
Locally consistent decomposition of strings with applications to
edit distance sketching

Sudatta Bhattacharya*1 and Michal Koucký†1

1Computer Science Institute of Charles University, Malostranské náměstí 25, 118 00 Praha 1,
Czech Republic

Abstract

In this paper we provide a new locally consistent decomposition of strings. Each string x is decom-
posed into blocks that can be described by grammars of size Õ(k) (using some amount of randomness).
If we take two strings x and y of edit distance at most k then their block decomposition uses the same
number of grammars and the i-th grammar of x is the same as the i-th grammar of y except for at most
k indexes i. The edit distance of x and y equals to the sum of edit distances of pairs of blocks where x
and y differ. Our decomposition can be used to design a sketch of size Õ(k2) for edit distance, and also
a rolling sketch for edit distance of size Õ(k2). The rolling sketch allows to update the sketched string
by appending a symbol or removing a symbol from the beginning of the string.

1 Introduction

Edit distance is a measure of similarity of two strings. It measures how many symbols one has to insert,
delete or substitute in a string x to get a string y. The measure has many applications from text process-
ing to bioinformatics. The edit distance ED(x, y) of two strings x and y can be computed in time O(n2)
by a classic dynamic programming algorithm [WF74]. Save for poly-log improvements in the running
time [MP80, Gra16], the best known running time for edit distance computation is O(n + k2) [LMS98],
where k = ED(x, y). Assuming Strong Exponential Time Hypothesis (SETH) this running time cannot be
substantially improved [BI15]. The conditional lower bound does not exclude some approximation algo-
rithms, though, and there was a recent progress on computing edit distance in almost-linear time to within
some constant factor approximation [CDG+18, KS20, BR20, AN20].

Another problem for edit distance that saw a major progress in recent years is sketching. In sketch-
ing we want to map a string x to a short sketch skED

n,k(x) so that from sketches skED
n,k(x) and skED

n,k(y)
of two strings x and y we can compute their edit distance, either exactly or approximately. Apriori it is
not even obvious that short sketches for edit distance exist. In a surprising construction, Belazzougui and
Zhang [BZ16] gave an exact edit distance sketch of size O(k8 log5 n) bits. The sketch size was then im-
proved to O(k3 log2(nδ) log n) bits by Jin, Nelson and Wu [JNW21], where the ED(x, y) was computed

*Email: sudatta@iuuk.mff.cuni.cz. Partially supported by the Grant Agency of the Czech Republic under the grant agreement
no. 19-27871X.

†Email: koucky@iuuk.mff.cuni.cz. Partially supported by the Grant Agency of the Czech Republic under the grant agreement
no. 19-27871X. This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No. 823748 (H2020-MSCA-RISE project CoSP).

1

exactly from the sketches with probability at least 1− δ, if ED(x, y) ≤ k. The current best sketch is of size
O(k2 log3 n) bits and was given by Kociumaka, Porat and Starikovskaya [KPS21]. [JNW21] gives a lower
bound Ω(k) on the size of a sketch for exact edit distance.

The major problem in edit distance computation as well as in sketching is how to align the matching
parts of two strings x and y. Finding an optimal alignment of two strings is the crux in the computation of
edit distance and its sketching. In sketching finding a good alignment is even more challenging as we do
not have both strings in our hands simultaneously to look for the matching. To the best of our knowledge,
to resolve this issue all edit distance sketches use CGK random walk on strings [CGK16] which allows to
embed the edit distance metrics into Hamming distance metrics with distortion O(k). The walk implicitly
fixes some reasonably good matching between the two strings. Going from the CGK random walk to a
sketch is non-trivial undertaking and all three sketch results rely on sophisticated machinery to achieve it.

In this paper we provide a new technique to align two strings x and y in oblivious manner. In nutshell,
we provide a decomposition procedure that breaks x and y into the same number of “short” blocks so that at
most k pairs of blocks in the decomposition of x and y differ, and all other pairs of blocks are matching in an
optimal alignment. So the edit distance of x and y is the sum of edit distances of the differing blocks. To be
more specific our blocks are not short in their length but they are short in the sense that each of them can be
described by a context-free grammar of size Õ(k). Our decomposition algorithm constructs the grammars.
Our decomposition is based on locally consistent parsing of strings a technique similar to the one used
in [SV94, BES06, Jow12, BGP20]. Our main technical result is:

Theorem 1.1 (String decomposition). There is an algorithm running in time Õ(nk) that for each string
x of length at most n produces grammars Gx1 , . . . , G

x
s such that with probability at least 1 − O(1/

√
n),

x = eval(Gx1) · · · eval(Gxs) and each of the grammars is of size Õ(k). Furthermore, for any two strings x
and y of edit distance at most k with grammars Gx1 , . . . , G

x
s and Gy1, . . . , G

y
s′ , resp., that are produced by

the algorithm using the same randomness, the following is true simultaneously with probability at least 4/5:

1. s = s′,

2. Gxi = Gyi , for all i ∈ {1, . . . , s} except for at most k indices i, and

3. ED(x, y) =
∑

i ED(eval(Gxi), eval(Gyi)).

Here, for a grammar G, eval(G) denotes its evaluation. Our decomposition can be used immediately
to give an embedding of edit distance into Hamming distance with distortion O(k). It also readily yields a
sketch for exact edit distance of size Õ(k2):

Theorem 1.2 (Sketch for edit distance). There is a randomized sketching algorithm skED
n,k that on an input

string x of length at most n produces a sketch skED
n,k(x) of size Õ(k2) in time Õ(nk), and a comparison

algorithm running in time Õ(k2) such that given two sketches skED
n,k(x) and skED

n,k(y) for two strings x and y
of length at most n obtained using the same randomness of the sketching algorithm outputs with probability
at least 1 − 1/n (over the randomness of the sketching and comparison algorithms) the edit distance of x
and y if it is less than k and∞ otherwise.

Furthermore, we can also provide a rolling sketch, a sketch in which we can update the stored string by
appending a symbol or removing its first symbol.

Theorem 1.3 (Rolling sketch for edit distance). There are algorithms Append(skx, a), Remove(skax, a),
and Compare(skx, sky) such that for integer parameters k ≤ m:

2

1. Given a sketch skx representing a string x and a symbol a, Append(skx, a) outputs a sketch skxa for
the string xa in time Õ(k2).

2. Given a sketch skax representing a string ax for a symbol a, Remove(skax, a) outputs a sketch skx
for the string x in time Õ(k2).

3. Given two sketches skx and sky representing strings x and y obtained from the same random sketch
for empty string using two sequences of at mostm operations Append and Remove, Compare(skx, sky)
calculates the edit distance of x and y if it is less than k, and outputs ∞ otherwise. The algorithm
Compare(skx, sky) runs in time Õ(k2).

All the sketches are of size Õ(k2). The probability that any of the algorithms fails or produces incorrect
output is at most 1/m over the initial randomness of the sketch for empty string and internal randomness of
the algorithms.

We remark that we did not attempt to optimize the running time of either of our algorithms, or poly-log
factors in the sketch sizes, and we believe that both parameters can be readily improved by usual amortization
techniques of processing symbols in batches of size Õ(k). We believe that building the sketch in the first
theorem can be done in time Õ(n) using fast multi-point polynomial evaluation for Õ(k)-wise independent
hash functions, the update time in the last theorem can be improved to Õ(1) by buffering Õ(k) symbols that
shall be inserted or removed without affecting the other parameters of the algorithm.

Another distinguishing feature of our decomposition procedure compared to the technique of CGK ran-
dom walks is its parallelizability. CGK random walk seems inherently sequential whereas our decomposition
procedure can be easily parallelized. We believe that our decomposition will allow for further applications
beyond our simple sketches.

1.1 Related work

The problem of embedding edit distance to other distance measures, like Hamming distance, `1, etc. has
been studied extensively. In [CGK16], the authors have given a randomized embedding from edit distance to
Hamming distance, where any string x ∈ {0, 1}n can be mapped to a string f(x) ∈ {0, 1}3n, given a random
string r ∈ {0, 1}log2 n, such that, ED(x, y)/2 ≤ Ham(f(x), f(y)) ≤ O(ED(x, y)2) with probability at
least 2/3. Batu, Ergun and Sahinalp [BES06] have introduced a dimensionality reduction technique, where
any string x of length n can be mapped to a string f(x) of length at most n/r, for any parameter r, with a
distortion of Õ(r). They used the locally consistent parsing technique for their embedding. Ostrovsky and
Rabani [OR07] gave an embedding from edit distance to `1 distance with a distortion ofO(

√
log n log logn).

Jowhari [Jow12] also gave a randomized embedding from edit distance to `1 distance with a distortion of
O(log n log∗ n). He used the embedding given by Cormode and Muthukrishnan [CM02] who showed that
any string x of length n can be mapped to a vector f(x) of length m = O(2n logn), such that for any pair of
strings x, y of length n each, ED(x, y)/2 ≤ ‖f(x)− f(y)‖`1 ≤ O(log n log∗ n) · ED(x, y). Since the size
of the vector was too large, [Jow12] used random hashing to get his final embedding.

1.2 Our techniques

We first provide the intuition for our technique. We would like to break a string x into small blocks obliv-
iously so that when a string y is broken by the same procedure, the difference between x and y caused by
the edit operations is confined within the corresponding blocks of x and y, and the overall decomposition

3

is not affected by them. For random binary strings x and y this could be done fairly easily: look on all
the (overlapping) windows of log n consecutive bits in each of the strings and for each window decide at
random whether to make a break at that window or not. To make it consistent between x and y use some
random hash function H : {0, 1}logn → {0, . . . , D − 1} so that if the hash function evaluates to 0 on a
given window then start a next block of the decomposition. If we chose D suitably, say D ≥ 10k log n, then
we are unlikely to start a new block in any window which is affected by the the at most k edit operations on
x and y. In that case we obtain the desired decomposition. Hence, decomposing random strings x and y is
easy.

The issue is what to do with non-random strings. Consider for example strings x and y that are very
sparse, so they contain

√
n ones sprinkled within the vast ocean of zeros. The hash function H will see

mostly windows of 0’s and occasionally a window of the form 0i10log(n)−i−1. The decomposition will have
no effect on such strings despite the fact that the string might contain Ω(

√
n) bits of entropy.

However, we can compress such sparse strings: replace stretches of zeros by some binary encoded
information about their length, and try to break the strings again. Still, this will fail if in our example the
stretches of zeros are replaced by stretches of some repeated pattern such as (01)∗. So we need slightly more
general compression which will compress any log n bits into log(n)/2 bits. By repeating the sequence of
steps: split and compress, we will eventually get the desired decomposition of each string.

Our actual algorithm mimics the above intuition. It is technically easier to work with a larger alphabet, so
we extend the input alphabet Σ by adding special compression symbols into the work alphabet Γ. (Without
loss of generalization we can assume that Σ is of sizeO(n3) otherwise we can hash each symbol of our input
strings using some perfect hash function into an alphabet of size O(n3) without affecting the edit distance
of a given pair of strings.) To split a string we will use a random Õ(k)-wise independent hash function
H : Γ2 → {0, . . . , D − 1}, for D = Θ(k log n). If the hash function is zero on a pair of consecutive
symbols in a string, we start a new block of the decomposition on the first symbol in the pair.

Then in each resulting block we replace stretches of repeated symbols by a special compression symbol
from Γ representing the block, and we use a pair-wise independent hash function C : Γ2 → (Γ \ Σ) to
compress non-overlapping pairs of symbols into one symbol. This latter step requires some care as we have
to make sure that we select non-overlapping pairs in the same way in x and y. For the selection of non-
overlapping pairs we use the locally consistent coloring of Cole and Vishkin [CV86, Lin87, Lin92] where
the selection of pairs depends only on the context of O(log∗ n) symbols. The compression reduces the size
of each block by a factor of 2/3. We repeat the compress and split process for O(log n) iterations until
each compressed block of x is of size at most 2. Decompression of each block then gives us the desired
decomposition of x. (See Fig. 1 for an illustration.)

It is natural and convenient to represent each of the blocks by a context-free grammar which corresponds
to the compression process. We can argue that the grammars will be of size O(D log n) with high probabil-
ity. So we can represent each string by a sequence of small grammars so that if x and y are at edit distance at
most k then at most k pairs of their grammars will differ, and the sum of the edit distances of differing pairs
is the edit distance of x and y. Note, that edit distance of two strings represented by context-free grammars
can be computed efficiently [GKLS22]. These are the main ideas behind our decomposition algorithm, and
we provide more details in Section 3

Building a sketch from the string decomposition is straightforward: We encode each grammar in binary
using fixed number of bits, and we use off-the-shelf sketch for Hamming distance to sketch the sequence
of grammars. As the Hamming distance sketch does not recover identical bits but only the mismatched
bits we make sure that if two grammars differ then their binary encoding differ in every bit. Over binary
alphabet this might be impossible but over large alphabets one could use error-correcting codes to achieve

4

the desired effect of recovering the differing grammars; for simplicity we use the Karp-Rabin fingerprint of
the whole grammar to encode the binary 0 and 1 distinctly. See Section 3.3 for the details of our encoding
and Section 3.4 for details of the sketch for edit distance.

To design a rolling sketch for edit distance where we can extend the represented string by a new symbol
or repeatedly remove the first symbol of the represented string we will employ our decomposition technique
together with the rolling sketch for Hamming distance of Clifford, Kociumaka, and Porat [CKP19]. We will
argue that appending a new symbol to a string affects only some fixed number of grammars in the decompo-
sition of a string. There is a certain threshold T so that except for the last T grammars the decomposition of
a string stays the same regardless of how many other symbols are appended. Hence, we will keep a buffer
of at most T active grammars corresponding to the recently added symbols, and upon addition of a new
symbol we will only update those grammars. We are guaranteed that the grammars before this threshold
will stay the same forever, so we can commit them into the rolling Hamming sketch (in the form of their
binary encoding.) Similarly, we will keep a buffer of up-to T active grammars that capture the symbols
that were deleted from the sketch most recently. Once they become “mature” enough we can commit them
by removing their binary encoding from the rolling Hamming sketch. (See Fig. 3 for an illustration.) This
allows to maintain a rolling sketch for edit distance.

Evaluation of an edit distance query on two rolling sketches will use their Hamming sketch to recover
differing committed grammars. Together with the active grammars of inserted and deleted symbols this pro-
vides enough information for evaluating the edit distance query. Technical details are explained in Section 4.
In Section 6 we give a table of parameters used throughout the paper.

2 Notations and preliminaries

For any string x = x1x2x2 . . . xn and integers p, q, x[p] denotes xp, x[p, q] represents substring x′ =
xp . . . xq of x, and x[p, q) = x[p, q − 1]. If q < p, then x[p, q] is the empty string ε. x[p, . . .] represents
x[p, |x|], where |x| is the length of x. "·"-operator is used to denote concatenation, e.g x · y is the concatena-
tion of two strings x and y. Dict(x) = {x[i, i + 1], i ∈ [n − 1]}, is the dictionary of string x, which stores
all pairs of consecutive symbols that appear in x. For strings x and y, ED(x, y) is the minimum number
of modifications (edit operations) required to change x into y, where a single modification can be adding
a character, deleting a character or substituting a character in x. All logarithms are based-2 unless stated
otherwise. For integers p > q,

∑q
i=p ai = 0 by definition regardless of ai’s.

