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Abstract

In this paper we give an algorithm for streaming k-edit approximate pattern matching which uses
space Õ(k2) and time Õ(k2) per arriving symbol. This improves substantially on the recent algorithm
of Kociumaka, Porat and Starikovskaya [KPS22] which uses space Õ(k5) and time Õ(k8) per arriving
symbol. In the k-edit approximate pattern matching problem we get a pattern P and text T and we want
to identify all substrings of the text T that are at edit distance at most k from P . In the streaming version
of this problem both the pattern and the text arrive in a streaming fashion symbol by symbol and after
each symbol of the text we need to report whether there is a current suffix of the text with edit distance
at most k from P . We measure the total space needed by the algorithm and time needed per arriving
symbol.

1 Introduction

Pattern matching is a classical problem of finding occurrences of a given pattern P in text T . It can be solved
in time linear in the size of the pattern and text [KJP77, BM77, KR87]. The classical algorithms use space
that is proportional to the pattern size. In a surprising work [PP09], Porat and Porat were the first to design
a pattern matching algorithm that uses less space. They designed an on-line algorithm that pre-processes
the pattern P into a small data structure, and then it receives the text symbol by symbol. After receiving
each symbol of the text, the algorithm is able to report whether the pattern matches the current suffix of the
text. The algorithm uses poly-logarithmic amount of memory for storing the data structure and processing
the text. This represents a considerable achievement in the design of pattern matching algorithms.

Porat and Porat also gave a small-space online algorithm that solves approximate pattern matching up-to
Hamming distance k, k-mismatch approximate pattern matching. In this problem we are given the pattern
P and a parameter k, and we should find all substrings of the text T that are at Hamming distance at most
k from P . Their algorithm uses Õ(k3) space, and requires Õ(k2) time per arriving symbol of the text.
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Subsequently this was improved to space Õ(k) and time Õ(
√
k) [CFP+16]. There has been a series of

works [BG14, CFP+15, CFP+16, GP17, GKP18, GS19, Sta17, RS20, GKKP20] on online and streaming
pattern matching, and the line of work culminated in the work of Clifford, Kociumaka and Porat [CKP19]
who gave a fully streaming algorithm with similar parameters as [CFP+16].

In the streaming setting, also the pattern arrives symbol by symbol and we do not have the space to
store all of it at once. An important feature of the algorithm of Clifford, Kociumaka and Porat is that their
algorithm not only reports the k-mismatch occurrences of the pattern but for each k-mismatch occurrence
of P it can also output the full information about the difference between P and the current suffix of the text,
so called mismatch information.

Beside approximate pattern matching with respect to Hamming distance, researchers also consider ap-
proximate pattern matching with respect to other similarity measures such as edit distance. Edit distance
ED(x, y) of two strings x and y is the minimum number of insertions, deletions and substitutions needed
to transform x into y. The k-edit approximate pattern matching problem is a variant of the approximate
pattern matching where we should find all substrings of T that are at edit distance at most k from P . Since
there could be quadratically many such substrings, we usually only require to report for each position in
T whether there is a substring of T ending at that position that has edit distance at most k from P . In the
streaming version of the problem we want to output the minimal distance of P to a current suffix of the text
after receiving each symbol of T . Again we assume that the text as well as the pattern arrive symbol by
symbol, and we are interested in how much space the algorithm uses, and how much time it takes to process
each symbol.

Starikovskaya [Sta17] proposed a streaming algorithm for the k-edit pattern matching problem, which
uses Õ(k8

√
m) space and takes Õ(k2

√
m + k13) time per arriving symbol. Here, we denote m = |P |

and n = |T |. Recently, using a very different technique Kociumaka, Porat and Starikovskaya [KPS22]
constructed a streaming algorithm, which uses Õ(k5) space and Õ(k8) amortized time per arriving symbol
of the text.

In this work we substantially improve on the result of Kociumaka, Porat and Starikovskaya. We give
a streaming algorithm for k-edit approximate pattern matching that uses Õ(k2) space and Õ(k2) time per
arriving symbol.

Theorem 1.1. Given integer k ≥ 0, there exists a randomized streaming algorithm for the k-edit approxi-
mate pattern matching problem that uses Õ(k2) bits of space and takes Õ(k2) time per arriving symbol of
the text.

