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2010
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vzniknout.
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2



Content

1 Introduction 5

2 Memory Models 9

3 Order maintenance problem 13

4 Bucketing 18
4.1 Bucketing strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Uniform bucketing . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Prefix vs. unordered bucketing . . . . . . . . . . . . . . . . . . . . 37

5 Ordered array implementation 52

6 Future work 63

References 64

3
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Chapter 1

Introduction

In this thesis we study several problems connected to the order maintenance data
structure. An ordered maintenance data structure is a data structure for storing
a linearly ordered set [7]. This data structure maintains a current ordered list of
elements. In its basic variant it supports the following operations:

• insert(x, y): insert item y after x into the list

• delete(x): delete item x from the list

• order(x, y): return true if x is before y in the list, otherwise return false

Such a data structure can be realized for example by a linked list or by a
binary search tree. However, we focus on a data structure introduced by Itai et al.
in [12]. Although the insert operation has O(log2 n) amortized time complexity
in this data structure, where n is the number of items in the list, it allows an
efficient implementation of the following operation:

• scan(x, y): traverse through the items which are after x and before y in
the list.

This operation is very important in many practical applications and sur-
prisingly it is performed much faster by the Itai et al. data structure than for
example by binary search trees. This is because in the Itai et al. data structure
the elements are stored in the array of size O(n) in the same order as in the list.
Thus the sequential operations over the list are much faster since the items are
stored in the memory consecutively which is good for the behaviour of cache. By
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contrast the items stored in the leaves of a binary tree are stored in the mem-
ory in random locations and although two items are neighbours in the list they
could be “very far” from each other in the memory. This is very bad for cache
since there is a high probability of many cache misses during the scan operation.
And each cache miss is time consuming. More details will be given in the next
chapter, where we introduce some memory models, which give us a toolkit for
the precise analysis of algorithm behaviour regarding the cache.

The ideas from the Itai et al data structure [12] are used for example in [4]
for developing the dictionary data structure which has optimized performance
for all levels of the memory hierarchy even though it has no memory-hierarchy-
specific parameterization (using the cache oblivious model). There is another
result [3] using this idea and many other results based on the Itai et al. result,
which emphasizes the importance of this data structure.

Although this topic is investigated quite extensively there still remain many
questions to be solved. The one we find to be the most important is whether
there exists a structure similar to the Itai et al. one but with a faster insert
operation. The known result is, that an improvement cannot be achieved by
algorithms implementing smooth strategies [8, 13] – which is the case of the Itai
et al. structure. And even though nonsmooth strategies intuitively seem to be
worse than smooth ones, there is no proof of that.

To contribute to the solution of the above problem we study the very same
data structure which differs just by the size of the underlaying array which is
O(n1+ε). It was proved that such data structure cannot perform insertion faster
than O(log n) [9] in worst case. Two possible implementations are given in [7],
for ε ≥ 1 and E. Demaine’s lecture notes [6] mention that this should be possible
for any ε > 0. We are not aware of any literature where such a structure would
be described. Thus we develop one in the last chapter of the thesis.

Known limited lower bound are based on analysis of a bucketing game [9]. Let
us start with the brief description of this game. Imagine that you have k infinitely
large buckets and you want to place N items into these buckets. Between any
two insert operations, you can perform a merge operation, which means to move
some items among different buckets. The cost of every operation is equal to the
number of items in involved buckets. You want to minimize the total cost of all
insert and merge operations. There are two versions of this game. In the first
version (so called unordered bucketing) you can insert each item into an arbitrary
buckets and also perform merge on an arbitrary subset of buckets. In the second
version (which is known as the prefix bucketing), the buckets are numbered and
you can insert items only to a bucket number one and merge can be performed
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only on buckets 1, 2, . . . ,m where each merge can choose different m.
We start with the simple upper bound estimate for the prefix (and thus also

for the unordered) bucketing.

Claim 1. The upper bound on the cost of a prefix bucketing of N items into
logN buckets is O(N logN).

Proof. The proof is done simply by constructing a strategy producing such buck-
eting. This strategy is inspired by the algorithm presented in [11] and is per-
formed in the binary counting manner. Recall that buckets are numbered from
1 to logN . Let us define the capacities of the buckets. The capacity of the first
bucket is 2 and the capacity of the i-th bucket (i 6= 1) is 2i−1. Insert is always
performed into the bucket with id 1. If the first bucket is full (i.e. it contains 2
items) we perform a merge operation. Let M be the greatest integer such that
all buckets with id 1, 2, . . .M are full. We perform a merge over all the first M+1
buckets and put all the items into bucket M + 1.

The cost of all insert operations is O(N) and since every item takes place
in at most O(logN) merge operations (since by every merge in which it occurs,
it is moved to the bucket with higher id), the overall cost of such bucketing is
O(N logN).

In [9] the following estimates are shown.

Claim 2. The cost of the unordered bucketing of N items into k buckets is
Ω(N logN/ log k).

It can be trivially seen that this claim is tight for k = N – we just place
one item into every bucket. We can also show, that this estimate is tight for

k =
⌈√

N
⌉
. One possible strategy is to insert two items into each bucket and

then merge all items into one arbitrary bucket. Then we insert two items into
each of k − 1 empty buckets and then we merge items from these k − 1 buckets
into an arbitrary bucket of these k − 1 buckets. Then we repeat the very same
for the k− 2 remaining empty buckets etc. until we fill all the buckets. After we
are finished, the k-th bucket contains 2k items, the (k − 1)-th bucket contains
2k − 2 items, the (k − 2)-th bucket contains 2k − 4 items etc. Thus the overall

number of items in all the buckets is 2k(k+1)
2

and since k =
⌈√

N
⌉
, the number

of items in the buckets is at least N . The cost of the unordered bucketing of N

items into
⌈√

N
⌉

buckets is O(N) since the cost of all insertions is smaller than
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2N (the maximal cost of one insertion is 2) and every item is merged exactly
once.

However the most important results are for k = O(logN) buckets. The con-
jecture stated in [9] says the following:

Conjecture 1. The cost of the unordered bucketing of N items into O(logN)
buckets is Ω(N logN).

This is much worse than the lower bound on the cost given in Claim 2. The
conjecture is surprising in the light of the following result:

Claim 3. The cost of the prefix bucketing of N items into k = O(logN) buckets
is θ(NlogN).

This means that for O(logN) buckets, the cost of the prefix bucketing would
be (if the conjecture is correct) asymptotically equal to the cost of the unordered
bucketing. Despite the fact that the unordered bucketing seems to be much
stronger than the prefix bucketing. However this is our result presented in the
next chapters.

Theorem 1. Let L > 1 be an integer and C = 0L be an empty initial bucket
configuration. Let s be an optimal unordered bucketing strategy. Then there exists
an online prefix bucketing strategy s′ such that for every number of items N it
holds that 3c(s, C,N) +N > c(s′, C,N).

Simply, this means, that the cost of the unordered bucketing is equal to the
cost of the prefix bucketing up to a constant factor. Thus we can directly infer
that Conjecture 1 is correct.

This thesis is divided into several sections. In the first section we introduce
some memory models and we show the importance of those models for develop-
ing efficient algorithms. In the next section we introduce an order maintenance
problem and we show its relationship with the bucketing game. In the fourth
section we present our results about bucketing. We start with the detailed de-
scription of bucketing strategies, especially of our concept of online and offline
strategies. Then we describe a uniform bucketing and the relationship between
the unordered bucketing and the uniform bucketing. Finally, we show that any
inseparable bucketing can be transformed into prefix bucketing and since our uni-
form bucketing is inseparable, we obtain a relationship between the unordered
bucketing and the prefix bucketing. In the fifth section we introduce an already
mentioned order maintenance data structure with an array of size O(n1+ε).
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Chapter 2

Memory Models

In this chapter we introduce several memory models, in particular a cache obliv-
ious model. Then we show why such models are important for accurate calcula-
tions of time complexity according to the computer architecture.

In computer science, memory models are often very simplified. On the other
hand if we are interested only in an asymptotic time complexity, this simplifi-
cation does not matter. However it turns out, that in many practical situations
even a constant factor speed up can be very important and then it is necessary
to have a more refined model of memory to capture the differences between any
two algorithms. Let us introduce a couple of such models, from the easiest one
to the best known nowadays.

RAM

Random access machine is the oldest and the most widely used model. It
assumes that every piece of memory can be accessed in the same constant time.
This model is very simple and well studied. For the most cases, this is a suffi-
cient abstraction, which up to a constant factor gives us an idea about the time
an algorithm spends accessing the memory. However, when we have a memory
hierarchy, this model cannot express that some memory location can be accessed
(much) faster than another. This is solved by the next model.

Two level I/O model

Imagine that you have to sort a huge amount of data, which cannot be placed
in the memory and thus it resides on a disk and you have to access the disk from
time to time. Then you will be interested in the number of read/write (I/O)
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operations between the memory and the disk while processing the data. In [1]
they try to minimize the number of these I/O operations. They realized, that
new model is necessary to calculate this number since the RAM model does not
differentiate between memory and disk access. Thus they introduced a two level
memory model. These two levels are the following (we are using the notation
introduced by [5] which is clearer than the original one)

• cache – (relatively) small (size M) but very fast memory consisting of
blocks of size B

• disk – unlimited size but very slow

These two levels communicate by sending blocks of size B. A block is sent when-
ever a cache miss occurs, i.e. required data are not stored in the cache. The
complexity of the algorithm is then calculated as the number of block transfers
(which is equivalent to the number of cache misses) between these two memory
levels.

This model can obviously be used not only to cover relationship memory-
disk but also cache-memory. However there is a couple of problems. The main
problem is, that to obtain an optimal algorithm, the knowledge of M and B is
necessary. Unfortunately these differ system to system. But this problem can be
solved quite well by simple tests which can give at least some estimates of these
values. The second problem is, that this model explicitly assumes, that you have
the control over the placement of blocks in the memory and on the disk. Such
assumption is very far from reality, where typically you have no control over such
things. And finally, this model was developed just for two memory levels which
is insufficient if you realize that usually you have two or three levels of cache,
a main memory, a disk and often some external storages even slower than the
disk.

The cache oblivious model

The main idea behind this model is surprisingly simple – let us forget aboutM
and B and try to write algorithms which use optimal number (up to rounding) of
memory transfers between two levels of the memory for eachM and B. Notice the
interesting consequences, this has. The most important is, that if the algorithm
behaves well between two adjacent levels of the memory with unknown M and B
it has to behave well between every two adjacent levels of the memory hierarchy.
That is, instead of an algorithm with two hardly obtainable parameters, which
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is optimal only for specific two levels of the memory, we obtain one algorithm,
which is optimal for every two adjacent levels of the memory.

However, several assumptions are necessary. The first one is, that for every
two adjacent levels of memory hierarchy cache-disk relationship has to hold. In
other words, the closer to CPU, the smaller and faster memory is and vice versa.
This assumption is pretty reasonable and no one would probably dispute it,
which is not the case of the second assumption.

When the cache (recall that by our definition, a cache is the smaller one of
the two adjacent levels in the memory hierarchy) on any level of the memory
hierarchy is full and you ask for a block which is not stored in this cache, it is
necessary to discard one block stored in the cache and replace it by the demanded
block from the disk. The problem is, that you do not have full control about the
memory, so you do not know which block will be discarded. Obviously you can
develop such discarding strategy, which will perform very badly. Nevertheless,
we will assume that our replacing strategy is optimal and the discarded block
would be needed farthest in the future. Although this assumption seems to be
too strong the following result makes it reasonable.

Lemma 1 (in [10]). If an algorithm makes T memory transfers on a cache of
size M/2 with optimal replacement, then it makes at most 2T memory transfers
on a cache of size M with LRU or FIFO replacement strategies (and the same
block size B).

Here LRU denotes the strategy which replaces the least recently used block
and FIFO denotes the strategy which replaces the oldest one. In other words,
LRU and FIFO replacement performs as well as the optimal replacement up to
a constant factor. And since these strategies (or their approximations) are really
used in real systems, this assumption seems to be reasonable.

Obviously, if an algorithm is optimal (according to the number of cache
misses) in cache oblivious model, it will be also optimal (up to constant) in
the two level I/O model.

Cache optimality justification

No matter which model we use, the goal is always the same – minimize the
number of memory transfers. But even if we design an optimal algorithm (optimal
with respect to the number of memory transfers), we never obtain more than just
a constant factor speed up. On the other hand, designing optimal algorithms in
cache oblivious model can be quite difficult, and the proofs of their complexity
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can be nontrivial. The natural question is, whether such effort is worthwhile
since we can (almost) always buy better CPUs. However the problem is, that for
last couple of years, there is no significant speed up of a single CPU core and
higher performance is obtained by adding more CPU cores. But not all tasks can
be split into parallel subtasks and thus even constant factor speedup might be
useful. Moreover there is a huge cost for transferring data from RAM to CPU
caches. This cost will be always big due to physical limits of used technologies
and thus it makes sense to decrease the number of these transfers as much as
possible (according to Intel programmers manual, the cost of a transfer between
memory and CPU is about 100 CPU cycles). This gives us an idea, that the
difference between two algorithms with the same time complexity can be quite
large. Thus we consider such techniques to be very useful.
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Chapter 3

Order maintenance problem

First we introduce the online list labeling problem using a definition from [12].
Let us have N distinct items from a linearly ordered set and a set of “labels”
from some discrete linearly ordered set of some limited cardinality. We are getting
items one by one in non predictable order. The goal is to maintain an assignment
of labels to the received items, so that the labels are ordered in the same way as
the items they label. Sometimes this might be impossible since there is no free
adequate label. Then we have to change the label assignment (relabel items).
Our task is to minimize the total number of item relabellings.

