
Data Structures Lower Bounds and Popular
Conjectures
Pavel Dvořák �

Charles University, Prague, Czech Republic

Michal Koucký �

Charles University, Prague, Czech Republic

Karel Král �

Charles University, Prague, Czech Republic

Veronika Slívová �

Charles University, Prague, Czech Republic

Abstract
In this paper, we investigate the relative power of several conjectures that attracted recently lot of
interest. We establish a connection between the Network Coding Conjecture (NCC) of Li and Li [24]
and several data structure like problems such as non-adaptive function inversion of Hellman [18] and
the well-studied problem of polynomial evaluation and interpolation. In turn these data structure
problems imply super-linear circuit lower bounds for explicit functions such as integer sorting and
multi-point polynomial evaluation.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases Data structures, Circuits, Lower bounds, Network Coding Conjecture

Funding The authors were partially supported by Czech Science Foundation GAČR grant #19-
27871X. This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 823748.

Acknowledgements We would like to thank to Mike Saks and Sagnik Mukhopadhyay for insightful
discussions.

1 Introduction

One of the central problems in theoretical computer science is proving lower bounds in
various models of computation such as circuits and data structures. Proving super-linear
size lower bounds for circuits even when their depth is restricted is rather elusive. Similarly,
proving polynomial lower bounds on query time for certain static data structure problems
seems out of reach. To deal with this situation researchers developed various conjectures
which if true would imply the sought after lower bounds. In this paper, we investigate the
relative power of some of those conjectures. We establish a connection between the Network
Coding Conjecture (NCC) of Li and Li [24] used recently to prove various lower bounds such
as lower bounds on circuit size counting multiplication [3] and a number of IO operations for
external memory sorting [12].

Another problem researchers looked at is a certain data structure type problem for
function inversion [18] which is popular in cryptography. Corrigan-Gibbs and Kogan [9]
observed that lower bounds for the function inversion problem imply lower bounds for
logarithmic depth circuits. In this paper we establish new connections between the problems,
and identify some interesting instances. Building on the work of Afshani et al. [3] we show
that the Network Coding Conjecture implies certain weak lower bounds for the inversion
data structure problems. That in turn implies the same type of circuit lower bounds as given

mailto:koblich@iuuk.mff.cuni.cz
mailto:koucky@iuuk.mff.cuni.cz
mailto:kralka@iuuk.mff.cuni.cz
mailto:slivova@iuuk.mff.cuni.cz

2 Data Structures Lower Bounds and Popular Conjectures

by Corrigan-Gibbs and Kogan [9]. We show that similar results apply to a host of other data
structure problems such as the well-studied polynomial evaluation problem or the Finite
Field Fourier transform problem. Corrigan-Gibbs and Kogan [9] gave their circuit lower
bound for certain apriori undetermined function. We establish the same circuit lower bounds
for sorting integers which is a very explicit function. Similarly, we establish a connection
between data structure for polynomial evaluation and circuits for multi-point polynomial
evaluation. Our results sharpen and generalize the picture emerging in the literature.

The data structure problems we consider in this paper are for static, non-adaptive,
systematic data structure problems, a very restricted class of data structures for which lower
bounds should perhaps be easier to obtain. Data structure problems we consider have the
following structure: Given the input data described by N bits, create a data structure of size
s. Then we receive a single query from a set of permissible queries and we are supposed to
answer the query while non-adaptively inspecting at most t locations in the data structure
and in the original data. The non-adaptivity means that the inspected locations are chosen
only based on the query being answered but not on the content of the inspected memory.
We show that when s ≥ ω

(
N log N/ log log N

)
, polynomial lower bounds on t for certain

problems would imply super-linear lower bounds on log-depth circuits for computing sorting,
multi-point polynomial evaluation, and other problems.

We show that logarithmic lower bounds on t for the data structures can be derived from
the Network Coding Conjecture even in the more generous setting of s ≥ εN and when
inspecting locations in the data structure is for free. This matches the lower bounds of
Afshani [3] for certain circuit parameters derived from the Network Coding Conjecture. One
can recover the same type of result they showed from our connection between the Network
Coding Conjecture, data structure lower bounds, and circuit lower bounds.

In this regard, the Network Coding Conjecture seems the strongest among the conjectures,
which is the hardest to prove. One would hope that for the strongly restricted data structure
problems, obtaining the required lower bounds should be within our reach.
Organization. This paper is organized as follows. In the next section we review the data
structure problems we consider. Then we provide a precise definition of Network Coding
Conjecture in Section 3. Section 4 contains the statement of our main results. In Sections 5
and 6 we prove our main result for the function inversion and the polynomial problems.
In Section 7 we discus the connection between data structure and circuit lower bounds for
explicit functions.

2 Data Structure Problems

In this paper, we study lower bounds on systematic data structures for various problems –
function inversion, polynomial evaluation, and polynomial interpolation. We are given an
input I = {x0, . . . , xn−1}, where each xi ∈ [n] = {0, . . . , n − 1} or each xi is an element of
some field F. First, a data structure algorithm can preprocess I to produce an advice string
aI of s bits (we refer to the parameter s as space of the data structure D). Then, we are
given a query q and the data structure should produce a correct answer (what is a correct
answer depends on the problem). To answer a query q, the data structure D has access
to the whole advice string aI and can make t queries to the input I, i.e., read at most t

elements from I. We refer to the parameter t as query time of the data structure.
We consider non-uniform data structures as we want to provide connections between data

structures and non-uniform circuits. Formally, a non-uniform systematic data structure Dn

for an input I = {x0, . . . , xn−1} is a pair of algorithms (Pn, Qn) with oracle access to I. The

P. Dvořák, M. Koucký, K. Král, and V. Slívová 3

algorithm Pn produces the advice string aI ∈ {0, 1}s. The algorithm Qn with inputs aI and
a query q outputs a correct answer to the query q with at most t oracle queries to I. The
algorithms Pn and Qn can differ for each n ∈ N.

2.1 Function Inversion

In the function inversion problem, we are given a function f : [n] → [n] and a point y ∈ [n]
and we want to find x ∈ [n] such that f(x) = y. This is a central problem in cryptography
as many cryptographic primitives rely on the existence of a function that is hard to invert.
To sum up we are interested in the following problem.

Function Inversion
Input: A function f : [n] → [n] as an oracle.
Preprocessing: Using f , prepare an advice string af ∈ {0, 1}s.
Query: Point y ∈ [n].
Answer: Compute the value f−1(y), with a full access to af and

using at most t queries to the oracle for f .

We want to design an efficient data structure, i.e., make s and t as small as possible.
There are two trivial solutions. The first one is that the whole function f−1 is stored in the
advice string af , thus s = O(n log n) and t = 0. The second one is that the whole function f

is queried during answering a query y ∈ [n], thus t = O(n) and s = 0. Note that the space s

of the data structure is the length of the advice string af in bits, but with one oracle-query
xi the data structure reads the whole f(xi), thus with n oracle-queries we read the whole
description of f , i.e., n log n bits.

The question is whether we can design a data structure with s, t ≤ o(n). Hellman [18]
gave the first non-trivial solution and introduced a randomized systematic data structure
which inverts a function with a constant probability (over the uniform choice of the function
f and the query y ∈ [n]) and s = O

(
n2/3 log n

)
and t = O

(
n2/3 log n

)
. Fiat and Naor [13]

improved the result and introduced a data structure that inverts any function at any point,
however with a slightly worse trade-off: s3t = O

(
n3 log n

)
. Hellman [18] also introduced a

more efficient data structure for inverting a permutation – it inverts any permutation at any
point and st = O(n log n). Thus, it seems that inverting a permutation is an easier problem
than inverting an arbitrary function.

In this paper, we are interested in lower bounds for the inversion problem. Yao [35]
gave a lower bound that any systematic data structure for the inversion problem must
have st ≥ Ω(n log n), however, the lower bound is applicable only if t ≤ O(

√
n). Since

then, only slight progress was made. De et al. [10] improved the lower bound of Yao [35]
that it is applicable for the full range of t. Abusalah et al. [1] improved the trade-off, that
for any k it must hold that skt ≥ Ω

(
nk

)
. Seemingly, their result contradicts Hellman’s

trade-off
(
s = t = O

(
n2/3 log n

))
as it implies s = t ≥ nk/k+1 for any k. However, for

Hellman’s attack [18] we need that the function can be efficiently evaluated and the functions
introduced by Abusalah et al. [1] cannot be efficiently evaluated. There is also a series of
papers [16, 29, 11, 8] which study how the probability of successful inversion depends on
the parameters s and t. However, none of these results yields a better lower bound than
st ≥ Ω(n log n). Hellman’s trade-off is still the best known upper bound trade-off for the
inversion problem. Thus, there is still a substantial gap between the lower and upper bounds.