We speculate that some amortization techniques could bring the time complexity of our k-edit approx-
imate pattern matching algorithm further down. However, it seems unlikely to achieve complexity below
Õ(k) per arriving symbol as one could then solve the plain edit distance problem in sub-quadratic time
contradicting the Strong Exponential Time Hypothesis (SETH) [BI15]. It is an interesting open question to
achieve smaller space complexity than Õ(k2). Currently, all known sketching techniques for edit distance
that people use for k-edit approximate pattern matching give sketches of size Ω(k2).

The technique of Kociumaka, Porat and Starikovskaya [KPS22] for edit distance pattern matching to
large extent emulates the inner working of Hamming approximate pattern matching algorithms. To that
effect Kociumaka, Porat and Starikovskaya had to design a rolling sketch for edit distance where multiple
sketches can be “homomorphically” combined into one. This requires sophisticated machinery. Here we use
a somewhat different approach. We use a recent locally consistent decomposition of strings which preserves
edit distance of Bhattacharya and Koucký [BK23]. The decomposition in essence translates edit distance to
Hamming distance. Hence, we apply the k-mismatch approximate pattern matching algorithm of Clifford,
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Kociumaka and Porat [CKP19] on the stream of symbols coming from the decomposition as a black box.
Bhattacharya and Koucký [BK23] also constructed a rolling sketch with limited update abilities, namely
adding and deleting a symbol. We do not use that sketch here.

1.1 Related work

Landau and Vishkin [LV86] gave the first algorithm for the k-mismatch approximate pattern matching prob-
lem which runs in timeO(k(m logm+n)) and takesO(k(m+n)) amount of space. This was then improved
to O(m logm + kn) time and O(m) space by Galil and Giancarlo [GG86]. Later, Amir, Lewenstein and
Porat [ALP04] proposed two algorithms running in timeO(n

√
k log k) and Õ(n+k3(n/m)). The latter was

improved by Clifford, Fontaine, Porat, Sach and Starikovskaya [CFP+16] who gave an Õ(n + k2(n/m))
time algorithm. Charalampopoulos, Kociumaka and Wellnitz, in their FOCS’20 paper [CKW20], also pro-
posed an Õ(n + k2(n/m)) time algorithm with slightly better polylog factors. An Õ(n + kn/

√
m) time

algorithm was given by Gawrychowski and Uznański [GU18], which showed a nice tradeoff between the
O(n
√
k log k) and Õ(n + k2(n/m)) running times. Not only that, they also showed that their algorithm

is essentially optimal upto polylog factors, by proving a matching conditional lower bound. The polylog
factors in the running time were then improved further by a randomized algorithm by Chan, Golan, Kociu-
maka, Kopelowitz and Porat [CGK+20], with running time O(n+ kn(

√
logm/m)). This problem is thus

quite well studied.
For the edit distance counterpart of the problem however, there is still a significant gap between the

best upper bound and the known conditional lower bound. Landau and Vishkin [LV89] proposed an O(nk)
time algorithm for the problem. This algorithm is still the state of the art for larger values of k. Cole and
Hariharan [CH02] gave an algorithm running in time O(n + m + k4(n/m))(this runs faster if m ≥ k3).
In their unified approach paper [CKW20], Charalampopoulos, Kociumaka and Wellnitz also proposed an
algorithm running in time O(n+m+k4(n/m)). The same authors in their FOCS’22 paper [CKW22] gave
an algorithm running in timeO(n+k3.5

√
logm log kn/m), finally improving the bound after 20 years. For

the lower bound, Backurs and Indyk [BI15] proved that a truly subquadratic time algorithm for computing
edit distance would falsify SETH. This would imply that an algorithm for the k-edit approximate pattern
matching which is significantly faster than O(n+ k2(n/m)) is highly unlikely.

Online k-mismatch approximate pattern matching problem was first solved by Benny Porat and Ely
Porat in 2009 [PP09]. They gave an online algorithm with running time Õ(k2) and space Õ(k3) per arriving
symbol of the text. Clifford, Fontaine, Porat, Sach and Starikovskaya in their SODA’16 paper [CFP+16],
improved it to Õ(k2) space and O(

√
k log k + poly(log(n))) time per arriving symbol of the text. Clifford,

Kociumaka and Porat [CKP19] proposed a randomized streaming algorithm which uses O(k log (m/k))
space and O(log (m/k)(

√
k log k + log3m)) time per arriving symbol. The space upper bound is optimal

up-to logarithmic factors, matching the communication complexity lower bound. All these algorithms use
some form of rolling sketch.