This problem is very interesting, since it can be directly used for creation
of the order maintenance data structure. The data structure maintains a list of
items and supports the following operations [7]:

• insert(x, y): insert item y after x into the list

• delete(x): delete item x from the list

• order(x, y): return true if x is before y in the list, otherwise return false

Such a data structure can be realized for example by a linked list or by a
binary search tree. However, we focus for a while on a data structure introduced
by Itai et al. in [12]. Although the insert operation has O(log2 n) amortized time
complexity in their data structure, where n is the number of items in the list,
the data structure is interesting as it allows for an efficient implementation of
the following operation:

• scan(x, y): traverse through the items which are after x and before y in
the list.
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And this very important operation can be performed very efficiently by Itai
et al. data structure because the number of cache misses caused by this operation
is very close to the optimal number of cache misses needed for that operation.
This is the reason why the ideas presented in this structure were used in many
other implementations of data structures which behave very well to cache [4].
Its good behaviour is caused by the following fact: items are stored in a sparse
array with some (predefined and thus constant) minimal and maximal density,
in such a way, that maximal gap between two items in the array is constant.

This implies that the scan can be performed with only cns/B block transfers
where ns is the number of scanned items, B is the size of each cache block and
c is a constant depending on the array density (we are using the cache oblivious
model). Detailed calculations can be found in [5]. This is much better than the
usual number of block transfers performed for example by red-black trees when
performing the scan (since every leaf is stored independently we may have to
perform up to ns block transfers). The trade-off is the slightly higher cost of the
insert operation which is O(log2 n) amortized where n is the number of items in
the array.

Now let us briefly describe the basic idea of the data structure. Let us have
an array of size S. We divide this array into chunks, each containing log2 S slots
of the array. These chunks will be the leaves of a binary tree structure built
“over” that array. Then one maintains some minimal and maximal density in
every node of the tree, i.e. every subtree of the tree cannot contain more (and
less respectively) than predefined number of items.

The fundamental question is whether the insertion time can be improved in
such a data structure. The following results are known. Let n be the number of
items we want to store in the array. If the size of the array, where we store n
items is O(n1+ε) than the tight upper bound for storing all items is Θ(n log n)
[9] (In chapter 5, we present an implementation of this data structure). If the
size of the array is O(n) the upper bound is O(n log2 n) (using the structure we
just described) which is tight for smooth strategies [8, 13]. Finally if the size of
the array is exactly n the upper bound is O(n log3 n) [2]. The most interesting
result for us, is the first one [9], which introduces so called bucketing game. We
hope that better understanding of this game will lead to subsequent results in
this area.

Bucketing

Let us introduce this game.
Imagine that you have L infinitely large buckets A1, A2 . . . , AL and N items.

Your task is to insert these items into those buckets arbitrarily. The cost of an
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insertion of one item into the i-th bucket Ai is equal to ai + 1 where ai denotes
the number of items already in the bucket Ai. Such task is easy – obviously the
optimal strategy of distributing items evenly leads to Θ(N2/L) time complexity.
However the game starts to be interesting when a merge operation is introduced.
Now between every two insertions one can perform a merge operation, which
means that one chooses an arbitrary subset of buckets and rearranges their items
among themselves. The cost is again equal to the number of items in the buckets
involved in the operation (not to the number of items which are actually moved).
Such game is called an unordered bucketing game.

This game has a variant called a prefix bucketing problem. Let us add an
ordering of the buckets. Then insert can be performed only into the “smallest”
bucket (according to the ordering) and merge can be performed only on the
prefix of the bucket list.

The following theorem holds [9].

Theorem 2. When the number of labels is O(n1+ε) for some ε > 0, the worst
case cost for online labeling of n items is at least proportional to the cost for the
prefix bucketing of n items into O(log n) buckets.

In the rest of the chapter, we provide a brief overview of the proof. The proof
shows, that the time complexity of the labeling has to be at least as high as the
cost of prefix bucketing of n items into O(log n) buckets. Then it is shown that
the cost of this prefix bucketing cannot be smaller than O(n log n).

First notice, that we can easily transform the labeling task into an item
insertion into an array. Let us have a set of labels 1, 2, . . .M (which we can
assume, since we can rename labels to obtain this). Let us consider an array of
size M . When we label an item with a label i, it will be simulated by inserting
the item into the i-th slot of the array. Relabeling is equivalent to moving an
item from one slot of the array to another one. In the following text we will use
the equivalence of these two tasks and we will use both terminologies.

Imagine that you want to cause as many relabelings as possible. Intuitively,
the best way to do this is to insert new items into the part of the array which
already contains many items. If we define a density of the continuous interval
of the array as the fraction of the number of items in this interval and the
length of this interval, you want to insert items into the interval with a high
density. However such definition depends on the choice of the interval and it is
not clear which interval to choose. This problem is solved by the next lemma,
which shows that there always exists a position in the array, such that every
interval containing this position has a large density.
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Lemma 2. Consider any nonnegative, integrable function f on the interval [0,1].
For each (nontrivial) subinterval I ⊆ [0, 1], define

ρ(I) =
1

|I|

∫
I

f(x)dx.

Then there is some point x0 ∈ [0, 1] such that ρ(I) ≥ 1
2
ρ([0, 1]) holds whenever I

includes x0. The point x0 is called dense point.

The importance of this lemma is obvious. We can always find a position in
the interval [0, 1], such that every interval containing this point has the density
comparable to the density of whole interval. This lemma can be extended for the
labelings. Let us have a set of m labels. We define a function f that is either 0
or 1 on the interval [0, 1] and 0 everywhere else. We divide interval [0, 1] into m
equally long subintervals and the value of f in the i-th such subinterval is one if
the i-th label is used and zero otherwise.

The above lemma implies the following claim.

Claim 4. In each labeling, there is a used label in the middle third of the used
labels (where rounding is in favor of that middle third) such that every label-space
subinterval containing that label is at least one-sixth as dense as the entire label
space.

Let us have an arbitrary strategy and a set of labels where some labels are
already used. If we want to make the strategy to do as many relabelings as
possible, it seems to be reasonable to choose every new item in such a way that
it has to obtain a label that is in the most dense interval. Lemma 2 gives us an
idea of how to choose such an item. However it is not enough to choose an item
which will be inserted to an arbitrary dense point, since if we choose such dense
points for example in round-robin fashion, the strategy may perform all inserts
without any relabeling. Thus the following construction is provided.

We construct a sequence of a label-space intervals I1 ⊃ I2 ⊃ . . . ⊃ Ik using
the following notation – the number of used labels in each interval I is denoted by
used(I) and the total number of labels in each interval I is denoted by total(I).
Furthermore if I ′ ⊂ I, then the difference I− I ′ consists of at most two intervals
(left and right). We denote the number of used labels as leftused(I − I ′) and
rightused(I − I ′). Intervals I1, I2, . . . Ik are chosen to satisfy the following rules:

1. I1 is the whole label space.

2. used(Ik) = O(1).
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3. ∀i, total(Ii+1)≤ total(Ii)/2.

4. ∀i, used(Ii+1)= Ω(used(Ii)/2).

5. ∀i, leftused(Ii − Ii+1)= Θ(rightused(Ii − Ii+1)).

There are such intervals I1, I2, . . . Ik for k = O(log n). Additionally we can
assume, that every strategy always relabels some continuous interval containing a
label of the last inserted item (other relabelings can be done later). Let us choose
an item for insertion, such that it obtains a label belonging to Ik. Because of the
conditions 4 and 5, we know, that the number of relabelings performed by the
strategy is at most constant times smaller than the number of the used labels in
the smallest interval containing the interval affected by the strategy. Therefore,
if we consider the differences Ii − Ii+1, i = 1, 2, . . . , k − 1 and the interval Ik to
be the buckets, then the strategy solves the prefix bucketing problem. It remains
to show, that after the insertion or merge is performed, we are able to restore
buckets in the affected interval. This is ensured by the following lemma.

Lemma 3. Each sufficiently long interval I containing sufficient number of used
labels contains a subinterval I ′ such that

• ∀i, total(Ii+1)≤ total(Ii)/2.

• ∀i, used(Ii+1)= Ω(used(Ii)/2).

• ∀i, leftused(Ii − Ii+1)= Θ(rightused(Ii − Ii+1)).

Thus after every insertion or merge, the buckets can be restored and thus we
can determine the next item for insertion.

This sketch of the proof from [9] gives us a rough idea of relationship between
the labeling and the bucketing. We do not present a proof of the lower bound
for the prefix bucketing of n items into O(log n) buckets as it is unrelated to our
proofs and can be found in [9]. We use a different approach to obtain a lower
bound on the cost of the unordered bucketing (we construct a reduction of the
unordered bucketing to the prefix bucketing).
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Chapter 4

Bucketing

In this chapter we would like to show the relationship between an unordered
bucketing and a prefix bucketing. We also provide a precise definition of the
bucketing strategies, which we find to be very interesting and important.

We start with the precise definition of the unordered bucketing problem.

Definition 1. Let us have an infinitely large set I of mutually undistinguishable
items and L (L > 1) buckets A1, A2, . . . , AL such that each bucket can store
infinitely many items from I. The number of items in the bucket Ai is denoted
by ai. Let S = {j1, j2, . . . , jn} be a subset of {1, 2, . . . , L}. Then AS denotes the
set of the buckets Aj1 , Aj2 , . . . , Ajn and |AS| denotes

∑
i∈S ai.

Now let us define two operations: an insert and a merge.

• An insert operation with a parameter i ≤ L moves one arbitrary item from
I into the bucket Ai. The cost of such operation is equal to the number of
items in Ai after the insert was performed.

• A merge operation for a given set S ⊂ {1, 2, . . . , L} moves arbitrary items
among buckets Aj1 , Aj2 , . . . Ajn where S = {j1, j2, . . . jn}. So the parameters
of the merge are the set of the buckets and the set of the moves of the items
among those buckets (indeed, as the items are indistinguishable, only the
final number of items in every bucket after the operation matters). The cost
of such operation is equal to |AS|.

Finally a bucketing denotes a sequence of insert and merge operations with
their parameters over the given buckets A1, A2, . . . , AL and the set of items I.
The cost of the bucketing B is equal to the sum of the costs of all the performed
operations and we denote it as c(B).

We allow bucketing to start with non-empty buckets.
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Notice that the cost of merge operations does not depend on the number of
items which were actually moved.

The simple observation about the lower bound of the cost of the bucketing
can be done immediately.

Observation 1. Let B be an arbitrary bucketing and N denote the number of
insert operations in it. Then c(B) ≥ N .

Definition 2. Let us have L buckets containing some items of I. Then by the
configuration of the buckets we mean the distribution of items in the buckets,
i.e. the configuration is given by an L-tuple (a1, a2, . . . , aL) ∈ NL where ai is the
number of items in each bucket Ai.

Definition 3. Let us have L buckets and the bucketing B. The distribution
of items, after i operations of B was performed, is called the configuration of
the bucketing B after i steps. The distribution before any operation of B was
performed is called the initial configuration of B.

4.1 Bucketing strategies

From the given definitions, it is obvious, that the order of the operations and
their parameters influence the cost of the bucketing significantly. Thus in order to
obtain the best results, we should choose a strategy very carefully. Unfortunately,
the intuitive definition of a strategy can be misleading. Therefore we provide two
definitions which differ in one important aspect – whether the overall number of
items we want to store in the buckets (which consists of the items contained in
the initial configuration and the items we want to insert) is known in advance.

Definition 4. An online strategy is a function, which for any L > 1 and any
bucket configuration C ∈ NL returns an operation (either an insert or a merge)
and its parameters.

If we know the number of inserted items in advance, the following definition
takes it into account.

Definition 5. An offline strategy is a function, which for any L > 1, any bucket
configuration C ∈ NL and any number M of item we want to store eventually
returns a bucketing with the initial configuration C and the final configuration
containing M items.
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The natural motivation for these two definitions is the fact, that you will
probably perform different operation if you know the number of items you have
to insert than if you do not know it. For example, if you know that there remains
only one item to insert, you will not perform merge among all the buckets.
In other words, offline strategies have more information and this information
can improve their behaviour compared to online strategies. Surprisingly, under
certain circumstances the difference is not as large as one could expect.

Let us show, how an online strategy induces bucketing for any initial config-
uration. Let L > 1 be an integer, C1 ∈ NL be an initial bucket configuration and
s an online strategy. Then s gives us for the configuration C1 an operation and
its parameters (let us denote them as O1). If we apply this operation O1 to the
configuration C1 we obtain a new configuration C2. Generally by applying s to
the configuration Ci we obtain an operation with parameters Oi. By applying
the operation Oi to the configuration Ci we obtain a new configuration Ci+1. We
continue until we insert the intended number of items.

Obviously the sequence of operations O1, O2, . . . and the initial configuration
C1 define some bucketing B. The number of operations in the bucketing B de-
pends on the strategy s, we only know, that the number of insert operations
will be exactly N . Notice, that if the strategy s is deterministic, the induced
bucketing B for the given C1 will be always the same.

The result of this paragraph is summarized in the following definition:

Definition 6. Let L > 1 be an integer, C ∈ NL be a bucket configuration and N
the number of items we are about to insert. Let s be an arbitrary strategy. Then
the strategy s, the initial configuration C and N uniquely determine one specific
bucketing. We denote such bucketing by Bs,C,N .

Notice that the offline strategies really obtain all necessary information, since
the number of items already inserted in the buckets can be obtained from the
configuration C. On the other hand, if s is online, it does not know about N
and this number is provided only for the purpose of analysis. If the number
of inserted items is undefined, we cannot compare two strategies which will be
shown later.

Now we can define a cost of a strategy, which becomes our tool for comparing
the quality of two strategies. We will use the cost of bucketings they induce when
inserting N items.

Definition 7. Let L > 1 be an integer, C ∈ NL be a bucket configuration and
N the number of items we are about to insert. Let s be an arbitrary strategy. Let
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Bs,C,N be the bucketing determined by s, C and N . Then the cost of the strategy
s to insert N items to C is equal to the cost of the bucketing Bs,C,N . We denote
that cost by c(s, C,N).

It turns out that we can easily define optimality (according to the cost)
of offline strategies but as shown below the case of online strategies is more
complicated.

Definition 8. Let S denote the set of all existing strategies. Then the strategy s
is optimal if for any L > 1, any configuration C ∈ NL, any strategy s′ ∈ S and
any number of inserted items N , c(s, C,N) ≤ c(s′, C,N).