2.1 Grammars

Let Σ ⊆ Γ be two alphabets and # 6∈ Γ. A grammar G is a set of rules of the type c → ab or c → ar,
where c ∈ (Γ ∪ {#}) \ Σ, a, b ∈ Γ and r ∈ N. c is the left hand side of the rule, and ab or ar is the
right hand side of the rule. # is the starting symbol. The size |G| of the grammar is the number of rules
in G. We only consider grammars where each a ∈ Γ ∪ {#} appears on the left hand side of at most one
rule of G, we call such grammars deterministic. (We assume that rules of the form c → ar are stored in
implicit (compressed) form.) The eval(G) is the string from Σ∗ obtained from # by iterative rewriting of
the intermediate results by the rules from G. If the rewriting process never stops or stops with a string not
from Σ∗, eval(G) is undefined. Observe, that we can replace each rule of the type c → ar by a collection
of at most 2dlog re new rules of the other type using some auxiliary symbols. Hence, for each grammar
G there is another grammar G′ using only the first type of the rules such that eval(G) = eval(G′) and
|G′| ≤ |G| · 2dlog |eval(G)|e. Using a depth-first traversal of a deterministic grammar G we can calculate

5

its evaluation size |eval(G)| in time O(|G|). Given a deterministic grammar G and an integer m less or
equal to its evaluation size, we can construct in time O(|G|) another grammar G′ of size O(|G|) such that
eval(G′) = eval(G)[m, . . .]. G′ will use some new auxiliary symbols. Given a deterministic grammar G,
using a depth-first traversal on symbols reachable from the starting symbol # we can identify in timeO(|G|)
the smallest sub-grammar G′ ⊆ G with the same evaluation.

We will use the following observation of Ganesh, Kociumaka, Lincoln and Saha [GKLS22]:

Proposition 2.1 ([GKLS22]). There is an algorithm that on input of two grammars Gx and Gy of size at
most m computes the edit distance k of eval(Gx) and eval(Gy) in time O((m + k2) · poly(logm + n)),
where n = |eval(Gx)|+ |eval(Gy)|.

2.2 Rolling Hamming distance sketch

For two strings x and y of the same length, we define their mismatch information MIS(x, y) = {(i, x[i], y[i]);
i ∈ {1, . . . , |x|} and x[i] 6= y[i]}. The Hamming distance of x and y is Ham(x, y) = |MIS(x, y)|.

There exist various sketches for Hamming distance, which allow to compute Hamming distance with
low error probability [KOR98, FIM+06]. Moreover, [PL07, CKP19] also allow to retrieve the mismatch
information. For our purposes we will use the sketch given by Clifford, Kociumaka, and Porat [CKP19].

Let k ≤ n be integers and p ≥ n3 be a prime. [CKP19] give a randomized sketch for Hamming distance
skHam
n,k,p : {1, . . . , p− 1}∗ → {0, . . . , p− 1}k+4 computable in time Õ(n) with the following properties.1

Proposition 2.2 ([CKP19]). There is a randomized algorithm working in timeO(k log3 p) that given sketches
skHam
n,k,p(x) and skHam

n,k,p(y) of two strings x and y of length ` ≤ n constructed using the same randomness
decides whether Ham(x, y) ≤ k, and if so returns MIS(x, y), with probability of error at most 1/n over the
randomness of the sketches and the internal randomness of the algorithm.

They also construct the following update procedures for their sketch. We will use them to construct a
rolling sketch for edit distance.

Proposition 2.3 (Lemma 2.3 of [CKP19]). For x ∈ {1, . . . , p}∗ of length less than n and a ∈ {1, . . . , p},
in time O(k log p) we can compute:

1. skHam
n,k,p(xa) and skHam

n,k,p(ax), given skHam
n,k,p(x) and a.

2. skHam
n,k,p(x) given skHam

n,k,p(xa) or skHam
n,k,p(ax), and a.

Corollary 2.5 of [CKP19] states that appending a character to a sketch of x can be done even faster
namely in amortized time O(log p).

2.3 Locally consistent coloring

The following color reduction procedure allows for locally consistent parsing of strings. The technique was
originally proposed by Cole and Vishkin [CV86] and further studied by Linial [Lin87, Lin92].

Proposition 2.4 ([CV86, Lin87, Lin92]). There exists a function FCVL : Γ∗ → {1, 2, 3}∗ with the following
properties. Let R = log∗ |Γ| + 20. For each string x ∈ Γ∗ in which no two consecutive symbols are the
same:

1Clifford, Kociumaka and Porat have the sketch size only k + 3 elements but we include as an extra item the randomness of the
sketch, which is a single element from {0, . . . , p− 1} used to compute Karp-Rabin fingerprint.

6

1. |FCVL(x)| = |x| and FCVL(x) can be computed in time O(R · |x|).

2. For i ∈ {1, . . . , |x|}, the i-th symbol of FCVL(x) is a function of symbols of x only in positions
{i−R, i−R+ 1 . . . , i+R}.

3. No two consecutive symbols of FCVL(x) are the same.

4. Out of every three consecutive symbols of FCVL(x) at least one of them is 1.

5. If |x| = 1 then FCVL(x) = 3, and otherwise FCVL(x) starts by 1 and ends by either 2 or 3.

The first three items are standard for R = log∗ |Γ| + 10. The other two can be obtained by a simple
modification of the output of the standard function. In the output, replace first in parallel each sequence
232 by 212, and then each sequence 323 by 313. This guarantees the fourth condition. To satisfy the fifth
condition, if |x| = 1, set FCVL(x) = 3, if |x| = 2, set FCVL(x) = 12, if |x| = 3, set FCVL(x) = 123,
and if |x| = 4, set FCVL(x) = 1212. If |x| > 4 then replace the sequence at the beginning of the output as
follows: if it starts by a word from {2, 3}{2, 3}1 replace it by 121, if it starts by {2, 3}1{2, 3}{2, 3} replace
it by 1212, if it starts by {2, 3}1{2, 3}1 replace it by 1231. Then at the end of the sequence, replace 1{2, 3}1
by 123, and 1{2, 3}{2, 3}1 by 1212. This will increase the local dependency to at most R = log∗ |Γ|+ 20.

3 Decomposition algorithm

In this section we describe our main technical tool that we have developed. It is a randomized procedure
that splits a string x into blocks Bx

1 , B
x
2 , . . . , B

x
s and for each block it produces a grammar of size at most

S = Õ(k). Furthermore, if Bx
1 , B

x
2 , . . . , B

x
s is the decomposition for a string x and By

1 , B
y
2 , . . . , B

x
s′ is the

decomposition for a string y, obtained using the same randomness, where ED(x, y) ≤ k then with good
probability, s = s′ and Bx

i = By
i for all but k indices i. The edit distance of x and y can be calculated as

ED(x, y) =
∑

i ED(Bx
i , B

y
i) where i ranges over the differing blocks.

First we provide an overview of the algorithm, specific details are given in the next sub-section. The
decomposition procedure proceeds in O(log n) rounds. In each round, the algorithm maintains a decom-
position of x into compressed blocks. In each round each block of size at least two is first compressed and
then split. The compression is done by compressing pairs of consecutive symbols into one using a randomly
chosen pair-wise independent hash function C` : Γ2 → Γ, where ` is the round number (level). Non-
overlapping pairs of symbols are chosen for compression using a locally consistent coloring so that every
three symbols shrink to at most two. Prior to the compression of pairs we replace each repeated sequence
ar of a symbol a, r ≥ 2, by a special character ra,r.

The splitting procedure uses a Õ(k)-wise independent hash function H` : Γ2 → {0, . . . , D − 1} to
select places where to subdivide each block into sub-blocks, where D = Õ(k) is a suitable parameter. We
start a new block at each consecutive pair of symbols ab, where H`(ab) = 0.

After O(log n) rounds, each block is compressed into at most two symbols and we output a grammar
that can generate the block.

For the correctness of the algorithm we will need to establish several properties of the algorithm. Some
of these properties are related to behaviour on a single string x, others analyze the behaviour of the procedure
on a pair of strings x and y of edit distance at most k.

The properties we want from the algorithm when it runs on x are the following: In each round, each
block should be compressed by factor at least 2/3 while the size of the required grammar capturing the
compression should be Õ(k). The former is achieved by the design of the compression procedure. The latter

7

goal is provided by the property of the splitting procedure which makes sure that each block B = b1b2 · bm
resulting from a split has small dictionary Dict(B) = {bibi+1, i = 1, . . . ,m− 1}. In particular, we require
|Dict(B)| = Õ(k). The grammar size will be proportional to this dictionary.

For the compression procedure we require that it preserves information so the function C` is one-to-one
on each Dict(B). Since the total size of all dictionaries is bounded by Õ(n) this can be easily achieved by
picking C` at random provided that its range size is Ω(n3).

Additionally, we need the following property to hold on a pair of strings x and y of edit distance at most
k with good probability: The splitting procedure should never split x or y in a region which is affected by
edit operations that transform x to y (for some canonical choice of those operations.) The total size of those
regions will be again Õ(k) so we can satisfy this property if each pair of symbols has probability at most
1/Õ(k) to start a new block. This constrains the choice of the range size for the splitting function H`.

In the next section we describe the decomposition algorithm fully, and then we establish its properties.

3.1 Algorithm description

Let n be an upper bound on the length of the input string and k ≤ n be given. Set L = dlog3/2 ne + 3

to be an upper bound on the decomposition depth. Let Σ be an input alphabet of size at most n3, Σc =
{c1, c2, . . . , cLn3} and Σr = {ra,r, a ∈ Σ∪Σc, r ∈ {2, 3, . . . , n}} be auxiliary pair-wise disjoint alphabets.
Let Γ = Σ∪Σc∪Σr be the working alphabet, and # be a symbol not in Γ. Notice |Γ| = O(n5+|Σ|). We call
symbols from Σ0

c = Σ level-0 compression symbols, and for ` ≥ 1, symbols from Σ`
c = {ci, (` − 1)n3 <

i ≤ `n3} are level-` compression symbols. Additionally, symbols from Σ`
r = {ra,r ∈ Σr, a is a level-(`−1)

compression symbol} are also level-` compression symbols.
Let R = log∗ |Γ| + 20, D = 110R(L + 1)k and S = 30DL log n + 6 be parameters. The algorithm

is a recursive algorithm of depth at most L. It starts by selecting at random several hash functions: For
` = 1, . . . , L, it selects at random a compression hash function C` : Γ2 → Σ`

c from a pair-wise independent
hash family, and for ` = 0, . . . , L, it selects at random a splitting function H` : Γ2 → {0, . . . , D − 1} from
a (5D log n)-wise independent hash family.

Main building blocks of the algorithm are two functions, Compress and Split. The first one compresses
strings by a factor of 2/3, and the other splits strings at random points. Their pseudo-code is provided as
Algorithm 1 and 2. We describe them next.

Compress. The function Compress(B, `) takes as input a string B over alphabet Γ of length at least
two, and an integer ` ≥ 1, which denotes the level number. Divide B into minimum number of blocks
B1, . . . , Bm, B = B1B2B3 . . . Bm, so that in each Bi either all the characters are the same, i.e. Bi = ar

for some a ∈ Γ and r ≥ 2, or no two adjacent characters are the same. The first step is to compress the
Bi’s which contain repeated characters by simply replacing the whole Bi with the symbol ra,|Bi|, where
a is the repeated character. Then for the remaining blocks, the following compression is applied: Let
Bi be an uncompressed block. Each character of Bi is colored by applying FCVL(Bi). Divide Bi into
blocks Bi = B′1B

′
2 . . . B

′
s, such that for each B′j only the first character is colored 1. Now, according to

Proposition 2.4, length of each B′j is either 2 or 3. If B′j = ab, replace it with C`(ab) else if B′j = abc,
replace it with C`(ab) · c, where a, b, c ∈ Γ. The actual pseudo-code given below performs the compression
of blocks of repeats in two stages, where in the first stage we replace the repeated sequence ar by ra,r ·#,
and then in the next stage we remove the extra symbol #. This simplifies analysis in Lemma 3.10. Assuming
that C` can be evaluated in timeO(1), the running time of Compress(B, `) is dominated by the time needed
to compute FCVL-coloring of blocks which is O(R · |B|) in total.

8

Algorithm 1 Compress(B, `)

Input: String B over alphabet Γ of length at least two, and level number `.
Output: String B′′ over alphabet Γ.

1 Divide B = B1B2B3 . . . Bm into minimum number of blocks so that each maximal subword ar of B, for
a ∈ Γ and r ≥ 2, is one of the blocks.

2 for each i ∈ {1, . . . ,m} do
3 if Bi = ar, where r ≥ 2 then Set B′i = ra,r ·# and color ra,r by 1 and # by 2.2;
4 else Set B′i = Bi and color each symbol of B′i according to FCVL(Bi);
5 end
6 Set B′ = B′1B

′
2 · · ·B′m, B′′ = ε, and i = 1.

7 while i < |B′| do
8 if B′[i+ 1] = # then B′′ = B′′ ·B′[i];
9 else B′′ = B′′ · C`(B′[i, i+ 1]);

10 i = i+ 2.
11 if i ≤ |B′| and B′[i] is not colored 1 then B′′ = B′′ ·B′[i], i = i+ 1 ;
12 end
13 Return B′′.

Split. The function takes as input a string B over alphabet Γ of length at least two, and an integer
` ≥ 1. The function splits the string B into smaller blocks. The algorithm works as follows: For each
i ∈ {2, . . . , |B|− 1}, if H`(B[i, i+ 1]) = 0, start a new block at position i. The running time of Split(B, `)
is dominated by the time to evaluate H` at |B| − 2 points.

Algorithm 2 Split(B, `)

Input: String B over alphabet Γ of length at least two, and level number `.
Output: A sequence of strings (B0, B1, . . . , Bs) over alphabet Γ.

14 Let i1 < · · · < is be all i ∈ {2, . . . , |B| − 1} where H`(B[i, i+ 1]) = 0. Set s = 0 if no such i exists.
15 Let i0 = 1 and is+1 = |B|+ 1.
16 For j = 0, . . . , s, set Bj = B[ij , ij+1).
17 Return (B0, B1, . . . , Bs).

The main recursive step of the algorithm is encompassed in function Process. The function gets a block
B ∈ Γ∗ as its input. The block might have already been compressed previously, so the function also gets
dictionaries that allow decompression of the block. If the block is already of length at most two, then the
function outputs the block. Otherwise it compresses the block B using Compress, then it subdivides the
compressed block using Split, and invokes itself recursively on each sub-block. For the output, each block
is represented by a grammar. The grammar is reconstructed from the compressed block and its dictionaries
by a simple bread-first search algorithm provided in the function Grammar.

2If a = rb,s for some b ∈ Γ and s ∈ N, then set B′i = rb,rs · #. However, such a situation should never happen during the
execution of the algorithm as level-` compression symbol can be introduced only at level `.

9

Algorithm 3 Process(B, (D1, D2, . . . , D`−1), `)

Input: String B ∈ Γ∗, a sequence of dictionaries Di ⊆ Γ2 for decompressing B, and level number `.
Output: A sequence of blocks of B each encoded by a grammar.

18 if |B| ≤ 2 then Output Grammar(B, (D1, D2, . . . , D`−1), `− 1) and return ;
19 A = Compress(B, `).
20 (B0, B1, . . . , Bs) = Split(A, `).
21 For i = 0, . . . , s, Process(Bi, (D1, . . . , D`−1,Dict(B)), `+ 1).

To decompose an input string x into blocks, we first apply function Split(x, 0) to x and then invoke
Process(B, (), 1) on each of the obtained blocks B. Breaking the string x into sub-blocks guarantees that
each block passed to Process has small dictionary whereas the dictionary of x could have been arbitrarily
large.

Algorithm 4 Grammar(B, (D1, D2, . . . , D`), `)

Input: String B ∈ Γ∗, a sequence of dictionaries Di ⊆ Γ2 for decompressing B.
Output: The smallest grammar G for B based on the dictionaries Di and hash functions C1, . . . , C`.

22 Let C = {c ∈ Σc : c appears in B or rc,r appears in B for some r}. // Symbols needed to decompress B
23 G = {#→ B}.
24 for j = `, . . . , 1 do
25 for each ab ∈ Dj do
26 if Cj(ab) ∈ C then G = G ∪ {Cj(ab)→ ab},
27 C = C ∪ {c ∈ Σc; c ∈ {a, b} or rc,r ∈ {a, b} for some r} ;
28 end
29 end
30 For each ra,r appearing in any of the rules in G, add ra,r → ar to G.
31 Return G.