Another caveat of all known data structures for the inversion is that they heavily use
adaptivity during answering queries y ∈ [n]. I.e., queries to the oracle depend on the advice
string a and answers to the oracle queries which have been already made. We are interested

4 Data Structures Lower Bounds and Popular Conjectures

in non-adaptive data structures. We say a systematic data structure is non-adaptive if all
oracle queries depend only on the query y ∈ [n].

As non-adaptive data structures are weaker than adaptive ones, there is a hope that
for non-adaptive data structures we could prove stronger lower bounds. Moreover, the
non-adaptive data structure corresponds to circuits computation [30, 31, 33, 9]. Thus,
we can derive a circuit lower bound from a strong lower bound for a non-adaptive data
structure. Non-adaptive data structures were considered by Corrigan-Gibbs and Kogan [9].
They proved that improvement by a polynomial factor of Yao’s lower bound [35] for non-
adaptive data structures would imply the existence of a function F : {0, 1}N → {0, 1}N

for N = n log n that cannot be computed by a linear-size and logarithmic-depth circuit.
More formally, they prove that if a function f : [n] → [n] cannot be inverted by a non-
adaptive data structure of space O (n log n/ log log n) and query time O(nε) for some ε > 0
then there exists a function F : {0, 1}N → {0, 1}N that cannot be computed by any
circuit of size O(N) and depth O(log N). They interpret r ∈ {0, 1}N as n numbers in
[n], i.e, r = (r1, . . . , rn) ∈ {0, 1}N where each ri ∈ [n]. The function F is defined as
F (y) = F (y1, . . . , yn) =

(
f−1(y1),f−1(yn)

)
where f−1(yi) = min

{
x ∈ [n] | f(x) = y

}
and min ∅ = 0. Informally, if the function f is hard to invert at some points, then it is
hard to invert at all points together. Moreover, they showed equivalence between function
inversion and substring search. A data structure for the function inversion of space s and
query time t yields a data structure of space O(s log s) and query time O(t log t) for finding
pattern of length O(log n) in a binary text of length O(n log n) and vice versa – an efficient
data structure for the substring search would yield an efficient data structure for the function
inversion. Compared to results of Corrigan-Gibbs and Kogan [9], we provide an explicit
function (sorting integers) which will require large circuits if any of the functions f is hard
to invert.

Another connection between data structures and circuits was made by Viola [34] who
considered constant depth circuits with arbitrary gates.

2.2 Evaluation and Interpolation of Polynomials

In this section, we describe two natural problems connected to polynomials. We consider our
problems over a finite field F to avoid issues with encoding reals.

Polynomial Evaluation over F
Input: Coefficients of a polynomial p ∈ F[x]: α0, . . . , αn−1 ∈ F

(i.e., p(x) =
∑

i∈[n] αix
i)

Preprocessing: Using the input, prepare an advice string ap ∈ {0, 1}s.
Query: A number x ∈ F.
Answer: Compute the value p(x), with a full access to ap and using

at most t queries to the coefficients of p.

Polynomial Interpolation over F
Input: Point-value pairs of a polynomial p ∈ F[x] of degree at

most n − 1:
(
x0, p(x0)

)
, . . . ,

(
xn−1, p(xn−1)

)
∈ F × F

where xi ̸= xj for any two indices i ̸= j

Preprocessing: Using the input, prepare an advice string ap ∈ {0, 1}s.
Query: An index j ∈ [n].
Answer: Compute j-th coefficient of the polynomial p, i.e., the

coefficient of xj in p, with a full access to ap and using
at most t queries to the oracle for point-value pairs.

P. Dvořák, M. Koucký, K. Král, and V. Slívová 5

In the paper we often use a version of polynomial interpolation where the points
x0, x1, . . . , xn−1 are fixed in advance and the input consists just of p(x0), p(x1), . . . , p(xn−1).
Since we are interested in lower bounds, this makes our results slightly stronger.

Let F = GF(pk) denote the Galois Field of pk elements. Let n be a divisor of pk − 1. It
is a well-known fact that for any finite field F its multiplicative group F∗ is cyclic (see e.g.
Serre [27]). Thus, there is an element σ ∈ F of order n in the multiplicative group F∗ (that
is an element σ such that σn = 1 and for each 1 ≤ j < n, σj ̸= 1). In other words, σ is our
choice of primitive n-th root of unity. Pollard [26] defines the Finite Field Fourier transform
(FFFT) (with respect to σ) as a linear function FFFTn,σ : Fn → Fn which satisfies:

FFFTn,σ(α0, . . . , αn−1) = (β0, . . . , βn−1) where

βi =
∑

j∈[n]

αjσij for any i ∈ [n]

The inversion FFFT−1
n,σ is given by:

FFFT−1
n,σ(β0, . . . , βn−1) = (α0, . . . , αn−1) where

αi = 1
n

∑
j∈[n]

βjσ−ij for any i ∈ [n]

Note that if we work over a finite field F, our n might not be an element of F. For simplicity
we slightly abuse the notation and use 1

n = (
∑n

i=1 1)−1. In our theorems we always set n to
be a divisor of |F| − 1 = pk − 1 thus n modulo p is non-zero and the inverse exists. Observe,
that FFFT−1

n,σ = 1
n FFFTn,σ−1 . Hence, FFFT is the finite field analog of Discrete Fourier

transform (DFT) which works over complex numbers.
The FFT algorithm by Cooley and Tukey [7] can be used for the case of finite fields

as well (as observed by Pollard [26]) to get an algorithm using O(n log n) field operations
(addition or multiplication of two numbers). Thus we can compute FFFTn,σ and its inverse
in O(n log n) field operations.

It is easy to see that FFFTn,σ is actually evaluation of a polynomial in multiple special
points (specifically in σ0, . . . , σn−1). We can also see that it is a special case of interpolation
by a polynomial in multiple special points since FFFT−1

n,σ = 1
n FFFTn,σ−1 . We provide an

NCC-based lower bound for data structures computing the polynomial evaluation. However,
we use the data structure only for evaluating a polynomial in powers of a primitive root
of unity. Thus, the same proof yields a lower bound for data structures computing the
polynomial interpolation.

There is a great interest in data structures for polynomial evaluation in a cell probe
model. In this model, some representation of a polynomial p =

∑
i∈[n] αix

i ∈ F[x] is stored
in a table T of scell cells, each of w bits. Usually, w is set to O

(
log |F|

)
, that we can store

an element of F in a single cell. On a query x ∈ F the data structure should output p(x)
making at most tcell probes to the table T . A difference between data structures in the cell
probe model and systematic data structures is that a data structure in the cell probe model
is charged for any probe to the table T but a systematic data structure is charged only for
queries to the input (the coefficients αi), reading from the advice string ap is for free. Note
that, the coefficients αi of p do not have to be even stored in the table T . There are again
two trivial solutions. The first one is that we store a value p(x) for each x ∈ F and on a query
x ∈ F we probe just one cell. Thus, we would get tcell = 1 and scell = |F| (we assume that we
can store an element of F in a single cell). The second one is that we store the coefficients of
p and on a query x ∈ F we probe all cells and compute the value p(x). Thus, we would get
tcell = scell = n.

6 Data Structures Lower Bounds and Popular Conjectures

Let k = log |F|. Kedlaya and Umans [21] provided a data structure for the polynomial
evaluation that uses space n1+ε · k1+o(1) and query time logO(1) n · k1+o(1). Note that, n · k

is the size of the input and k is the size of the output.
The first lower bound for the cell probe model was given by Miltersen [25]. He proved

that for any cell probe data structure for the polynomial evaluation it must hold that
tcell ≥ Ω

(
k/ log scell

)
. This was improved by Larsen [22] to tcell ≥ Ω

(
k/ log(scellw/nk)

)
, that

gives tcell ≥ Ω(k) if the data structure uses linear space scell · w = O(n · k). However, the
size of F has to be super-linear, i.e., |F| ≥ n1+Ω(1). Data structures in a bit probe model
were studied by Gál and Miltersen [14]. The bit probe model is the same as the cell probe
model but each cell contains only a single bit, i.e., w = 1. They studied succinct data
structures that are data structures such that scell = (n + r) · k for r < o(n). Thus, the
succinct data structures are related to systematic data structures but still, the succinct data
structures are charged for any probe (as any other data structure in the cell probe model).
Note that a succinct data structure stores only a few more bits than it is needed due to
information-theoretic requirement. Gál and Miltersen [14] showed that for any succinct data
structure in the bit probe model it holds that r · tcell ≥ Ω(n · k). We are not aware of any
lower bound for systematic data structures for the polynomial evaluation.