Let L > 1 be an integer. The strategy s is optimal for a configuration C ∈ NL

if for any strategy s′ ∈ S and any number of inserted items N , c(s, C,N) ≤
c(s′, C,N).

Analogously to asymptotical time complexity we define relation between two
strategies which has a similar meaning.

Definition 9. Let us have two arbitrary strategies s1, s2 and L > 1. Then we
say that s1 is at most k times worse than s2 if for any configuration C = NL and
any number of inserted items N , c(s1, C,N) ≤ kc(s2, C,N).

Let L > 1 and C ′ ∈ NL be a bucket configuration. s1 is at most k times
worse than s2 for the configuration C ′ if for any number of inserted items N ,
c(s1, C

′, N) ≤ kc(s2, C
′, N).

The following claim shows, that we can create optimal strategy.

Claim 5. There exists an optimal offline strategy.

Proof. It is easy to prove that there exists an optimal offline strategy as for every
C and for every N you can find the bucketing with the minimal cost among all
the bucketings and thus determine your strategy for every C and N .

However the situation is not so easy for online strategies. Let us show a
construction of reasonably good online strategy (which means good enough for
our further purposes). We start with the claim, which helps us to understand
the behaviour of offline strategies.

Definition 10. Let L > 1 be an integer and C ∈ NL be a bucket configuration.
Let s be an arbitrary strategy and N denote the number of inserted items. Then
Bs,C,N(k) denotes the smallest prefix of the bucketing Bs,C,N , that contains k
insert operations (recall that bucketing is a sequence of the insert and merge
operations).
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Notice that Bs,C,N(k) is also bucketing and thus we can directly apply the
definition of the cost of the bucketing to it.

Claim 6. Let s be an optimal offline strategy. Then for any L > 1, any config-
uration C ∈ NL, any number of inserted items N and an arbitrary integer N ′

such that N ′ > N it holds that c(Bs,C,N(N)) + M ≥ c(Bs,C,N ′(N)) where M is
N plus the number of items in C.

Proof. Let us denote the configuration obtained by the bucketing Bs,C,N(N) as
C1 and the configuration obtained by Bs,C,N ′(N) as C2. Let us assume that

c(Bs,C,N(N)) +M < c(Bs,C,N ′(N)).

Then let us denote as B′ the following bucketing: first we perform Bs,C,N(N) and
thus we obtain C1. The we perform merge over all buckets in such a way, that
we obtain C2. The cost of such merge is clearly M . Finally we continue using
the bucketing Bs,C,N ′ since the configuration of the buckets is very same as if we
have performed Bs,C,N ′(N). Obviously, the cost of B′ is smaller than the cost of
Bs,C,N ′ which is a contradiction since s is optimal for C.

The meaning of this claim is very important: any prefix of the optimal buck-
eting cannot be much more expensive than the optimal bucketing for a smaller
number of items. It will be very important in the proof of the next lemma, where
we use this claim to construct an online strategy.

The next lemma shows us the relationship between online and offline strate-
gies. Notice that not only we show this relationship, but the proof itself shows
us the way how to construct the “good” online strategy.

Lemma 4. Let s be an optimal offline strategy. Then there exists an online
strategy s′ such that for L > 1, a bucket configuration C ∈ NL and an arbitrary
number of inserted items N , c(Bs,C,N) +O(M) ≥ c(Bs′,C,N) where M is N plus
the number of items in C.

Proof. First notice, that an arbitrary sequence of consecutive merge operations
can be replaced by one merge operation, which performs all moves in one step.
For simplicity we assume that every bucketing is a sequence of couples consisting
of an insert operation and a merge operation (where the merge operation can
move zero items in which case we count its cost to be zero). We will assume that
every bucketing in this proof follows this assumption.

Recall that s is the optimal strategy. Let us define the following sequence of
configurations C0, C1, C

′
1, C2, C

′
2, C3, C

′
3 . . .. Let C0 be an empty initial configu-

ration. Then C1 is obtained as the final configuration of Bs,C0,1(1). Now consider
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C ′1 which is the last but one configuration obtained by Bs,C0,2(2). C ′1 can be ob-
viously obtained from C1 by a merge performed on all buckets. Now we consider
C2 which is obtained as the final configuration of Bs,C0,2(2) and C ′2 which is the
last but one configuration obtained by Bs,C0,4(3). Again we can obtain C ′2 from
C2 by a merge operation on all buckets. C3 will be the final configuration of
Bs,C0,4(3) and C ′3 is obtained by a consecutive merge operation performed by
Bs,C0,4. C4 is the final configuration of Bs,C0,4(4) etc.

Generally for i 6= 2k, any integer k and ` such that 2`−1 ≤ i < 2`, Ci
is obtained as the final configuration of Bs,C0,2`(i) and C ′i is equal to the last
but one configuration obtained by Bs,C0,2`(i + 1). For i = 2k for an integer k,
Ci is obtained as the final configuration of Bs,C0,i(i) and C ′i is the last but one
configuration obtained by Bs,C0,2i(i+1). Obviously the sequence of configurations
C0, C1, C

′
1, C2, C

′
2, C3, C

′
3 . . . defines a bucketing and we denote it by B∗. It is

important to realize, that B∗ is in fact obtained from the operations of another
bucketings. Also notice, that for i = 2k we actually “switch” from one bucketing
to another.

Now we show several facts about the cost of B∗. First we calculate the cost of
the additional merges (i.e. merge operations performed to obtain C ′i from Ci for
i = 2k). These operations are added to “switch” from one bucketing to another
one and are not part of any bucketing used to obtain B∗. First notice, that the
cost of every such merge on the configuration Ci is equal to i since the number
of items in Ci is i. Furthermore, such merge is performed only for each i = 2k.
Let Nf be the number of inserted items and ` be the greatest integer such that
2` ≤ Nf . Then the cost of all additional merges is equal to

∑`
k=1 2k which is at

most 2Nf . In other words, the cost of the additional merge operations is at most
two times larger than the number of items placed in the buckets.

Now we will focus on the difference between c(B∗(Nf)) and c(Bs,C0,Nf
) where

Nf denotes the number of inserted items. Notice, that since s is optimal, for
integers j, j′ such that j < j′, it holds that

c(Bs,C0,j(j)) ≤ Bs,C0,j′(j)).

Let ` be the smallest integer such that 2` ≥ Nf . From the construction of B∗,
we can infer

2Nf +c(Bs,C0,2`(Nf))−c(Bs,C0,2`(2
`−1))+c(Bs,C0,2`−1(2`−1))−c(Bs,C0,2`−1(2`−2))+

c(Bs,C0,2`−2(2`−2))− c(Bs,C0,2`−2(2`−3)) . . . ≥ c(B∗(Nf)),
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where 2Nf stands for the additional merges. Together with the previous obser-
vation, we directly obtain that

c(Bs,C0,2`(Nf)) + 2Nf ≥ c(B∗(Nf)).

From Claim 6 we know that

c(Bs,C0,Nf
(Nf)) +Nf ≥ c(Bs,C0,2`(Nf))

which implies that

c(Bs,C0,Nf
(Nf)) + 3Nf ≥ c(B∗(Nf)).

Now we use B∗ for creating an online strategy s′ as follows – let Ca be an
arbitrary configuration and Na be the number of items in Ca. If Ca = C ′Na

then s′

performs an insert so that it obtains CNa+1. Otherwise it performs the cheapest
possible merge on Ca so that it obtains C ′Na

. If Ca = CNa , the operation used by
B∗ to obtain C ′Na

may be different, however the cost of the operation returned
by s′ is not greater and the result is the same. Notice that s′ converts in the
first step the initial configuration into one of the configurations of B∗ and than
it just follows the operations of B∗.

Now we calculate the cost of the bucketings obtained by s′ and we compare
it to those obtained by the optimal strategy s and thus we show that s′ satisfies
the lemma. Recall that C is the initial configuration, N is the number of items
we are about to insert and M is N plus the number of items in C.

Let NC denote the number of items in C. First we assume that C = CNC .
First notice that

c(Bs,C,N) +NC ≥ c(Bs,C0,M)− c(Bs,C0,NC ).

Otherwise the bucketing obtained by connecting Bs,C,N and Bs,C0,NC would have
smaller cost than Bs,C0,M which is the contradiction to the optimality of s. From
optimality of s also follows that

c(B∗(M))− c(B∗(NC)) ≤ c(B∗(M))− c(Bs,C0,NC )

and from the above paragraph we can infer

c(B∗(M))− c(B∗(NC)) ≤ c(Bs,C0,M) + 3M − c(Bs,C0,NC )

and thus
c(B∗(M))− c(B∗(NC)) ≤ c(Bs,C,N) +NC + 3M.
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But the left side of this inequality corresponds to the cost of Bs′,CNC ,N
since

it is exactly the cost of the part of B∗ performed by s′. It only remains to add
the cost for the initial merge in case that C 6= CNC . However this cost is at most
NC and since NC ≤M the proof is finished.

This claim does not seem to be very useful and in fact, for nonempty C it
is not unless we insert at least NC (the number of items in C) items. But for
the empty configuration C, the number of inserted items is equal to the number
of items when the bucketing is finished, thus the additional cost for using non-
optimal strategy is constant per inserted item. Therefore we directly obtain that
s′ is just constant times worse than s, which might be surprising. In other words,
we just proved, that if we are inserting to initially empty buckets, we can create
online strategies, which are “asymptotically” optimal (i.e. at most a constant
factor worse) for empty initial configuration.

It remains to be seen whether such a strategy is good enough, since it is not
clear, whether online strategies cannot be optimal. This question is answered in
the next lemma.

Claim 7. Let s be the online strategy. Then s cannot be optimal.

Proof. Let us assume that there exists an optimal online strategy s. Let L > 1
and C ∈ NL be an arbitrary initial bucket configuration.

First assume that s never performs nontrivial merge operation (i.e. a merge
operation in which at least 2 nonempty buckets are involved). Notice, that such
strategy s has to always insert new item into the bucket with the smallest number
of items (otherwise this strategy cannot be optimal). Thus we obtain exactly
one specific strategy. Now it is easy to find some strategy sf such that for some
number of inserted items N is c(Bs,C,N) > c(Bsf ,C,N).

We do it as follows. Let us have L buckets each containing NL items where
NL > 3. Notice, that after sufficient number of insertions performed by s, we
obtain a configuration CNL of the buckets, such that every bucket contains the
same number of items and NL > 3 (recall, s always inserts new item into the
smallest bucket). Now we define a better strategy sf . Let sf be a strategy such
that obtains the configuration CNL for the same cost as s (for example by doing
the same operations as s). Let us now define next decisions of sf . Let sf merge
two arbitrary buckets in such a way that it puts all the items from those buckets
into one of those bucket. The cost of such merge is 2NL. Then sf can make next
3 insertions so that the cost of them is 6 (it inserts all three items into the empty
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bucket). So in total the cost of sf for the last 3 insertions is 2NL + 6. However
s does not perform any merge and thus its cost for the 3 insertions is 3NL + 3.
And since NL > 3, we obtain that 3NL + 3 > 2NL + 6. Therefore the strategy sf
is cheaper for the last three insertions than the strategy s and since their cost
before these insertions was the same we obtain a contradiction to the fact, that
s is optimal.

Now consider a strategy s that will perform nontrivial merge. Let N de-
notes the number of items inserted into C before the first nontrivial merge
was performed by the strategy s. Let CM be the configuration just before the
first merge was performed. Let A denote a set of buckets of C and Bs,C,N be
the bucketing determined by s, C, and N and let s′ denote an online strategy
such that the bucketing Bs′,C,N is equal to Bs,C,N . Then it obviously holds that
c(s, C,N) = c(s′, C,N). Let ASM denote the subset of buckets of the configura-
tion CM for which this first merge was performed. Then the cost cM of this first
merge is by definition equal to |ASM |. Thus we can infer that

c(s, C,N + 1) ≥ c(s, C,N) + cM + 1

where the 1 stands for the minimal cost of the insertion (when we are inserting
into empty bucket).

On the other hand, let j ∈ SM . Then it obviously holds that aj + 1 ≤ |ASM |.
Therefore if s′ performs just insertion into aj in the configuration CM we can
infer that

c(s′, C,N + 1) = c(s′, C,N) + aj + 1

which implies that
c(s′, C,N + 1) < c(s, C,N + 1)

and we obtain a contradiction since s is not the cheapest strategy for N + 1.

Actually, this claim is not very surprising. Intuitively, we expect, that some-
times every strategy has to do expensive operations, to save more steps in the
future. However if you do not know the number of inserted items in advance,
you can hardly calculate, whether such an operation is profitable.

Using this definitions and claims, we are ready to state our results in the rest
of the chapter.
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A1 A2 A3 A4 A5 A6 A7 A8

A1 A2 A3 A4 A5 A6 A7 A8

Figure 4.1: Reordering of the buckets according to their size.

4.2 Uniform bucketing

In order to transform the unordered bucketing to the prefix bucketing we intro-
duce a uniform bucketing (or a uniform strategy respectively). This bucketing
puts some limitations on insert and merge operations. On the other hand it still
use the ability of the unordered bucketing, which is the insertion of an item into
an arbitrary bucket and a merge of an arbitrary subset of buckets.

Our goal of this section is to define a uniform bucketing and show that for
every strategy for the unordered bucketing there exists a uniform strategy that
is at most 3 times worse than the original strategy.

Let us introduce a uniform bucketing strategies. Notice that buckets of a
uniform strategies are denoted by D.

The strategy over the set of buckets D is called uniform if it has the following
properties.

(i) For any set of buckets DS used for a merge operation, it holds that if
Di ∈ DS and Dj /∈ DS then di ≤ dj. In other words DS is always the set
of the “smallest” buckets.

(ii) Insert is always performed to a bucket with the smallest number of items.

The next theorem shows the relationship between a uniform bucketing strat-
egy and an arbitrary bucketing strategy.

