ C|) − q ≥ i − q
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p = m
2 + kq = k

D1
(︁
n : m, ε = 1

4 , k
)︁

D1
(︁
n : m, ε = 1

4 , k
)︁

at least m
2

common neighbours

Figure 3.5: Construction of SC2

(︂
n, m

2 + k, k
)︂

from two disperser networks

The construction

As in the previous sections, we state the theorem for the partial SCs. The non-
partial case follows by substituting r = n.

Theorem 32. For all positive integers n ≥ r,

|SC2 (n, r, 1)| ∈ O
(︄

n
log n · log r

log log r

)︄
.

The idea of the construction is similar to the suboptimal one, and it is char-
acterized by the following lemma.

Lemma 33. D1

(︂
n : m, ε = 1

4 , k
)︂

× D1

(︂
n : m, ε = 1

4 , k
)︂

= SC2

(︂
n, m

2 + k, k
)︂

Proof. In this network, every set of inputs |S| = i ≥ k has at least 3
4m neighbours

and every set |T | = i of outputs also has 3
4m neighbours, so it follows, that S and

T have at least m
2 common neighbours.

Now, we need to use the Lemma 31 to show, that the network is SC2 (n, p, k).
For which p is this true? For any i ≤ p we need the number of the common
neighbours to be at least i − k. For i ≤ k this is trivially true and for i > k we
have always at least m

2 common neighbours by the disperser property. It means,
that we only need m

2 ≥ p − k ≥ i − k for the network to be SC2 (n, p, k). That
gives us sufficient condition p ≤ m

2 + k. The construction is shown in Figure 3.5.

By the Proposition 23, we have
⃓⃓⃓
D1

(︂
n : m, 1

4 , k
)︂⃓⃓⃓

∈ O
(︂
n
(︂
log
(︂

n
k

)︂
+ m

k

)︂)︂
. If

we now substitute for p, q to this bound, we get following corollary of the lemma.
The weaker bound on the right is sufficient for the construction.
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Corollary 34. |SC2 (n, p, q)| ∈ O
(︂
n
(︂
log
(︂

n
q

)︂
+ p−q

q

)︂)︂
⊆ O

(︂
n
(︂
log
(︂

n
q

)︂
+ p

q

)︂)︂
Note, that by the corollary, we can obtain SC2

(︂
n, n

r
, n

2r

)︂
of size O (n log r) from

one pair of disperser networks. So, this method is a bit simpler, as it requires
only one pair of disperser networks, compared to two pairs of concentrators in
Section 3.4.1.

Let’s now use the corollary to prove the theorem.
Proof of Theorem 32. Let r ∈ [n] and i ∈ {0, 1, . . . log r

log log r
− 1}. For every i,

we construct SC2

(︂
n, logi(r), logi+1(r)

)︂
, which is O (n log n) by the Corollary 34.

Taking sum of all these partial SCs yields SC2 (n, r, 1) of size O
(︂
n log n·log r

log log r

)︂
.

3.4.4 Superconcentrator of linear size
When we have constructed (asymptotically) optimal-size SC for every constant
depth, there comes a natural question – how large depth would we need to achieve
linear size? Again, we show a construction matching the lower bound. It con-
sists of recursive construction, which was first introduced by Bassalygo [1981] and
then used by Dolev et al. [1983] by combining it with the asymptotically opti-
mal bounds on bounded depth SC to achieve the asymptotically optimal depth.
However, we took the recursive construction from Pippenger [1996] (instead of
Bassalygo), as the Pippenger’s construction can be easily made explicit, so we
need it anyway in Chapter 5, where we discuss explicit SCs.1

Linear superconcentrator of logarithmic depth

First, let’s introduce Pippenger’s recursive construction2, which can be expressed
by this theorem:

Theorem 35 (Thm. 1 in Pippenger [1996]). For all integers j > ℓ > 1 and
h ≥ 0:

SCh+2 (n) = SC1

(︄
n, n,

n

j

)︄
+ C1

(︄
n : n

ℓ
,
n

j

)︄
× SCh

(︃
n

ℓ

)︃
× C1

(︄
n : n

ℓ
,
n

j

)︄

We believe that the principle of the construction is quite clear. First, we use
one depth-1 SC to handle all but n

j
requests. Then, we concentrate all the remain-

ing requests from both sides to space of size n
ℓ

and then use SCh

(︂
n
ℓ

)︂
to handle

all the concentrated requests (see Figure 3.6).
For constants j > ℓ > 1 (let’s choose ℓ = 2, j = 4), both the concentrator and

the depth-1 SC easily achieve linear size – see the bounds in Section 3.3. So, if
we start with trivial SC0 (1) (one vertex) as a base of the recursive construction,

1And also because Bassalygo’s article is in Russian. Its translation was published in “Prob-
lems of Information transmission”, but the article is not in the online archive.

2The original version is more complicated, as Pippenger [1996] permitted sending a constant
number of requests over every edge and vertex and also required for the paths to be distributively
calculated by finite automatons placed in the vertices.
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n
2
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SC1

(︂
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4

)︁
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2 , n
4

)︁

Figure 3.6: Pippenger’s recursive construction for ℓ = 2 and j = 4.
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we get SC of depth h = ⌈2 log2 n⌉ for any n. The concentrator and depth-1 SC
used in the last step has size O (n), the ones from previous step two times less
and so on, so the overall size is O

(︂
n + n

2 + n
4 . . . 1

)︂
= O (n).

Linear superconcentrator of asymptotically optimal depth

We can improve the logarithmic construction by using some good depth-z SC
as a base of the construction instead of the trivial depth-0 one. Informally, if
we have depth-z SC of size an, we can use the construction log2 a times to push
the input size under n

a
and then use the depth-z SC of size an

a
= n. The resulting

linear SC has depth z + 2 log2 a. This idea was used implicitly by Dolev et al.
[1983] and was briefly mentioned by Wigderson and Zuckerman [1993].

Theorem 36. There is a function h(n) defined for all n ≥ 1, so that h(n) ∈
O (β(n)) and ⃓⃓⃓

SCh(n) (n)
⃓⃓⃓
∈ O (n) .

The theorem is a consequence of this lemma.

Lemma 37 (Lemma 4.7 in Wigderson and Zuckerman [1993]). Let there be a pos-
itive integer z, a non-decreasing function fz, fz(n) ≥ 1, and let |SCz (n)| ∈
O (nfz(n)). Then, there is a linear superconcentrator of depth

h = z + ⌈2 log2(fz(n))⌉ ∈ O (z + fz(n)) .

That is true, as after ⌈2 log2(fz(n))⌉ recursion steps, the number of inputs
and outputs is at most n

fz(n) , so the size of the depth-z SC we used as a base of
the construction is O

(︂
n

fz(n)fz

(︂
n

fz(n)

)︂)︂
which is linear for non-decreasing fz(n) ≥

1.
Proof of Theorem 36. We use the lemma for the asymptotically optimal depth-z
SCs that we have by Theorem 28. So we get linear SC of depth O (z + λz(n))
for any z ≥ 2. We would like to minimize this expression. That means, that
for every n, we would like to choose the lowest z so that z ≥ λz(n). That is
exactly the definition of β(n) = min{z : λz(n) ≤ z}. So, the theorem follows
from the lemma by substituting z = β(n).
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4. Explicit expander
constructions
In the previous chapter, we determined the asymptotic size of SCs of every depth.
However, the upper bounds on expanders we used were mostly obtained by prob-
abilistic construction, so the bounds didn’t come with some algorithm for con-
structing these expanders. Of course, we could just construct all graphs of ap-
propriate size and test, which one is the wanted expander, but this algorithm is
exponential in n. This motivates us to define explicit construction1.