3.2 Correctness of the decomposition algorithm

Our goal is to establish the following theorem which is a stronger version of Theorem 1.1:

Theorem 3.1. Let x and y be a pair of strings of length at most n with ED(x, y) ≤ k. Let Gx1 , . . . , G
x
s

and Gy1, . . . , G
y
s′ be the sequence of grammars output by the decomposition algorithm on input x and y

respectively, using the same choice of random functions C1, . . . , CL and H0, . . . ,HL. The following is true
for n large enough:

1. With probability at least 1− 2/n, x = eval(Gx1) · · · eval(Gxs) and y = eval(Gy1) · · · eval(Gys′).

2. With probability at least 1− 2/
√
n, for all i ∈ {1, . . . , s} and j ∈ {1, . . . , s′}, |Gxi |, |G

y
j | ≤ S.

3. With probability at least 9/10, s = s′, Gxi = Gyi , for all i ∈ {1, . . . , s} except for at most k indices i,
and ED(x, y) =

∑
i ED(eval(Gxi), eval(Gyi)).

By union bound, all three parts happen simultaneously with probability at least 9/10 − 2/n − 1/
√
n

which is ≥ 4/5 for n large enough.
To prove the theorem we make some simple observations about the algorithm, first.

10

Lemma 3.2. For any string B of length at least two, and ` ≥ 1, |Compress(B, `)| ≤ 2
3 |B| + 1 and

|Compress(B, `)| < |B|.

Proof. Let B = B1B2B3 . . . Bm be as in the procedure. Every block Bi that equals to ar, for some a
and r ≥ 2, is reduced to one symbol by the compression. The other blocks are colored using FCVL(·) and
compressed. Unless a blockBi is of size one, the coloring induces division of the blockBi into subwords of
size two or three, where the former is compressed into one symbol and the latter into two symbols. Hence,
each such a block is compressed to at most 2/3 of its size. So the only blocks Bi that do not shrink are of
size one, and are sandwiched between blocks of repeated symbols (that shrink by a factor of at least two).
The worst-case situation is when m is odd, blocks Bi are of size one for odd i, and of size two for even i.
In that case the original string B shrinks to size b23 |B|c + 1. This proves the first inequality. The second
inequality is also clear from the analysis above: The only time the string does not shrink is if it is of size
one.

Corollary 3.3. On a string B of length at most n, the depth of the recursive calls of Process is at most L.

Indeed, from the previous lemma it follows that each block after ` compressions and splits is of size at
most (2/3)`|B|+ 3. Hence, after L = dlog3/2 ne+ 3 recursive calls Process must stop the recursion.

Lemma 3.4. Let B ∈ Γ∗ be of length at most n, and ` ∈ {0, . . . , L}. Let (B0, B1, . . . , Bs) = Split(B, `)
where H` : Γ2 → {0, . . . , D−1} is chosen at random from (5D log n)-wise independent hash family. Then
with probability at least 1− 1/n3, for all j ∈ {0, . . . , s}, |Dict(Bj)| ≤ 5D log n.

Proof. If for some j ∈ {0, . . . , s}, |Dict(Bj)| > 5D log n, then there exists 1 < r < t ≤ |B| such
that |Dict(B[r, t])| = 5D log n and for all i ∈ {r, . . . , t − 1}, H`(B[i, i + 1]) 6= 0. (Pick r to be the
position in B of the second symbol of Bj and r some later position in Bj .) For a fixed r and t with
|Dict(B[r, t])| = 5D log n, PrH`

[∀i ∈ {r, . . . , t − 1}, H`(B[i, i + 1]) 6= 0] ≤
(
1− 1

D

)5D logn by the
(5D log n)-wise independence of H`. Hence, PrH`

[∃1 < r < t ≤ |B|, |Dict(B[r, t])| = 5D log n and ∀i ∈
{r, . . . , t− 1}, H`(B[i, i+ 1]) 6= 0] ≤ |B|2

(
1− 1

D

)5D logn ≤ n2e−5 logn ≤ 1/n3.

Lemma 3.5. ForB ∈ Γ∗, ` ≤ L,D1, D2, . . . , D` ⊆ Γ2, Grammar(B, (D1, . . . , D`), `) outputs a grammar
G of size at most 3|B|+ 6

∑
i |Di|, and runs in time Õ(|B|+

∑
i |Di|).

Proof. The main loop of the algorithm iterates over all the pairs from Dj . In each iteration we can add a
rule of the type c→ ab to G. Hence, the number of such rules in G is at most |B|+ 2

∑
i |Di|. Last, we add

to G rules for symbols from Σr that appear on right hand sides of rules in G. This increases the size of G
by at most factor of 3. If C is stored using some efficient data structure such as binary search trees or hash
tables, each iteration takes Õ(1) time. (We assume that evaluation of Cj(·) takes O(1).) Hence, the total
running time is bounded by claimed bound.

During processing of a string x, there are at most Ln calls to the function Split. (The actual number
of calls is O(n) as the strings shrink exponentially but our simple upper bound suffices.) The probability
that any one of them would produce a block with dictionary larger than 5D log n is at most Ln/n3. We can
conclude the next corollary which implies the second item of Theorem 3.1.

Corollary 3.6. For n large enough, on a string x of length at most n, processing the string x produces a
sequence of grammars each of size at most S = 30DL log n+ 6 with probability at least 1− 1/n.

11

For the grammars produced by the algorithm to be deterministic, we need that each C` is one-to-one on
Dict(B) for each block B on which Compress(B, `) is invoked. That will happen with high probability by
a standard argument:

Lemma 3.7. Let B ∈ Γ∗ be of length at most n and ` ∈ {1, . . . , L}. Let C` : Γ2 → {ci, (`− 1)n3 < i ≤
`n3} be chosen at random from a pair-wise independent family of hash functions. Then with probability at
least 1− |B|/n2, C` is one-to-one on Dict(B).

Proof. For two distinct elements from Dict(B), the probability of a collision for randomly chosen C`
is at most 1/n3. By the union bound, the probability that C` is not one-to-one on Dict(Bj) is at most
|Dict(B)|2/n3 ≤ |B|/n2 as |Dict(B)| ≤ |B| ≤ n.

During processing of a string x, there are at most Ln calls to the function Compress. For a fixed level
` ∈ {1, . . . , L}, the total size of blocks B for which Compress(B, `) is invoked is at most n. By the
previous lemma and the union bound, the probability that during any of those calls Compress(B, `) uses
a function C` that is not one-to-one on Dict(B) is at most 1/n. If all the hash functions C1, C2, . . . , CL
that are used to compress blocks of x are one-to-one on their respective blocks then the grammars that
Grammar produces will be deterministic, and they will evaluate to their respective blocks of x. (We can
actually conclude a stronger statement that each C` will be one-to-one on the union of all blocks at level `
with high probability.) We can conclude the next corollary which implies the first item of Theorem 3.1.

Corollary 3.8. For n large enough, on a string x of length at most n, with probability at least 1−L/n, pro-
cessing the string x produces a sequence of grammarsG1, G2, . . . , Gs such that x = eval(G1) · · · eval(Gs).

At this point we can estimate the running time of the decomposition algorithm. We can let the algorithm
fail, and produce some trivial decomposition of x, whenever Split produces a block with dictionary larger
than 5D log n. If it does not fail, then all grammars are of size at most S which is Õ(k). There are at most
n of them so time spent in Grammar(. . .) is bounded by Õ(nk). The total time spent in Compress(. . .) is
proportional to the sum of sizes of all non-trivial blocks over all levels of recursion which isO(nL) = Õ(n).
(A more accurate estimate on the total size of blocks is O(n) since the blocks are shrinking geometrically
in each iteration.) This means that the time to execute all calls to Compress is O(nLR) = Õ(n). The time
spent in Split(. . .) is dominated by the time needed to evaluate H`. The number of evaluation points at a
given level ` is proportional to the total size of all blocks at that level. Since H` can be evaluated at a single
point in time O(D log n) = Õ(k), we get a trivial upper bound O(nLD log n) = Õ(nk) on time spent in
Split. Hence, in total the decomposition procedure runs in time Õ(nk). (We believe that the total running
time can be improved to Õ(n) on average. One could argue that in expectation the number of grammars
the procedure produces is Õ(n/k) as the average block size a string x is decomposed into should be at least
Ω(D/ log n). So we believe that the total running time of calls to Grammar is Õ(n). Using multi-point
evaluation of (5D log n)-wise independent hash functions we could reduce the time for evaluation of H` on
a given level to Õ(n).)

Proposition 3.9. Given k ≤ n, the running time of the decomposition algorithm on a string x of length at
most n is Õ(nk) with probability at least 1− 1/n.

It remains to address the properties of the algorithm run on a pair of strings x and y of edit dis-
tance at most k to establish Theorem 3.1. For the pair of strings x and y we fix a canonical decom-
position of x and y to be a sequence of words w0, w1, . . . , wk, ui, . . . , uk, v1, . . . , vk ∈ Γ∗ such that
x = w0u1w1u2w2 · · ·ukwk, y = w0v1w1v2w2 · · · vkwk and |ui|, |vi| ≤ 1 for all i. By the definition of

12

edit distance such a decomposition exists: each pair (ui, vi) represents one edit operation, and we fix one
such decomposition to be canonical. Observe, if we now partition x into blocks Bx

1 , . . . , B
x
s so that each

Bx
i starts within one of the wj’s, and we partition y into blocks By

1 , . . . , B
y
s so that each block By

i starts at
the corresponding location in wj as Bx

i , then ED(x, y) =
∑

i ED(Bx
i , B

y
i).

We need to understand what happens with the decomposition of x and y when we apply the Compress
function. Let x = uwv and x′ = Compress(x, `) = u′w′v′, for some u,w, v, u′w′v′ ∈ Γ∗. We say that a
symbol c in w′ comes from the compression of w if either it is directly copied from w by Compress, or it is
the image c = C`(ab) of a pair of symbols ab where a belongs to w, or c = ra,r replaced a block ar where
the first symbol of ar belongs to w. w′ is the compression of w if it consists precisely of the symbols that
come from the compression of w. Furthermore, we say a symbol c in w′ comes weakly from the compression
of w if either it is directly copied from w by Compress, or it is the image c = C`(ab) of a pair of symbols
ab where a or b belong to w, or c = ra,r replaced a block ar where some symbol of ar belongs to w. w′ is
the weak compression of w if it consists precisely of the symbols that come weakly from the compression
of w. Notice, a weak compression of w might contain and extra symbol at the beginning compared to the
compression of w.

The following lemma captures what compression does to the canonical decomposition of x and y. (See
Fig. 2 for illustration.)

Lemma 3.10. Let x and y be strings over Γ, and let x′ = Compress(x, `) and y′ = Compress(y, `).
Let x = w0u1w1u2w2 · · ·uqwq and y = w0v1w1v2w2 · · · vqwq for some strings wi, ui and vi where for
i ∈ {1, . . . , q}, |ui|, |vi| ≤ 4R + 24. Then there are w′0, w

′
1, . . . , w

′
q, u
′
1, . . . , u

′
q, v
′
1, . . . , v

′
q ∈ Γ∗ such that

for i ∈ {1, . . . , q}, |u′i|, |v′i| ≤ 4R + 24, x′ = w′0u
′
1w
′
1u
′
2w
′
2 · · ·u′qw′q and y′ = w′0v

′
1w
′
1v
′
2w
′
2 · · · v′qw′q.

Moreover, each w′i is the compression of the same subword of wi in both x and y.

For each x = w0u1w1u2w2 · · ·uqwq, y = w0v1w1v2w2 · · · vqwq and ` we fix one choice of w′0, . . . , w
′
q,

u′0, . . . , u
′
q, v
′
0, . . . , v

′
q satisfying the lemma. We will refer to it as the canonical decomposition of x′ and y′

induced by the decomposition of x and y as given by the lemma.

Proof. The first stage of Compress replaces maximal blocks of repeated symbols by shortcuts. To simplify
our analysis first we will reassign blocks of repeated symbols among neighboring blocks of wi, ui and vi,
resp., so each maximal block of symbols in x and y is fully contained in one of the words wi, ui or vi.

For i = 1, . . . , q − 1 we define words w(1)
i and parameters ai, bi ∈ Γ and ki, k′i ∈ N as follows: If

wi contains at least two distinct symbols let wi = akii w
(1)
i b

k′i
i so that ki and k′i are maximum possible,

otherwise wi = akii for some ai and ki (ki might be zero), and we set w(1)
i = ε, bi = ai and k′i = 0. Let

w0 = w
(1)
0 b

k′0
0 for maximum possible k′0 and some symbol b0. Let wq = a

kq
q w

(1)
q for maximum possible

kq and some symbol aq. For i = 1, . . . , q, we let u(1)i = b
k′i−1

i−1 uia
ki
i . Similarly, v(1)i = b

k′i−1

i−1 via
ki
i . Hence,

x = w
(1)
0 u

(1)
1 w

(1)
1 · · ·u

(1)
q w

(1)
q and y = w

(1)
0 v

(1)
1 w

(1)
1 · · · v

(1)
q w

(1)
q .

Next, if there is a maximal block of symbols ar contained in u(1)s w
(1)
s · · ·u(1)t starting in u(1)s and ending

in u(1)t , s 6= t, we add all the symbols of the ar to the end of u(1)s and remove them from the other u(1)i ,
i = s + 1, . . . , t. (Notice, w(1)

i = ε for s < i < t because of the definition of w(1)
i , and u

(1)
i will

become empty for s < i < t.) We do this for all maximal blocks of repeated symbols that span multiple
u
(1)
i . We perform similar moves on v

(1)
i ’s. After all of those moves we denote the resulting subwords

by w(2)
i , u(2)i , and v(2)i . (Notice, w(2)

i = w
(1)
i for all i.) We have: x = w

(2)
0 u

(2)
1 w

(2)
1 · · ·u

(2)
q w

(2)
q and

y = w
(2)
0 v

(2)
1 w

(2)
1 · · · v

(2)
q w

(2)
q . At this stage, each maximal block of repeated symbols in x or y is contained

in one of the subwords w(2)
i , u(2)i , and v(2)i .

13

The first stage of Compress replaces each maximal block ar, r ≥ 2, by a sequence ra,r#, and we apply
this procedure on each subword w(2)

i , u(2)i , and v(2)i to obtain corresponding subwords w(3)
i , u(3)i , and v(3)i .

Observe, for i = 1, . . . , q, |u(3)i |, |v
(3)
i | ≤ 4R + 28. This is because every ui is transformed into u(3)i by

appending or prepending possibly empty block of repeated symbols, i.e., u(3)i = aruib
r′ for some a, b, r, r′,

or removing its content entirely. Each block of repeats is reduced to two symbols so each u(3)i is longer than
the original by at most 4 symbols. Similarly for v(3)i .

Next, coloring function FCVL is used on parts of x and y that are not obtained from repeated symbols;
the two symbols replacing each repeated block are colored by 1 and 2, resp. We refer to this as {1, 2, 3}-
coloring. At most R first and last symbols of each w(3)

i might be colored differently in x and y as the color
of each symbol depends on the context of at most R symbols on either side of the symbol, and that context
might differ in x and y. Hence, only symbols near the border of w(3)

i that are in vicinity of u(3)i ’s and v(3)i ’s,
resp., might get different colors. All the other symbols of w(3)

i are colored the same in both x and y. The
coloring is then used to make decisions on which pairs of symbols are compressed into one.