Larsen et al. [23] also gives a log-squared lower bound for dynamic data structures in the
cell probe model. Dynamic data structures also support updates of the polynomial p.

There is a great interest in algorithmic questions about the polynomial interpolation
such as how fast we can interpolate polynomials [15, 5, 17], how many queries we need to
interpolate a polynomial if it is given by oracle [6, 19], how to compute the interpolation
in a numerically stable way over infinite fields [28] and many others. However, we are not
aware of any results about data structures for the interpolation, i.e., when the interpolation
algorithm has an access to some precomputed advice.

3 Network Coding

We prove our conditional lower bounds based on the Network Coding Conjecture. In network
coding, we are interested in how much information we can send through a given network. A
network consists of a graph G = (V, E), positive capacities of edges c : E → R+ and k pairs
of vertices (s0, t0), . . . , (sk−1, tk−1). We say a network R =

(
G, c, (si, ti)i∈[k]

)
is undirected

or directed (acyclic) if the graph G is undirected or directed (acyclic). We say a network is
uniform if the capacities of all edges in the network equal to some q ∈ R+ and we denote
such network as

(
G, q, (si, ti)i∈[k]

)
.

A goal of a coding scheme for directed acyclic network R =
(
G, c, (si, ti)i∈[k]

)
is that at

each target ti it will be possible to reconstruct an input message wi which was generated at
the source si. The coding scheme specifies messages sent from each vertex along the outgoing
edges as a function of received messages. Moreover, the length of the messages sent along
the edges have to respect the edge capacities.

More formally, each source si of a network receives an input message wi sampled (in-
dependently of the messages for the other sources) from the uniform distribution Wi on a
set Wi. Without loss of generality we can assume that each source si has an in-degree 0
(otherwise we can add a vertex s′

i and an edge (s′
i, si) and replace si by s′

i). There is an
alphabet Σe for each edge e ∈ E(G). For each source si and each outgoing edge e = (si, u)
there is a function fsi,e : Wi → Σe which specifies the message sent along the edge e as a
function of the received input message wi ∈ Wi. For each non-source vertex v ∈ V, v ̸= si

and each outgoing edge e = (v, u) there is a similar function fv,e :
∏

e′=(u′,v) Σe′ → Σe which

P. Dvořák, M. Koucký, K. Král, and V. Slívová 7

specifies the message sent along the edge e as a function of the messages sent to v along the
edges incoming to v. Finally, each target ti has a decoding function di :

∏
e′=(u′,ti) Σe′ → Wi.

The coding scheme is executed as follows:
1. Each source si receives an input message wi ∈ Wi. Along each edge e = (si, u) a message

fsi,e(wi) is sent.
2. When a vertex v receives all messages m1, . . . , ma along all incoming edges (u′, v) it

sends along each outgoing edge e = (v, u) a message fv,e(m1, . . . , ma). As the graph
G is acyclic, this procedure is well-defined and each vertex of non-zero out-degree will
eventually send its messages along its outgoing edges.

3. At the end, each target ti computes a string w̃i = di(m′
1, . . . , m′

b) where m′
j denotes the

received messages along the incoming edges (u′, ti). We say the encoding scheme is correct
if w̃i = wi for all i ∈ [k] and any input messages w0, . . . , wk−1 ∈ W0 × · · · × Wk−1.

The coding scheme has to respect the edge capacities, i.e., if Me is a random variable that
represents a message sent along the edge e, then H(Me) ≤ c(e), where H(·) denotes the
Shannon entropy. A coding rate of a network R is the maximum r such that there is a correct
coding scheme for input random variables W0, . . . , Wk−1 where H(Wi) = log |Wi| ≥ r for
all i ∈ [k]. A network coding can be defined also for directed cyclic networks or undirected
networks but we will not use it here.

Network coding is related to multicommodity flows. A multicommodity flow for an
undirected network R̄ =

(
Ḡ, c, (si, ti)i∈[k]

)
specifies flows for each commodity i such that they

transport as many units of commodity from si to ti as possible. A flow of the commodity i

is specified by a function f i : V × V → R+
0 which describes for each pair of vertices (u, v)

how many units of the commodity i are sent from u to v. Each function f i has to satisfy:
1. If u, v are not connected by an edge, then f i(u, v) = f i(v, u) = 0.
2. For each edge {u, v} ∈ E(Ḡ), it holds that f i(u, v) = 0 or f i(v, u) = 0.
3. For each vertex v that is not the source si or the target ti, it holds that what comes to

the vertex v goes out from the vertex v, i.e.,∑
u∈V

f i(u, v) =
∑
u∈V

f i(v, u).

4. What is sent from the source si arrives to the target ti, i.e.,∑
u∈V

f i(si, u) − f i(u, si) =
∑
u∈V

f i(u, ti) − f i(ti, u).

Moreover, all flows together have to respect the capacities, i.e., for each edge e = {u, v} ∈ E(Ḡ)
it must hold that

∑
i∈[k] f i(u, v) + f i(v, u) ≤ c(e). A flow rate of a network R̄ is the

maximum r such that there is a multicommodity flow F = (f0, . . . , fk−1) that for each
i transports at least r units of the commodity i from si to ti, i.e., for all i, it holds that∑

u∈V f i(u, ti)−f i(ti, u) ≥ r. A multicommodity flow for directed graphs is defined similarly,
however, the flows can transport the commodities only in the direction of edges.

Let R be a directed acyclic network of a flow rate r′. It is clear that for a coding rate r

of R it holds that r ≥ r′. As we can send the messages without coding and thus reduce the
encoding problem to the flow problem. The opposite inequality does not hold: There is a
directed network R =

(
G, c, (si, ti)i∈[k]

)
such that its coding rate is Ω

(
|V (G)|

)
-times larger

than its flow rate as shown by Adler et al. [2]. Thus, the network coding for directed networks
provides an advantage over the simple solution given by the maximum flow. However, such a
result is not known for undirected networks. Li and Li [24] conjectured that the network
coding does not provide any advantage for undirected networks, thus for any undirected

8 Data Structures Lower Bounds and Popular Conjectures

network R̄, the coding rate of R̄ equals to the flow rate of R̄. This conjecture is known as
Network Coding Conjecture (NCC) and we state a weaker version of it below.

For a directed graph G = (V, E) we denote by un(G) the undirected graph (V, Ē) obtained
from G by making each directed edge in E undirected (i.e., replacing each (u, v) ∈ E(G)
by {u, v}). For a directed acyclic network R =

(
G, c, (si, ti)i∈[k]

)
we define the undirected

network un(R) =
(
un(G), c̄, (si, ti)i∈[k]

)
by keeping the source-target pairs and capacities the

same, i.e, c
(
(u, v)

)
= c̄

(
{u, v}

)
.

▶ Conjecture 1 (Weaker NCC). Let R be a directed acyclic network, r be a coding rate of R

and r̄ be a flow rate of un(R). Then, r = r̄.

This conjecture was used to prove a conditional lower bound for sorting algorithms with
an external memory [12] and for circuits multiplying two numbers [3].

4 NCC Implies Data Structure Lower Bounds

In this paper, we provide several connections between lower bounds for data structures and
other computational models. The first connection is that NCC (Conjecture 1) implies lower
bounds for data structures for the permutation inversion and the polynomial evaluation and
interpolation. Assuming NCC, we show that a query time t of a non-adaptive systematic
data structure for any of the above problems satisfies t ≥ Ω

(
log n/ log log n

)
, even if it uses

linear space, i.e., the advice string a has size εn log n for sufficiently small constant ε > 0.
Formally, we define tInv(s) as a query time of the optimal non-adaptive systematic data
structure for the permutation inversion using space at most s. Similarly, we define tFEval(s)
and tFInterp(s) for the polynomial evaluation and interpolation over F.

▶ Theorem 2. Let ε > 0 be a sufficiently small constant. Assuming NCC, it holds that
tInv(εn log n) ≥ Ω

(
log n/ log log n

)
.