Definition 20 (Explicit construction). Let there be an infinite family F of multi-
graphs. An explicit construction of F is an poly(n) time algorithm, which for any
n outputs a representation of G ∈ F on n vertices, if such G exists. If we have
such an algorithm, we say that F is explicit.

In this chapter, we try to find the best explicit expanders. We will see that
there is a large gap between the upper bounds from Chapter 1 and the explicit
expanders – we achieve the size from Chapter 1 only for the spectral expanders.
Also, the explicit constructions are much more complex and are beyond the scope
of this thesis, so we don’t present there any of them.

We also utilize the relationships between expanders from Chapter 2 to convert
some explicit expanders (mostly the optimal spectral expanders) to expanders of
another type. We summarize the achieved sizes in Table 4.1. Sizes obtained by
conversion from another type of expander are in grey; the conversions are denoted
by arrows.

4.1 Spectral expanders
We start with spectral expanders, as they were the only source of explicit ex-
panders for a long time. We already mentioned in Chapter 1, that by Nilli [1991],
in every d-regular multigraph, λ ≥ 2

√
d−1
d

− o(1) (where the o notation is with
respect to n).

d-regular multigraphs, for which λ ≤ 2
√

d−1
d

are called Ramanujan graphs. As
explained in Section 2.1, the bipartite Ramanujan graphs are defined so that every
bipartite Ramanujan graph with parameter λ′ is balanced spectral λ-expander
for some λ ≤ λ′, so all the upper bound on bipartite Ramanujan graphs are
also valid for the balanced spectral expanders. After many years of development,
the problem of constructing Ramanujan graphs is nearly solved – we don’t cover
the whole history there and mention only the best achieved results.

Morgenstern [1994] found explicit construction of Ramanujan graphs on q + 1
vertices for any prime power q (the title of the article in fact is “Existence and
Explicit Constructions of q+1 Regular Ramanujan Graphs for Every Prime Power
q”), Mohanty et al. [2019] showed explicit construction of nearly Ramanujan

1Some authors distinguish between mild and full explicitness. Our definition corresponds
to the mild version; for the full one, one must be able to compute i-th neighbour of a vertex in
poly(log n) time.
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Table 4.1: Overview of explicit expanders

graphs for any n and d. That means, that for every d ≥ 3 and ε ≥ 0, they give
poly(n) algorithm that outputs a graph on Θ(n) vertices with λ ≤ 2

√
d−1
d

+ ε.
For the balanced bipartite version, the situation is even better – Marcus et al.

[2015] proved the existence of bipartite Ramanujan graph for every n and every
degree d. Later, Cohen [2016] devised a polynomial algorithm to construct any
of these graphs.

As we already mentioned in Chapter 1, we didn’t find much information about
unbalanced spectral expanders; especially, we didn’t find the upper and lower
bounds on the size, nor explicit constructions. It would be interesting to try to
use the techniques from the articles mentioned above to construct the unbalanced
versions; we were not able to do so in a limited time.

4.2 k-expanding graphs
First, we can use the Corollary 13 of a mixing lemma from Section 2.2 to get
k-expanding graph from spectral expanders. We have already shown it in Sec-
tion 2.2 – if we have λ ≥ 2√

d
(which we can achieve explicitly, as explained above),

we get the condition d ≥ 4n2

k2 for both the general and balanced case. To obtain
the unbalanced version, we can simply remove appropriate edges from the general
case, as explained in Section 2.3. The bound on the right degree stays the same,
so for the left average degree, we have d̄ ≥ m

n
4n2

k2 = 4mn
k2 .

Wigderson and Zuckerman [1993] gave explicit construction of nδ-expanding
graph for any d ≥ n1−δ2(log log n)O(1) :

Theorem 38 (Thm. 1.2 in Wigderson and Zuckerman [1993]). There is a logspace
algorithm that, on input n (in unary) and δ, where 0 < δ = δ(n) < 1, constructs
a k-expanding graph on n nodes with k = nδ and maximum degree

d ≥ n

k
2(log log n)O(1) = n1−δ2(log log n)O(1)

.
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Note, that this is close to the probabilistic bound, as we only have 2(log log n)O(1)

instead of log
(︂

en
k

)︂
in the size. Again, by deleting edges, we get the unbalanced

version with d̄ ∈ m
k

2(log log n)O(1) .
The construction is based on seeded randomness extractors, and as the article

was published in 1993, it would be interesting to try to use the current best-
known extractors to improve the construction. Again, we were not able to do it,
and we leave it for future research.