In the streaming model, Starikovskaya proposed a randomized algorithm [Sta17] for the k-edit approx-
imate pattern matching problem, which takes O(k8

√
m log6m) space and O((k2

√
m + k13) log4m) time

per arriving symbol. Kociumaka, Porat and Starikovskaya [KPS22] proposed an improved randomized
streaming algorithm, which takes Õ(k5) space and Õ(k8) amortized time per arriving symbol of the text.
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2 Notations and preliminaries

We use a standard notation. For any string x = x1x2x2 . . . xn and integers p, q, x[p] denotes xp, x[p, q]
represents substring x′ = xp . . . xq of x, and x[p, q) = x[p, q − 1]. If q < p, then x[p, q] is the empty string
ε. x[p, . . . ] represents x[p, |x|], where |x| is the length of x. "·"-operator is used to denote concatenation,
e.g x · y is the concatenation of two strings x and y. For strings x and y, ED(x, y) is the minimum number
of modifications (edit operations) required to change x into y, where a single modification can be adding
a character, deleting a character or substituting a character in x. All logarithms are based-2 unless stated
otherwise. For integers p > q,

∑q
i=p ai = 0 by definition regardless of ai’s.

2.1 Grammars

We will use the following definitions from [BK23]. They are taken essentially verbatim. Let Σ ⊆ Γ be two
alphabets and # 6∈ Γ. A grammarG is a set of rules of the type c→ ab or c→ ar, where c ∈ (Γ∪{#})\Σ,
a, b ∈ Γ and r ∈ N. c is the left hand side of the rule, and ab or ar is the right hand side of the rule. # is
the starting symbol. The size |G| of the grammar is the number of rules in G. We only consider grammars
where each a ∈ Γ ∪ {#} appears on the left hand side of at most one rule of G, we call such grammars
deterministic. The eval(G) is the string from Σ∗ obtained from # by iterative rewriting of the intermediate
results by the rules from G. If the rewriting process never stops or stops with a string not from Σ∗, eval(G)
is undefined. We use eval(G1, G2, . . . , Gt) to denote the concatenation eval(G1) · eval(G2) · · · eval(Gt).
Using a depth-first traversal of a deterministic grammar G we can calculate its evaluation size |eval(G)| in
time O(|G|). Given a deterministic grammar G and an integer m less or equal to its evaluation size, we can
construct in time O(|G|) another grammar G′ of size O(|G|) such that eval(G′) = eval(G)[m, . . . ]. G′ will
use some new auxiliary symbols.

We will use the following observation of Ganesh, Kociumaka, Lincoln and Saha [GKLS22]:

Proposition 2.1 ([GKLS22]). There is an algorithm that on input of two grammars Gx and Gy of size at
most m computes the edit distance k of eval(Gx) and eval(Gy) in time O((m + k2) · poly(log(m + n))),
where n = |eval(Gx)|+ |eval(Gy)|.

We remark that the above algorithm can be made to output also full information about edit operations
that transform eval(Gx) to eval(Gy). We will also use the following proposition which can be obtained from
Landau-Vishkin algorithm [LV86] see e.g. a combination of Lemma 6.2 and Theorem 7.13 in [CKW20]:

Corollary 2.2. For every pair of grammarsGx andGy representing strings x and y, respectively, and given
a parameter k we can find in timeO((m+k2)·poly(log(m+n))), where n = |x|+|y| andm = |Gx|+|Gy|,
the length of a suffix of x with the minimum edit distance to y among all the suffixes of x, provided that the
edit distance of the suffix and y is at most k. If the edit distance of all the suffixes of x to y is more than k
then the algorithm stops in the given time and reports that no suffix was found.

3 Decomposition algorithm

Bhattacharya and Koucký [BK23] give a string decomposition algorithm (BK-decomposition algorithm) that
splits its input string into blocks, each block represented by a small grammar. With high probability over
the choice of randomness of the algorithm, two strings of length at most n and edit distance at most k are
decomposed so that the number of blocks is the same and at most k corresponding pairs of blocks differ. The
edit distance between the two strings corresponds to the sum of edit distances of differing pairs of blocks.
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More specifically, the BK-decomposition algorithm gets two parameters n and k, k ≤ n, and an in-
put x. It selects at random pair-wise independent functions C1, . . . , CL and S-wise independent functions
H0, . . . ,HL from certain hash families, and using those hash functions it decomposes x into blocks, and out-
puts a grammar for each of the block. We call the sequence of the produced grammars the BK-decomposition
of x. Here, parameters L = dlog3/2 ne+ 3 and S = O(k log3 n log∗ n). As shown in [BK23], the algorithm
satisfies the following property.