Theorem 3. For every offline bucketing strategy s, there exists a uniform strat-
egy s′ that is offline and at most 3 times worse than s.
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To prove this theorem, we will show how to construct s′ based on s. Then we
show that the cost of s′ is at most constant time greater than the cost of s. This
is very useful, since if we find the optimal strategy for an arbitrary number of
inserted items, buckets and an arbitrary configuration, we automatically obtain
“very good” uniform strategy (which we use in the next section). In the following
text, the strategy s will be called original strategy and will be used to obtain the
uniform strategy s′.

The main rules for the construction mentioned above are the following.

a) For each insert operation of the original strategy the new strategy s′ per-
forms an insert and possibly a merge. The cost of these two operations is
smaller than the cost of the original operation up to a factor 3.

b) For each merge operation of the original strategy s′ performs a merge and
the cost of this operation is smaller than the cost of the original operation
up to a factor 3.

If we keep these rules, then s′ will be at most 3 times worse than s.
Let us now introduce some notation which helps us to describe new strategy

s′.

Notation 1. Let us have L1 (L1 > 1) infinitely large buckets A1, A2, . . . , AL1

for the original strategy and L2 (L2 > 1) infinitely large buckets D1, D2, . . . , DL2

for our new strategy. In the following section the i-th bucket of the original
strategy will be denoted by Ai before an operation is performed and A′i after the
operation is performed. The number of items in the bucket Ai is denoted by ai.
The configuration of all the buckets of the original strategy is denoted by A or A′

respectively. Let S = {Aj1 , Aj2 , . . . , Ajn} be a subset of {1, 2, . . . , L1}. Then AS
denotes the set of buckets Aj1 , Aj2 , . . . , Ajn. |AS| denotes

∑
i∈S ai. Analogously

we define notation for a new strategy, but we are using d,D and L2 instead of
a,A and L1.

Remark 1. For simplicity, whenever we talk about buckets in this section we
assume that they are sorted unless otherwise stated. We sort buckets according to
the number of items in them, so the smallest buckets are in the “left” as shown
in Fig. 4.1.

Let us now describe how to obtain a uniform strategy for the given original
strategy so that we fulfill the requirements of Theorem 3. Our uniform strategy
s′ will make its decisions according to the operations given by s (as described
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above). Since there are only two possible operations s can use (either a merge
or an insert operation), we can define s′ as follows.

Definition 11. Let L > 1 and D ∈ NL be an arbitrary configuration of buck-
ets and n > 0. Then we define merge* operation with parameters n and D in
the following way. Let m be a number such that |D{1...m}| < 2n and m is the
greatest possible. Then the merge* will move all the items from D{1...m} to an
arbitrary bucket of D{1...m}. Obviously the cost of merge* is smaller than 2n (it
just performs merge on D{1...m}).

Definition 12. Let B be an arbitrary bucketing over buckets A with an initial
configuration C. Then uniform*(B) over buckets D is the bucketing with the
initial configuration C obtained from B as follows. Let us take all operations
of B one by one and for each such operation O we add some operations to
uniform*(B) using these rules:

i) Let O be an merge operation on the set AS. Let n = |AS|. Then we add the
merge*(n,D) operation to uniform*(B).

ii) Let O be an insert operation to a bucket Ai. Then we add an insert to the
smallest bucket of D and the merge*(ai + 1,D) to uniform*(B).

For an offline strategy s, a uniform*(s) strategy is the strategy s′ obtained
from s by replacing each bucketing B returned by s by uniform*(B).

Now we show that for each bucketingB it holds that 3c(B) ≥ c(uniform*(B)).
We define an invariant that will hold during all operations of the original bucket-
ing B and the uniform*(B) bucketing. In other words, we perform one operation
of the original bucketing B, according to this operation the uniform*(B) strategy
performs some operations and then we compare the configuration obtained by
B with the configuration obtained by the uniform*(B) bucketing whether the
invariant is satisfied. Then we continue with the next operation of the original
bucketing B.

Recall that in the following text we also assume that the buckets of configura-
tions A,A′, D and D′ are sorted and numbered in the ascending order (similarly
to Fig. 4.1).

Now we can define the invariant:

Definition 13. Let L > 1 and A ∈ NL and D ∈ NL be the configurations of
buckets. Then we say that A and D satisfy the invariant if

∀t ≤ L,
t∑
i=1

ai ≥
t∑
i=1

di
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D1 D2 D3 Dℓ-1 Dk-1 Dk Dk+1 Dm-1 Dm Dm+1

D'1 D'2 D'3 D'k-1 D'k D'k+1 D'm-1 D'm D'm+1...

... ...

... ...

... ...

...

Dℓ Dℓ+1

D'ℓ-1 D'ℓ D'ℓ+1

Figure 4.2: Relationship between D and D′ in the proof of Claim 8.

The following claims show us several operations over bucket configurations
that preserve the invariant.

Claim 8. Let A and D be configurations of buckets which satisfy the invariant.
Let A′ = A and let D′ be obtained from D in such a way that we move all
items from a bucket D` to a bucket Dk where ` < k. Then A′ and D′ satisfy the
invariant.

Proof. After we move all items from the bucket D` to Dk we obtain new buckets
D′1 and some D′m where d′1 = 0 and d′m = d` + dk while losing D` and Dk. Let
us show the relationship between D and D′ because A = A′. As we can see in
Fig. 4.2, where the first line stands for the original configuration and the second
line stands for the newly obtained configuration, buckets can be divided into
four groups.

For 1 ≤ j < `, it holds that Dj = D′j+1 since the empty bucket D′1 was put
in front of all buckets. For ` < j < k, Dj = D′j. For k < j ≤ m, Dj = D′j−1 and
finally for j > m, Dj = D′j.

It can be easily seen that for t ≥ m,
∑t

i=1 di =
∑t

i=1 d
′
i since all items

were moved only between the buckets with indexes smaller or equal to m. Since
d′1 = 0 it also holds that for t < `,

∑t
i=1 di =

∑t+1
i=1 d

′
i. In particular it holds that∑`

i=1 di = d` +
∑`

i=1 d
′
i. This implies

∑t
i=1 di ≥

∑t
i=1 d

′
i for t ≤ `. Furthermore

this can be directly extended to the interval ` < t < k because of the relation
between D and D′ in this interval. Thus we obtain for 1 < t < k,

∑t
i=1 di ≥∑t

i=1 d
′
i.

The remaining case of k ≤ t < m is the most interesting. Recall that for
k ≤ j < m it holds that dj ≤ d′j. Assume the existence of t′ such that k ≤
t′ < m,

∑t′

i=1 di <
∑t′

i=1 d
′
i. From the relation between D and D′ we know that
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∑m
t′+1 di ≤

∑m
t′+1 d

′
i. However then we cannot obtain

∑m
i=1 di =

∑m
i=1 d

′
i which

we know is true. Thus we know that ∀t,
∑t

i=1 d
′
i ≤

∑t
i=1 di ≤

∑t
i=1 ai =

∑t
i=1 a

′
i.

So the invariant is preserved in all four intervals.

Claim 9. Let A and D be configurations of buckets which satisfy the invariant.
Let S be the subset of {1, 2, . . . , L} and k be a number such that ∀i ∈ S, i < k.
Let A′ = A and let D′ be obtained from D in such a way that we move all items
from the buckets DS to the bucket Dk. Then A′ and D′ satisfy the invariant.

Proof. We just repeatedly apply Claim 8.

Claim 10. Let A and D be configurations of buckets which satisfy the invariant.
Let A1 be empty. Let D′ = D and let A′ be obtained from A in such a way that
we move some items from an arbitrary bucket An to the bucket A1. Then A′ and
D′ satisfy the invariant.

Proof. It is enough to realize, that this operation is inverse to the one in Claim 8.
Thus if in Claim 8 it holds that for ∀t,

∑t
i=1 di ≥

∑t
i=1 d

′
i, it implies that

∀t,
∑t

i=1 ai ≤
∑t

i=1 a
′
i which is enough for the preservation of the invariant.

Claim 11. Let A and D be configurations of buckets which satisfy the invariant.
Let m be the integer such that buckets A1, A2, . . . Am are empty. Let D′ = D
and let A′ be obtained from A in such a way that we move some items from an
arbitrary bucket Ak to the buckets A1, A2, . . . Am. Then A′ and D′ satisfy the
invariant.

Proof. We just repeatedly apply Claim 10.

Claim 12. Let A and D be configurations of buckets which satisfy the invariant
and |A| = |D|.. Let S be a subset of {1, 2, . . . , L} such that |AS| 6= |A| and m
be the smallest number such that |AS| < |D{1...m}|. Let D′ be obtained from D in
such a way that we remove all items from D{1...m−1} and |AS|− |D{1...m−1}| items
from Dm. A′ is obtained from A by removing all items from the set AS. Then A′

and D′ satisfy the invariant.

Proof. First, let us consider the changes of A and D. For the sake of an argument
we add all empty buckets of A to S; this does not influence anything but it will
be consistent with the set D{1,2,...,m} where we take these buckets by definition
of the uniform bucketing.

The case of D is easier. Let us recall that we remove all items from the
set of buckets {D1, D2, . . . , Dm−1} and then |AS| − |D{1...m−1}| items from Dm
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Figure 4.3: Relationship between A and A′ in the proof of Claim 12. Instead of
Ai we write just i in the first row and similarly for A′i in the second row.

according to the definition of the uniform bucketing . So it directly follows, that
for t < m,

∑t
i=1 d

′
i = 0 and for t ≥ m,

∑t
i=1 d

′
i =

∑t
i=1 di − |AS|.

The situation for A is more complicated. Let us denote buckets of AS as
A`1 , A`2 , . . . , A`n where we assume `1 < `2 < . . . < `n. Notice that in fact
this operation “creates” A′ from A by removing AS and inserting n new empty
buckets.

Now we can find the relation between n and m. We claim that n (the number
of empty buckets in A′) is smaller than m (m−1 is the number of empty buckets
in D′). This obviously holds, since otherwise the size of S is greater or equal to
m while |AS| < |D{1...m}| and thus the invariant could not hold for A and D and
we obtain contradiction. This ensures us m > n.

For A and A′ we can further see (Fig. 4.3) that for j > `n, Aj = A′j, for `n−1+
1 < j ≤ `n, Aj−1 = A′j, for `n−2 + 2 < j ≤ `n−1 + 1 is Aj−2 = A′j, etc. Generally
for some p < n we obtain: ∀j, `n−p + p < j ≤ `n−p+1 + p− 1, Aj−p = A′j Thus we

get the following equations for sums. For t > `n,
∑t

i=1 a
′
i =

∑t
i=1 ai − |AS|, for

`n−1+1 < t ≤ `n we get
∑t

i=1 a
′
i =

∑t−1
i=1 ai−|AS|+a`n , for `n−2+2 < t ≤ `n−1+1,∑t

i=1 a
′
i =

∑t−2
i=1 ai − |AS| + a`n + a`n−1 etc. So for some p < n we obtain:

∀j, `n−p + p < t ≤ `n−p+1 + p− 1,
∑t

i=1 a
′
i =

∑t−p
i=1 ai − |AS|+

∑p−1
j=0 a`n−j

Now we would like to show that for t ≥ n,
∑t

i=1 a
′
i ≥

∑t
i=1 ai − |AS|. It

obviously holds that for `n−1 + 1 < t ≤ `n, at ≤ a`n , for `n−2 + 2 < t ≤ `n−1 + 1,
at ≤ a`n−1 etc. Therefore we can show that for `n−1 + 1 < t ≤ `n,

∑t
i=1 a

′
i =∑t−1

i=1 ai − |AS|+ a`n ≥
∑t−1

i=1 ai − |AS|+ at =
∑t

i=1 ai − |AS|, for `n−2 + 2 < t ≤
`n−1 + 1,

∑t
i=1 a

′
i =

∑t−2
i=1 ai − |AS|+ a`n + a`n−1 ≥

∑t−2
i=1 ai − |AS|+ at + at−1 =∑t

i=1 ai − |AS| etc. Finally we get for t ≥ n,
∑t

i=1 a
′
i ≥

∑t
i=1 ai − |AS|.

Putting it all together, we know that for t > n,
∑t

i=1 a
′
i =

∑t
i=1 ai − |AS|
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and for t ≤ n,
∑t

i=1 a
′
i = 0 and for t ≥ m,

∑t
i=1 d

′
i =

∑t
i=1 di − |AS| and for

t < m,
∑t

i=1 d
′
i = 0. Obviously for t ≥ max(m,n+1),

∑t
i=1 a

′
i ≥

∑t
i=1 ai−|AS| ≥∑t

i=1 di−|AS| =
∑t

i=1 d
′
i since the invariant holds for A and D. And since m > n

there will be at least same number of empty buckets in D′ as in A′ and thus the
invariant is preserved.

Claim 13. Let A and D be configurations of buckets which satisfy the invariant.
Let S = {j1, j2, . . . , jr} be the subset of {1, 2, . . . , L} such that there does not
exist m such that |AS| < |D{1...m}| < 2|AS|. Let n be the greatest number such
that |D{1...n}| ≤ |AS|. Let A′ be obtained from A by moving all items from the
buckets Aj1 , Aj2 , . . . , Ajr to Aj1. Let D′ be obtained from D by moving all items
from the buckets D1, D2, . . . , Dn to Dn. Then A′ and D′ satisfy the invariant.

Proof. Assume that |AS| 6= |A| (otherwise the proof is trivial). Then the follow-
ing holds. Since there does not exist appropriate m, we know that

∑n
i=1 di ≤ |AS|

and
∑n+1

i=1 di ≥ 2|AS| which implies that dn+1 ≥ |AS|. If we remove all items from
D{1...n} and also from AS and insert them to empty buckets D′` (d′` = |D{1...n}|)
and A′k (a′k = |AS|) respectively, then two possibilities might occur. Notice that
` = n, since |D{1...n}| ≤ |AS| and |AS| ≤ dn+1.