4.3 Disperser graphs
As we explained in Section 2.4 unbalanced k-expanding graphs are equivalent
to
(︂
k, k

m

)︂
-disperser graphs. So, from the construction of k-expanding graphs

above follows, that for every δ, there are explicit
(︂
nδ, nδ

m

)︂
-disperser graphs for

d̄ ∈ m
nδ 2(log log n)O(1) .

Ta-Shma et al. [2007] achieved polylogarithmic degree, for some m ∈ Ω
(︂

kd
log3 n

)︂
.

Theorem 39 (Thm. 1.4 in Ta-Shma et al. [2007]). For every n = 2x, k = 2y and
constant ε, there is a degree d ∈ logO(1)(n) explicit (k, ε)-disperser graph with
m ∈ Ω

(︂
kd

log3 n

)︂
.

This result is crucial, as it enables explicit construction of depth-2 SC of size
n logO(1)(n).

4.4 Vertex expanders
We have already seen in Section 2.1 that with λ = 2√

d
(which we have explicitly),

the conversion from spectral to vertex expanders gives us general or balanced
explicit vertex expander for every d ≥ 2 n−k

n/γ−k
. However, we are mostly interested

in the unbalanced case, which we can’t achieve this way, as we do not have
unbalanced spectral expanders.

One way out is to use Pippenger’s construction from Section 2.6. If we use
it on the explicit balanced vertex expander above, we get unbalanced vertex
(k, γ = 1)-expander with n

m
integer for any d ≥ 2 n−k

m−k
. However, we noted in

Section 2.6, that even when used on the non-explicit balanced expanders, this
construction is useless as n

m
goes close to n, so the same is of course still true

now. (We chose γ = 1 as we need to use the expander as a concentrator.)
Another way is to use the construction from Section 2.5 (again with γ = 1).

Let i ∈ {0, 1, . . . , log2 k − 1}, n = 2x (for some integer x) and ε constant. Then,
by Theorem 39, we have for every i explicit disperser with ki = 2i, mi = 2i+1

1−ε
and

degree di ∈ logO(1)(n). We now have for every i: mi(1 − ε) ≥ ki+1, so we can
use the Proposition 16, which for every n = 2x and 2y = k ≤ n yields explicit
unbalanced vertex (k, γ = 1)-expander with m = k

1−ε
and d ∈ log2(k) logO(1)(n) ⊆

logO(1)(n).
And finally, there is a result by Guruswami et al. [2009], which yields vertex

expanders with an even smaller degree and larger γ, but with larger m with
respect to k:
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Theorem 40 (Thm. 1.3 in Guruswami et al. [2009]). For all constants α > 0: for
every n ∈ N, k ≤ n, and ε > 0, there is an explicit vertex (k, (1 − ε)d)-expander
with degree d ∈ O

(︂
(1

ε
log n log k)1+1/α

)︂
and m ≤ d2k1+α.

As we only need γ = 1, we can use the tradeoff between γ and m from
Section 2.6 to achieve smaller m with γ = 1. By using the Proposition 17 for
l = ⌊(1 − ε)d⌋, we get γ ≥ 1 and m ≤ d2k1+α

⌊(1−ε)d⌋ ≈ dk1+α

1−ε
∈ O (dk1+α) for constant

ε.