We will let u′i be the symbols that come from the compression of symbols in u(3)i , the first up-to R + 2

symbols ofw(3)
i , and the last up-toR+3 symbols ofw(3)

i−1. Next we specify precisely which symbols ofw(3)
i

and w(3)
i−1 are considered to be compressed into symbols belonging to u′i. For i = 0, . . . , q, if |w(3)

i | ≥ R+3,

let sxi be the position of the first symbol in w(3)
i among positions R + 1, R + 2, R + 3 which is colored 1

in x by the {1, 2, 3}-coloring. If |w(3)
i | < R + 3, let sxi = 1. Next, if |w(3)

i | ≥ 2R + 3 set txi to be the first
position from left colored 1 among the symbols of w(3)

i at positionsR+1, R+2, R+3 counting from right.
If |w(3)

i | < 2R + 3, set txi to be equal to sxi . For i = 0, if |w(3)
0 | ≥ R + 3 then redefine sx0 = 1. For i = q,

redefine txq = |w(3)
q | + 1 and if |w(3)

q | < R + 3 then redefine sxq to txq . Similarly, define syi and tyi based on
the {1, 2, 3}-coloring of y.

Notice, sxi 6= txi iff syi 6= tyi . Furthermore, if sxi 6= txi then either i ∈ {q, 0} or |w(3)
i | ≥ 2R + 3 so

sxi = syi and txi = tyi as the symbols R-away from either end of w(3)
i are colored the same in x and y. We let

u′i to be the compression of w(3)
i−1[t

x
i−1, |w

(3)
i−1|] · u

(3)
i · w

(3)
i [1, sxi) and similarly, v′i to be the compression of

w
(3)
i−1[t

y
i−1, |w

(3)
i−1|] · v

(3)
i · w

(3)
i [1, syi). We let w′i be the compression of w(3)

i [syi , t
y
i).

Hence, u′i comes from the compression of at most |u(3)i | + 2R + 5 ≤ 6R + 33 symbols. Since each
symbol after a symbol colored 1 is removed by the compression, and each consecutive triple of symbols
contains at least one symbol colored by 1, the at most 6R + 27 symbols are compressed into at most
(6R+ 33) · 2/3 + 2 = 4R+ 24 symbols. So u′i is of length at most 4R+ 24. Similarly for v′i.

The following generalization of the previous lemma will be useful to design a rolling sketch. It considers
situation where x and y are prefixed by some strings u and v, resp., that we want to ignore from the analysis.
The proof of the lemma is a straightforward modification of the above proof.

Lemma 3.11. Let x, y, u, v ∈ Γ∗, and let u′x′ = Compress(ux, `) and v′y′ = Compress(vy, `), where
x′ is the weak compression of x, and y′ is the weak compression of y. Let x = u0w0u1w1u2w2 · · ·uqwq
and y = v0w0v1w1v2w2 · · · vqwq for some strings wi, ui and vi where for i ∈ {0, . . . , q}, |ui|, |vi| ≤
4R + 24. Then there are w′0, w

′
1, . . . , w

′
q, u
′
0, u
′
1, . . . , u

′
q, v
′
0, v
′
1, . . . , v

′
q ∈ Γ∗ such that for i ∈ {0, . . . , q},

|u′i|, |v′i| ≤ 4R + 24, x′ = u′0w
′
0u
′
1w
′
1u
′
2w
′
2 · · ·u′qw′q and y′ = v′0w

′
0v
′
1w
′
1v
′
2w
′
2 · · · v′qw′q. Moreover, each w′i

is the compression of the same subword of wi in both x and y.

Let x ∈ Σ∗. Let H0, H1, . . . ,HL, C1, C2, . . . , CL be chosen. We define inductively the trace of the

14

algorithm on x at level ` ≥ 0 to consist of sequences Bx(`, 1), . . . , Bx(`, sx`) ∈ Γ∗, of auxiliary sequences
Ax(`, 1), . . . , Ax(`, sx`) ∈ Γ∗ and tx`,1, . . . , t

x
`,sx`+1 ∈ N. Their meaning is: Bx(`, i) is compressed into

Ax(`, i) and that is split into blocks Bx(`+ 1, j) for tx`+1,i ≤ j < tx`+1,i+1. (See Fig. 1 for illustration.)3

Set
Bx(0, 1), . . . , Bx(0, sx0) = Split(x, 0).

For ` = 1, . . . , L we define Bx(`, 1), . . . , Bx(`, sx`) inductively. Set tx`,1 = 1. For i = 1, . . . , sx`−1, if
|Bx(`− 1, i)| ≥ 2, then

Ax(`− 1, i) = Compress(Bx(`− 1, i), `),

and for (B0, B1, . . . , Bs) = Split(Ax(`− 1, i), `) set

Bx(`, tx`,i) = B0, B
x(`, tx`,i + 1) = B1, . . . , B

x(`, tx`,i + s) = Bs

and tx`,i+1 = tx`,i + s + 1. If |Bx(` − 1, i)| < 3, then set Bx(`, tx`,i) and Ax(` − 1, i) to Bx(` − 1, i), and
tx`,i+1 = tx`,i + 1. For j = sx`−1, set sx` = tx`,j+1.

Bx(0,1) Bx(0,2)x

Ax(0,1)

Bx(0, sx0)

Ax(0,2) Ax(0, sx0).

(1,2)(1,1) (1,4) (1,5) (1, j) . . . (1, sx
1)

split

compress

(1,3)

(1,2)

compress

(1,1)Ax

Bx(2, i) Bx(2, i+ 1)

split

. . .

.

.

Bx

Figure 1: The hierachical decomposition of x.

Furthermore, for x and y ∈ Σ∗, `, i ≥ 0, define a canonical decomposition of blocks Ax(`, i), Bx(`, i),
Ay(`, i), By(`, i) inductively as follows. Let Ax(−1, 1) = x and Ay(−1, 1) = y. Let tx−1,1 = 1, tx−1,2 = 2,
sx−1 = 1, ty−1,1 = 1, ty−1,2 = 2, and sy−1 = 1. Let

Ax(−1, 1) = w0u1w1u2w2 · · ·ukwk & Ay(−1, 1) = w0v1w1v2w2 · · · vkwk

be the canonical decomposition of the pair x and y.
For ` ≥ 0 and j ∈ {1, . . . , sx` }, let i be such that tx`−1,i ≤ j < tx`−1,i+1 and m = j − tx`−1,i. Then

Bx(`, j) is the m-th block of Split(Ax(` − 1, i), `). If the decomposition of Ax(` − 1, i) is defined and is
equal to w0u1w1u2w2 · · ·uqwq, for some ui, wi ∈ Γ∗, then the decomposition of Bx(`, j) is the restriction
of the decomposition of Ax(`− 1, i) to symbols of the m-th block of Split(Ax(`− 1, i), `). Otherwise the
decomposition of Bx(`, j) is undefined. Similarly for By(`, j). (See Fig. 2.)

3To avoid double and triple indexes we use our notation Bx(`, i) and Ax(`, i) instead of the usual Bx
`,i and Ax

`,i.

15

For ` ≥ 0 and j ∈ {1, . . . , sx` }, if Bx(`, j) and By(`, j) have defined decompositions Bx(`, j) =
w0u1w1u2w2 · · ·uqwq andBy(`, j) = w0v1w1v2w2 · · · vqwq for some ui, vi, wi ∈ Γ∗, then we letAx(`, j) =
w′0u

′
1w
′
1u
′
2 · · ·w′q and Ay(`, j) = w′0v

′
1w
′
1v
′
2 · · ·w′q be their canonical decomposition induced by Bx(`, j)

and Bx(`, j) as given by Lemma 3.10.

w0(`, i)

w′
0(`, i)

u1(`, i) w1(`, i) u2(`, i) w2(`, i) wq(`, i)

u′
1(`, i) w′

q(`, i)

.

.

Bx(`, i)

compress

u1(`+ 1, j)

Bx(`+ 1, j)

split

w0(`+ 1, j) w1(`+ 1, j)

w′
1(`, i) u′

2(`, i) w′
2(`, i)

Figure 2: Decomposition of Bx(`, i) after compression and split.

To conclude item 3 of Theorem 3.1 we want to argue that x and y are recursively split into sub-blocks that
respect their canonical decomposition. So we want all splits of blocks to occur in matching parts of x and
y. For Ax(`− 1, i) with canonical decomposition w0u1w1u2w2 · · ·uqwq we say that Split(Ax(`− 1, i), `)
makes undesirable split if it starts a new block at a position j that either belongs to one of the u1, u2, . . . , uq
or is the first or last symbol of one of the w0, w1, . . . , wq. Recall, Split(Ax(` − 1, i), `) starts a new block
at each position j such that H`(A

x(` − 1, i)[j, j + 1]) = 0. Since H` is chosen at random a given position
starts a new block with probability 1/D.

Similarly, for Ay(`− 1, i) with canonical decomposition w′0v1w
′
1v2 · · · vq′w′q′ we say that Split(Ay(`−

1, i), `) makes undesirable split if it starts a new block at a position j that either belongs to one of the
v1, v2, . . . , vq′ or is the first or last symbol of one of the w′0, w

′
1, . . . , w

′
q′ . If Ax(` − 1, i) and Ay(` − 1, i)

have matching canonical decomposition (that is q = q′ and each wj = w′j) and both Split(Ax(` − 1, i), `)
and Split(Ay(` − 1, i), `) make no undesirable split then Ax(` − 1, i) and Ay(` − 1, i) are split in the
same number of blocks with matching canonical decomposition as they are split at the same positions in the
corresponding wj’s.

For given ` ∈ {0, . . . , L}, if no undesirable split happens during Split(Ax(`′−1, i), `′) and Split(Ay(`′−
1, i), `′), for any `′ < ` and i, then for each `′ < `, the number of blocks Bx(`′, i) and By(`′, i) will be
the same, i.e., sx`′ = sy`′ , and blocks Bx(`′, i) and By(`′, i) will have matching canonical decomposition.
The total number of uj’s in canonical decomposition of all Bx(`′, i), i = 1, . . . , tx`′ , will be at most k, and
similarly for vj’s. Thus, there will be at most (4R + 24 + 2)k + 2 positions where an undesirable split
can happen in Split(Ax(`− 1, i), `) for any i. Similarly, there are at most (4R + 26)k + 2 positions where
an undesirable split can happen in Split(Ay(` − 1, i), `). By union bound, the probability that an unde-
sirable split happens in some Split(Ay(` − 1, i), `) or Split(Ay(` − 1, i), `), for some ` and i, is at most
2(4R+ 28)k(L+ 1)/D ≤ 11Rk(L+ 1)/D ≤ 1/10.

Thus, if no undesirable split happens there are at most k indices i for which the canonical decomposition

16

ofBx(`, i) contains some uj . All other blocksBx(`, i) have a canonical decomposition consisting of a single
block w0, for various w0 depending on ` and i. Similarly, the canonical decomposition of By(`, i) contains
vj if and only if Bx(`, i) contains uj . Blocks By(`, i) that do not contain vj are identical to Bx(`, i) so they
have the same grammar.

Hence, if no undesirable split happens, item 3 of Theorem 3.1 will be satisfied.

The following theorem generalizes item 3 of Theorem 3.1 and it will be useful to construct the rolling
sketch in Section 4.

Theorem 3.12. Let u, v, x, y ∈ Σ∗ be strings such that |ux|, |vy| ≤ n and ED(x, y) ≤ k. Let Gx1 , . . . , G
x
s

and Gy1, . . . , G
y
s′ be the sequence of grammars output by the decomposition algorithm on input ux and vy

respectively, using the same choice of random functions C1, . . . , CL and H0, . . . ,HL. With probability at
least 1− 1/5 the following is true: There exist integers r, r′, t, t′ such that s− t = s′ − t′,

x = eval(Gxt)[r, . . .] · eval(Gxt+1) · · · eval(Gxs) & y = eval(Gyt′)[r
′, . . .] · eval(Gyt′+1) · · · eval(Gys′),

and

ED(x, y) = ED(eval(Gxt)[r, . . .], eval(Gyt′)[r
′, . . .]) +

∑
i>0

ED(eval(Gxt+i), eval(Gyt′+i)).

Its proof is a minor modification of the proof above. We start with the canonical decomposition of
x = w0u1w1 · · ·ukwk and y = w0v1w1 · · · vkwk, form the decomposition ux = uu0w0u1w1 · · ·ukwk and
vy = vv0w0v1w1 · · · vkwk where u0 = v0 = ε, and follow the compression and split procedures. We
want to argue that during each split operation, all splits occur either in wj’s and are the same on ux and
vy, or they occur in u or v where we do not care for them. Again we define a split to be undesirable if it
starts a new block at a position j that belongs to one of the u0, u1, . . . , uk, v0, v1, . . . , vk or it is the position
of the first or last symbol of w0, w1, . . . or wk. Inductively we maintain that whenever a block Bux(`, i)
contains a descendant of the compression of uj , its corresponding block Bvy(`, i′) contains a descendant
of the compression of vj . (Here, the correspondence is counting from the highest index i to the lowest
and similarly for i′, so Bux(`, i) corresponds to Bvy(`, i′) if i − i′ = sux` − s

vy
` .) If the blocks contain a

descendant of u0 and v0, resp., then we apply Lemma 3.11 to construct a descendant decomposition after
their compression. For all other blocks that contain some wj , uj or vj we use Lemma 3.10 to construct
its descendant decomposition. We do not care for decomposition of blocks Bux(`, i) that are descendants
of u but do not contain u0, and similarly we do not care for decomposition of blocks Bvy(`, i) that are
descendants of v but do not contain v0. (They might be decomposed arbitrarily so the number of blocks that
are descendants of umight differ from the number of blocks that are descendants of v.) Inductively, there are
at most 2(4R+28)(k+1) positions where an undesirable split can happen in blocksBux(`, i) andBvy(`, i)
for given level `. In total there are at most 2(4R + 28)(k + 1)(L + 1) positions where an undesirable split
can happen. Thus, the probability of making an undesirable split during a run of the algorithm is bounded
by 2(4R + 28)(k + 1)(L + 1)/D ≤ 22Rk(L + 1)/D ≤ 1/5. If no undesirable split ever happens then
the symbols that are weak compression of symbols from x and y are contained withing the corresponding
blocks Bux(`, i) and Byv(`, i′). For the blocks Bux(`, i) and Bvy(`, i′) that contain descendants of u0 and
v0 it is fine if their prefixes that descend from u and v, resp., which are to the left of the descendants of u0
and v0, are split differently in Bux(`, i) and Bvy(`, i′). This does not affect the correspondence between
blocks Bux(`, i) and Bvy(`, i′) that weakly come from x and y. This concludes the proof of Theorem 3.12.

17

3.3 Encoding a grammar

We will set a parameter N ≥ n3 to be a suitable integer: Let FKR : {0, 1}∗ → {1, . . . , N} be a hash
function picked at random, such as Karp-Rabin fingerprint [KR87], so for any two strings u, v ∈ {0, 1}∗, if
u 6= v then PrFKR

[FKR(u) = FKR(v)] ≤ (|u|+ |v|)/N .
Set M = 3S · d1 + log |Γ|e. We will encode a grammar G over Γ of length at most S given by our

decomposition algorithm by a string Enc(G) over alphabet {1, . . . , 2N} of length M . The encoding is
obtained as follows: First, order the rules of the grammar G lexicographically. Then encode the rules in
binary one by one using 3 · d1 + log |Γ|e bits for each rule. (The extra bit allows to mark unused symbols.)
This gives a binary string of length at most M , which we pad by zeros to the length precisely M . We call
the resulting binary string Bin(G). Compute hG = FKR(Bin(G)). We replace each 0 in Bin(G) by hG,
and each 1 in Bin(G) by N + hG to obtain the string Enc(G). Clearly, Enc(G) is a string over alphabet
{1, . . . , 2N} of length exactly M . The encoding can be computed in time O(M). For completeness, we
encode any grammar G of length more than S or that uses rules with more than two symbols on the right as
Enc(G) = 1M .

By the property of FKR the following holds.

Lemma 3.13. Let G,G′ be two grammars of size at most S output by our decomposition algorithm. Let
FKR be chosen at random.