Let us start with the case of k < n. First, notice that A′k consists only from
items from such bucket Aj that j ≤ k which implies that for t ≥ k,

∑t
i=1 a

′
i =∑t

i=1 ai. Analogously, we obtain for t ≥ n,
∑t

i=1 d
′
i =

∑t
i=1 di. In addition, from

the uniform bucketing definition it holds that for t < n,
∑t

i=1 di = 0. Putting
it all together it directly implies, that for t ≤ L,

∑t
i=1 d

′
i ≤

∑t
i=1 a

′
i since the

invariant holds for A and D.
For the other case of k ≥ n the situation is a little more complicated. As

previously, only such items from buckets Aj that j < k can be involved in the
merge and thus for t ≥ k,

∑t
i=1 a

′
i =

∑t
i=1 ai and for the similar reason for

t ≥ n,
∑t

i=1 d
′
i =

∑t
i=1 di. This implies for t ≥ k,

∑t
i=1 a

′
i ≥

∑t
i=1 d

′
i because the

invariant holds for A and D.
In addition we know that for t < n,

∑t
i=1 d

′
i = 0 thus it only remains to solve

such t that n ≤ t < k.
We observe that since |AS| ≤ d′n+1 it holds for n < j ≤ k, a′j ≤ d′j which

directly implies that for n < t ≤ k,
∑k

i=t d
′
i ≥

∑k
i=t a

′
i. Let us assume that

there exists such t′,n ≤ t′ < k, for which the invariant does not hold for A′ and
D′. It means that for this t′,

∑t′

i=1 a
′
i <

∑t′

i=1 d
′
i. However since we know that∑k

i=t′+1 d
′
i ≥

∑k
i=t′+1 a

′
i it never can do

∑k
i=1 a

′
i ≥

∑k
i=1 d

′
i, which is true. Thus

we obtain a contradiction and the invariant is preserved.
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Claim 14. Let A and D be configurations of buckets which satisfy the invariant.
Let A1 and D1 be empty buckets. Let A′ be obtained from A by inserting k items
to A1 and D′ be obtained from D by inserting k items to D1. Then A′ and D′

satisfy the invariant.

Proof. Let us assume that buckets of A and D are sorted, then if A contains
empty buckets one of them is surely A1 (the very same holds for D). Let us
denote changed buckets as A′n and D′m. Then it holds that for j < n, Aj+1 = A′j
and for j > n, Aj = A′j. Analogously for j < m, Dj+1 = D′j and Dj = D′j for
j > m.

Now we can compare the sums of A′ and D′. For t < min(m,n),
∑t

i=1 a
′
i =∑t+1

i=1 ai and for t > max(m,n),
∑t

i=1 a
′
i =

∑t
i=1 ai+k. The very same holds for D

and D′ and thus for t < min(m,n),
∑t

i=1 a
′
i =

∑t+1
i=1 ai ≥

∑t+1
i=1 di =

∑t
i=1 d

′
i and

for t > max(m,n) it holds that
∑t

i=1 a
′
i =

∑t
i=1 ai + k ≥

∑t
i=1 di + k =

∑t
i=1 d

′
i.

Now we have to look at the remaining interval from min(m,n) to max(m,n).
First we assume that n ≤ m. It means that for any j in this interval it holds
that A′j ≥ k and k ≥ D′j (recall that a′n = k and d′m = k) and it follows that for

n ≤ t ≤ m,
∑t

i=n a
′
i ≥

∑t
i=n d

′
i. And since we know that

∑n−1
i=1 a

′
i ≥

∑n−1
i=1 d

′
i we

directly obtain for n ≤ t ≤ m,
∑t

i=1 a
′
i ≥

∑t
i=1 d

′
i.

For n > m the situation is more interesting since A′j ≤ k ≤ D′j. Again it holds
that

∑m
i=1 a

′
i ≥

∑m
i=1 d

′
i but now for m ≤ t ≤ n,

∑n
i=t a

′
i ≥

∑n
i=t d

′
i. However

let us assume that there is t′ such that m ≤ t′ ≤ n,
∑t′

i=1 a
′
i <

∑t′

i=1 d
′
i. But we

also know that for m ≤ t′ ≤ n,
∑n

i=t′+1 a
′
i <

∑n
i=t′+1 d

′
i and

∑n+1
i=1 a

′
i ≥

∑n+1
i=1 d

′
i.

It follows that it cannot do the last equation for such t′ and thus we obtain a
contradiction and the proof is finished.

Now we can use these claims to show the efficiency of the uniform* strategy
of the original strategy. We start with the merge operations.

Lemma 5. Let A and D be configurations of buckets which satisfy the invari-
ant. Let S be the subset of {1, 2, . . . , L} and m be the greatest integer such that
|D{1...m}| < 2|AS|. Let the original bucketing B perform a merge on the set of
buckets AS obtaining a configuration of buckets A′. Then the uniform*(B) buck-
eting performs a merge on the set of buckets D{1...m} (so that all items from
D{1...m} are moved to Dm according to definition) obtaining a configuration D′.
Then A′ and D′ satisfy the invariant and the cost of the merge performed by the
uniform*(B) bucketing is at most two times greater than |AS|.
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Proof. First, let us assume that |D{1...m}| > |AS|. Notice, that a merge operation
can be seen as three independent steps. First, we remove all items from the
involved buckets, then we insert all these items to one bucket of AS and finally,
we redistribute some items from this bucket to get the same state of A′ as B.
Similarly we remove |AS| items from D{1...m} in such a way that we find the
greatest n such that |D{1...n}| ≤ |AS|. Then we remove all items from D{1...n}
and |AS| − |D{1...n}| items from Dn+1. Then we insert these removed items to
one of the empty buckets of D (notice, that n ≥ |S| because of the invariant).
We use Claim 12 which ensures us satisfying of the invariant for the “remove”
part. Then we insert |AS| items to the empty bucket of A′ and also to an empty
bucket of D′ using Claim 14 (notice that there will be an empty bucket, since
we remove items from at least two buckets). Finally, we adjust newly obtained
sequences using Claim 9 and Claim 11. For A′ this means redistributing some
items from the bucket to which we inserted all removed items because we cannot
assume that the original bucketing always performs merge into one bucket. For
D′ it means taking the remaining items from D′{n...m−1} and move them to the

bucket Dm (recall that the uniform*(B) bucketing is defined to take all items
in the “smallest” buckets and we assume, that D′ is sorted). As you can see all
these operations we performed preserve the invariant.

For the other case of |D{1...m}| ≤ |AS| we use Claim 13 because we move all
items from AS to one bucket of AS (let us denote this bucket A′i) and also we
move all items from D{1...m} to a bucket of Dm. Due to Claim 13 the invariant is
preserved. Finally, we take some items from A′i and distribute them to get the
same configuration as the original bucketing. And again Claim 11 ensures us the
preserving of the invariant.

So for both cases the invariant is preserved and because we can perform all
these steps in one, the cost will not exceed 2|AS|.

This result can be directly used for the following lemma, which shows that
insert is done in such a way that also preserves invariant.

Lemma 6. Let A and D be configurations of buckets which satisfy the invariant.
Let the original bucketing B perform an insert to an arbitrary bucket Ai obtain-
ing configuration A′. Let m be the greatest integer such that |D{1...m}| < 2|Ai|+1.
Then the uniform*(B) bucketing performs an insert to D1 and a merge on the
set of the buckets D{1...m} so that all items from D{1...m} are moved to Dm obtain-
ing buckets D′ (again according to the definition). Then A′ and D′ satisfy the
invariant and the cost of the insert and the merge performed by the uniform*(B)
bucketing is at most 3|Ai|+ 3.
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Proof. Imagine that we have one virtual empty bucket. We insert a new item to
that bucket and then we perform a merge. Since the insertion of one item to an
empty bucket in A and either in D preserves the invariant (Claim 14), we can
now perform a merge using Lemma 5 (we merge the virtual bucket with Ai).
Thus the invariant is preserved and also the cost of the operation performed by
the uniform*(B) bucketing is at most two times greater than |Ai|+ 1. However,
we cannot assume this for the uniform*(B) bucketing, since we can merge more
than two buckets. But what we can do is, after inserting the new item to D1,
we can consider D1 to be two buckets – one virtual containing the new item
and one containing remaining items of D1. Now if we assume that the new item
is also inserted into the virtual bucket in A we can perform a merge. Finally,
because A and D satisfy the invariant, we can infer that d1 ≤ a1. Therefore the
proposed abstraction is correct, because we know that D1 will be merged and
thus the overall cost of the insert and the subsequent merge is at most three
times greater then ai + 1.

Now we can prove the main theorem of the section.

Proof of Theorem 3. First, we show that for an arbitrary bucketing B over the
buckets A with the initial configuration C and a bucketing B′ =uniform*(B)
over the buckets B with the initial configuration C, it holds 3c(B) ≥ c(B′).

In the very beginning both bucketings start with the same initial configura-
tion C of the buckets, therefore the invariant is satisfied. Let CA

1 = CD
1 = C. Let

i = 1. Now let us make an induction step. Let Oi be the i-th operation of Bs,C,N

and CA
i be the configuration of A just before this operation was performed.

According to the definition of the uniform*(B) bucketing, there are some opera-
tion(s) O′i in B′, which corresponds to Oi. Let CD

i be the configuration of D just
before the operation(s) O′i were performed. If we apply Oi to CA

i we obtain CA
i+1

and similarly from O′i and CD
i we obtain CD

i+1. From Lemma 5 and Lemma 6 we
know, that if CA

i and CD
i satisfy the invariant (which is ensured by induction),

then also CA
i+1 and CD

i+1 satisfy the invariant. Moreover we know, that the cost
of Oi is at most three times smaller than the cost of O′i. Thus 3c(B) ≥ c(B′).

Now let us consider an offline strategy s and s′ which is uniform*(s) strategy.
The strategy s′ is obtained from s by replacing every bucketing B obtained as a
result of s by the B′ =uniform*(B)). However since for each B and B′, it holds
that 3c(B) ≥ c(B′), we can infer, that s′ is at most 3 times worse than s.

As you can see, this proof is constructive and for every original strategy s we
obtain one specific uniform strategy s′. We say that s′ was obtained from s.
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4.3 Prefix vs. unordered bucketing

In this section, we will show a relationship between the unordered bucketing
and the prefix bucketing. This answers one of the open questions in [9]. First we
precisely define the prefix bucketing.

Definition 14. Let us have L (L > 1) infinitely large buckets A1, A2, . . . , AL
and an infinitely large set I of mutually undistinguishable items. Let us have the
smallest f such that Af is nonempty (f = L if A does not contain any item).
Then let us define the following operations.

• An insert operation with the parameter i (i ≤ f) moves one arbitrary item
from I into the bucket Ai. The cost of such operation is equal to the number
of items in Ai after the insert was performed.

• A merge operation for the given number m moves arbitrary items among
buckets A1, A2, . . . Am. So the parameters of the merge is the number m and
the set of moves of items among those buckets. The cost of such operation
is equal to |A{1,2,...,m}|.

A sequence of such operations is called a prefix bucketing. As previously, the
cost of the prefix bucketing B is equal to the sum of the costs of all performed
operations and we denote it as c(B).

In this section, the strategy which produces an unordered bucketing will be
called an unordered bucketing strategy and the strategy which produces a prefix
bucketing will be called a prefix bucketing strategy. We will also use all definitions
stated in the previous section, we just replace the strategy by the prefix bucketing
strategy.

Again we can make a simple observation about the lower bound of the cost
of the prefix bucketing.

Observation 2. Let B be an arbitrary prefix bucketing and N denote the number
of insert operations in it. Then c(B) ≥ N .

Now we can state the main theorem of this section.

Theorem 4. Let L > 1 be an integer and C = 0L be an empty initial bucket
configuration. Let s be an optimal unordered bucketing strategy. Then there exists
an online prefix bucketing strategy s′ such that for every number of items N it
holds that 3c(s, C,N) +N > c(s′, C,N).
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Let us spend a while with this theorem before we start to prove it since
we want to emphasize its importance. The meaning of this theorem is, that for
empty initial configuration C there exists online prefix bucketing strategy that
is at most constant times worse than the optimal offline(!) strategy. This is very
surprising since the unordered bucketing seems to be much more powerful than
the prefix bucketing. Hopefully this result will help us to obtain more interesting
results in future and to use the bucketing game more widely, since it might be
easier, to prove the properties of prefix bucketing and then just apply this to the
unordered bucketing than prove them directly. In addition Conjecture 1 can be
obtained as the corollary of this theorem and Theorem 1.

To prove Theorem 4 we will need a couple of new concepts and definitions. We
define a special kind of bucketing, which never “splits” items from any bucket.
This bucketing will be used in many of following claims since it turns out that
this property can make our life much easier. First we limit a merge operation.

Definition 15. Let us consider a merge operation over the set of buckets S.
Then we say, that such merge is inseparable, if all the items from buckets AS
are moved into just one bucket from S.

Then the definition of a new bucketing is following.

Definition 16. Let B be a bucketing, which consists only from insert and insep-
arable merge operations. We say that B is inseparable bucketing. The strategy
used for obtaining B is also called inseparable.

Additionally, we introduce numbering of all items according to their order of
insertion. Notice that due to the numbering of items it is insufficient to describe
items inserted to buckets just by an n-tuple of integers (configuration). The
following definition solves this problem.

Definition 17. Let L > 1 be an integer and I the set of items. Let J be a
subset of I. Then a partition of J into L subsets (possibly empty) is called an
assignment of L buckets.

It is obvious, that every distribution of items into buckets during an un-
ordered bucketing can be described by one particular assignment. However this
does not hold for a prefix bucketing, since an assignment does not store any
order of partitioning.

Notation 2. Since every subset of an assignment corresponds to a specific bucket
of some bucketing, we will sometimes say “buckets” of the assignment instead of
“subsets” of assignment.
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Additional notation about parts of an assignment will be introduced in the
next definition.

Definition 18. Let L > 1 be an integer and I be a set of items. Let C be an
arbitrary assignment of L buckets of some items from I. Then each non-empty
subset in C and each item in any subset in C forms so called group.

Finally we define the terminology about the relationship between bucketings
and assignments.

Definition 19. Let B be an arbitrary bucketing. Let C be a set of all assignments
induced by B. Let G be a set of all groups induced by the set of assignments C.
Then we say that G is obtained from B.