Corollary 41. For all constants α > 0: for every n ∈ N, k ≤ n, and constant
ε > 0, there is an explicit unbalanced vertex (k, γ = 1)-expander with degree
d ∈ O

(︂
(1

ε
log n log k)1+1/α

)︂
and m ∈ O (dk1+α).
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5. Explicit superconcentrator
constructions
As we have seen in Chapter 4, our resources for explicit SC constructions are very
limited. In this chapter, we state the so far best known explicit constructions –
depth-2 SC of size n logO(1) n and linear SC of depth O (log log n). We also sum-
marize some open problems and topics for further research, which arose during
the creation of this thesis.

We denote the explicit networks by upper index e (for example SCe
d (n, m, k)).

5.1 Depth-2 superconcentrator of polylogarith-
mic degree

The currently best known explicit construction of bounded-depth SC is the con-
struction by Radhakrishnan and Ta-Shma [2000], which we explained in Sec-
tion 3.4.3. When we use it with the best explicit disperser graphs by Ta-Shma
et al. [2007], we achieve depth-2 SC of size n logO(1) n (Ta-Shma et al. noticed
that and mentioned it in the article).

The construction is characterized by the following lemma:

Lemma 42 (Lemma 33 restated).

D1

(︃
n : m, ε = 1

4 , k
)︃

× D1

(︃
n : m, ε = 1

4 , k
)︃

= SC2

(︃
n,

m

2 + k, k
)︃

Now, we use the explicit disperser from Section 4.3 which for constant ε,
n = 2x, k = 2y and some m ∈ k logΩ(1) n achieves size n logO(1) n. So, we can
choose m = 2k and k = 2i to get the following corollary of the Lemma 42:

Corollary 43.⃓⃓⃓
SCe

2

(︂
n, 2i+1, 2i

)︂⃓⃓⃓
∈ n logO(1) n ∀i ∈ {0, 1, . . . log(n) − 1}

Now, as in the previous constructions, we just construct these partial SCs for
every i and take their sum to get the resulting theorem:

Theorem 44. For all integers n ≥ 0:

|SCe
2 (n)| ∈ n logO(1) n

5.2 Explicit linear superconcentrator
The linear SC construction by Pippenger [1996] which we presented in Sec-
tion 3.4.4 can be made easily explicit by using only the spectral expanders –
it was meant so by the author, as there were known explicit constructions of
spectral expanders of appropriate size in 1996 (although with higher constants).
The construction is characterized by Theorem 35:
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Theorem 45 (Theorem 35 restated). For all integers j > ℓ > 1 and h ≥ 0:

SCh+2 (n) = SC1

(︄
n, n,

n

j

)︄
+ C1

(︄
n : n

ℓ
,
n

j

)︄
× SCh

(︃
n

ℓ

)︃
× C1

(︄
n : n

ℓ
,
n

j

)︄

In Section 3.4.4, we have chosen ℓ = 2 and j = 4, so let’s stick with the choice.
That means that we need explicit networks Ce

1

(︂
n : n

2 , n
4

)︂
and SCe

1

(︂
n, n, n

2

)︂
of

linear size. From Chapter 4, we know, that there is explicit unbalanced vertex
expander with γ = 1 for any d ≥ 2 n−k

m−k
and k-expanding graph for any d ≥ 2n2

a2

(we got both from spectral expanders). It follows by simple substitution, that
we have the needed explicit networks of linear size (particularly with d = 6 and
d = 8).

Now, as mentioned in Section 3.4.4, we can start with trivial SCe
0 (1) as a base

of the recursive construction to get explicit linear SC of depth h = ⌈2 log2 n⌉.
We have achieved the asymptotically optimal depth by starting with some

good bounded-depth SC instead of the trivial SCe
0 (1). The procedure was justified

by Lemma 37:

Lemma 46 (Lemma 37 restated for explicit SCs). Let there be a positive integer
z, non-decreasing function fz, fz(n) ≥ 1, and let |SCe

z (n)| ∈ O (nfz(n)). Then,
there is an explicit linear superconcentrator of depth

h = z + ⌈2 log2(fz(n))⌉ ∈ O (z + log(fz(n))) .