▶ Theorem 3. Let F be a field and n be a divisor of |F| − 1. Let s = εn log |F| for a
sufficiently small constant ε > 0. Then assuming NCC, it holds that tFEval(s), tFInterp(s) ≥
Ω

(
log n/ log log n

)
.

Note that by Theorem 2, assuming NCC, it holds that s · t ≥ Ω
(
n log2 n/ log log n

)
for

s = εn log n and t = tInv(s). The same holds for tFEval and tFInterp by Theorem 3. Thus, these
conditional lower bounds cross the barrier Ω(n log n) for s · t given by the best unconditional
lower bounds known for the function inversion [35, 10, 1, 16, 29, 11, 8] and the lower bound for
the succinct data structures for the polynomial evaluation by Gál and Miltersen [14]. The lower
bound by Larsen [22] says that any cell probe data structure for the polynomial evaluation
using linear space scell = O(n log n) needs at least logarithmic query time tcell ≥ Ω(log n) if
the size of the field is of super-linear size in n, i.e., |F| ≥ n1+Ω(1). Then scell ·tcell ≥ Ω(n log2 n).
The lower bound given by Theorem 3 says that assuming NCC a non-adaptive data structure
needs to read at least logarithmically many coefficients αi of p even if we know εn log |F| bits
of information about the polynomial p for free. Our lower bound holds also for linear-size
fields.

To prove Theorems 2 and 3, we use the technique of Farhadi et al. [12]. The proof can be
divided into two steps:
1. From a data structure for the problem we derive a network R with O(tn) edges such that

R admits an encoding scheme that is correct on a large fraction of the inputs. This step
is distinct for each problem and the reductions are shown in Sections 5 and 6. This step
uses new ideas and interestingly, it uses the data structure twice in a sequence.

P. Dvořák, M. Koucký, K. Král, and V. Slívová 9

2. If there is a network R with dn edges that admits an encoding scheme which is correct
for a large fraction of inputs, then d ≥ Ω

(
log n/ log log n

)
. This step is common to all the

problems. It was implicitly proved by Farhadi et al. [12] and Afshani et al. [3]. For the
sake of completeness, we give a proof of this step in Appendix A.

5 NCC Implies a Weak Lower Bound for the Function Inversion

In this section, we prove Theorem 2 that assuming NCC, any non-adaptive systematic
data structure for the permutation inversion requires query time at least Ω

(
log n/ log log n

)
even if it uses linear space. Let D be a data structure for inverting permutations of a
linear space s = εn log n, for sufficiently small constant ε < 1, with query time t = tInv(s).
Recall that tInv(s) is a query time of the optimal non-adaptive systematic data structure for
the permutation inversion using space s. From D we construct a directed acyclic network
R =

(
G, c, (si, ti)i∈[n]

)
and an encoding scheme of a coding rate log n. By Conjecture 1 we get

that the flow rate of un(R) =
(
Ḡ, c, (si, ti)i∈[n]

)
is log n as well. We prove that there are many

source-target pairs of distance at least Ω(logt n). Since the number of edges of Ḡ will be O(tn)
and flow rate of un(R) is log n, we are able to derive a lower bound t ≥ Ω

(
log n/ log log n

)
.

We construct the network R in two steps. First, we construct a network R′ that admits
an encoding scheme E′ such that E′ is correct only on a substantial fraction of all possible
inputs. This might create correlations among messages received by the sources. However,
to use the Network Coding Conjecture we need to have a coding scheme that is able to
reconstruct messages sampled from independent distributions. To overcome this issue we use
a technique introduced by Farhadi et al. [12] and from R′ we construct a network R that
admits a correct encoding scheme.

Let R =
(
G, c, (si, ti)i∈[k]

)
be a directed acyclic network. Let each source receive a binary

string of length r as its input message, i.e., each Wi = {0, 1}r. If we concatenate all input
messages wi we get a string of length r · k, thus the set of all possible inputs for an encoding
scheme for R corresponds to the set I = {0, 1}rk. We say an encoding scheme is correct on an
input w̄ = (w0, . . . , wk−1) ∈ I if it is possible to reconstruct all messages wi at appropriate
targets. An (ε, r)-encoding scheme is an encoding scheme which is correct on at least 2(1−ε)rk

inputs in I.
We say a directed network R =

(
G, c, (si, ti)i∈[k]

)
is (δ, d)-long if for at least δk source-

target pairs (si, ti), it holds that distance between si and ti in un(G) is at least d. Here, we
measure the distance in the undirected graph un(G), even though the network R is directed.
The following lemma is implicitly used by Farhadi et al. [12] and Afshani et al. [3]. We give
its proof in Appendix A for the sake of completeness.

▶ Lemma 4 (Implicitly used in [12, 3]). Let R =
(
G, q, (si, ti)i∈[k]

)
be a (δ, d)-long directed

acyclic uniform network for δ > 5
6 and sufficiently large q ∈ R+. Assume there is an

(ε, r)-encoding scheme for R for sufficiently small ε. Then assuming NCC, it holds that
|E(G)|

k ≥ δ′ · d, where δ′ = δ−5/6
10 .

Now we are ready to prove a conditional lower bound for the permutation inversion. For
the proof we use the following fact which follows from well-known Stirling’s formula:

▶ Fact 1. The number of permutations [n] → [n] is at least 2n log n−2n.

▶ Theorem 2. Let ε > 0 be a sufficiently small constant. Assuming NCC, it holds that
tInv(εn log n) ≥ Ω

(
log n/ log log n

)
.

10 Data Structures Lower Bounds and Popular Conjectures

Input messages from [n] x0 x1 xi xn−1

t

h−1(i+ b) = xi

s0 s1 si sn−1

t

v0

v1

vn−1

u0 un−1ui

A

B

M

u1

vi

ti = ui+b

si+b

vi+b

xi+b

f−1(i)

si sends f(i) = xi

vj sends h(j) = f−1(j) + b

Figure 1 A sketch of the graph G′ and encoding scheme E.

Proof. Let D = Dn be the optimal data structure for the inversion of permutation on [n]
using space εn log n. We set t = tInv(εn log n). We will construct a directed acyclic uniform
network R =

(
G, r, (si, ti)i∈[n]

)
where r = log n. Let ε′ = 2 · ε + 2

q + 2
log n for sufficiently large

q so that we could apply Lemma 4. The network R will admit an (ε′, r)-encoding scheme E.
The number of edges of G will be at most 2tn and the network R will be

(9
10 , d

)
-long for

d = 1
2 logqt n. Thus, by Lemma 4 we get that

2t = 2tn

n
≥ Ω

(
logqt n

)
,

from which we can conclude that t ≥ Ω
(
log n/ log log n

)
. Thus, it remains to construct the

network R and the scheme E.
First, we construct a graph G′ which will yield the graph G by deleting some edges.

The graph G′ has three layers of n vertices: a source layer A of n sources s0, . . . , sn−1, a
middle layer M of n vertices v0, . . . , vn−1 and a target layer B of n vertices u0, . . . , un−1.
The targets t0, . . . , tn−1 of R will be assigned to the vertices u0, . . . , un−1 later.

We add edges according to the data structure D: Let Qj ⊆ [n] be a set of oracle queries,
which D makes during the computation of f−1(j), i.e., for each i ∈ Qj , it queries the oracle
of f for f(i). As D is non-adaptive, the sets Qj are well-defined. For each j ∈ [n] and i ∈ Qj

we add edges (si, vj) and (vi, uj). We set a capacity of all edges to r = log n. This finishes
the construction of G′, see Fig. 1 for illustration of the graph G′.

The graph G′ has exactly 2tn edges. Moreover, the vertices of the middle and the target
layer have in-degree at most t as the incoming edges correspond to the oracle queries made
by D. However, some vertices of the source and the middle layer might have large outdegree,
which is a problem that might prevent the network R to be

(9
10 , d

)
-long. For example, the

data structure D could always query f(0). Then, there would be edges (s0, vj) and (v0, uj)
for all j ∈ [n], hence all vertices would be at distance at most 4 in un(G′). So we need to
remove edges adjacent to high-degree vertices. Let W ⊆ V (G′) be the set of vertices of
out-degree larger than qt. We remove all edges incident to W from G′ to obtain the graph
G. (For simplicity, we keep the degree 0 vertices in G). Thus, the maximum degree of G is
at most qt. Since the graph G′ has 2tn edges, it holds that |W | ≤ 2

q · n.
Now, we assign the targets of R in such a way that R is

(9
10 , d

)
-long. Let Cv be the set

of vertices of G which have distance at most d from v in un(G). Since the maximum degree
of G is at most qt and d = 1

2 logqt n, for each v ∈ V (G), |Cv| ≤ 2
√

n. In particular, for every
source si it holds that |Csi

∩ B| ≤ 2
√

n, i.e., there are at most 2
√

n vertices in the target

P. Dvořák, M. Koucký, K. Král, and V. Slívová 11

layer B at distance smaller than d from v. It follows from an averaging argument that there
is an integer b such that there are at least n − 2

√
n sources si with distance at least d from

ui+b in un(G). (Here the addition i + b is modulo n.) We fix one such b and set ti = ui+b.
For n large enough, it holds that n − 2

√
n ≥ 9

10 · n. Thus, the network R is
(9

10 , d
)
-long.