With these definitions we describe a bucketing using the “groups” terminol-
ogy. Let B be an arbitrary bucketing. Let us have two assignments C and C ′,
such that C describes buckets of B after the i-th step of the bucketing B and C ′

after the i+ 1-th step of the bucketing B. Let g ∈ C and g′ ∈ C ′ be an arbitrary
groups. Then if g and g′ have at least one item in common and g 6= g′, we say
that g′ is a parent of g and g is a child of g′. Notice, that g′ could be obtained
in two ways. The first one is that g′ and g correspond to buckets which took a
part in a merge operation. The second case is an insertion of a new item into
g. In this section, the second case will be considered as a merge of the bucket
containing items of the group g with the new item (which forms a group itself).
Finally, let g1, g2, . . . gk be a sequence of groups such that gi is a parent of gi+1.
Then for every m,n, m < n we say, that gn is descendant of gm.

Let us define the following graph based on the groups of some bucketing.
This graph will describe somehow a process of bucketing and will be used in the
definition of prefix bucketing based on the original one.

Definition 20. Let B be an arbitrary bucketing and G be a set of groups obtained
from B. Let us have a graph whose nodes are groups from G and its edges are
defined by parent-child relationship between the groups of G. We denote such
graph by T and we say that T is based on B or G.

For such graph T we can state the following observation.

Observation 3. Let B be a inseparable bucketing and T be a graph based on B.
Then graph T is a forest and the number of trees in it is equal to the number of
non-empty buckets after finishing the bucketing.
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The proof of this observation is simple, since the bucketing B is inseparable,
every group has at most one parent and we can directly infer that T is a forest.
The second part of the observation is obvious since the number of the trees is
equivalent to the number of groups without a parent. And if a group does not
have a parent, it was not merged and thus it corresponds to one bucket after B
was finished.

Let us now introduce more terminology about groups, which will be used
when describing process of bucketing. Notice that every group either was not
created yet, exists in some bucket, or was merged or split to obtain a new group.

Definition 21. Let B be an arbitrary bucketing and G a set of groups obtained
from B. Let g1 ∈ G and g2 ∈ G be arbitrary groups. Then g1 and g2 are inde-
pendent if they do not have any item in common.

Definition 22. Let L > 1 be an integer and C be a bucket assignment of L
buckets. Then a group g is actual in C if g ∈ C.

Definition 23. Let L > 1 be an integer and C be a bucket assignment of L
buckets. The group is started in C if C contains at least one item from this
group. The group is finished in C if all its items are placed in one bucket of C.

Observation 4. Let G be the set of groups obtained from an inseparable buck-
eting B. Let C1, C2, . . . CN be the sequence of assignments induced by B (sorted
in order of appearance). Let g be a group finished in the assignment Ci. Then
for any j > i the group g is finished in Cj.

Now we can state a simple claim about independent and dependent groups
which helps us understand the graph structure.

Claim 15. Let B be an inseparable bucketing and G be a set of groups obtained
from B. Let g1, g2 ∈ G be two different groups. Then g1 and g2 are either inde-
pendent or g1 is ancestor of g2 or g1 is descendant of g2.

Proof. Let us assume that g1 and g2 are not independent. Thus they have at
least one item in common. If g1 ⊂ g2 or g2 ⊂ g1 we are finished so let us assume
that g1 6⊂ g2 and g2 6⊂ g1. Notice that finally, after the B is finished, all actual
groups are independent and since we cannot split groups, g1 and g2 has common
ancestor.

On the other hand, let S denote the set of items which have both groups
in common. But those items are descendants not only for g1 but also for g2.
And since we know, that T based on an inseparable B is a tree, we obtain
contradiction since we just find circle.
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Let us now establish the relationship between tree structures and bucket
assignments. Let T be a graph based on a inseparable bucketing B, i.e. T is a
forest. Let GS be a set of nodes of T such that if a node u ∈ GS then all ancestors
and descendants of u are not in GS. We say that GS is a state of T . First notice,
that GS consists of independent groups (recall that nodes of T are groups) –
since T is based on an inseparable B, we can apply Claim 15. Thus all groups
which are not independent have to be in ancestor-descendant relationship which
is forbidden for GS.

Now we can infer the following observation.

Observation 5. Let T be a graph based on an inseparable bucketing B. Let GS

be a state of T . Then groups in GS define an assignment of |GS| buckets.

The proof is simple, since the groups of GS are independent and thus every
group can be assigned to one of |GS| buckets. This observation will be very
important, since it enables us to describe bucketing as a sequence of the states
of T .

Let us now define the ordering of the leaves of an arbitrary graph T using
relations over items.

Definition 24. Let T be a graph based on a inseparable bucketing B. Let R be
an arbitrary antisymmetric, transitive and total binary relation over all items
that will be inserted by B. Then we define the ordering of leaves of T according
to R as follows - let a and b be arbitrary items. If aRb then we say that a is right
of b and b is left of a.

Notice that if we define relation over items according to their id’s we can
obtain ordering of leaves based on it. we call such ordering id ordering. The
example of an id ordering is in Fig. 4.4. Notice that the item with the smallest
id is “on the right” (Fig. 4.4).

Now we will show how to use obtained tree structure.

Definition 25. Let T be a graph based on a inseparable bucketing B. Let GS

be the state of T and C the bucket assignment defined by GS. Then A is the
algorithm with the following properties.

1. Let us set GC = GS.

2. Until GC contains some group with a parent we repeat these steps:

i) If there exists a group such that all its children are finished in C
defined by GC we perform merge on those child groups.
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Figure 4.4: A graph T with id ordering of leaves.

ii) If there did not exist a group such that all its children are finished
in C defined by GC, we choose the rightmost not yet inserted item
(according to the ordering of leaves of T ) and we insert it. If this item
should be merged with exactly one group and this group is finished in
C, this item is inserted into this group directly instead of using new
empty bucket.

iii) Finally we store new state into GC.

Such algorithm A with some graph T forms the unordered bucketing, let us
denote it B′. The next claim shows us more about its property. Notice that since
we do not know the number of buckets used by B′, we will assume that this
bucketing needs N buckets where N is the number of inserted items – obviously
this number has to be sufficient.

Claim 16. Let L > 1 be an integer and C = 0L be an empty initial bucket
configuration. Let B be an inseparable bucketing whose initial configuration was
C and which inserts N items. Let T be a graph based on the inseparable bucketing
B such that a state of T is empty (notice that the initial configuration C is also
empty) and an ordering of leaves of T is arbitrary. Let B′ be the bucketing formed
from the algorithm A and the graph T and let C ′ = 0N be an empty configuration.
Then c(B′) = c(B) and the set of non-empty bucket produced by B will be the
same as the set produced by B′.

Proof. Bucketing B′ obviously generates the very same set of groups as B during
its run and therefore the cost of both bucketings is equal (which follows from the
construction of T , which contains all groups obtained from B and the algorithm
A creates them all).
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Additionally we know that a set of non-empty buckets after finishing B is
equal to a set of groups without parents. But exactly those groups remain after
the finishing B′ because of the termination condition in A. Therefore the set of
non-empty bucket produced by B will be same as the set produced by B′.

Notice that the order of finishing the groups can be different since the se-
quence of bucket assignments produced by B′ may be different than the sequence
of bucket assignments produced by B. Thus the number of buckets used by B′

can be different than by B. The solution of this problem will be given later.
The following claim shows us, that if we just change the order of creating

groups according to algorithm A but the order of inserting items remains un-
changed, the cost will be same and we never use more buckets.

Claim 17. Let L > 1 be an integer and C = 0L be an empty initial bucket
configuration. Let B be an inseparable bucketing whose initial configuration was
C and which inserts N items. Let T be a graph based on the inseparable bucketing
B such that a state of T is empty and T has an id ordering of the leaves. Let B′ be
the bucketing formed from the algorithm A and the graph T . Then c(B′) = c(B).
In addition B′ will not use more buckets than B.

Proof. The first part of the claim follows from Claim 16, thus we can focus only
on the number of used buckets.

First notice that the maximal number of buckets is used just after some
insertion, since B is inseparable and thus merge operations only reduce the
number of nonempty buckets. Let us look at the number of non-empty buckets
when the i-th item was inserted. Both bucketings have inserted the same set
of items so they can differ only by performed merges. Obviously the original
bucketing B(i) cannot perform more merges than B′(i), because B′(i) performs
as many merges as possible (according to the definition of the algorithm A). In
addition, from the way of creating T it follows that the set of merges (where
every merge is determined by the group it produces) performed by the original
strategy B(i) is a subset of the merges performed by the strategy B′(i). Let Ci
be an assignment of buckets of the B(i) and C ′i be an assignment of buckets of
the B′(i) after the i-th insertion (we intentionally ignore the number of buckets
since it is not important now). Then the number of actual groups in C ′i cannot
be greater than in Ci. And it directly implies that the number of non-empty
buckets after the i-th insertion in B′ is not higher than in B.

Now we make an observation about the insertion order of items.
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Figure 4.5: A graph T with different ordering.

Observation 6. The order of an insertion of items can be arbitrary.

In other words a new strategy can define a bucketing which inserts an item
with a higher id first and an item with a smaller id later. This is possible since
these id are defined just formally.

Now we show how to change the creation order of groups using the previous
observation. If we change the ordering of leaves of some graph T while we keep
the algorithm A, not only we change the insertion order, but we also change the
order of the groups creation. From Claim 16, we know that if we ensure, that
our new strategy does not use more buckets in any bucketing it produces than
the original one, we can use it instead of the original one, because the result and
the cost will be always the same.

Let us define the operator P (group) as the smallest id from all items id in
this group. Now we use this operator to define new ordering of the items. Let us
just informally show new “ordering” of the leaves of T using P .

1. For each group, we sort its children according to the P so that the group
for which is P (group) smallest is on the right.

2. All groups without a parent are sorted as if they all have one virtual parent.

Example of such sorting is in Fig. 4.5.
Now we will introduce formally the leaves ordering which produce the very

same order of leaves as we have just proposed.

Definition 26. Let B be an inseparable bucketing and G a set of groups obtained
by B. Let a and b be two items which will be inserted. Let ga ∈ G be the largest
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Figure 4.6: Illustration of four cases in the proof of transitivity of RP.

group such that a ∈ ga and b /∈ ga. Analogously we define gb ∈ G as the largest
group such that b ∈ gb and a /∈ gb. Then RP over B is such relation over the
items inserted by B that aRPb if and only if P (ga) < P (gb) or a = b. We call
RP a prefix relation.

Claim 18. Let B be an inseparable bucketing and G the set of groups obtained
by B. Then a prefix relation RP over B is antisymmetric, transitive and total
binary relation over all items that will be inserted.

Proof. The antisymmetry of RP is obvious. It is also total, because for every pair
of items a and b there exist groups ga ∈ G and gb ∈ G such that a ∈ ga and
b /∈ ga and b ∈ gb and a /∈ gb (for example groups consisted from items itself) –
thus we have to choose greatest of them. However it is not obvious, whether such
definition of groups is not ambiguous. Let us assume that we have two groups
g1a and g2a such that a ∈ g1a, g

2
a and b /∈ g1a, g

2
a. Then from Claim 15 it follows

that either g1a is an ancestor of g2a or g2a is an ancestor of g1a and thus |g1a| > |g2a|
or |g1a| < |g2a|. The very same holds for groups containing b, thus we can always
unambiguously find the pair of the largest groups.

It remains to show that RP is transitive. Let us have three items a, b and c
such that aRPb and bRPc. Then we want to show that aRPc. Let us assume for
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simplicity, that there exists a group gp which is a parent of those groups which
do not have a real parent. Let gab be such a group that contains a and b but
non of its children contains both a and b (it is the “smallest” group containing
a and b). Similarly we define gbc as the “smallest” group containing b and c and
gac as the “smallest” group containing a and c. Then a few cases can occur (see
Fig. 4.6).

i) gab = gbc = gac. Let gabc = gab. Let ga be the child of gabc that contains a, gb
be the child of gabc that contains b and finally, gc be the child of gabc that
contains c. Notice that from the definition of gab (and also gbc and gac) we
know that ga is the largest group containing a but not containing b and c
and similarly for gb and gc. Thus we can simply infer that, transitivity holds
for this case, since if P (ga) < P (gb) and P (gb) < P (gc) then P (ga) < P (gc).

ii) gab (or gac as well) is an ancestor of gbc. Let ga be the child of gab that
contains a, gb be the child of gab that contains b and finally gc be the child
of gab that contains c. Notice that since gab is an ancestor of gbc we simply
obtain, that gb = gc. Thus the result of P (ga) < P (gb) has to be same as
the result of P (ga) < P (gc).

iii) gbc (or gac as well) is an ancestor of gab. Let ga be the child of gbc that
contains a, gb be the child of gbc that contains b and finally gc be the child
of gbc that contains c. Notice that since gbc is an ancestor of gab we simply
obtain, that ga = gb. Thus the result of P (ga) < P (gc) has to be same as
the result of P (gb) < P (gc).

iv) gbc (or gab as well) is an ancestor of gac. Let ga be the child of gbc that
contains a, gb be the child of gbc that contains b and finally gc be the child
of gbc that contains c. Notice that since gbc is an ancestor of gac we simply
obtain, that ga = gc. But then we simply obtain a contradiction with an
assumption since the result of P (ga) < P (gb) has to be same as the result
of P (gc) < P (gb).

Notice that because of the fact that B is inseparable and Claim 15 we do not
have to check more cases. For example for gab and gac we obtain that gab = gac
or we can use Claim 15 and obtain that they are in ancestor-descendant relation
since they have item a in common. The very same holds for remaining pairs.

Therefore we have proved that RP is antisymmetric, transitive and total
binary relation.
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Claim 19. Let B be an inseparable bucketing and G a set of groups obtained
by B. Let RP be a prefix relation over B. Let g1, g2 ∈ G be independent groups.
Then if for an arbitrary item a ∈ g1 and an arbitrary item b ∈ g2 holds that
aRPb then for all pairs of items ai ∈ g1 and bj ∈ g2 hold that aiRPbj.