Proposition 3.1 (Theorem 3.1 [BK23]). Let x be a string of length at most n. The BK-decomposition
algorithm outputs a sequence of grammars G1, . . . , Gs such that for n large enough:

1. With probability at least 1− 2/n, x = eval(G1, . . . , Gs).

2. With probability at least 1− 2/
√
n, for all i ∈ {1, . . . , s}, |Gi| ≤ S.

The randomness of the algorithm is over the random choice of functions C1, . . . , CL and H0, . . . ,HL.

The functions C1, . . . , CL can be described using O(log2 n) bits in total and the S-wise independent
functions H0, . . . ,HL can be described using O(S log2 n) bits in total. We also need the following special
case of Theorem 3.12 [BK23].

Proposition 3.2 (Theorem 3.12 [BK23]). Let u, x, y ∈ Γ∗ be strings such that |ux|, |y| ≤ n and ED(x, y) ≤
k. LetGx

1 , . . . , G
x
s andGy

1, . . . , G
y
s′ be the sequence of grammars output by the BK-decomposition algorithm

on input ux and y respectively, using the same choice of random functions C1, . . . , CL and H0, . . . ,HL.
With probability at least 1− 1/5 the following is true: There exist an integer r ≥ 1, such that

x = eval(Gx
s−s′+1)[r, . . . ] · eval(Gx

s−s′+2, . . . , G
x
s ) & y = eval(Gy

1, . . . , G
y
s′),

and

ED(x, y) = ED(eval(Gx
s−s′+1)[r, . . . ], eval(Gy

1)) +

s′∑
i=2

ED(eval(Gx
s−s′+i), eval(Gy

i )).

The grammars for x can be built incrementally. For a fixed choice of functions Ci, Hi, and a string
x we say that grammars Gx

1 , . . . , G
x
t are definite in its BK-decomposition Gx

1 , . . . , G
x
s if for any string z

and the BK-decomposition Gxz
1 , . . . , G

xz
s′ of xz obtained using the same functions Ci, Hi, Gx

1 = Gxz
1 , . . . ,

Gx
t = Gxz

t . It turns out that all, but Õ(1) last grammars in the BK-decomposition of x are always definite.
The following claim appears in [BK23]:

Proposition 3.3 (Lemma 4.2 [BK23]). Let n and k be given and R = O(log n log∗ n) be a suitably chosen
parameter. Let x, z ∈ Γ∗, |xz| ≤ n. Let H0, . . . ,HL, C1, . . . , CL be given. Let Gx

1 , G
x
2 , . . . , G

x
s be

the output of the BK-decomposition algorithm on input x, and Gxz
1 , G

xz
2 , . . . , G

xz
s′ be the output of the

decomposition algorithm on input xz using the given hash functions.

1. Gx
i = Gxz

i for all i = 1 . . . , s−R.

2. |x| ≤
∑min(s+R,s′)

i=1 |eval(Gxz
i )|.

The following claim bounds the resources needed to update BK-decomposition of x when we append a
symbol a to it.
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Proposition 3.4 (Theorem 5.1 [BK23]). Let k ≤ n be given and R = O(log n log∗ n) be a suitably chosen
parameter. Let functions C1, . . . , CL and H0, . . . ,HL be given. Let a ∈ Σ and x ∈ Σ∗ be of length at
most n, and let Gx

1 , . . . , G
x
s be the grammars output by the BK-decomposition algorithm on input x using

functions C1, . . . , CL, H0, . . . ,HL. UpdateActiveGrammars(Gx
s−min(s,R+1)+1, . . . , G

x
s , a) outputs a se-

quence of grammars G′1, . . . , G
′
t′ such that Gx

1 , . . . , G
x
s−min(s,R+1), G

′
1, . . . , G

′
t′ is the sequence that would

be output by the BK-decomposition algorithm on x · a using the same functions C1, . . . , CL, H0, . . . ,HL.
The update algorithm runs in time Õ(k) and outputs t′ ≤ 4RL grammars.