1. Enc(G) ∈ {1, . . . , 2N}M .

2. If G = G′ then Enc(G) = Enc(G′).

3. If G 6= G′ then Enc(G) = Enc(G′) with probability at most 2M/N .

4. If Enc(G) 6= Enc(G′) then Ham(Enc(G),Enc(G′)) = M , that is they differ in every symbol.

3.4 Edit distance sketch

Let n and k ≤ n be two parameters, and p ≥ 2N + 1 be a prime such that p ≥ (nM)3. For a string x ∈ Σ∗

of length at most n, we compute its sketch by running first the decomposition algorithm of Theorem 3.1 to
get grammars G1, G2, . . . , Gs. Encode each grammar Gi by encoding Enc(Gi) from Section 3.3 using the
same FKR picked at random. Concatenate the encoding to get a stringw = Enc(G1)·Enc(G2) · · ·Enc(Gs).
Calculate the Hamming sketch skHam

n′,m′,p(w) on w for strings of length n′ = nM and Hamming distance at
most k′ = kM from Section 2.2. Set the sketch skED

n,k(x) = skHam
n′,k′,p(w). The calculation of skED

n,k(x) can
be done in time Õ(nk) as the number of grammars is at most n and each grammar requires Õ(k) time to be
encoded into binary. The Hamming sketch can be constructed in time Õ(nk). (We believe that on average
we expect only Õ(n/k) grammars to be produced for a given string x so the actual running time should be
Õ(n) on average.)

Theorem 3.14. Let x, y ∈ Σ∗ be strings of length at most n such that ED(x, y) ≤ k. Let skED
n,k(x) and

skED
n,k(y) be obtained using the same randomness for the decomposition algorithm and the same choice of

FKR. With probability at least 2/3, we can calculate ED(x, y) from skED
n,k(x) and skED

n,k(y).

Assume that the output of the decomposition algorithm on x and y satisfies all the conclusions of Theo-
rem 3.12. In particular, for xwe get eval(Gx1)·eval(Gx2) · · · eval(Gxs) and for y we get eval(Gy1) · · · eval(Gys),
for some s ≤ n, each of the grammars is of size at most S, ED(x, y) =

∑
i ED(eval(Gxi), eval(Gyi)),

18

and the number of pairs Gxi and Gyi where Gxi 6= Gyi is at most k. Assume that FKR is chosen so that
Enc(Gxi) 6= Enc(Gyi) for each of the pairs where Gxi and Gyi differ.

In order to determine ED(x, y), we recover the (Hamming) mismatch information between Enc(Gx1) ·
Enc(Gx2) · · ·Enc(Gxs) and Enc(Gy1) · Enc(Gy2) · · ·Enc(Gys) from skED

n,k(x) and skED
n,k(y). That gives gram-

mars Gxi and Gyi , for all i where Gxi 6= Gyi . (Whenever the two grammars differ, their encoding differ in
every symbol by Lemma 3.13 so we can recover them from the Hamming mismatch information.) Calculat-
ing the edit distance of each of the pair of differing grammars using the algorithm from Proposition 2.1 we
recover ED(x, y) as the sum of their edit distances.

The sum is correct unless some of the assumptions fail: The probability that the grammar decomposition
fails (does not have properties from Theorem 3.1) for the pair x and y is at most 1/5 for n large enough.
The probability that the choice of FKR fails (two distinct grammars have the same encoding) is at most
2kM/N < 1/n by the choice of N . The probability that the Hamming distance sketch fails to recover the
mismatch information between all the grammars is at most 1/n. So in total, the probability that the output
of the algorithm is incorrect is at most 1/3.

The running time of the comparison algorithm is Õ(k2): The Hamming mismatch information can be
recovered in time Õ(kM) = Õ(k2) (Proposition 2.2), then we build the ≤ k mismatched grammars in time
Õ(k2), and run the edit distance computation on the pairs of grammars in time

∑
i<k Õ(k + k2i) ≤ Õ(k2),

where ki is the edit distance of the i-th pair of mismatched grammars. (We interrupt the edit distance
computation if it takes more time than Õ(k2) which would indicate ED(x, y) > k.)

To decide whether ED(x, y) > k we note that on input x and y, the Hamming sketch either outputs the
correct mismatched places if their number is ≤ k′ or it outputs ∞ if there are more mismatches than that
or the sequences sketched by the Hamming sketch are of different length. (We assume that the Hamming
sketch knows the number of symbols it is sketching.) In the ∞-case we know that there are more than k
different pairs of grammars or the decomposition of x and y failed, and we can report ED(x, y) > k. In the
other case we try to calculate the edit distance of the differing pairs of grammars. If we spend more than
Õ(k2) time on it or we get a number larger than k then we report ED(x, y) > k. This correctly decides
whether ED(x, y) > k with probability at least 2/3.

To prove Theorem 1.2 we build a more robust sketch by taking c log n independent copies of the sketch
skED
n,k . To calculate the edit distance of two sketched strings we run the edit distance calculation on each of

the corresponding pairs of copies, and output the majority answer. A usual application of Chernoff bound
shows that the probability of correct answer is at least 1− 1/n for suitable constant c > 0.

4 Rolling sketch for edit distance

In this section we will construct the rolling sketch of Theorem 1.3. We will use two claims that will be proved
in Section 4.1. The first one addresses how much a compression of a string w might change depending on
what is appended to it.

Lemma 4.1. Let ` ∈ {0, . . . , L} and v, u, w ∈ Γ∗. Let w′u′ = Compress(wu, `) and let w′′v′ =
Compress(wv, `), where w′ is the compression of w when compressing wu and w′′ is the compression of w
when compressing wv. Let t = |w′| − 3(R+ 1) or t = |w′u′| − |u| − 3(R+ 1). Then w′[1, t] = w′′[1, t].

The next lemma addresses how much the overall decomposition of a string xmight change if we append
a suffix z to it.

19

Lemma 4.2. Let x, z ∈ Σ∗, |xz| ≤ n. Let H0, . . . ,HL, C1, . . . , CL be given. Let Gx1 , G
x
2 , . . . , G

x
s be the

output of the decomposition algorithm on input x, andGxz1 , G
xz
2 , . . . , G

xz
s′ be the output of the decomposition

algorithm on input xz using the given hash functions. Let T = L(3R+ 6).

1. Gxi = Gxzi for all i = 1 . . . , s− T .

2. |x| ≤
∑min(s+T,s′)

i=1 |eval(Gxzi)|.

The second part says that if x is decomposed into s grammars by itself, then it can be recovered from the
first s+T grammars for xz. Hence, appending extra symbols to x cannot increase the number of grammars
that cover x by more than T .

Let m ≥ k and n ≥ 10m3 be integers. A rolling sketch for a string obtained by up-to m insertions
(to the right end) and m deletions (from the left end) from an empty word consists of three data structures:
insertion buffer, deletion buffer and a Hamming distance sketch skHam

n′,k′,p, where k′ = (4T + 1)(k + 2)M ,
n′ = nM and p ≥ n′3 is a chosen prime.

The insertion buffer maintains a buffer of committed grammarsGs−4T+1, Gs−4T+2, . . . , Gs and a buffer
of active grammars Gi1, . . . , G

i
t, t ≤ T . The deletion buffer is similar, it maintains a buffer of committed

grammarsGr−4T+1, Gr−4T+2, . . . , Gr and a buffer of active grammarsGd1, . . . , G
d
t′ , t
′ ≤ T . The Hamming

sketch is a sketch of grammars Gr−2T+1, Gr−2T+2, . . . , Gs−2T , each encoded as a string of length M over
the alphabet {1, . . . , 2N}.

In addition to that, the sketch keeps track of the current value of r and s, and remembers a collection of
pair-wise independent hash functions C1, . . . , CL, a collection of (5D log n)-wise independent hash func-
tions H0, . . . ,HL, and randomness for Karp-Rabin fingerprint to compute binary encoding of grammars.
The hash functions and the randomness of Karp-Rabin fingerprint are chosen at random when creating the
sketch for empty string. This extra information requires Õ(k) bits to specify.

Initially, the committed grammars in the insertion and deletion buffers are all treated as empty sets, there
are no active grammars in the insertion or deletion buffers so t = t′ = 0 and s = r = 0.

For u, x ∈ Σ∗, if in total a string ux was inserted into the sketch thenG1, . . . , Gs, G
i
1, . . . , G

i
t represents

ux, that is ux is the concatenation of the evaluation of the grammars. If in total the string u was deleted
from the sketch, then G1, . . . , Gr, G

d
1, . . . , G

d
td

represents u. (See Fig. 3 for an illustration.)

Gs−4T+1 Gs−2T Gs Gi
1 Gi

t. . .

˜Gr−2T+1 G̃r Gs−4T+1 Gs−2TGr−2T . . .

= =

' '

committed grammars active grammars

committed grammars

Insertion buffer

Hamming sketch

Deletion bufferGr

.

=

. . .

Gr−2T+1

'
. . .

.Gr−4T+1 Gd
1 Gd

t′
. . .

active grammars

. . .

Figure 3: Rolling sketch.

Appending a symbol. When we append additional symbol a to the sketch we modify input buffers as follows:
We update the active grammars Gi1, . . . , G

i
t by appending a as explained further below. Say the update pro-

duces grammars G′i1 , . . . , G
′i
t′ . If t′ ≤ T then the produced grammars will become the active grammars, and

no more changes are done to the sketch. Otherwise we commit the first t′−T grammarsG′i1 , . . . , G
′i
t′−T one-

by-one into the committed buffer as grammars Gs+1, · · · , Gs+t′−T and we keep the remaining grammars as
the active grammars.

20

Committing a grammar Gs+1 into the committed buffer will trigger addition of Gs−2T+1 into the Ham-
ming sketch at the end of the represented sequence of grammars (if s−2T+1 > 0), and removing the gram-
mar Gs−4T+1 from the committed buffer. For insertion into the Hamming sketch, the grammar Gs−2T+1 is
encoded into binary as in Section 3.3 and then the binary string is encoded using the Karp-Rabin fingerprint
FKR of all the grammars Gs−4T+1, . . . , Gs+1, instead of only the grammar Gs−2T+1. (Thus, a change
in any of the neighboring grammars will trigger a recovery of also the grammar Gs−2T+1 when calculat-
ing a mismatch information from the Hamming sketch.) We repeat this process for each grammar being
committed.

By the second part of Lemma 4.2 t′ ≤ t+ T ≤ 2T so we will commit at most T = Õ(1) grammars. It
takes time O(MT) = Õ(k) to prepare the binary encoding of each of the committed grammars, and Õ(k2)
to insert it into the Hamming sketch. The update of the active grammars takes Õ(k) time as described below.
So in total this step takes Õ(k2) time.

Removing a symbol. Deletion buffer works in manner similar to insertion buffer, we add the removed
symbol a to the active grammars, but when committing the grammar Gr+1, we use FKR-fingerprint of all
the grammars Gr−4T+1, . . . , Gr+1 to encode grammar Gr−2T+1 which is then removed from the beginning
of the sequence of grammars represented by the Hamming sketch (if r − 2T + 1 > 0), i.e., we update the
Hamming sketch to reflect this removal. Similarly to appending a symbol, this step takes time Õ(k2).

Active grammar update. The update of active grammars Gi1, . . . , G
i
t when appending a is done as follows.

G1, . . . , Gs, G
i
1, . . . , G

i
t represents ux so we need to calculate the grammars for uxa. We claim that only

the active grammars might change: At some point, Gs became committed so at that time there was T active
grammars following it. If at that point the grammars together represented a string z, by appending more
symbols to z we cannot change grammars G1, G1, . . . , Gs according to the first part of Lemma 4.2. So
appending a to ux will affect only the active grammars.

From the analysis in the proof of Lemma 4.2 it follows that for ` ∈ {0, . . . , 1} ifBux(`, 1), . . . , Bux(`, sxy`)
is the trace of the decomposition algorithm on ux at level `, and Buxa(`, 1), . . . , Buxa(`, sxya`) is the trace
on uxa, then their difference spans at most `(3R+ 6) last symbols of Bux(`, 1) · · ·Bux(`, sxy`).

So instead of decompressing the active grammars completely, adding a and recompressing them back,
we only decompress the necessary part of each trace Bux(`, 1) · · ·Bux(`, sxy`). Let # → vi be the starting
rule of the active grammar Gi. Starting from the string v1 · v2 · · · vt, for each ` = L, . . . , 1, we iteratively
rewrite all level-` symbols in the string using the appropriate grammars while only maintaining at most T
last symbols of the resulting string. (Care has to be taken to maintain information about any sequence ar

stretching from those T last symbols to the left.)
We add a to the resulting string and re-apply compress and split procedures for levels 0, 1, . . . , ` − 1

to recompress only the part of the trace affected by modifications. As we perform the compression of
symbols we maintain a set G of all grammar rules needed for decompression. (We initialize G with the
union of all rules from the active grammars Gi1, . . . , G

i
t minus the starting rules, and we iteratively add

new rules coming from the recompression.) For the recompression we need to know the context of up-to
R + 1 symbols preceding the modified part of the trace. On the other hand, the modification can affect the
recompression of up-to R + 1 symbols to the left from the left-most modified symbol in the trace. Those
R+ 1 symbols all happen to be within the decompressed suffix of the trace of size at most T .

Eventually, we get a new level-L trace Buxa(L, sxyaL − t′ + 1), . . . , Buxa(L, sxyaL), for some t′. Each
new grammar G′ij is obtained by taking the grammar G ∪ {# → Buxa(L, sxyaL − t′ + j)} and removing
from it all useless rules. This can be done in time O(|G|). (See Section 2.1).

Overall the update of active grammars on insertion of a single symbol will require O(LT) = Õ(1)
evaluations of split hash functions H0, . . . ,HL, O(LT) = Õ(1) evaluations of compress hash functions

21

C1, . . . , CL, and O(T (LT +
∑t

j=1 |Gij |)) time to produce the new grammars. As the total size of the
grammars is Õ(k) and the time to evaluate H` at a single point is also Õ(k), the overall time for the update
of active grammars is Õ(k). We provide a more detailed description of the update procedure in Section 5.

Edit distance evaluation. Consider strings x and y of length at most m and edit distance at most k. Consider
the rolling sketch skRolling

m,k (x) for x obtained by inserting symbols ux and removing symbols u, for some
u ∈ Σ∗ where |ux| ≤ m. Consider also the rolling sketch for y obtained by inserting symbols vy and
removing symbols v, for some v ∈ Σ∗ where |vy| ≤ m. Both sketches should use the same randomness
that is to start from the same sketch for empty string.

The rolling sketch for x consists of the insertion buffer with committed grammarsGxsx−4T+1, G
x
sx−4T+2,

. . . , Gxsx and with active grammarsGix1 , . . . , G
ix
tx , and the deletion buffer with committed grammarsGxrx−4T+1,

Gxrx−4T+2, . . . , G
x
rx and active grammars Gdx1 , . . . , G

dx
t′x , t′x ≤ T . Its Hamming sketch sketches the se-

quence of grammars Gxrx−2T+1, G
x
rx−2T+2, . . . , G

x
sx−2T . Similarly for y, we have the committed insertion

grammars Gysy−4T+1, G
y
sy−4T+2, . . . , G

y
sy , etc.

We extend the notation so for j ∈ {1, . . . , tx}, we let Gxsx+j denote the active grammar Gixj , and
similarly for y. Let dx = sx + tx − rx and dy = sy + ty − ry. We assume that the hash functions used to
decompose ux and vy into grammars satisfy the probabilistic conclusion of Theorem 3.12. That means that
grammars Gxr , . . . and Gyr , . . . can be aligned from the right so Gxj corresponds to Gyj−dx+dy , for j ≥ rx

(they might not be identical because of the edit operations). Without loss of generality we assume that
dx ≥ dy.