Proof. Let us assume, that there is gp that is a parent of all groups without a
parent. Then let gab be a group that contains a and b and non of its children
contain both a and b. Let ga be the child of gab containing a and gb be the child
of gab that contains b. Notice that g1 is descendant of gab and is either equal to
ga or it is descendant of ga. The very same holds for g2 and gb. Thus we can
infer, that if we ask whether aRPb we actually compare P (ga) and P (gb). But
the very same groups are compared for all items from g1 and g2 since g1 ⊂ ga
and g2 ⊂ gb.

Now we can use just defined prefix relation for the definition of new leaves
ordering.

Definition 27. Let T be a graph based on an inseparable bucketing B. Let RP be
the prefix relation over B. Then a prefix leaves ordering of leaves is the ordering
of leaves of T according to RP.

Now we make an interesting observation, which tells us more about the or-
dering of items when using prefix ordering of leaves.

Observation 7. Let T be a graph based on an inseparable bucketing B such that
it has a prefix ordering of leaves. Then due to Claim 19 all leaves which belong
to one group form “continuous” interval of leaves (see Fig. 4.5).

The following definition helps us to “navigate” in the tree structure.

Definition 28. The group g1 is left from the group g2 if these groups are inde-
pendent and all items of g1 are left from the items of g2. The group g1 is right
from the group g2 if these groups are independent and all items of g1 are right
from the items of g2.

Let T be a graph based on an inseparable bucketing B such that it has a
prefix ordering of leaves. Now consider the bucketing B′ that consists from T and
the algorithm A. It is enough to prove that B′ does not use too many buckets
since the remaining properties follow from Claim 16.
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Lemma 7. Let L > 1 be an integer and C = 0L be an empty initial bucket
configuration of an inseparable bucketing B. Let N be the number of items in-
serted by B. Let T be a graph based on the bucketing B such that it has a prefix
ordering of leaves and the state of T is empty. Let B′ be the bucketing obtained
from T and the algorithm A. Then c(B) = c(B′), the maximal number of non-
empty buckets among all configurations produced by B′ is at most the maximal
number of non-empty buckets among all configurations produced by B and a final
configuration of B is equal to a final configuration of B′.

Proof. Let Ci be the assignment of B and C ′i be the assignment of B′ just after
an item with id i was inserted. Notice, that the number of items in Ci can be
different than in C ′i. Let m denote item with id i. From the definition of A, we
know that all independent groups right of item m (recall that every item itself
is also a group) are finished in C ′i. Then there can be two kinds of the actual
groups in C ′i.

1. Those containing at least one item with id at most i.

2. Those containing only items with id greater than i.

First we prove, that there cannot exist an actual group of the second type. Let
us assume that there exists such a group g containing only items with id greater
than i. We know, that this group is independent to the group containing item m
(since it cannot contain m). Let us find the largest group g` such that contain
g but does not contain m. Notice that due to Observation 7 such group has to
form a continuous interval in the items ordering. In other words, g` has to be
obtained from g in such a way that we “extend” the borders of g over the ordered
array of items. In addition it implies that g` cannot contain any item left of m.
But then we can infer that g = g` because the only way how to extend g to g` is
to use items right of m which we already did and algorithm A ensures us that g
is greatest possible. On the other hand, let us denote gm the largest group not
containing g but containing m. Then we know, that P (gm) ≤ i < P (g) which is
contradiction since all items from g have to be left of m.

Now we can deal with the remaining groups. Let Si denote the set of actual
groups in Ci and S ′i denote the set of actual groups in C ′i. If |Si| ≥ |S ′i| we are
finished because the number of buckets used by B′ is smaller than by B after
this insertion. However if it is not the case we find such a group gc (gc ∈ S ′i)
so that there does not exist g ∈ Si such that P (g) = P (gc) (notice that such a
group has to exist because of pigeonhole principle). Consider such group go ∈ Si
that contains an item with the id equal to P (gc). Such go has to exist because
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P (gc) has to be at most i as we proved in the previous paragraph and thus this
item was inserted in Ci. In addition we know that P (gc) < P (go). On the other
hand go is started in C ′i because of gc (the group is started when at least one of
its items is inserted) which has to be descendant of go (Claim 15 and the fact
that go contains item with id P (gc) but P (go) 6= P (gc)). In addition go does not
contain the item with id greater than i because otherwise it could not be finished
in Ci.

The question is why go is unfinished in C ′i. And the only reason can be, that
some of its descendants were not finished. Such descendants have to be placed
left of the m (otherwise they will be finished). First let us assume that m 6∈ go.
Then we simply obtain a contradiction, since the items of go would be split into
at least two intervals by m and this is forbidden due to Observation 7.

So let us assume that m belongs to go. Notice, that it implies that go can
be divided in two groups – m itself and the remaining items of go. This is true,
because the only way, how could be m placed to go in B was to insert it to the
bucket containing this group (recall, that m was just inserted and no merge was
performed since that). Let n be one of items, which belongs to go and are not
inserted in C ′i. Then let gn be the largest group containing n but not m and
gm be the largest group containing m but not n. Notice that since go can be
divided into those two groups, than gm = {m}. But this directly implies that
P (gm) > P (gn) since m is the item with greatest id in go and thus we obtain a
contradiction.

Thus the group go cannot exist and it implies that also gc cannot exist.
Therefore the configuration C ′i never contains more non-empty buckets than Ci
and thus B′ does not use more buckets than B.

The remaining properties follow from Claim 16.

This Lemma 7 ensures us that we can use the bucketing B′ instead the
original bucketing B and the final assignment of the buckets will be the same,
the cost will be the same and B′ does not need more buckets than the original
bucketing. It remains to show one very important lemma.

Lemma 8. Let L > 1 be an integer and C = 0L be an empty initial bucket con-
figuration of an inseparable bucketing B. Let T be a graph based on the bucketing
B such that it has a prefix ordering of leaves and the state of T is empty. Let B′

be the bucketing obtained from T and the algorithm A. Then the bucketing B′ is
the prefix bucketing.
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Proof. First notice that every group forms a continuous interval of items (Ob-
servation 7) and also that the items of one group are (at least one step of the
bucketings) in one bucket. Therefore we can split inserted items into continuous
intervals where every interval corresponds to one bucket. It also defines an or-
dering of the buckets. Finally if we create a new group, it is obtained from the
groups, that form a continuous interval.

Let us now use the left/right convention used for groups. Then every insertion
is made to the leftmost non-empty bucket or its empty neighbour – which is in
prefix bucketing manner.

So it only remains to solve the merge operations. Assume that we can do
merge that does not contain the leftmost non-empty bucket. Then such merge
should be done before we made any insertion to this bucket (according to the
property of the algorithm A) and thus we obtain a contradiction. So we only have
to prove that we always make merge on the continuous interval of the buckets.
But it directly follows from the fact that the items of one group always form the
continuous interval and we always make merge on the items from exactly one
group.

Because both operation can be done in the prefix bucketing way, B′ is the
prefix bucketing.

The question is, whether the inseparable property of bucketings is not too
limiting. And the answer is following claim.

Claim 20. Let B be a uniform bucketing. Then B is inseparable.

Proof. Obviously an insert operation cannot split anything, therefore we focus on
a merge operations. But a uniform bucketing (or uniform strategy respectively)
performs merge only in one specific way – it takes all items from the given set
of buckets and places them into one of them. Thus it never splits buckets.

Now we can proof quite interesting lemma.

Lemma 9. Let L > 1 be an integer and C = 0L be an empty initial bucket
configuration and N number of items we want to insert. Let s be an unordered
bucketing strategy. Then there exists an offline prefix bucketing strategy s′ such
that for every number of items N it holds that 3c(s, C,N) ≥ c(s′, C,N) and s′

will never use more buckets than s.

Proof. Let su be a uniform strategy obtained from s. Then we know that su is
at most three times worse than s (Theorem 3). Let Bu be a bucketing obtained
from su, C and N . Then Bu is inseparable and c(B) ≤ 3c(s, C,N). Thus we can
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use Lemma 7 and Lemma 8 which together ensures us the existence of the prefix
bucketing B′, which for C and N produce same result for the same cost as B.
Since we can do this construction for any N , we obtain a definition of a prefix
strategy s′ for C and an arbitrary N . And therefore we are finished.

This lemma is very interesting just by itself. It says, that if we are inserting
into empty buckets, then there exists an offline prefix bucketing strategy which
is up to a constant factor optimal. However we want to show more. Let us look
closer at Claim 6 and its proof. We discovered, that this claim holds also for
prefix strategies. And thus we can prove the main theorem of the section.

Proof of Theorem 4. Let L > 1 be an integer and C = 0L be an empty initial
bucket configuration. Let s be the optimal unordered bucketing strategy. Then
there exists an optimal prefix bucketing strategy sp (Lemma 9) such that for
an arbitrary number of items N it holds that 3c(s, C,N) > c(sp, C,N) . And if
we apply Lemma 4 then there must exist an online prefix bucketing strategy s′

such that c(sp, C,N) + N > c(s′, C,N). Therefore it holds 3c(s, C,N) + N >
c(s′, C,N).

Finally notice that since we are insertingN items, it also holds that 4c(s, C,N) >
c(s′, C,N). However, the previous result can be better for those who have strat-
egy with greater than linear cost.

Although this lemma is very powerful, we have to emphasize, that it does
not give us any directions, how to obtain an optimal prefix bucketing strategy –
we know only an upper bound for its cost. Thus we cannot construct s′ either.
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Chapter 5

Ordered array implementation

In this chapter, we describe a structure which shows, that the lower bound given
in the Theorem 2 is tight. Such structure was mentioned in [7], but it needs
O(N2) space. In E. Demaine’s lecture notes, there is a remark, that the O(N2)
space is not necessary, however he did not provide any implementation of it.
Thus we try to fill this gap and we provide a structure which is inspired by the
Itai et al. idea [12].

Recall that the task is to insert N items into an array in such a way that after
every single insertion, the items in the array are sorted according to their value.
The insert operation of the original Itai et al. structure is costly, its amortized
time complexity is O(log2N). We tried a different point of view. Instead of time
we sacrifice space. Finally, we obtain the structure, which performs insert in
amortized O(logN) time and search in O(logN) time but it needs O(N1+ε)
space. In addition we preserve the time complexity of the interval queries (scan).

The main idea is similar to the one used by Itai et al. Let us have an array
of size S. We divide this array into chunks, each containing log2 S slots of the
array. These chunks will be the leaves of a binary tree structure built “over” that
array (Fig. 5.1). For the purpose of the analysis, we will assume, that the initial
size of S is 2, the size of every chunk is exactly blog2 Sc and that remaining
S mod blog2 Sc slots of the array do not form a chunk and cannot be used for
insertion. We call these slots omitted.

Before we describe the operations over that data structure as well as the
details about that structure a few definitions are necessary.

Definition 29. Let I be the continuous interval of slots in the array, then |I|
denotes the length of the interval I. The number of items in the interval I is
denoted by NI . The density δI of the interval I is defined as NI/|I|.
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Figure 5.1: The array with the tree.

This definition of the density is similar to that definition [12].
For the next definition we have to look closer at the tree structure. We can

notice that leaves of every subtree in the tree form a continuous interval. Now
the remaining definitions follow.

Definition 30. Let u be an arbitrary node in the tree. Let us denote by Iu the
interval defined by the subtree with the root u (Fig. 5.2). The density of the node
u is defined as the density of Iu and we denote it δu. For every node we define the
maximal allowed density (max δ) as follows. Let α be an arbitrary number such
that 1/2 < α < 1. For leaves, the maximal density is 1. Recursively we define
the maximal density of every node. Let the node v be a child of the node u. Then
max δu = αmax δv. Additionally every leaf has to be either empty or has its
density at least 1/2. Finally, we define the capacity Cu of the node u to be equal
to d|Iu|max δue. The capacity C of the whole array is the capacity of the root.

Notice that the omitted slots do not belong to the interval of any node.
Now we can describe our structure over the array more precisely. In every

node u, we store the minimal and the maximal item in Iu, the density δu and
pointers to the children and to the parent of u. In every leaf we additionally
store a pointer to the previous and to the next nonempty leaf.

Notice that some nodes can have their intervals empty. We omit such nodes
in our structure and we do not even create them since we do not need them
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u

Iu

Figure 5.2: The node u and the interval Iu defined by u.

for our operations. In addition, if we were to create the nodes with an empty
interval, we would affect negatively the time complexity of some operations.

Now we describe the operations with the structure.

• The SEARCH operation is done in straightforward manner. First we find
the leaf that contains a searched item. Then we perform a binary search
in the interval defined by this leaf.

• The INTERVAL QUERY operation is also quite simple. We find the first
item of the interval and then we traverse all the items until we run across
the leaf border. Then we go to its nonempty neighbour and we continue
until we read the first element outside of the interval (or the end of the
array).

• The INSERT operation is the most interesting. First we find the leaf, into
which the item should be stored. If there are two possible leaves, we choose
the left one. Now there are three possibilities

1. The number of items in the whole array is equal to the capacity of the
whole array. Then we enlarge the array twice and rearrange all the
items (the rearrange procedure will be described later). After that we
perform the insert again.
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2. The density of the leaf u` is smaller than the maximal density of
the leaf. Then we insert the new item into its position in the chunk
(according to its value) and we move other items in the interval of
the node u` to make a space for it if necessary (it is enough to do it
in linear time according to the Nu`).

3. The leaf is full i.e. its density is equal to its maximal density. Then we
find the first ascendant node ua (using the pointer to the parent node
in every node) such that δua < max δua . After that we rearrange all
items in Iua . Notice that such node ua has to exist, because otherwise
we would enlarge the array by case 1.

Notice that since the initial size of array is 2, this algorithm ensures us, that
the size of the array S will be always a power of 2. This implies that log2 S is
always integer and thus the size of every chunk is exactly log2 S.