3.1 Encoding a grammar

Let S and M = O(S log n) = O(k log4 n log∗ n) be parameters determined by the BK-decomposition
algorithm. [BK23] shows that each grammar of size at most S can be encoded as a string of size M over
some polynomial-size alphabet {1, . . . , 2α}, where the integer α can be chosen so that 2M/α ≤ 1/n. The
encoding Enc satisfies that if two grammars differ, their encodings differ in every coordinate. The encoding
is randomized, and one needs O(log n) random bits to select the encoding function. The encoding can be
calculated in time linear in M , and given Enc(G) we can decode G in time O(M). The encoding satisfies:

Proposition 3.5. Let G,G′ be two grammars of size at most S output by BK-decomposition algorithm. Let
encoding Enc be chosen at random.

1. Enc(G) ∈ {1, . . . , 2α}M .

2. If G = G′ then Enc(G) = Enc(G′).

3. If G 6= G′ then with probability at least 1 − (2M/α), Ham(Enc(G),Enc(G′)) = M , that is they
differ in every symbol.

3.2 k-mismatch approximate pattern matching

Clifford, Kociumaka and Porat [CKP19] design a streaming algorithm for k-mismatch approximate pattern
matching with the following properties. The algorithm first reads a pattern P symbol by symbol, and then it
reads a text T symbol by symbol. Upon reading each symbol of the text it reports whether the word formed
by the last received |P | symbols of the text are within Hamming distance at most k from the pattern. If they
are within Hamming distance at most k we can request the algorithm to report the mismatch information
between the current suffix of the text and the pattern. The parameters k and n are given to the algorithm
at the beginning, where n is an upper bound on the total length of the pattern and the text. By mismatch
information between two strings x and y of the same length we understand MIS(x, y) = {(i, x[i], y[i]);
i ∈ {1, . . . , |x|} and x[i] 6= y[i]}. So the Hamming distance of x and y is Ham(x, y) = |MIS(x, y)|.
Clifford, Kociumaka and Porat [CKP19] give the following main theorem.

Proposition 3.6 ([CKP19]). There exists a streaming k-mismatch approximate pattern matching algorithm
which uses O(k log n log(n/k)) bits of space and takes O((

√
k log k + log3 n) log(n/k)) time per arriving

symbol. The algorithm is randomised and its answers are correct with high probability, that is it errs
with probability inverse polynomial in n. For each reported occurrence, the mismatch information can be
reported on demand in O(k) time.
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4 Algorithm overview

Now we provide the high-level view of how we proceed. We will take the pattern P and apply on it the BK-
decomposition algorithm. That will give us grammars GP

1 , G
P
2 , . . . , G

P
r encoding the pattern. This has to

be done incrementally as the symbols of P arrive. Then we will incrementally apply the BK-decomposition
algorithm on the text T .

We will not store all the grammars in memory, instead we will use the K-mismatch approximate pattern
matching algorithm of Clifford, Kociumaka and Porat [CKP19] (CKP-match algorithm) on the grammars.
Here K = k ·M , where M is the encoding size of each grammar. For a suitable parameter R = Õ(1),
we will feed the grammars GP

1 , . . . , G
P
r−R to the CKP-match algorithm as a pattern. In particular, we will

encode each grammar by the encoding function Enc from Section 3.1, and we will feed the encoding into
the CKP-match algorithm symbol by symbol.

Then as the symbols of the text T will arrive, we will incrementally build the grammars for T while
maintaining only a small set of active grammars. Grammars that become definite will be fed into the CKP-
match algorithm as its input text. (Again each one of the grammars encoded by Enc.) The CKP-match
algorithm will report K-mismatch occurrences of our pattern in the text. Each K-mismatch occurrence cor-
responds to a match of the pattern grammars to the text grammars, with up-to k differing pairs of grammars.
We will recover the differing pairs of grammars and calculate their overall edit distance. We will combine
this edit distance with the edit distance of the lastR grammars of the pattern from the lastR grammars of the
text. (The last R grammars of the text contain the active grammars which were not fed into the CKP-match
algorithm, yet.) If the total edit distance of the match does not exceed the threshold k, we report it as an
k-edit occurrence of P in T . If required we can also output the edit operations that transform the pattern
into a suffix of T . (Among the current suffixes of T we pick the one which gives the smallest edit distance
from P .)