Before proceeding with the algorithm we first observe that dx− dy < 2T . Let px ≥ rx + 1 be the index
of the grammar Gxpx which produces the first symbol of x when we evaluate all the grammars. Similarly,
py ≥ ry + 1 is the index of Gypy which produces the first symbol of y. By Lemma 4.2 applied on x← u and
z ← x we get that px ≤ rx+ t′x+T ≤ rx+2T , and similarly py ≤ ry+2T . By our assumption on success
of Theorem 3.12, sx + tx− px = sy − ty − py. Hence, sx + tx− sy − ty = px− py ≤ rx + 2T − ry − 1 ≤
rx− ry + (2T −1). Thus dx−dy = sx+ tx− rx− sy− ty + ry ≤ rx− ry + (2T −1)− rx+ ry ≤ 2T −1.

If dx < 10T then we can recover all the grammars Gxrx−2T+1, G
x
rx−2T+2, . . . , G

x
sx−2T from their Ham-

ming sketch by constructing an auxiliary dummy Hamming sketch sk′ for a sequence of 1’s of length
(sx − rx)M and comparing the two sketches. (M is the length of the encoding of each grammar.) Their
mismatch information reveals all the grammars Gxrx−2T+1, . . . , G

x
sx−2T Since dy ≤ dx, we can similarly

recover all the grammars Gyry−2T+1, . . . , G
y
sy−2T from their Hamming sketch.

Thus we know all grammars Gxrx+1, G
x
rx+2, . . . , G

x
sx+tx and Gxry+1, G

y
ry+2, . . . , G

y
sy+ty . We also know

grammars Gdx1 , . . . , G
dx
t′x and Gdy1 , . . . , G

dy
t′y that need to be subtracted from our grammars. As noted in

Section 2.1, for each of the grammars we can calculate its evaluation size. From that information we can
easily identify px and py, and shorten the grammars Gxpx and Gypy to produce only symbols of x and y,
respectively. We can combine all the grammars of x into one grammar Gx, and all the grammars of y into
Gy, and run the algorithm of Ganesh, Kociumaka, Lincoln and Saha [GKLS22] to calculate the edit distance
of x and y. Since T = Õ(1), that will take time Õ(|Gx|+ |Gy|+ k2) = Õ(k2).

If dx ≥ 10T then we proceed as follows. Clearly, dy ≥ 8T , so sy − ry ≥ 7T and sx − rx ≥ 9T . Thus
Gxrx−2T+1, G

x
rx−2T+2, . . . , G

x
sx−2T andGyry−2T+1, G

y
ry−2T+2, . . . , G

y
sy−2T consist of at least 7T grammars

each, and those grammars are sketched by their Hamming sketches. Although we assume that there is a
correspondence between the grammarGxj , for j ≥ rx, andGyj−dx+dy the sequencesGxrx−2T+1, . . . , G

x
sx−2T

and Gyry−2T+1, . . . , G
y
sy−2T are misaligned in their Hamming sketches by dx − dy grammars. To rectify

this misalignment, we prepend (dx − dy)M copies of symbol 1 into the sketch for Gyry−2T+1, . . . , G
y
sy−2T .

Furthermore, if tx < ty then we append (ty − tx)M ones into the sketch for Gyry−2T+1, . . . , G
y
sy−2T , to

rectify the difference in the number of sketched grammars. Otherwise if tx > ty then we append (tx− ty)M

22

ones into the sketch for Gxrx−2T+1, . . . , G
x
sx−2T .

Now we can calculate the mismatch information from the Hamming sketches to find out the pairs of
grammars Gxj and Gyj−dx+dy , j ≥ rx + 1, that are different.

If for some j ∈ {rx + 1, . . . , rx + 2T}, Gxj and Gyj−dx+dy differ then because we use the Karp-Rabin
fingerprint of the two grammars to encode also the neighboring grammars up-to distance 2T , we recover
from the sketch all the grammars Gxj and Gyj−dx+dy , for j = rx + 1, . . . , rx + 2T . By counting the
evaluation size of each of those grammars and comparing it with the evaluation size of active grammars in
deletion buffers of x and y, resp., we identify px and py, and how much the grammars Gxpx and Gypy should
be shortened to produce only symbols of x and y. After shortening Gxpx and Gypy we calculate the edit
distance of their evaluation. We sum it up with the edit distance of evaluation of each pair of grammars Gxj
and Gyj−dx+dy , for j > px, that was identified as mismatch by the Hamming distance sketch or that belongs
among the active grammars in insertion buffers of either x or y. There will be at most T mismatched pairs
involving the active grammars, and (4T + 1)k pairs identified by the Hamming sketch.

In the remaining case when Gxj and Gyj−dx+dy are identical for all j ∈ {rx + 1, . . . , rx + 2T}, we
might not be able to recover all those grammars from the Hamming sketches, and we might not be able
to identify px and py. However, since Gxpx = Gypy , we know that the part of x produced by Gxpx is either
a prefix or suffix of the part of y produced by Gypy . The difference in the size of the two parts is the edit
distance of the two parts. The difference is given by the difference between the total evaluation size of active
grammars in the deletion buffer of x, and the total evaluation size of active grammars in the deletion buffer
of y together with grammars Gyry−j , for j = 0, . . . , dx − dy − 1. The latter grammars are in the committed
deletion buffer of y and they agree with Gxrx+1, . . . , G

x
rx+dx−dy . Hence, the edit distance of the parts of x

and y coming fromGxpx andGypy can be determined. All other mismatching pairs of grammars are identified
by the Hamming sketch or are among active grammars of the insertion buffers. So we proceed as in the
previous case to calculate their contribution to the edit distance of x and y. The edit distance of x and y is
the sum of those edit distances.

We see that in both the cases we need the Hamming sketch to be able to recover at least T mismatched
grammars at the very end caused by the dummy padding, 4T grammars at the beginning corresponding to
Gxrx−2T+1, G

x
rx−2T+2, . . . , G

x
rx+2T , 2T neighbors ofGxrx+2T to the right, and at most (4T+1)kmismatched

grammars caused by the edit operations between x and y. This is less than M(4T + 1)(k + 2) which is the
number of mismatches our Hamming sketch can recover.

The time needed to compare the sketched strings can be bounded as follows: In total the procedure gen-
erates at most O(Tk) pairs of grammars of total size Õ(k2) on which it runs edit distance computation from
Proposition 2.1. If those edit distance computations take total time more than Õ(k2) we can terminate them
as we know the overall edit distance is larger than k. Recovering differing grammars from the Hamming
distance sketch takes time Õ(k′) = Õ(k2). Their follow-up processing such as counting their evaluation
size and shortening them is proportional to their total size which is Õ(k2). Hence, the time for comparing
strings is Õ(k2).

Failure probability. The update operations can fail if the grammar decomposition produces large grammars
or the grammars are not deterministic (because of a collision caused by compression hash functions). This
happens with probability at most 1/n for each update. Since we perform at most m updates, the failure
probability of any update operations is at most m/n ≤ 1/10m2 by our choice of m and n.

When comparing two sketches for strings x and y of edit distance at most k, Theorem 3.12 might fail
to align their grammar decomposition. This happens with probability at most 1/5. With probability at most
2/n the Hamming sketches might fail to recover the differing pairs of grammars. There is no other source of
failure for strings of edit distance at most k so the probability of the compare operation failing is at most 1/3.

23

To boost the success probability of comparison from 2/3 to 1− 1/2m, we again form a more robust sketch
by taking c logm independent copies of the rolling edit distance sketch and operate on them simultaneously.
For comparison we output the most frequent answer from the individual sketches. This multiplies the failure
probability of update operations by c logm, so it is still at most 1/2m for m large enough. The comparison
will fail with probability at most 1/2m.

For strings of edit distance more than k the comparison of an individual edit sketch will fail either
because the Hamming sketch would need to recover more than k pairs of differing grammars or because the
total edit distance of the differing grammars is more than k. In both these failure cases we can always output
∞ to be on the safe side.

4.1 Proofs of Lemma 4.1 and 4.2

Here we prove the remaining two lemmas.

Proof of Lemma 4.1. For the simplicity of case analysis we first compare the compression of wu and w.
Consider the division of w = B1 . . . Bm when calling Compress(w, `), and the division wu = B′1 . . . B

′
m′

when calling Compress(wu, `). Let w′′′ = Compress(w, `), from line. Let a be the last symbol of w. We
consider three cases.

If Bm = ar, r ≥ 1, then Bi = B′i for all i = 1 . . . ,m − 1, and Bm is a prefix of B′m, not necessarily
proper. In this case, the compression of each Bi and B′i, i = 1, . . . ,m− 1, is the same, so w′′′ equals to w′

in all but possibly the last symbol.
Otherwise, Bm consists of at least two singleton symbols. If the first symbol of u is a, then B′m =

Bm[1, |Bm| − 1], and B′m+1 = ar, for some r ≥ 2. FCVL will color the same all symbols of Bm and B′m
except for at most the last R symbols. Hence, Bm and B′m will be compressed the same except for at most
the last R symbols. The last R symbols are compressed into at most R symbols in w′′′, and B′m+1 will be
compressed into a single symbol. In this case we conclude that w′[1, |w′| −R− 1] = w′′′[1, |w′| −R− 1].

If the first symbol of u is not a then Bm is a prefix of B′m, and the compression of Bm and B′m[1, |Bm|]
will differ in at most R last symbols. So w′[1, |w′| −R] = w′′′[1, |w′| −R].

Hence, in all three cases w′[1, |w′| −R− 1] = w′′′[1, |w′| −R− 1]. Moreover, ||w′| − |w′′′|| ≤ R+ 1.
A similar argument gives w′′[1, |w′′| −R− 1] = w′′′[1, |w′′| −R− 1], and ||w′′| − |w′′′|| ≤ R+ 1. By

the triangle inequality, ||w′| − |w′′|| ≤ 2(R+ 1). Hence, w′[1, |w′| − 3(R+ 1)] = w′′[1, |w′| − 3(R+ 1)].
Since |u′| ≤ |u|, |w′u′| − |u| ≤ |w′|. The claim follows. �

Proof of Lemma 4.2. Part 1. Consider strings Bx(`, i) from the trace of the algorithm on x given the
hash functions H0, . . . ,HL, C1, . . . , CL. (See Section 3.2) Similarly for Bxz(`, i).

For ` = 0, . . . , L we will define integers i` and ∆` satisfying:

1. For all i < i`, Bx(`, i) = Bxz(`, i),

2. Bx(`, i`)[1, |Bx(`, i`)| −∆`] = Bxz(`, i`)[1, |Bx(`, i`)| −∆`],

3. ∆` +
∑sx`

i=i`+1 |Bx(`, i)| ≤ `(3R+ 3) + 1.

For ` = 0, Bx(0, 1), Bx(0, 2), . . . , Bx(0, sx0) = Split(x, 0), so we set i0 = sx0 and ∆0 = 1. Since
Bxz(0, 1), Bxz(0, 2), . . . , Bxz(0, sxz0) = Split(xz, 0), sx0 ≤ sxz0 andBx(0, sx0) might differ fromBxz(0, sx0)
by containing the last symbol of x which might be the first symbol of Bxz(0, sx0 + 1). Otherwise, Bx(0, sx0)
is the prefix of Bxz(0, sx0) so the properties of i0 and ∆0 are satisfied.

24

For ` = 1, . . . , L, having defined i`−1 and ∆`−1 we will define i` and ∆`: Define

Ax`−1 = Compress(Bx(`− 1, i`−1), `) & Axz`−1 = Compress(Bxz(`− 1, i`−1), `),

(B0, B1, . . . , Bm) = Split(Ax`−1, `) & (B′0, B
′
1, . . . , B

′
m′) = Split(Axz`−1, `).

For simplicity of exposition in this proof we assume that for anyB ∈ Γ∗ of size at most 2, Compress(B, `) =
B and Split(B, `) = (B), so they both perform no action on B of size at most 2.

Let

w = Bx(`− 1, i`−1)[1, |Bx(`− 1, i`−1)| −∆`−1],

u = Bx(`− 1, i`−1)[1 + |Bx(`− 1, i`−1)| −∆`−1, . . .],

v = Bxz(`− 1, i`−1)[1 + |Bx(`− 1, i`−1)| −∆`−1, . . .].

By Lemma 4.1,Ax`−1 andAxz`−1 agree on at least the first |Ax`−1|−(3R+3)−|u| = |Ax`−1|−(3R+3)−∆`−1
symbols. (This is trivial when |w| ≤ 2, in particular, when |Bx(`− 1, i`−1)| ≤ 2 or |Bxz(`− 1, i`−1)| ≤ 2.)

Let i ∈ {0, . . . ,m} be the largest i such that for all j < i, Bj = B′j . Let i` be the index of block Bi
among blocks Bx(`, 1), Bx(`, 2), . . . , Bx(`, sx`). Notice, Bx(`, j) = Bxz(`, j), for all j < i`. Let ∆` ≥ 0
be the smallest integer such that Bi[1, |Bi| −∆`] = B′i[1, |Bi| −∆`]. (So the second property holds for `,
as Bx(`, i`) = Bi and Bxz(`, i`) = B′i.) Since Bi[|Bi| −∆` + 1, . . .] ·Bi+1 . . . Bm forms a part of a suffix
of Ax`−1 on which Ax`−1 and Axz`−1 differ, ∆` +

∑m
j=i+1 |Bj | ≤ (3R+ 3) + ∆`−1.

Notice,
∑sx`

j=i`+1+s−i |Bx(`, j)| ≤
∑sx`−1

j=i`−1+1
|Bx(` − 1, j)| as each Bx(`, j) on the left is a part of a

compression of some Bx(`− 1, j) on the right. Hence,

sx∑̀
j=i`+1

|Bx(`, j)|+∆` ≤ (3R+3)+∆`−1+

sx`−1∑
j=i`−1+1

|Bx(`−1, j)| ≤ (3R+3)+(`−1)(3R+3)+1 ≤ `(3R+3)+1

Eventually, ∆L+
∑sxL

i=iL+1 |Bx(L, i)| ≤ L(3R+3)+1. AlsoBx(L, j) = Bxz(L, j) for j = 1, . . . , iL−
1. Hence, Gxj = Gxzj for j = 1, . . . , iL − 1. Since each |Bx(`, j)| ≥ 1, sxL − iL ≤ L(3R + 3) + 1, which
implies sxL − (L(3R+ 3) + 2) ≤ sxL − T ≤ iL − 1 and the claim follows.

Part 2. The proof of this part proceeds similarly to the first part. Let Bx(`, i) and Bxz(`, i) be as above. For
` = 0, . . . , L, we will define a sequence of integers i`, t`, p`, r` satisfying:

1. t` is the last index i such that Bxz(`, i) contains some symbol that comes from the compression of x,
and r` is the length of the prefix of Bxz(`, t`) that comes from the compression of x.

2. i` ≤ t` and for all i < i`, Bx(`, i) = Bxz(`, i),

3. Bx(`, i`)[1, p`] = Bxz(`, i`)[1, p`],

4. r` − p` +
∑t`−1

j=i`
|Bxz(`, j)| ≤ `(3R+ 3) + 1.

For ` = 0,Bx(0, 1), Bx(0, 2), . . . , Bx(0, sx0) = Split(x, 0) andBxz(0, 1), Bxz(0, 2), . . . , Bxz(0, sxz0) =
Split(xz, 0), so we set i0 = sx0 . If |Bx(0, sx0)| ≤ |Bxz(0, sx0)| we set t0 = i0, and r0 = p0 = |Bx(0, i0)|,
otherwise the last symbol of x starts the block Bxz(0, sx0 + 1) so we set t0 = i0 + 1, p0 = |Bx(0, sx0)| and
r0 = 1. (For completeness we set i−1 = t−1 = 1.) Clearly, the four properties are satisfied by this choice.

25

For ` = 1, . . . , L, having defined i`−1, t`−1, p`−1, r`−1 we will define i`, t`, p`, and r`. As before, let

Ax`−1 = Compress(Bx(`− 1, i`−1), `) & Axz`−1 = Compress(Bxz(`− 1, i`−1), `).