It remains to construct the (ε′, r)-encoding scheme E for R (see Fig. 1 for a sketch of the
encoding E). Each source si receives a number xi ∈ [n] as an input message. We interpret the
string of the input messages x0, . . . , xn−1 as a function. We define the function f : [n] → [n]
as f(i) = xi. We will consider only those inputs x0, . . . , xn−1 which are pairwise distinct so
that f is a permutation.

At a vertex vj of the middle layer M we want to compute f−1(j) using the data structure
D. To compute f−1(j) we need the appropriate advice string af and answers to the oracle
queries Qj . We fix an advice string af to some particular value which will be determined
later, and we focus only on inputs x0, . . . , xn−1 which have the same advice string af . In G′

the vertex vj is connected exactly to the sources si for i ∈ Qj , but some of those connections
might be missing in G. Thus for each i such that si ∈ W , xi will be fixed to some particular
value ci which will also be determined later. Each source si sends the input xi along all
outgoing edges incident to si. Thus, at a vertex vj we know the answers to all f -oracle
queries in Qj . Recall that f(i) = xi and each xi for i ∈ Qj was either fixed to ci or sent
along the incoming edge (si, vj) ∈ E(G). We also know the advice string af as it was fixed.
Therefore, we can compute f−1(j) at every vertex vj . Note that f−1(j) is the index of the
source which received j as an input message, i.e., if f−1(j) = i, then xi = j.

Now, we define another permutation h : [n] → [n] as h(j) = f−1(j) + b where the addition
is modulo n. Since b is fixed, we can compute h(j) at each vertex vj . The goal is to compute
h−1(ℓ) at each vertex uℓ of the target layer. First, we argue that h−1(i + b) = xi. The
permutation f−1 maps an input message xi to the index i. The permutation h maps an
input message xi to the index i + b. Thus, the inverse permutation h−1 maps the index i + b

to the input message xi. If we are able to reconstruct h−1(i + b) at the target ti = ui+b, then
in fact we are able to reconstruct xi, the input message received by the source si.

To reconstruct h−1(ℓ) at the vertex uℓ we use the same strategy as for reconstructing
f−1(j) at vertices vj . We use again D, but this time for the function h. Again, we fix the
advice string ah of D, and we fix h(j) to some dj for each vertex vj ∈ W . Each vertex vj

sends the value h(j) along all edges outgoing from vj . To compute h−1(ℓ) we need values
h(j) for all j ∈ Qℓ, which are known to the vertex uℓ. Again, they are either sent along the
incoming edges or are fixed to dj . Since the value of the advice string ah is fixed, we can
compute the value h−1(ℓ) = xℓ−b at the vertex uℓ.

The network R is correct on all inputs x0, . . . , xn−1 which encode a permutation and
which are consistent with the fixed advice strings and the fixed values to the degree zero
vertices. Now, we argue that we can fix all the values so that there will be many inputs
consistent with them. By Fact 1, there are at least 2(n log n)−2n inputs x0, . . . , xn−1 which
encode a permutation. In order to make R work, we fixed the following values:
1. Advice strings af and ah, in total 2ε · n log n bits.
2. An input message ci for each source si in W and a value dj for each vertex vj in W .

Since |W | ≤ 2
q · n and ci, dj ∈ [n], we fix 2

q · n log n bits in total.
Overall, we fix at most (2ε + 2

q) · n log n bits. Thus, the fixed values divide the input strings
into at most 2(2ε+ 2

q)·n log n buckets. In each bucket all the input strings are consistent with
the fixed values. We conclude that there is a choice of values to fix so that its corresponding
bucket contains at least 2(1−2ε− 2

q − 2
log n)·n log n = 2(1−ε′)·n log n input strings which encode a

permutation. We pick that bucket and fix the corresponding values. Thus, the scheme E is

12 Data Structures Lower Bounds and Popular Conjectures

(ε′, r)-encoding scheme, which concludes the proof. ◀

6 NCC Implies a Weak Lower Bound for the Polynomial Evaluation
and Interpolation

In this section, we prove Theorem 3. The proof follows the blueprint of the proof of Theorem 2.
The construction of a network R from a data structure is basically the same. Thus, we
mainly describe only an (ε′, r)-encoding scheme for R.

▶ Theorem 3. Let F be a field and n be a divisor of |F| − 1. Let s = εn log |F| for a
sufficiently small constant ε > 0. Then assuming NCC, it holds that tFEval(s), tFInterp(s) ≥
Ω

(
log n/ log log n

)
.

Proof. Let D = Dn be the optimal non-adaptive systematic data structure for the evaluation
of polynomials of degree up to n − 1 over F and using space s = εn log |F|. We set t =
tFEval(s), r = log |F| and ε′ = 2ε + 2

q for sufficently large q. Again, we will construct a network
R =

(
G, r, (si, ti)i∈[n]

)
from D. To construct an (ε′, r)-encoding scheme for R, we use entries

of FFFT, i.e., we will evaluate polynomials of degree at most n − 1 in powers of a primitive
n-th root of the unity. Thus, we fix a primitive n-th root of unity σ ∈ F, which we know
exists, as discussed in Section 2.2.

We create a network R from D in the same way as we created in the proof of Theorem 2.
By Lemma 4 we are able to conclude that t ≥ Ω

(
log n/ log log n

)
. First, we create a graph

G′ of three layers A = {s0, . . . , sn−1}, M = {v0, . . . , vn−1} and B = {u0, . . . , un−1} and we
add 2tn edges to G′ according to the queries of D – on the vertex vj we will evaluate a
polynomial in a point σj and on the vertex uj we will evaluate a polynomial in a point σ−j .
Then, we create a graph G from G′ by removing edges incident to vertices in a set W , which
contains vertices of degree higher than qt. Finally, we set a shift b ∈ [n] and set ti = ui+b in
such a way that the network R is

(9
10 , d

)
-long for d = 1

2 logqt n.
Now, we desribe an (ε′, r)-encoding scheme E for R using D. Each source si receives an

input message αi ∈ F which we interpret as coefficients of a polynomial p ∈ F[x] (that is
p(x) =

∑
i∈[n] αix

i). Each source si sends its input message αi along all outgoing edges from
si. Each vertex vj computes p(σj) using D. Again, we fix the advice string ap and the input
messages αi for the sources si in W . Each vertex vj computes a value h(j) = p(σj) · σjb and
sends it along all outgoing edges from vj . We define a new polynomial p′(x) =

∑
j∈[n] h(j)xj .

We fix the advice string ap′ and the values h(j) for each vertex vj ∈ W . Thus, each vertex
uℓ can compute a value p′(σ−ℓ). We claim that p′(σ−ℓ)

n = αℓ−b.

p′(σ−ℓ)
n

= 1
n

∑
j∈[n]

h(j)σ−ℓj = 1
n

∑
j∈[n]

p(σj)σjbσ−ℓj = 1
n

∑
j∈[n]

 ∑
i∈[n]

αiσ
ji

 σjbσ−ℓj

= 1
n

∑
i∈[n]

αi

 ∑
j∈[n]

σjiσjbσ−ℓj

 = 1
n

∑
i∈[n]

αi

 ∑
j∈[n]

σj(i+b−ℓ)

= α(ℓ−b mod n)

The last equality is by noting that
∑

j∈[n] σj(i+b−ℓ) = n for i = ℓ − b and 0 otherwise.
Therefore, at each target ti = ui+b we can reconstruct the input message αi. See Fig. 2 for a
sketch of the scheme E.