The success probability of our scheme in reporting a particular occurrence of P in T is some constant
≥ 1/2. Thus, we run the processes in parallel O(log n) times with independently chosen randomness to
achieve small error-probability.

We describe our algorithm in more details next.

5 Description of the algorithm

Now we describe one run of our algorithm. The algorithm receives parameters n and k, based on them it
sets parameters L = O(log n), R = O(log n log∗ n), S = O(k log3 n log∗ n), M = O(k log4 n log∗ n),
K = k ·M = O(k2 log4 n log∗ n). Then it chooses at random pair-wise independent functions C1, . . . , CL

and S-wise independent functions H0, . . . ,HL needed by the BK-decomposition algorithm. It also selects
the required randomness for the encoding function Enc. It initializes the CKP-match algorithm for K-
mismatch approximate pattern matching on strings of length at most n ·M .

There are two phases of the algorithm. In the first phase the algorithm receives a pattern P symbol by
symbol and incrementally builds a sequence of grammars GP

1 , . . . , G
P
r representing the pattern P . All but

the last R grammars are encoded using Enc and sent to our instance of CKP-match algorithm as its pattern
(symbol by symbol of each encoding). In the second phase our algorithm receives an input text T symbol
by symbol. It will incrementally build a sequences of grammars GT

1 , G
T
2 , . . . representing the received text.

Whenever one of the grammars becomes definite it is encoded by Enc and sent to our instance of CKP-match
algorithm as the next part of its input text (symbol by symbol).

In the first phase, our algorithm uses the procedure given by Proposition 3.4 to construct the grammars
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GP
1 , . . . , G

P
r incrementally by adding symbols of P . The algorithm maintains a buffer of 2R active gram-

mars which are updated by the addition of each symbol. Whenever the number of active grammars exceeds
2R we encode the oldest (left-most) grammars that are definite and pass them to our instance of CKP-match
algorithm as the continuation of its pattern. The precise details of updating the grammars of the pattern are
similar to that of updating them for text which we will elaborate on more. After the input pattern ends, we
keep only R grammars GP

r−R+1, . . . , G
P
r , and we send all the other grammars to the CKP-match algorithm.

Then we announce to the CKP-match algorithm the end of its input pattern. So the CKP-match algorithm
received as its pattern encoding of grammars GP

1 , . . . , G
P
r−R in this order. (In the case we end up with fewer

than R + 1 grammars representing P (r ≤ R), we apply a naïve pattern matching algorithm without need
for the CKP-match algorithm. We leave this simple case as an exercise to the reader.) For the rest of this
description we assume that r > R.

In the second phase, the algorithm will receive the input text T symbol by symbol. It will incrementally
build a sequence of grammars representing the text using the algorithm from Proposition 3.4. We will keep
at most R active grammars Ga

1, . . . , G
a
t on which the algorithm from Proposition 3.4 will be applied. The

active grammars represent a current suffix of T . The prefix of T up-to that suffix is represented by grammars
GT

1 , . . . , G
T
s which are definite. Out of those definite grammars we will explicitly store only the last R in

a buffer, the other grammars will not be stored explicitly. (They will be used to calculate the current edit
distance and to run the update algorithm from Proposition 3.4.) The encoding of all the definite grammars
will be fed into the CKP-match algorithm as its input text whenever we detect that a grammar is definite.

As the algorithm proceeds over the text it calculates a sequence of integers m1,m2, . . . ,ms, where
the algorithm stores only the last R of them in a buffer. Each value mi is the minimal edit distance of
eval(GP

1 , . . . , G
P
r−R) (a prefix of the pattern) to any suffix of eval(GT

1 , . . . , G
T
i ) (a suffix of a prefix of the

text) if the edit distance is less than k. mi is considered infinite otherwise. (Values m1, . . . ,mr−R−1 are
all considered to be infinite.) The value mi will be calculated after GT

i becomes definite and we send the
grammar to our CKP-match algorithm. (The CKP-match algorithm will facilitate its calculation.) Values
mi will be used to calculate the edit distance of the current suffix of the input text received by the algorithm.
See Fig. 1 for an illustration.

GT
s−R+t+1 GT

s. . .

GP
r−R−t+1 GP

r−R. . .

GT
s. . .

Ga
1 Ga

t. . .

GP
r−R+1 GP

r−t. . . GP
r−t+1 GP

r

GT
s−R+tGT

s−R+1

GT
s−R+t+1GT

s−R+tGT
s−R+1

. . .