Case 1. Consider the case when i`−1 = t`−1. Let

w = Bxz(`− 1, i`−1)[1, p`−1],

ux = Bxz(`− 1, i`−1)[1 + p`−1, r`],

uz = Bxz(`− 1, i`−1)[1 + r`−1, . . .],

v = Bx(`− 1, i`−1)[1 + p`−1, . . .].

Let Axz`−1 = w′u′xu
′
z where w′ comes from the compression of w, u′x comes from the compression of

ux, and u′z comes from the compression of uz . Let Ax`−1 = w′′v′ where w′′ comes from the compression
of w, and v′ comes from the compression of v. Set r′` = |w′u′x|, let p′` ≤ r′` be the largest integer so that
Axz`−1[1, p

′
`] = Ax`−1[1, p

′
`]. By Lemma 4.1, p′` ≥ |w′| − 3(R+ 1) so r′` − p′` ≤ |w′u′x| − |w′|+ 3(R+ 1) ≤

|u′x| + 3(R + 1). Furthermore, |u′x| ≤ |ux| ≤ r`−1 − p`−1 ≤ (` − 1) · (3R + 3) + 1, which follows by
properties of p`−1 and r`−1, so r′` − p′` ≤ `(3R+ 3) + 1.

Let (B0, B1, . . . , Bm) = Split(Axz`−1, `). Let i ≥ 0 be the smallest integer such that p′` ≤
∑i

j=0 |Bj |
and let t ≥ 0 be the smallest such that r′` ≤

∑t
j=0 |Bj |. Set p` = p′`−

∑i−1
j=0 |Bj | and r` = r′`−

∑t−1
j=0 |Bj |.

Let i` be the index of block Bi among blocks Bxz(`, 1), Bxz(`, 2), . . . , Bxz(`, sxz`), and let t` be the index
of Bt among those blocks. Notice, Bx(`, j) = Bxz(`, j), for all j < i`. We conclude the case by observing
that r`−p`+

∑t−1
j=i |Bj | =

∑t−1
j=i |Bj |+ (r′`−

∑t−1
j=0 |Bj |)− (p′`−

∑i−1
j=0 |Bj |) = p′`− r′` ≤ `(3R+ 3) + 1.

Case 2. The case i`−1 < t`−1 is similar. In this case we let w and v to be as in the previous case and u =
Bxz(`− 1, i`−1)[1 + p`−1, . . .]. We let p′` ≤ |A

xy
`−1| be the largest integer so that Axz`−1[1, p

′
`] = Ax`−1[1, p

′
`].

By Lemma 4.1, p′` ≥ |A
xy
`−1|−3(R+1)−|u| = |Axy`−1|−3(R+1)−|Bxz(`−1, i`−1)|+p`−1. Rearranging

terms: −p′` + |Axy`−1| ≤ −p`−1 + |Bxz(`− 1, i`−1)|+ 3(R+ 1).
Let i ≥ 0 be the smallest integer such that p′` ≤

∑i
j=0 |Bj |. Let p` = p′` −

∑i−1
j=0 |Bj |, and i` be the

index of the block Bi within Bxz(`, 1), Bxz(`, 2), . . . , Bxz(`, sxz`). Hence, −p` +
∑i`+m−i

j=i`
|Bxz(`, j)| =

−p` +
∑m

j=i |Bj | = −p′` +
∑m

j=0 |Bj | = −p′` + |Axy`−1| ≤ −p`−1 + |Bxz(`− 1, i`−1)|+ 3(R+ 1).
Let Cxz`−1 = Compress(Bxz(` − 1, t`−1), `) and (B′0, B

′
1, . . . , B

′
m′) = Split(Cxz`−1, `). Let r′` be the

largest position in Cxz`−1 of a symbol coming from compression of x, and t ≥ 0 be the smallest integer
such that r′` ≤

∑t
j=0 |Bj |, and set r` = r′` −

∑t−1
j=0 |B′j |. Let t` be the index of the block B′t within

Bxz(`, 1), Bxz(`, 2), . . . , Bxz(`, sxz`). Clearly, r′` ≤ r`−1 so r` +
∑t`−1

j=t`−t |B
xz(`, j)| = r` +

∑t−1
j=0 |B′j | ≤

r′` ≤ r`−1.
Notice,

∑t`−t−1
j=i`+m−i+1 |Bxz(`, j)| ≤

∑t`−1−1
j=i`−1+1 |Bxz(` − 1, j)|. By partitioning the sum, rearranging

the terms and using the upper bounds derived so far we have: r` − p` +
∑t`−1

j=i`
|Bxz(`, j)| = −p` +∑i`+m−i

j=i`
|Bxz(`, j)|+

∑t`−t−1
j=i`+m−i+1 |Bxz(`, j)|+

∑t`−1
j=t`−t |B

xz(`, j)|+r` ≤ −p`−1+|Bxz(`−1, i`−1)|+
3(R + 1) +

∑t`−1−1
j=i`−1+1 |Bxz(` − 1, j)| + r`−1 = r`−1 − p`−1 +

∑t`−1−1
j=i`−1

|Bxz(` − 1, j)| + 3(R + 1) ≤
(` − 1) · (3R + 3) + 1 + 3(R + 1) ≤ `(3R + 3) + 1, where the second to last inequality follows by the
properties of our numbers for `− 1.

For ` = L we get: rL − pL +
∑tL−1

j=iL
|Bxz(L, j)| ≤ L(3R + 3) + 1. Since pL ≤ |Bxz(L, iL)|,

and rL ≥ 0 we get:
∑tL−1

j=iL+1 |Bxz(`, j)| ≤ L(3R + 3) + 2. Since each Bxz(L, j) is of non-zero size,
tL − iL − 1 ≤ L(3R + 3) + 2. Thus tL ≤ iL + L(3R + 3) + 3 ≤ sxL + L(3R + 3) + 3, as iL ≤ sxL. The
claim follows. �

26

5 Appending a symbol to a grammar decomposition

In this section we provide a detailed description of the process of updating the active grammars of a string x
when appending a new symbol a. By Lemma 4.2 only the last T grammars of xmight change when adding a
new symbol a. As observed already previously, Lemma 4.2 also implies that once a grammar becomes more
than (T + 1)-th grammar from the end it will never change, despite the fact that the number of grammars
that follow it might shrink after adding more symbols. (Adding more symbols might create periodicity
that will be exploited by the compression.) Our rolling sketch algorithm keeps at most T active grammars
that might still change after adding more symbols. It is convenient for our implementation of the update
function to have access also to the previous at most T committed grammars (to have the proper context
for re-compression). Our rolling sketch algorithm has those committed grammars available in appropriate
buffers. Thus we will assume that the update function is always invoked with exactly T + 1 grammars,
unless x is decomposed into less that T + 1 grammars. Some of the first few grammars from the output
of the update procedure should be discarded as they correspond to grammars that should stay the same.
In particular, if there are t active grammars and s committed grammars then we should discard the first
min(s, T + 1 − t) grammars from its output. The following statement encapsulates the properties of our
update procedure UpdateActiveGrammars().

Theorem 5.1. Let integers k ≤ n and functions C1, . . . , CL and H0, . . . ,HL be given. For any a ∈ Σ and
x ∈ Σ∗ of length at most n with G1, . . . , Gs being the grammars output by the decomposition algorithm on
input x using functions C1, . . . , CL, H0, . . . ,HL, UpdateActiveGrammars(Gs−min(s,T+1)+1, . . . , Gs, a)
outputs a sequence of grammars G′1, . . . , G

′
t′ such that G1, . . . , Gs−min(s,T+1), G

′
1, . . . , G

′
t′ is the sequence

that would be output by the decomposition algorithm on x · a using the functions C1, . . . , CL, H0, . . . ,HL.
The update algorithm runs in time Õ(kLT) = Õ(k) and outputs t′ ≤ 4TL grammars.

Here we assume that the decomposition algorithm does not fail neither on x nor on x · a with respect
to producing correct deterministic grammars so the first two parts of Theorem 3.1 are satisfied for x and
y = x·a, and the choice of functionsC1, . . . , CL andH0, . . . ,HL. For the simplicity of our implementation,
we assume a stronger property of C1, . . . , CL, that each C` is one-to-one on the union of all blocks of x and
x · a at level `. (See remark after Lemma 3.7.)

5.1 Auxiliary functions

Our update algorithm uses several simple and straightforward auxiliary functions we describe next. Func-
tion DecompressSymbol(c,G, `, t) takes a symbol c ∈ Γ and if it is a level-` symbol compressed by the
grammar G then it returns its decompression truncated to the length of at most t symbols. Otherwise it
returns the original symbols c.

Algorithm 5 DecompressSymbol(c,G, `, t)

Input: A symbol c, a grammar G, a level `, maximum output size t ≥ 2.
Output: Decompresses c if it was compressed at level `. Returns at most t symbols of the decompression.

32 if c ∈ Σ`
c then let a, b ∈ Γ be such that c→ ab ∈ G. Return ab.

33 if c ∈ Σ`
r then let a ∈ Γ, r ∈ N be such that c = ra,r. Return amin(t,r).

34 Return c.

Function DecompressString(Z,G, `) decompresses all level-` compression symbols in a string Z ∈ Γ∗

using the grammar G, and returns the resulting decompressed string.

27

Algorithm 6 DecompressString(Z,G, `)

Input: A string Z, a grammar G, and level `.
Output: Decompresses z at level `.

35 Y = ε.
36 for i = 1 to |Z| do Y = Y ·DecompressSymbol(Z[i], G, `,∞).
37 Return Y .

Function DecompressSymbolLength(c, `) returns the length of the decompression of a symbol c at
level `.

Algorithm 7 DecompressSymbolLength(c, `)

Input: A symbol c, a level `.
Output: Returns the length of decompression of c at level `.

38 if c ∈ Σ`
c then return 2.

39 if c ∈ Σ`
r then let a ∈ Γ, r ∈ N be such that c = ra,r. Return r.

40 Return 1.

Algorithm 8 CompressWithGrammar(B, `)

Input: String B over alphabet Γ, and level number `.
Output: String B′′ over alphabet Γ, and set of applied rules G′.

41 if |B| ≤ 1 then return B, ∅.
42 Set G′ = ∅.
43 Divide B = B1B2B3 . . . Bm into minimum number of blocks so that each maximal subword ar of B, for

a ∈ Γ and r ≥ 2, is one of the blocks.
44 for each i ∈ {1, . . . ,m} do
45 if Bi = ar, where r ≥ 2 then
46 Set B′i = ra,r ·# and color ra,r by 1 and # by 2.
47 G′ = G′ ∪ {ra,r → ar};
48 end
49 else Set B′i = Bi and color each symbol of B′i according to FCVL(Bi)

50 end
51 Set B′ = B′1B

′
2 · · ·B′m, B′′ = ε, and i = 1.

52 while i < |B′| do
53 if B′[i+ 1] = # then B′′ = B′′ ·B′[i]
54 else
55 B′′ = B′′ · C`(B′[i, i+ 1]);
56 G′ = G′ ∪ {C`(B′[i, i+ 1])→ B′[i, i+ 1]};
57 end
58 i = i+ 2.
59 if i ≤ |B′| and B′[i] is not colored 1 then B′′ = B′′ ·B′[i], i = i+ 1

60 end
61 Return B′′, G′.

28

Function CompressWithGrammar(B, `) is an extension of Compress(B, `) that in addition to com-
pressed block B at level ` returns the set of grammar rules used for the compression of B at this level.

Finally, function FindCompressedPrefix(Z, p, `) returns the length of the smallest prefix of a string Z
that decompresses into at least p symbols at level `.

Algorithm 9 FindCompressedPrefix(Z, p, `)

Input: String Z, an integer p, level `.
Output: Smallest index j such that level ` decompression of Z[1, j] has length ≥ p.

62 q = 0 and j = 0.
63 while q < p do
64 j = j + 1;
65 p = p+ DecompressSymbolLength(Z[j], `);
66 end
67 Return j.

5.2 Main functions

The core of the update function UpdateActiveGrammars((G1, . . . , Gt), a) is build around the functions
we describe next. The functions use globally accessible set of grammar rules G that contains all the rules
from G1, . . . , Gt except for the starting rules. (This set of rules is deterministic assuming the remark after
Theorem 5.1.)

The functions will build a sequence of strings ZL, ZL−1, . . . , Z0 each of length at most 2T . ZL is
the concatenation of the right-hand-sides of starting rules of G1, . . . , Gt. For ` = L, . . . , 1, Z`−1 is then
build inductively by decompressing a (suitable) largest suffix of Z` so that Z`−1 would be of length at most
T + 4 ≤ 2T . The decompression is provided by function PartiallyDecompress(Z,F, `) which returns
tuple Z ′, F ′, u, r′. In the case that the first symbol of the decompressed suffix of Z` is the level-` repeat
symbol ra,r that would expand Z`−1 beyond the limit of T + 4 symbols, we truncate the expansion of that
symbol to the length r` = r′. The return value u indicates how many symbols of Z were left uncompressed
(which would include the partially decompressed symbol ra,r). It satisfies that if u 6= 0 then |Z ′| ≥
T . Strings ZL, . . . , Z0 satisfy that for ` = L, . . . , 1, if |Z`| ≥ T then |Z`−1| ≥ T . (In particular, if
UpdateActiveGrammars() is invoked with at least T + 1 grammars, then all Z` are of length at least
T . The compression of the first grammar might depend on unseen grammars in that case so we cannot
re-compress it at will.)

Strings ZL, . . . , Z0 are accompanied by strings of integers FL, . . . , F0 over the alphabet {0, . . . , L+1}.
The value of F`[i] indicates at which level the symbol Z`[i] becomes the first symbol in its block. In par-
ticular, F`[i] < ` indicates that a block starts at position i of Z`. This value is relevant for re-compression
of updated strings Z0, . . . , ZL. The initial values of FL are computed using SplittingDepth(G). Function
SplittingDepth(G) is fairly straightforward: For a grammar G, it inductively decompresses the first two
symbols of the evaluation of G. It finds the lowest level `, at which the first two symbols of the decompres-
sion give zero when function H` is applied on them.

After obtaining ZL, . . . , Z0, UpdateActiveGrammars((G1, . . . , Gt), a) appends a to Z0, and then
re-compresses Z0, . . . , ZL−1 using a function Recompress(B,Z, F, u, r, `). We provide more details on
function Recompress(B,Z, F, u, r, `) further below. Invoking UpdateActiveGrammars((G1, . . . , Gt), a)
returns a sequence of updated grammars.

29

Algorithm 10 PartiallyDecompress(Z,F, `)

Input: String Z, splitting depth string F , and level `.
Output: Decompressed string Z ′, splitting depth string F ′, unused count u, repeat count r′.

68 Set Z ′ = ε and F ′ = ε.
69 for u = |Z| to 1 do
70 if Z[u] = ra,r, where ra,r ∈ Σ`

r then
71 if |Z ′|+ r ≤ T + 3 then Z ′ = ar · Z ′ and F ′ = F [u] · (L+ 1)r−1 · F ′
72 else
73 r′ = T − |Z ′|+ 1;
74 Z ′ = ar

′ · Z ′ and F ′ = (L+ 1)r
′ · F ′ ;

75 Return Z ′, F ′, u, r′.
76 end
77 end
78 else if Z[u] = a, where a ∈ Σ`

c then
79 Z ′ = b · c · Z ′, where a→ b · c is in G;
80 F ′ = F [u] · (L+ 1) · F ′;
81 end
82 else Z ′ = Z[u] · Z ′ and F ′ = F [u] · F ′
83 if |Z ′| ≥ T then return Z ′, F ′, u− 1, 0.
84 end
85 Return Z ′, F ′, 0, 0.

Algorithm 11 SplittingDepth(G)

Input: Non-empty grammar G.
Output: The first level ` where G would be separated as a new block.

86 Let v be such that #→ v ∈ G. // v are the first two symbols of eval(G).
87 d = L+ 1.
88 for ` = L, . . . , 0 do
89 if |v| ≥ 2 and H`(v[1, 2]) = 0 then d = `.
90 u = DecompressSymbol(v[1], G, `, 2)
91 if |v| ≥ 2 then u = u ·DecompressSymbol(v[2], G, `, 2).
92 v = u.
93 end
94 Return d.