Again, we can fix values of advice strings ap and ap′ (at most 2ε · n log |F| fixed bits),
input messages αi for each si ∈ W and value of h(j) for each vj ∈ W (at most 2

q · n log |F|

P. Dvořák, M. Koucký, K. Král, and V. Slívová 13

Input messages from F αi αn−1

t

s0 s1 si sn−1

t

v0

v1

vn−1

u0 un−1ui

A

B

M

u1

vi

ti = ui+b

si+b

vi+b

αi+b

p
(
σi
)

si sends αi

vj sends h(j) = p
(
σj
)
· σjb

α0 α1

p(x) =
∑

i∈[n] αi · xi

p′(x) =
∑

j∈[n] h(j)x
j

p′
(
σ−(i+b)

)
= αi

Figure 2 Sketch of the encoding scheme E.

fixed bits) in such a way there is a set F of inputs (α0, . . . , αn−1) consistent with such fixing
and |F| ≥ 2(1−2ε− 2

q)n log |F|. Therefore, the scheme E is (ε′, r)-encoding scheme. This finishes
the proof that tFEval(s) ≥ Ω

(
log n/ log log n

)
.

Essentially, the same proof can be used to prove the lower bound for tFInterp(s). Note that,
the data structure D is used only for evaluating some polynomials in powers of the primitive
root σ, i.e., computing entries of FFFTn,σ(α0, . . . , αn−1). However as discussed in Section 2.2,
it holds that FFFTn,σ = n · FFFT−1

n,σ−1 . Moreover, entries of FFFT−1
n,σ−1(β0, . . . , βn−1) can

be computed by a data structure for the polynomial interpolation. Thus, we may replace
both uses of the data structure for the polynomial evaluation with a data structure for the
polynomial interpolation. Therefore, we can use a data structure for the interpolation as D
and with slight changes of R and E, we would get again an (ε′, r)-encoding scheme. ◀

7 Strong Lower Bounds for Data Structures and Lower Bounds for
Boolean Circuits

In this section, we study a connection between non-adaptive data structures and boolean
circuits. We are interested in circuits with binary AND and OR gates, and unary NOT gates.
(See e.g. [20] for background on circuits).

Corrigan-Gibbs and Kogan [9] describe a connection between lower bounds for non-
adaptive data structures and lower bounds for boolean circuits for a special case when
the data structure computes function inversion. They show that we would get a circuit
lower bound if any non-adaptive data structure using O(nε) queries must use at least
ω

(
n log n/ log log n

)
bits of advice (for some fixed constant ε > 0). To be able to formally

restate their theorem we present some of their definitions. We define a boolean operator to
be a family of functions (Fn)n∈N for Fn : {0, 1}n → {0, 1}n represented by boolean circuits
with n input and n output bits and constant fan-in gates. A boolean operator is said to be
an explicit operator if the decision problem whether the j-th output bit of Fn is equal to one
is in the complexity class NP.

▶ Theorem 5 (Corrigan-Gibbs and Kogan [9], Theorem 3 (verbatim)). If every explicit operator
has fan-in-two boolean circuits of size O(n) and depth O(log n) then, for every ε > 0,
there exists a family of strongly non-adaptive black-box algorithms that inverts all functions
f : [N] → [N] using O

(
N log N/ log log N

)
bits of advice and O(Nε) online queries.

To prove their theorem Corrigan-Gibbs and Kogan [9] use the common bits model of

14 Data Structures Lower Bounds and Popular Conjectures

boolean circuits described by Valiant [30, 31, 32]. Valiant proves that for any circuit there is
a small cut, called common bits, such that each output bit is connected just to few input
bits (formally stated in Theorem 6). Corrigan-Gibbs and Kogan [9] use the common bits of
the given circuit to create a non-adaptive data structure by setting the advice string to the
content of common bits and the queries are to those function values which are still connected
to the particular output after removing the common bits.

Observe that it follows from the proof of Theorem 5 that the hard explicit operator is
turning the function table into the table of its inverse function. The theorem is therefore
slightly stronger in the sense that if we have a data structure lower bound we also have
a lower bound for a concrete boolean operator. It is also not straightforward to state a
connection between circuits computing FFFT and non-adaptive data structures computing
polynomial evaluation (resp. polynomial interpolation) as a consequence of Theorem 5. Thus,
we restate the Valiant’s result to be able to state a more general theorem.

▶ Theorem 6 (Valiant [30, 31, 32]). For every constant ε > 0, for every family of constant
fan-in boolean circuits {Cn}n∈N, where Cn : {0, 1}n → {0, 1}n is of size O(n) and depth
O(log n), and for every n ∈ N it holds that the circuit Cn contains a set of gates called
common bits of size O

(
n/ log log n

)
such that if we remove those gates then each output bit

is connected to at most O(nε) input bits.

Now we can state a general theorem translating lower bounds for non-adaptive data
structures to circuit lower bounds. This allows us to apply the theorem directly to many
different problems.

▶ Theorem 7. For every n ∈ N let us define b(n) = ⌈log n⌉ and for every function
fn : {0, 1}n·b(n) → {0, 1}n·b(n) and for every i ∈ [n] we define a function fn,i : {0, 1}n·b(n) →
{0, 1}b(n) as follows: fn,i(x) = fn(x)i·b(n),i·b(n)+1,...,(i+1)·b(n)−1, i.e., fn,i returns the (i+1)-st
consecutive block of b(n) bits of the output of fn.

If there is a size O(n log n) and depth O(log n) circuit family {Cn}n∈N, where Cn evaluates
a function fn : {0, 1}n·b(n) → {0, 1}n·b(n), then for every constant ε > 0 there exists a
family of non-adaptive data structures {Dn}n∈N, where Dn on input x ∈ {0, 1}n·b(n) uses
O

(
n log n/ log log n

)
bits of advice and on a query j ∈ [n] answers fn,j(x) using O(nε) queries

to the input.

The proof of Theorem 7 is the same as the proof of Theorem 3 of Corrigan-Gibbs and
Kogan [9] (restated here as Theorem 5). Note that the data structures are not uniform in
the sense that the algorithms for producing the advice string and for answering queries may
differ for different input sizes. If we would like to get a uniform algorithm we would need the
assumption that the explicit operator has linear size and logarithmic depth uniform circuits.

Let us state concrete instances of Theorem 7. First, we formally state the stronger version
of Theorem 3 of Corrigan-Gibbs and Kogan [9], which follows from their proof.

▶ Corollary 8. If there is a circuit family {Cn}n∈N, such that Cn : {0, 1}n⌈log n⌉ → {0, 1}n⌈log n⌉

is of size O(n log n) and depth O(log n) and inverts a function fn : [n] → [n] (given on input
as a function table) on all points (i.e., returns function table1 of f−1

n), then for every constant
ε > 0 there exists a family of non-adaptive data structures {Dn}n∈N such that Dn on all
input functions fn : [n] → [n] uses O

(
n log n/ log log n

)
bits of advice and for any x ∈ [n] it

answers f−1
n (x) using O(nε) queries to the input.

1 When fn is not a permutation we allow a table of any function which has zero if there is no preimage
and any preimage if there are more possibilities.

P. Dvořák, M. Koucký, K. Král, and V. Slívová 15

Theorem 7 is general enough to easily capture the problem of computing FFFT over a
finite field. Note that by the connection of FFFT to polynomial evaluation and interpolation
the following corollary captures both problems.

▶ Corollary 9. Let S =
{

pk | p is a prime, k ∈ N, k ̸= 0
}

be the set of all sizes of finite fields.
For each n ∈ S, let Fn = GF (n) and σn be a primitive (n − 1)-th root of unity (thus a
generator of the multiplicative group F∗

n).
If there is a circuit family computing FFFTn−1,σn (over Fn) of size O(n log n) and depth

O(log n) (where each input and output number is represented by log |Fn| bits) then for every
ε > 0 there is a family of non-adaptive data structures {Dn}n∈S where Dn uses advice of
size O

(
n log n/ log log n

)
and on a query j ∈ [n − 1] outputs the j-th output of FFFTn−1,σn

using O(nε) queries to the input.

To put the corollary in counter-positive way: if for some ε > 0, there are no non-adaptive
data structures for polynomial interpolation, polynomial evaluation or FFFT with advise of
size o

(
n log n/ log log log n

)
that use O(nε) queries to the input then there are no linear-size

circuits of logarithmic depth for FFFT.
In Theorem 2, resp. Theorem 3, we prove a conditional lower bound for permutation

inversion, resp. polynomial evaluation and polynomial interpolation, of the form, that a
non-adaptive data structure using εn log n bits must do at least Ω

(
log n/ log log n

)
queries.