. . .

. . .GP
1

Active grammars

. . .

. . .

Last R grammars of the pattern

Buffer of past text grammars

CKP-match text

CKP-match pattern

Figure 1: The alignment of text and pattern grammars after arrival of some text symbol. The pattern
P is represented by grammars GP

1 , . . . , G
P
r . Grammars GP

1 , . . . , G
P
r−R are encoded by Enc and sent to

the CKP-match algorithm as its pattern. The current text T is represented by the sequence of grammars
GT

1 , . . . , G
T
s , G

a
1, . . . , G

a
t . Grammars GT

1 , . . . , G
T
s are encoded and committed to the CKP-match algorithm

as its text. Grammars Ga
1, . . . , G

a
t are active grammars of the text, and might change as more symbols are

added to the text.

We are ready to describe the basic procedures performed by the algorithm.

Symbol arrival. Upon receiving the next symbol a of the input text, our algorithm invokes the algo-
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rithm from Proposition 3.4 on the R + 1 grammars GT
s−R+t, . . . , G

T
s , G

a
1, . . . , G

a
t to append the symbol

a. From the algorithm we receive back grammars GT
s−R+t, . . . , G

T
s , G

′a
1 , . . . , G

′a
t′ , where t′ < 4RL. (Here,

eval(G′a1 , . . . , G
′a
t′ ) = eval(Ga

1, . . . , G
a
t ) · a. The grammars GT

s−R+t, . . . , G
T
s received from the algorithm

are discarded as they are definite and should not change. The update algorithm needs them to have the
proper context for compression.) If t′ > R then grammars G′a1 , . . . , G

′a
t′−R become definite and we will

commit each of them to the CKP-match algorithm as explained further. We will commit them in order
G′a1 , . . . , G

′a
t′−R. The remaining grammars G′at′−R+1, . . . , G

′a
t′ are relabelled as Ga

1, . . . , G
a
t and become the

active grammars for the addition of the next symbol.
At this point our algorithm can output the minimal possible edit distance of the pattern to any suffix of

the text received up-to this point. We explain below how such query is calculated.

Committing a grammar. When a grammar G becomes definite the algorithm commits the grammar as
follows. Thus far, grammars G1, . . . , Gs were committed and the sequence of values m1, . . . ,ms was
calculated. We set Gs+1 = G, calculate encoding Enc(Gs+1) and send the encoding symbol by symbol to
our CKP-match algorithm. At this point we can calculate ms+1 using the mismatch information provided
by our CKP-match algorithm. If s + 1 < r − R then we set ms+1 to∞ otherwise we continue as follows
to calculate ms+1.

We query our CKP-match algorithm for the Hamming distance between encoding ofGP
1 , . . . , G

P
r−R (the

pattern to the CKP-match algorithm) and the encoding of GT
s−r+R+2, G

T
s−r+R+3, . . . , G

T
s+1 (the current

suffix of the text of the CKP-match algorithm). If the Hamming distance is less than K = k ·M , then we let
the CKP-match algorithm to recover the mismatch information. By the design of the encoding function, if
two grammars differ then their encodings differ in all M positions (unless the encoding function Enc fails
which happens only with negligible probability.) Hence, the mismatch information consists of encoding of
up-to k pairs of grammars, with their indexes relative to the pattern. Thus, from the mismatch information
we recover pairs of grammars (G1, G

′
1), . . . , (Gk′ , G

′
k′), for some k′ ≤ k where Gi come from the text and

G′i come from the pattern.
If (G1, G

′
1) is not the very first grammar pair (GT

s−r+R+2, G
P
1 ) (which we recognize by their index in

the mismatch information) then we compute the edit distance for each pair of strings eval(Gi) and eval(G′i),
i = 1, . . . , k′. We set ms+1 to be the sum of those distances.

If (G1, G
′
1) is the pair (GT

s−R+2, G
P
1 ) then we apply the algorithm from Corollary 2.2 to calculate the

minimal edit distance between any suffix of eval(G1) and the string eval(G′1). For i = 2, . . . , k′, we
compute the edit distance of eval(Gi) and eval(G′i). We set ms+1 to be the sum of the k′ calculated values.

However, if the CKP-match algorithm declares that the Hamming distance of its pattern to its current
suffix is more than K, we set ms+1 =∞.