We can do the same with the explicit depth-2 SC from this chapter – we use
it as a base of the construction. In the terms of the lemma, we have z = 2
and fz = logO(1) n. Then, the lemma gives us an explicit linear SC of depth
d ∈ O

(︂
2 + log

(︂
logO(1) n

)︂)︂
⊆ O (log log n).

Theorem 47. There is a function h(n) defined for all n ≥ 1, so that h(n) ∈
O (log log n) and ⃓⃓⃓

SCe
h(n) (n)

⃓⃓⃓
∈ O (n) .

5.3 Open problems
5.3.1 Better explicit superconcentrators
We were not able to get any better explicit SCs with the available expanders.
We have no proof for that, but we believe that we still need some better explicit
expanders to move on. In any case, the major open problem is the construction
of smaller explicit superconcentrators. We mention there a few particular ideas
where to start.

Bipartite spectral expanders

It would be interesting to examine the situation around the construction of unbal-
anced vertex expanders – possibly by checking if some methods for constructing
bipartite Ramanujan graphs can be modified to construct also the unbalanced
case. Also, we are not sure if the lower bound on bipartite Ramanujan graphs
also holds for the less strict definition of bipartite spectral expanders with one-
sided expansion, which we used in the thesis (Definition 11).
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Better k-expanding graphs from extractors

The construction of k-expanding graphs by Wigderson and Zuckerman [1993] is
based on explicit extractors. It shouldn’t be hard to plug in the currently best
known explicit extractors and so possibly improve the construction. The probably
best current explicit extractors were constructed by Ta-Shma and Umans [2012].
There is also a nice summary of the extractors known in 2004 by Shaltiel [2004].

Unbalanced vertex expander with smaller γ

The currently best known explicit construction of an unbalanced vertex expander
by Guruswami et al. [2009] is also focused on maximizing γ. We showed a trivial
method to lower simultaneously γ and m; however, we wonder if it would be
possible to achieve better parameters by analyzing their proof while focusing on
the case γ = 1.

5.3.2 Another type of superconcentrators
Gal et al. [2013] gave following general definition of 3 types of superconcentrators:

Definition 21 (Generalized Superconcentrators). Let G be an (n : m)-network
for n ≤ m. Further, let X be a subset of inputs, Y a subset of outputs, |X| =
|Y | = k, and denote f(X, Y ) the maximum number of directed vertex-disjoint
paths from X to Y . Then, for a fixed constant 0 < δ ≤ 1, we give following
hierarchy of superconcentrators ordered by strength:

Type 1: For each X, Y : f(X, Y ) ≥ δk

Type 2: For each X: E Y [f(X, Y )] ≥ δk

Type 3: E X,Y [f(X, Y )] ≥ δk

The superconcentrators of the first type for n = m and δ = 1 are supercon-
centrators by the Definition 14, which we used in the thesis.

It would be interesting to investigate the SC constructions for the general
definition, as we did with the “normal” superconcentrators. We originally planned
to cover also the general version, but we didn’t manage to do so in the time we
had, so the problem remains.
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Conclusion
We studied a great amount of literature to find any information concerning
bounded-depth superconcentrators and expanders relevant to their constructions.
It was not easy to find the right articles, as there is no survey summarizing
the achieved results. In the thesis, we tried to fill this gap.

We presented all the needed expanders in a systematic way together with
proofs of their properties or pointers to appropriate articles. We restated the con-
struction of optimal depth-h superconcentrators by Dolev et al. [1983] in more
detail (as it is originally just one page of a conference paper, and so it is very
hard to read), and we added the later results for depth 2 and 3. We also pro-
vide pointers to relevant explicit expanders and current “world record” explicit
superconcentrator constructions.

Despite a certain amount of effort, we did not succeed in designing brand
new explicit constructions of superconcentrators, which is not surprising as this
is a notoriously difficult problem.

We hope that our work will be useful to anybody interested in superconcen-
trators as a summary of the known techniques and results.
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