It is not clear if assuming NCC we can get a sufficiently strong lower bound which would rule
out non-adaptive data structures with sublinear advice string using O(nε) oracle queries.

▶ Corollary 10. We say that a circuit Cn : {0, 1}n⌈log n⌉ → {0, 1}n⌈log n⌉ sorts its input if on
an input viewed as n binary strings x1, x2, . . . , xn ∈ {0, 1}⌈log n⌉ outputs the strings sorted
lexicographically.

If there is a circuit family (Cn)n∈N, where Cn : {0, 1}n⌈log n⌉ → {0, 1}n⌈log n⌉ sorts its
inputs, and each circuit Cn is of size O(n log n) and depth O(log n) then for every ε > 0, for
every permutation f : [n] → [n] there is a non-adaptive data structure for inverting f that
uses advice of size O

(
n log n/ log log n

)
and O(nε) queries.

The works of Farhadi et al. [12] and Asharov et al. [4] connect the NCC conjecture
directly to lower bounds for sorting. Their work studies sorting n numbers of k + w bits by
their first k bits. Namely Asharov et al. [4] show that NCC implies that constant fan-in
constant fan-out circuits must have size Ω

(
nk(w − log(n) + k)

)
whenever w > log(n) − k and

k ≤ log n. This is incomparable to our results as we have w = 0.

References
1 Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and Leonid

Reyzin. Beyond hellman’s time-memory trade-offs with applications to proofs of space.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume
10625 of Lecture Notes in Computer Science, pages 357–379. Springer, 2017. doi:10.1007/
978-3-319-70697-9_13.

2 Micah Adler, Nicholas J. A. Harvey, Kamal Jain, Robert Kleinberg, and April Rasala Lehman.
On the capacity of information networks. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, page 241–250, USA, 2006. Society for Industrial
and Applied Mathematics.

3 Peyman Afshani, Casper Benjamin Freksen, Lior Kamma, and Kasper Green Larsen. Lower
Bounds for Multiplication via Network Coding. In Christel Baier, Ioannis Chatzigiannakis,

https://doi.org/10.1007/978-3-319-70697-9_13
https://doi.org/10.1007/978-3-319-70697-9_13

16 Data Structures Lower Bounds and Popular Conjectures

Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 10:1–10:12, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2019/10586,
doi:10.4230/LIPIcs.ICALP.2019.10.

4 Gilad Asharov, Wei-Kai Lin, and Elaine Shi. Sorting short keys in circuits of size o (n log n).
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2249–2268. SIAM, 2021.

5 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, STOC ’88, page 301–309, New York, NY, USA, 1988. Association for Computing
Machinery. doi:10.1145/62212.62241.

6 Michael Clausen, Andreas Dress, Johannes Grabmeier, and Marek Karpinski. On zero-testing
and interpolation of k-sparse multivariate polynomials over finite fields. Theor. Comput. Sci.,
84(2):151–164, July 1991. doi:10.1016/0304-3975(91)90157-W.

7 James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

8 Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random oracles and
non-uniformity. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, 2018 Proceedings, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pages
227–258. Springer Verlag, 2018. 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, EUROCRYPT 2018 ; Conference date: 29-04-2018
Through 03-05-2018. doi:10.1007/978-3-319-78381-9_9.

9 Henry Corrigan-Gibbs and Dmitry Kogan. The function-inversion problem: Barriers and
opportunities. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography, pages
393–421, Cham, 2019. Springer International Publishing.

10 Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against
one-way functions and prgs. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010,
pages 649–665, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

11 Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random
oracles with auxiliary input, revisited. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology – EUROCRYPT 2017, pages 473–495, Cham, 2017. Springer
International Publishing.

12 Alireza Farhadi, MohammadTaghi Hajiaghayi, Kasper Green Larsen, and Elaine Shi. Lower
bounds for external memory integer sorting via network coding. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 997–1008, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3313276.3316337.

13 Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions. SIAM J.
Comput., 29(3):790–803, December 1999. doi:10.1137/S0097539795280512.

14 Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data structures. In
Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors,
Automata, Languages and Programming, pages 332–344, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

15 Joachim von zur Gathen and Jrgen Gerhard. Modern Computer Algebra. Cambridge University
Press, USA, 3rd edition, 2013.

16 Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the efficiency
of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246, July 2005. doi:
10.1137/S0097539704443276.

http://drops.dagstuhl.de/opus/volltexte/2019/10586
https://doi.org/10.4230/LIPIcs.ICALP.2019.10
https://doi.org/10.1145/62212.62241
https://doi.org/10.1016/0304-3975(91)90157-W
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1145/3313276.3316337
https://doi.org/10.1137/S0097539795280512
https://doi.org/10.1137/S0097539704443276
https://doi.org/10.1137/S0097539704443276

P. Dvořák, M. Koucký, K. Král, and V. Slívová 17

17 Dima Grigoryev, Marek Karpinski, and Michael Singer. Fast parallel algorithms for sparse
multivariate polynomial interpolation over finite fields. SIAM J. Comput., 19:1059–1063, 12
1990. doi:10.1137/0219073.

18 M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information
Theory, 26(4):401–406, 1980. doi:10.1109/TIT.1980.1056220.

19 Gábor Ivanyos, Marek Karpinski, Miklos Santha, Nitin Saxena, and Igor E. Shparlinski.
Polynomial interpolation and identity testing from high powers over finite fields. Algorithmica,
80(2):560–575, February 2018. doi:10.1007/s00453-016-0273-1.

20 Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012.

21 K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic. In 2008
49th Annual IEEE Symposium on Foundations of Computer Science, pages 146–155, 2008.
doi:10.1109/FOCS.2008.13.

22 Kasper Green Larsen. Higher cell probe lower bounds for evaluating polynomials. In Proceedings
of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, FOCS ’12,
page 293–301, USA, 2012. IEEE Computer Society. doi:10.1109/FOCS.2012.21.

23 Kasper Green Larsen, Omri Weinstein, and Huacheng Yu. Crossing the logarithmic barrier
for dynamic boolean data structure lower bounds. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, page 978–989, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3188745.3188790.

24 Zongpeng Li and Baochun Li. Network coding: The case of multiple unicast sessions. Proceed-
ings of the 42nd Allerton Annual Conference on Communication, Control, and Computing, 10
2004.

25 Peter Bro Miltersen. On the cell probe complexity of polynomial evaluation. Theor. Comput.
Sci., 143(1):167–174, May 1995. doi:10.1016/0304-3975(95)80032-5.

26 John M Pollard. The fast fourier transform in a finite field. Mathematics of computation,
25(114):365–374, 1971.

27 Jean-Pierre Serre. A course in arithmetic, volume 7. Springer Science & Business Media, 2012.
28 A. Smoktunowicz, I. Wróbel, and P. Kosowski. A new efficient algorithm for polynomial

interpolation. Computing, 79(1):33–52, February 2007. doi:10.1007/s00607-006-0185-z.
29 Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, editor, Advances

in Cryptology - CRYPTO 2007, pages 205–223, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

30 Leslie G Valiant. Graph-theoretic arguments in low-level complexity. In International Sympo-
sium on Mathematical Foundations of Computer Science, pages 162–176. Springer, 1977.

31 Leslie G Valiant. Exponential lower bounds for restricted monotone circuits. In Proceedings of
the fifteenth annual ACM symposium on Theory of computing, pages 110–117, 1983.

32 Leslie G Valiant. Why is boolean complexity theory difficult. Boolean Function Complexity,
169(84-94):4, 1992.

33 Emanuele Viola. On the power of small-depth computation. Found. Trends Theor. Comput.
Sci., 5(1):1–72, January 2009.

34 Emanuele Viola. Lower bounds for data structures with space close to maximum imply circuit
lower bounds. Theory of Computing, 15(18):1–9, 2019. URL: http://www.theoryofcomputing.
org/articles/v015a018, doi:10.4086/toc.2019.v015a018.

35 A. C.-C. Yao. Coherent functions and program checkers. In Proceedings of the Twenty-Second
Annual ACM Symposium on Theory of Computing, STOC ’90, page 84–94, New York, NY,
USA, 1990. Association for Computing Machinery. doi:10.1145/100216.100226.