30

Algorithm 12 UpdateActiveGrammars(AG, a)

Input: List of grammars AG = (G1, . . . , Gt) representing a string x, and a symbol a.
Output: Updated list of grammars AG′ representing string x · a.

95 // Construct a set of rules G, initial compressed string ZL and splitting depth string FL.
96 For i = 1, . . . , t, let #→ vi be the starting rule in Gi.
97 Set G =

⋃t
i=1Gi \ {#→ vi}.

98 Set ZL = v1 and FL = 0 · (L+ 1)|v1|−1.
99 For i = 2, . . . , t, set ZL = ZL · vi and FL = FL · SplittingDepth(Gi) · (L+ 1)|vi|−1.

100 // Perform partial decompression
101 for ` = L to 1 do
102 Z`−1, F`−1, u`, r` = PartiallyDecompress(Z`, F`, `).
103 end
104 // Perform re-compression
105 Z0 = Z0 · a; B = Split(Z0, 0);
106 for ` = 1 to L do
107 B′, G′ = Recompress(B,Z`, F`, u`, r`, |Z`−1|, `)
108 G = G ∪G′
109 B = B′

110 end
111 Let B = (B1, . . . , Bt′).
112 AG′ = ().
113 for i = 1 to t′ do
114 G′ = G ∪ {#→ Bi}.
115 Remove from G′ unnecessary rules to get G′i (as in Section 2.1).
116 Append G′i to AG′.
117 end
118 Return AG′.

Function Recompress(B,Z, F, u, r, `) gets a sequenceB = (B0, . . . , Bs) of blocks that represent com-
pression of the updated Z`−1 (after adding a) up-to level ` − 1. It also gets the original Z`, the splitting
depth string F`, the number of symbols u` that were decompressed from Z` to get the original Z`−1 and the
parameter r` that indicates that the first r` symbols of Z`−1 are a partial decompression of the repeat symbol
Z`[u]. It outputs a sequence of blocks B′ that represent the updated block Z` compressed up-to level `, and
a set of rules G′ that were used for compression at level `.

Blocks B1, . . . , Bs can be independently compressed and split at level `. The block B0 needs a special
treatment though as it needs to be combined with its possible remainder in Z`. This is done in function
RecompressFirstBlock(B0, Z, F, u, r, `). Remaining blocks for the output Recompress() are obtained
from Z` by splitting it into blocks according to F`.

31

Algorithm 13 Recompress(B,Z, F, u, r, z, `)

Input: B = (B0, . . . , Bs) sequence of blocks, original uncompressed string Z, splitting depth string F of
Z, u number of uncompressed symbols in Z, repeat count r, z = |Z`−1|, and level `.

Output: B′ a new sequence of blocks representing B together with Z[1, u], and set of newly added rules
G′.

119 if z < T then B′ = (), G′ = ∅, u′ = 0, j = 0. // No symbols precede B0.
120 else
121 B′, G′, u′ = RecompressFirstBlock(B0, Z, F, u, r, `). // Compress block B0.
122 j = 1.
123 end
124 // Compress blocks Bj , . . . , Bs.
125 for i = j to s do
126 if |Bi| ≤ 2 then B′′ = (Bi); G′′ = ∅
127 else
128 B′i, G

′′ = CompressWithGrammar(Bi, `).
129 B′′ = Split(B′i, `).
130 end
131 Append B′′ to B′.
132 G′ = G′ ∪G′′.
133 end
134 i = u′. // Separate remaining blocks in Z.
135 while i > 0 do
136 while i > 1 and F [i] > ` do i = i− 1.
137 Add Z[i, u′] as the first item of B′.
138 i = i− 1;u′ = i.
139 end
140 Return B′, G′.

Function RecompressFirstBlock(B0, Z, F, u, r, `) is the most complicated function of the whole re-
compression process. The function is invoked only if |Z`−1| ≥ T . The function gets the first level ` − 1
block B0 that needs to be combined with its remainder in Z = Z`. The remainder is a suffix of Z`[1, u],
where r indicates that the first r symbols of the original Z`−1 were obtained by the partial decompression
of Z`[u]. If r 6= 0 then the compression of the part of B0 that follows its leading a’s (Z`[u] = ra,r′) is
independent of the compression of the part of Z belonging to B0 and preceding Z`[u], as r′ − r ≥ 2. Thus
we can compress that part of B0, combine it with an appropriate repetition symbol ra,r′′ and append it to
the appropriate suffix of Z`[1, u − 1] (which is already compressed at level `.) If r = 0 then we invoke a
function CrossOverBlock(B0, Z[u′, . . .], u − u′ + 1, `), where u′ is the first symbol in Z` that belongs to
the block of B0. Eventually, we split the compressed block B0 using Split().

32

Algorithm 14 RecompressFirstBlock(B0, Z, F, u, r, `)

Input: Block B0, an original uncompressed string Z, splitting depth string F of Z, u number of uncom-
pressed symbols in Z, repeat count r, and level `.

Output: B′ a new sequence of blocks representing B0 together with Z[1, u], and set of newly added rules
G′, number u′ of unused symbols in Z.

141 if r 6= 0 then u = u− 1.
142 u′ = u+ 1. // Find the beginning of block B0 in the uncompressed part Z.
143 while u′ > 1 and d[u′] ≥ ` do u′ = u′ − 1.
144 if r 6= 0 then
145 // Block B0 starts by partially decompressed symbol ra,r.
146 Let a ∈ Γ and r′ ∈ N be such that Z[u+ 1] = ra,r′ .
147 for i = 1 to |B0| do if B0[i] 6= a then break;
148

149 if B0[i] = a then B′ = ε,G′′ = ∅, i = i+ 1.
150 else B′, G′′ = CompressWithGrammar(B0[i, . . .], `).
151 B′ = Z[u′, u] · ra,r′−r+i−1 ·B′.
152 end
153 else
154 B′, G′′ = CrossOverBlock(B0, Z[u′, . . .], u− u′ + 1, `).
155 end
156 B′′ = Split(B′, `).
157 Return B′′, G′′, u′ − 1.

Function CrossOverBlock(B,Z, u, `) gets a block B that was compressed up-to level ` − 1 and needs
to be combined with its remainder Z[1, u] that is compressed up-to level `. (The resulting block should
correspond to “Z[1, u] ·B”.) We know that |Z`−1| ≥ T ≥ L(3R+ 3) otherwise RecompressFirstBlock()
and CrossOverBlock() would not be called. By the three properties of ∆`−1 and i`−1 defined in the proof
of Part 1 of Lemma 4.2 we know that the first 3(R + 1) symbols of Z`−1 were not modified as a result
of appending the new symbol to x. Hence the first min(3(R + 1), |B|) symbols of B correspond to the
decompression of Z[u+ 1, . . .].

In this part of B we look for any repeated symbol. If we find a repeated symbol there, we combine
the compression of the part of B starting at the repeated symbol with the original part of Z[u+ 1, . . .] that
produced the symbols of B preceding the repeated symbol (and also with Z[1, u]). By the properties of
compression, repeated symbols break dependence between compressed symbols.

If |B| ≤ 2R+ 20 then at least 3(R+ 1)− 2R− 20 > 2 unchanged symbols follow B. Thus B ends at
its original location as it was split at some level < ` and the first two symbols of the next block at all levels
< ` are the same as originally.

Finally, if |B| > 2R+ 20 and there is no repeated symbol in the first up-to 3(R+ 1) symbols of B then
we can compress B to get B′, strip from B′ the compression of the first R + 10 symbols and combine it
with the original compression of those R + 10 symbols from Z. (The first up-to 3(R + 1) symbols of B
consist of singletons. The compression of a singleton depends on the context of at most R + 3 symbols on
either side.)

33

Algorithm 15 CrossOverBlock(B,Z, u, `)

Input: Block B, an original uncompressed string Z, number u of unused symbols in Z, and level `.
Output: B′ and set of newly added rules G′.

158 // Try to find a repeated symbol in unmodified B.
159 i = 1.
160 while i < |B| and i < 3(R+ 1) and B[i] 6= B[i+ 1] do i = i+ 1.
161 if i < |B| and B[i] = B[i+ 1] then
162 // B[i] is a repeated symbol.
163 B′, G′ = CompressWithGrammar(B[i, . . .], `).
164 j = FindCompressedPrefix(Z[u+ 1, . . .], i− 1, `).
165 B′ = Z[1, u+ j] ·B′.
166 end
167 else if |B| ≤ 2R+ 20 then
168 j = FindCompressedPrefix(Z[u+ 1, . . .], |B|, `). // At least two unchanged symbols follow B.
169 B′ = Z[1, u+ j], G′ = ∅.
170 end
171 else
172 B′, G′ = CompressWithGrammar(B, `).
173 p = FindCompressedPrefix(B′, R+ 10, `).
174 j = FindCompressedPrefix(Z[u+ 1, . . .], R+ 10, `).
175 B′ = Z[1, u+ j − 1] ·B′[p, . . .].
176 end
177 Return B′, G′.

The correctness of the update algorithm follows from its description.

5.3 Time analysis

We assume that strings are represented efficiently (e.g. by balanced trees) so we can extract a sub-string,
concatenate strings, etc. in time Õ(1). All strings that we will operate on will be of length O(T). Similarly,
we assume that grammars are represented efficiently so that we can look-up a rule with a given left-hand
symbol, append two grammars, etc. in time Õ(1).

Then DecompressSymbol() and DecompressSymbolLength() takes time Õ(1). The time complex-
ity of each of the functions CompressWithGrammar(), DecompressString(), FindCompressedPrefix(),
PartiallyDecompress() and CrossOverBlock() is proportional to the length of strings on which it operates
so it is Õ(T). Time of SplittingDepth() is proportional to the depth of the grammar, which in our case is at
most Õ(L). Each RecompressFirstBlock() executes O(T) operations on strings and grammars, and O(T)
evaluations of H` (inside the calls to Split()). Since H` is Õ(k)-wise independent, its evaluation takes time
Õ(k). So RecompressFirstBlock() takes time Õ(kT).

Similarly, each Recompress() executes up-to one call to RecompressFirstBlock(), O(T) operations
on strings and grammars, and O(T) evaluations of H` to split blocks. Again, its total time complexity is
Õ(kT). Eventually, UpdateActiveGrammars() executes up-to T SplittingDepth(), O(T) string opera-
tions, L calls to PartiallyDecompress() and Recompress(), and then up-toO(LT) invocations of grammar
minimization procedure costing Õ(k) time each. Thus, the total time for UpdateActiveGrammars() is
Õ(LTk).

34

The number of grammars the algorithm outputs is at most
∑L

`=0 |Z`| ≤ 2T (L+ 1) ≤ 4TL.

6 Table of parameters

Definition Asymptotics Meaning Reference
R = log∗ |Γ|+ 20 log∗ n compression locality Section 2.3
L = dlog3/2 ne+ 3 log n recursion depth Section 3, Corollary 3.3
D = 110c−R(L+ 1)k k log n log∗ n 1/splitting probability Section 3, Lemma 3.4
S = 30DL log n+ 6 k log3 n log∗ n maximum grammar size Section 3, Theorem 3.1
M = 3S · d1 + log |Γ|e k log4 n log∗ n grammar encoding size Section 3.3
T = L(3R+ 6) log n log∗ n locality of suffix changes Section 4, Lemma 4.2
N ≥ n3 n3 FKR range size Section 3.3

Acknowledgements

The authors benefited greatly from discussions with Nicole Wein who took part in the initial stages of this
project. The second author also benefited from many discussions on edit distance with Mike Saks. We are
grateful to Tomasz Kociumaka for providing us with a reference for Proposition 2.1. We thank anonymous
reviewers for their comments.

References

[AN20] Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a con-
stant factor. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 990–1001. IEEE, 2020.

[BES06] Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string embeddings and edit distance
approximations. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, pages 792–801, Philadelphia, PA, USA, 2006. Society for Industrial and
Applied Mathematics.

[BGP20] Or Birenzwige, Shay Golan, and Ely Porat. Locally consistent parsing for text indexing in small
space. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 607–626. SIAM,
2020.

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC ’15, pages 51–58, New York, NY, USA, 2015. ACM.

[BR20] Joshua Brakensiek and Aviad Rubinstein. Constant-factor approximation of near-linear edit
distance in near-linear time. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, pages 685–698. ACM, 2020.

35

[BZ16] Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document ex-
change. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
pages 51–60, 2016.

[CDG+18] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E. Saks.
Approximating edit distance within constant factor in truly sub-quadratic time. In 59th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2018, pages 979–990, 2018.

[CGK16] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for em-
bedding and computing edit distance in the low distance regime. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 712–725, 2016.

[CKP19] Raphaël Clifford, Tomasz Kociumaka, and Ely Porat. The streaming k-mismatch problem. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, pages 1106–1125. SIAM, 2019.

[CM02] Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with
moves. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, January 6-8, 2002, San Francisco, CA, USA., pages 667–676, 2002.

[CV86] Richard Cole and Uzi Vishkin. Deterministic coin tossing and accelerating cascades: micro and
macro techniques for designing parallel algorithms. In Proceedings of the eighteenth annual
ACM symposium on Theory of computing (STOC), pages 206–219, 1986.

[FIM+06] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J Strauss, and Rebecca N
Wright. Secure multiparty computation of approximations. ACM transactions on Algorithms
(TALG), 2(3):435–472, 2006.

[GKLS22] Arun Ganesh, Tomasz Kociumaka, Andrea Lincoln, and Barna Saha. How compression and
approximation affect efficiency in string distance measures. In Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 2867–2919, 2022.

[Gra16] Szymon Grabowski. New tabulation and sparse dynamic programming based techniques for
sequence similarity problems. Discrete Applied Mathematics, 212:96–103, 2016.

[JNW21] Ce Jin, Jelani Nelson, and Kewen Wu. An improved sketching algorithm for edit distance.
In 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021,,
volume 187 of LIPIcs, pages 45:1–45:16, 2021.

[Jow12] Hossein Jowhari. Efficient communication protocols for deciding edit distance. In Algorithms
- ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012.
Proceedings, pages 648–658, 2012.

[KOR98] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 614–623, 1998.

[KPS21] Tomasz Kociumaka, Ely Porat, and Tatiana Starikovskaya. Small-space and streaming pattern
matching with k edits. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 885–896, 2021.

36

[KR87] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

[KS20] Michal Koucký and Michael E. Saks. Constant factor approximations to edit distance on far in-
put pairs in nearly linear time. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, pages 699–712. ACM, 2020.

[Lin87] Nathan Linial. Distributive graph algorithms-global solutions from local data. In 28th An-
nual Symposium on Foundations of Computer Science,FOCS, pages 331–335. IEEE Computer
Society, 1987.

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992.

[LMS98] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM J. Comput., 27(2):557–582, April 1998.

[MP80] William J. Masek and Michael S. Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18 – 31, 1980.

[OR07] Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance. J. ACM,
54(5):23, 2007.

[PL07] Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error correcting. In
Combinatorial Pattern Matching, 18th Annual Symposium, CPM, volume 4580, pages 173–182.
Springer, 2007.

[SV94] Süleyman Cenk Sahinalp and Uzi Vishkin. Symmetry breaking for suffix tree construction. In
Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada, pages 300–309. ACM, 1994.

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, January 1974.

37

	Introduction
	Related work
	Our techniques

	Notations and preliminaries
	Grammars
	Rolling Hamming distance sketch
	Locally consistent coloring

	Decomposition algorithm
	Algorithm description
	Correctness of the decomposition algorithm
	Encoding a grammar
	Edit distance sketch

	Rolling sketch for edit distance
	Proofs of Lemma 4.1 and 4.2

	Appending a symbol to a grammar decomposition
	Auxiliary functions
	Main functions
	Time analysis

	Table of parameters