Rearrange operation

The REARRANGE operation is performed every time when we need to dis-
tribute items more evenly among the given interval. This procedure rearranges
all items in the given interval so they will be distributed evenly (in some sense).
It is done in the following way. Assume that we perform the rearrange operation
for the interval Iu. First we delete all nodes in the subtree with the root u. Notice
that since we maintain only those nodes corresponding to nonempty intervals,
only nonempty nodes have to be deleted.

Then we take all items in Iu and split them into cg = bNIu/(0.5 log2 S)c
groups of the same size (up to rounding) in such a way, that every group obtains
an arbitrary but unique id and for all items a, b it holds that if a < b then the
id of the group containing a is smaller or equal to the id of the group containing
b. Now notice that all such groups will satisfy the restrictions for the number of
items in the leaf. Thus we can consider every group to be a set of items of one leaf
of the tree. Having those groups-leaves which are nonempty we distribute them
in the order corresponding to the group ids evenly in the leaves of u in such a
way that the number of empty leaves between two neighbouring nonempty leaves
is b(log2 |Iu|)/cgc up to 1 (the overall number of leaves divided by the number
of nonempty leaves). For every nonempty leaf we update its pointers to the
neighbouring nonempty leaves. Then we place items in every nonempty chunk
so that the items are placed continuously from the left border of the chunk.

Finally, we “repair” the tree in the following way – we take all nonempty
leaves and we create their ascendant nodes up to the node u. In other words
we will be creating ascendants of those leaves until we should create the node
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whose interval I would be equal to Iu and then we finish. To do that we put all
nonempty leaves in the queue in the same order as they are represented in the
array. Then we go through this queue and for every node in it we construct the
parent of this node. We only have to ensure, that every node is not created twice
(which could happened if two nodes with the same parent are in the queue).
Since the nodes are stored in the same order as their intervals, it is enough to
check only neighbours of the current node and if they have the same parent,
create it only once. After we are finished with all nodes in the queue, we take
newly obtained nodes and we continue, until the node with the interval Iu is
created. It is obvious that the properties of u as well as the properties of all
ascendants of u remain unchanged.

That is all to the data structure description.

The time complexity of the tree operations

Now we analyze data structure operation time complexity. We start with the
following claim, which shows us the relation between the overall capacity of the
array and its size.

Claim 21. Let S denote the size of the array and C be the capacity of the array.
Then it holds that S ∈ O(C1+ε) where ε = −(log2 α)/(1 + log2 α).

Proof. Let us assume, that the number of items in the tree is equal to the capacity
of the tree C. Let L denote the overall number of leaves of the tree, LN denote
the number of nonempty leaves and h denote the height of the tree. Since the
capacity is full, the following estimate is correct

C ≤ LN log2 S

since every nonempty leaf cannot contain more than log2 S items. On the other
hand, since the density of the root is equal to the αh, from the definition of
capacity we obtain

αhL log2 S ≤ dαhL log2 Se = C.

Thus we can infer
αhL log2 S ≤ LN log2 S

and
αhL ≤ LN .

Since the number of tree leaves can be estimate as L ≥ 2h−1 it implies

(2α)h ≤ 2LN
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h · log2(2α) ≤ log2(2LN)

The height of the tree h is surely greater than log2 L, therefore

log2 L · log2(2α) ≤ log2(2LN)

and since 2α > 1 the following holds

log2 L ≤
log2(2LN)

log2(2α)

L < (2LN)
1

log2(2α)

Let us have ε = −(log2 α)/(1 + log2 α) then we can rewrite the inequality as

L < (2LN)1+ε

It remains to show the relation between C and S. Recall that LN is the number
of nonempty leaves and the capacity of the array is full. Also recall that the
number of items in every leaf is at least 0.5 log2 S and at most log2 S. Thus we
can infer

0.5LN log2 S ≤ C

and since the number of omitted items is smaller than log2 S

S < L log2 S + log2 S.

and since L > 1 (which follows from the minimal size of S which is 2)

S < 2L log2 S.

Obviously
L log1+ε

2 S < (2LN log2 S)1+ε

and thus
1

2
S logε2 S < (4C)1+ε

and since logε2 S > 1
1

2
S < (4C)1+ε

it directly implies that S ∈ O(C1+ε) where ε = −(log2 α)/(1 + log2 α).
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Now we know the relation between the capacity of the array (C) and the
size of the array (S). The following observation shows the relation between the
number of items in the array N and C.

Observation 8. Let N be the actual number of items in the array. Then it holds
that C/2 ≤ N ≤ C.

The second inequality is obvious from the definition of the C and the def-
inition of the insert operation. The first one can be easily inferred from the
algorithm description. When we enlarge the array the capacity grows less than
twice while the number of items in the array remains unaffected.

This observation implies directly the next observation.

Observation 9. For the actual number of items in the array N it holds that
S ∈ O(N1+ε) where ε = −(log2 α)/(1 + log2 α).

Now we can continue in our analysis of the time complexity of the algorithm
operations.

Lemma 10. Let N be the number of items in the array. Then the search opera-
tion can be performed in O(logN) time in our structure. The interval query can
be performed in O(logN + `) time, where ` is the number of items in the interval
of the query.

Proof. We can see, that finding the correct leaf costs O(log2 S−log2 log2 S) time.
Then we spend O(log2 log2 S) time for one binary search in the interval of the
leaf which gives O(log2 S) time in total. Together with the time for finding the
correct leaf this is O(log2 S). From the Observation 9 we know that this is the
same as O(log2N).

Very similar time we spent for finding the first item of the interval of the
interval query. The time necessary for the traversal part of the interval query
will be calculated as follows. Since items form continuous interval in the leaf
interval at most constant time is spent for moving to the next item inside that
leaf. The move to the next nonempty leaf costs us also constant time, since we
have a pointer to the next nonempty leaf. Thus the scan through the whole
interval will have O(`) time complexity and together with the initial search we
obtain O(logN + `) time complexity.

We will continue with the time complexity of the rearrange procedure which
is important for the insert.
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Lemma 11. Let I be the interval for which we perform the rearrange procedure.
Let NI denote the number of items in I. Then the rearrange procedure for the
interval I needs O(NI) time.

Proof. Removing all items from I will take us O(NI) time (which we can infer
from the time complexity of the traversal part of the interval query). Also placing
all items to their new positions can be performed in O(NI) time. Thus it only
remains to solve the time complexity of the tree rebuilding.

Let S denote the current size of the array and h denote current height of the
tree. The maximal number of nonempty leaves, whose interval is the subinterval
of I, is denoted by L and it holds that L ≤ 2NI/ logS. From this number, we
can infer that upper bound on the number of the tree nodes affected by this
procedure is Lh. Such number of nodes can be deleted and after that created in
O(Lh) time. And since h = log S, we obtain the overall time complexity O(NI)
for the rearrange operation on the interval I.

Now we focus on the insert operation. The first claim will solve such inserts,
which do not cause the array enlargement.

Claim 22. Let N be the number of items in the array and C the capacity of the
array. If N < C then the amortized cost of the inserts is O(log2N).

Proof. The proof of this claim was inspired by the proof from [12]. Let us have a
node u and its child v. Then according to the definition max δu = αmax δv and
|Iv| = |Iu|/2. When the last rearrange operation was performed in the interval
Iu the density of the node v was at most max δu (and the very same holds for the
another child of u). Thus to invoke the next rearrange operation in the whole
Iu we need to achieve the maximal density of the node v (or of the sibling of v
which is symmetrical). To do that we have to insert at least max δvIv−max δuIv =
Iv max δv(1− α) items into Iv.

On the other hand the cost of the rearrange operation in Iu is O(NIu). Let
us denote by N ′Iu the number of items which were in Iu when the last rearrange
operation was performed. Thus each of the at least |Iv|max δv(1 − α) newly
inserted items has to be charged at most O(N ′Iu/(|Iv|max δv(1 − α))) for the
cost of the rearrangement in the node u. And since N ′Iu ≤ |Iu|max δv we obtain
that O(N ′Iu/(|Iv|max δv(1 − α))) ≤ O(1/(2 − 2α)) which is constant. However,
each item belongs to O(log2 S − log2 log2 S) intervals and it has to contribute to
rearrangement of each of them. In total it contributes O(log2 S) per insertion.
Finally, we have to consider the cost for inserting the item into the leaf, which
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is performed in O(log2 S) time. Thus the amortized time complexity of every
insertion is O(log2 S), which from the Observation 9 is equal to O(log2N).

It remains to calculate the time complexity of the array enlargement. We
start with the following claim

Claim 23. Let Ci be the capacity of the array after the i-th array enlargement
was performed. Then Ci+1 = 2αCi.

Proof. Let Si denote the size of the array, ri the root of the tree and finally, hi
the height of the tree just after the i-th array enlargement was performed. First
notice that max δrj+1

= αmax δrj since hj+1 = hj + 1. Therefore we can infer
Ci+1 = Si+1 max δri+1

= 2αSi max δri = 2αCi.

The next claim shows us the time complexity of the array enlargement.

Claim 24. Let us assume that arbitrary array allocations can be done in constant
time. Let Li be the number of the nonempty leaves and Si be the size of the
array just before the i-th array enlargement was performed. Then the i-th array
enlargement (including the tree rebuilding) time complexity is O(Li+1 log2 Si+1).

Proof. Let Li be the current number of the nonempty leaves. Then the upper
bound on the overall number of the nodes in the tree is Li log2 Si since log2 Si
is the height of the tree. Thus the old tree structure can be deleted in the
O(Li logSi) time. In addition it holds that Li+1 ≤ 2Li since the worst case is,
that all leaves were full and after the array enlargement they all contain only
0.5 logSi+1 items. Thus the new tree will consist of Li+1 log2 Si+1 nodes and it
implies that it can be built in O(Li+1 logSi+1) time.

Except the tree rebuilding, we spent some time on the rearranging items.
The number of items in the tree just after the array enlargement is at most
Li+1 logSi+1 since every leaf can contain at most logSi+1 items. The time com-
plexity of the array rearrangement is linear to the number of items in the array,
therefore the time complexity of the array rearrangement is O(Li+1 logSi+1).

Since the allocation of the array is considered to be done in the constant time,
we obtain that the overall time complexity of the array enlargement including
the tree rebuilding is O(Li+1 logSi+1).

Last claim about the array enlargement calculates the cost of the array en-
largement per insertion.
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Claim 25. The amortized cost of all array enlargements per one item insertion
is O(1).

Proof. From the Claim 23 we can infer that between the i-th and the i+1-th array
enlargement was inserted αCi items. Let us use the notation from the previous
claim. Then the i-th array enlargement will cost O(Li+1 logSi+1) according to the
Claim 24. We also know that Ci+1/ log2 Si+1 ≤ Li+1 ≤ 2Ci+1/ log2 Si+1 (we can
use capacity instead the number of items since the capacity is fulfilled before the
array enlargement). This implies that O(Li+1 log2 Si+1) = O(Ci+1). And since
Ci+1 = 2αCi, we know, that the number of the inserted items since the last
array enlargement is equal to the cost of the current array enlargement up to
constant and therefore the proof is finished.

The next lemma just summarize the few previous claims.

Lemma 12. Let N be the number of items in the array. Then amortized cost of
the insertion of the new item is O(logN).

Proof. The amortized time complexity of every insertion consists of the time for
insertion itself and the time for array enlargement. The insertion itself amortized
time complexity is O(logN) according to the Claim 22. The amortized cost of
all array enlargements per one item insertion is O(1) from the Claim 25. Thus
the overall amortized cost of the item insertion is O(logN).

We have just prove that the time complexity of the operations in our structure
are the following

• The SEARCH operation – O(logN).

• The INTERVAL QUERY operation – O(logN + `).

• The INSERT operation – amortized O(logN).

Which means that if we use asymptotically more space than the original
structure proposed by [12], we can do faster the insert operation while preserving
the time complexity of the remaining operations. However the time complexity
is not the only important aspect. For those type of structures also the number
of cache misses is important. And from this point of view our structure is worse.
Obviously the most important operation for this view is traversing through the
items. The following lemma tells us more about it.
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Lemma 13. Let ` be the number of items through which we should traverse. Let
S be the actual size of the array and B the size of the cache. Then the traverse
operation causes O(`/B + `/ log2 S) cache misses.

Proof. O(`/ log2 S) cache misses are caused by the fact, that we traverse through
such a number of leaves and “jumping” from one leaf to another will usually cause
the cache miss. The remaining cache misses happen when traversing through the
continuous interval of items (or almost continuous), then after every O(B) items
we obtain the cache miss.

In comparison to O(`/B) cache misses obtained by the original algorithm
this looks quite bad. However it was quite expectable since our structure is very
sparse. It shows us a very important property of such structures – if the items
are distributed evenly in such a large array, they are too sparse to gain some
profit in the sense of caches. You may argue, that you can define larger leaves,
which will make the influence of jumping between the leaves smaller. However,
than the cost of the insert operation grows.

To sum up our observations, it does not seem to be reasonable, to solve
this task by increasing the size of array, because we lose the benefits for which
we propose such structures and in addition the additional memory cost is not
insignificant.
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Chapter 6

Future work

There still remain some open questions related to our results.
First we conjecture, that the optimal strategies are inseparable. If this is true,

we directly obtain the following lemma, since the conversion of the unordered
strategy into the uniform strategy could be omitted.

Conjecture 2. Let L > 1 be an integer and C = 0L be an empty initial bucket
configuration and N number of items we want to insert. Let s be an optimal
offline unordered bucketing strategy. Then there exists an offline prefix bucketing
strategy s′ such that for every number of items N it holds that c(s, C,N) =
c(s′, C,N) and s′ will never use more buckets than s.

This would be nice, since all the lower bounds on the cost of the prefix buck-
eting could be directly applied to the lower bound on the cost of the unordered
bucketing.

However, the more important question is, whether there exists any relation
between the labeling problem (or the order maintenance problem) and the un-
ordered bucketing. We hope that nonsmooth labeling strategies are somehow
related to the unordered bucketing and that the technique similar to the one
used in [9] could be used to analyze them.

The last question is whether there exists a better reduction of offline strategies
to online strategies or the additional cost of the online strategy is the smallest
possible.
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