A Proof of Lemma 4

▶ Lemma 4 (Implicitly used in [12, 3]). Let R =
(
G, q, (si, ti)i∈[k]

)
be a (δ, d)-long directed

acyclic uniform network for δ > 5
6 and sufficiently large q ∈ R+. Assume there is an

https://doi.org/10.1137/0219073
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1007/s00453-016-0273-1
https://doi.org/10.1109/FOCS.2008.13
https://doi.org/10.1109/FOCS.2012.21
https://doi.org/10.1145/3188745.3188790
https://doi.org/10.1016/0304-3975(95)80032-5
https://doi.org/10.1007/s00607-006-0185-z
http://www.theoryofcomputing.org/articles/v015a018
http://www.theoryofcomputing.org/articles/v015a018
https://doi.org/10.4086/toc.2019.v015a018
https://doi.org/10.1145/100216.100226

18 Data Structures Lower Bounds and Popular Conjectures

(ε, r)-encoding scheme for R for sufficiently small ε. Then assuming NCC, it holds that
|E(G)|

k ≥ δ′ · d, where δ′ = δ−5/6
10 .

For the proof, we use an F -correction game introduced by Farhadi et al. [12] (the statement
of the following definition and lemma is due to Afshani et al. [3]).

▶ Definition 11 (F -correction game [12, 3]). Let F ⊆ {0, 1}mℓ. The F-correction game with
ℓ + 1 players is defined as follows. The game is played by ℓ ordinary players p0, . . . , pℓ−1 and
one designated supervisor player ū. The supervisor ū receives ℓ strings α0, . . . , αℓ−1 ∈ {0, 1}m

chosen independently at random. For every i ∈ [ℓ], ū sends pi a message βi. Given βi, the
player pi produces a string γi ∈ {0, 1}m such that

(
(α0 ⊕ γ0), . . . , (αℓ−1 ⊕ γℓ−1)

)
∈ F .

▶ Lemma 12 ([12, 3]). If |F| ≥ 2(1−ε)mℓ, then there exists a protocol for the F-correction
game with ℓ + 1 players such that the messages (βi)i∈[ℓ] are prefix-free and

∑
i∈[ℓ]

E|βi| ≤ 3ℓ + 2ℓ log
(√

ε

2 · m + 1
)

+
√

ε

8 · mℓ log 2
ε

. (1)

Observe that for sufficiently small ε and sufficiently large m the formula in Equation 1
can be bounded by mℓ

4 . Thus, we can suppose that the expected total length of the messages
sent by supervisor u in the F-correction game is at most mℓ

4 .

Proof of Lemma 4. Let R =
(
G, q, (si, ti)i∈[k]

)
be a network given by the assumption of the

lemma. We will create a directed acyclic network R′ =
(
G′, c′, (s′

i, ti)i∈[k]
)

which will admits a
correct encoding scheme. Thus, we will be able to apply NCC to R′. Note that, the network
R′ has new sources s′

i but the original targets ti.
The network R′ is defined as follows. We add new sources s′

1, . . . , s′
k and one special

vertex u to the graph G. For each i we add the following new edges:
Edge (s′

i, si) and (s′
i, u) of capacity r, i.e, edges connecting the new sources with the

original ones and the new special vertex.
Edges connecting the new special vertex u with the original sources si and the targets
ti, i.e, the edges (u, si) and (u, ti) of capacity E|βi|, where βi is the message sent by
the supervisor ū to the player pi in the protocol for the F-correction game given by
Lemma 12.

This finishes the construction of R′. By assumption, there is a set F ⊆ {0, 1}kr and an
encoding scheme E for R such that E is correct on inputs in F . Note that R is a subnetwork
of R′. Thus, to create an encoding scheme for R′ which will be correct on every input in
{0, 1}kr we use an encoding E to recover some messages w = (w0, . . . , wk−1) ∈ F and the
special vertex u which will send messages as the supervisor ū in the F -correction game. After
that, the targets ti will be able to reconstruct the input messages w′

i received at the new
sources s′

i.
More formally, let w′

i be an input message received at the source s′
i. Each w′

i is uniformly
sampled from {0, 1}r (independently on other w′

j). Now, the encoding scheme E′ for R′

works as follows:
1. Each source s′

i sends the input message w′
i to the vertex si and u.

2. The vertex u computes the messages β0, . . . , βk−1 according to the protocol given by
Lemma 12 (applied for the messages αi = w′

i). Then for each i ∈ [k], the vertex u sends
the messages βi to the vertex si and ti.

P. Dvořák, M. Koucký, K. Král, and V. Slívová 19

3. Each vertex si computes the string γi. By Lemma 12, it holds that(
(w′

0 ⊕ γ0), . . . , (w′
k−1 ⊕ γk−1)

)
∈ F .

Thus, we can use the encoding scheme E for R to reconstruct strings w′
i ⊕ γi at each

target ti.
4. Each target ti can reconstruct strings w′

i ⊕ γi and γi. Thus, it can reconstruct the input
message w′

i.
By construction of the network R′, it is clear that the encoding scheme E′ respects the
capacities c′.

The encoding scheme E′ witnesses that the coding rate of R′ is at least r. Thus by NCC
(Conjecture 1), we conclude that the flow rate of un(R′) is at least r as well, i.e., there is a
multicommodity flow F = (f0, . . . , fk−1) for un(R′) which transports at least r units of each
commodity i. Now, we argue that there is only a small fraction of the total flow which goes
through the special vertex u.

▷ Claim 13. The size of total flow which goes through u is at most 3
4 kr.

Proof. The total capacity of the edges incident to the vertex u is at most 3
2 kr. The vertex

u is incident to k edges {u, s′
i} of capacity r, which contribute by kr to the total capacity.

Then for each i, the vertex u is incident to the edges {u, si} and {u, ti}, which have both
capacity E|βi|. By Lemma 12, we have that

∑
i E|βi| ≤ 1

4 kr. Thus, these edges contribute
by 1

2 kr to the total capacity. By conservation of the flow, it must hold that∑
i∈[k]

∑
v∈V (G′)

f i(v, u) ≤ 3
4kr,

∑
i∈[k]

∑
v∈V (G′)

f i(u, v) ≤ 3
4kr.

◁

Let A ⊆ [k] be a set of indices of source-target pairs (si, ti) such that at least r
10 units of

the commodity i do not go through the vertex u. It follows that the set A is substantially
large.

▷ Claim 14. |A| ≥ k
6 .

Proof. Suppose opposite, |A| < k
6 , i.e., there are at least 5k

6 source-target pairs (si, ti) such
that strictly more than 9r

10 units of the commodity i goes through the vertex u. Therefore, the
total size of the flow going through u is strictly larger than 5k

6 · 9r
10 = 3

4 kr, which contradicts
Claim 13. ◁

Let L ⊆ [k] be a set of indices of pairs (si, ti) such that their distance in un(G) is at least
d. By the assumption of the lemma, it holds that |L| ≥ δk. Note that for each i, the distance
between si and ti in G′ is 2 because of the vertex u. However, due to Claim 14 there is a lot
of source-target pairs (si, ti) which are far in un(G) and some units of the commodity i do
not go through u:∣∣A ∩ L

∣∣ ≥
∣∣A∣∣ −

∣∣[k] \ L
∣∣ =

(
δ − 5

6

)
· k.

Let L′ = A ∩ L, i.e., the set L′ contains indices i ∈ [k] such that distance between si and
ti in un(G) is at least d and at least r

10 units of the commodity i do not go through u – thus,

20 Data Structures Lower Bounds and Popular Conjectures

it has to go through paths of length at least d. Now, we are ready to prove the assertion of
the lemma. Let Ē = E

(
un(G)

)
.

r · |Ē| =
∑
e∈Ē

c(e) ≥
∑

{v,w}∈Ē

∑
i∈[k]

f i(v, w) + f i(w, v)

≥
∑
i∈L′

∑
{v,w}∈Ē

f i(v, w) + f i(w, v)

≥
(

δ − 5
6

)
k · r

10d = δ′ · kr · d By definition of L′.

It follows that |Ē|
k ≥ δ′ · d. ◀

	1 Introduction
	2 Data Structure Problems
	2.1 Function Inversion
	2.2 Evaluation and Interpolation of Polynomials

	3 Network Coding
	4 NCC Implies Data Structure Lower Bounds
	5 NCC Implies a Weak Lower Bound for the Function Inversion
	6 NCC Implies a Weak Lower Bound for the Polynomial Evaluation and Interpolation
	7 Strong Lower Bounds for Data Structures and Lower Bounds for Boolean Circuits
	A Proof of Lemma 4