Finally, we discard Gs−r+R from the buffer of the last R committed grammars, and we discard ms−R+2

from the buffer of values mi. We set s to be s+ 1. This finishes the process of committing a single grammar
G, and a next grammar might be committed.

Pattern edit distance query. After we process the arrival of a new symbol, update the active grammars
as described above and commit grammars as necessary, the algorithm is ready to answer the edit distance
query on the current suffix of the text T and the pattern P . At this point grammars GT

1 , . . . , G
T
s were

already committed to the CKP-match algorithm. There are current active grammarsGa
1, . . . , G

a
t which were

not committed to the CKP-match algorithm, and there areR grammarsGP
r−R+1, . . . , G

P
r of the input pattern

that were not committed to the CKP-match algorithm as part of its pattern. To answer the edit distance query
we will compare the edit distance of those last R grammars of pattern P with the last grammars of the text,
and we will combine this with a certain value mi, namely ms−R+t.
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Let d = R − t. If d > 0, for i = 1, . . . , d compute the edit distance of each pair eval(GT
s−d+i) and

eval(GP
r−R+i). (Each grammar GT

s−d+i is available in the buffer of the last R committed grammars.) For
i = d+1, . . . , R, compute the edit distance of each pair eval(Ga

i−d) and eval(GP
r−R+i). Sum thoseR values

together with ms−d. If the sum is less than k output it, otherwise output∞.
Since we are running O(log n) independent copies of our algorithm, each of the copies produces an

estimate on the edit distance and we output the smallest estimate. That is the correct value with high
probability.

6 Correctness of the algorithm

In this section we argue that the algorithm produces a correct output. First we analyze the probability
of certain bad events happening when the algorithm fails and then we argue the correctness of the output
assuming none of the bad events happens. There are several sources of failure in our algorithm.

1. The BK-decomposition algorithm might produce a decomposition of either the pattern or some suffix
of the text with a grammar that is too big or with grammars that do not represent expected strings. (A
failure of Proposition 3.1.)

2. The BK-decomposition algorithm produces a correct decomposition of the pattern and all suffixes of
the text but grammars of some suffix of the text T and the pattern P do not align well. (A failure of
Proposition 3.2.)

3. The encoding function Enc fails for some pair of grammars produced by the BK-decomposition al-
gorithm that the CKP-match algorithm is supposed to compare. (A failure of Proposition 3.5.)

4. BK-decomposition algorithm does not fail but the CKP-match algorithm fails to identify aK-mismatch
occurrence of its pattern or fails to produce correct mismatch information. (A failure of Proposi-
tion 3.6.)

The failure probability of events 1), 3) and 4) will be each bounded by inverse polynomial in n, where
n is the parameter sent to those algorithms as an upper bound on the length of the processed strings. Thus,
if we expect our algorithm to process a text and a pattern of size at most N , we can set the parameter n for
the BK-decomposition algorithm to be N4 and for the CKP-algorithm to be N4 ·M = Õ(N5), where M is
calculated from n = N4 and k of the BK-decomposition algorithm. (Parameter k for the BK-decomposition
algorithm is set to k, and for the CKP-algorithm to K = k ·M = Õ(k2).) We will run 2 logN independent
copies of our algorithm on the same text and pattern. Next we calculate the probability of failure in case 1),
3) and 4) in a particular copy of the algorithm.

Event 1. There is one pattern P of length at most N , the probability of either of the two conditions in
Proposition 3.1 failing on P is at most 4/

√
n = 4/N2. The probability of failure of Proposition 3.1 on any

the at most N prefixes of the text T is at most N · 4/
√
n = 4/N . Thus the probability of the bad event 1)

happening is at most 4/N + 4/N2.

Event 3. There are at most N grammars of the pattern encoded by Enc and there are at most N grammars
of the text encoded by Enc and committed. Thus there are at most N2 pairs of grammars on which Proposi-
tion 3.5 could fail by encoding two distinct grammars by strings of Hamming distance less than M (failure
in the third part of Proposition 3.5). Given our setting of parameters, the probability of the bad event 3)
happening is at most N2/n = 1/N2.
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Event 4. The probability that the CKP-match algorithm fails during its execution is at most 1/n = 1/N4.

Thus, the probability of a failure of 1), 3) or 4) is at most 5/N , for N large enough. We run 2 logN copies
of the algorithm so the probability that any of the copies fails because of events 1), 3), or 4) is at most
10 logN/N .

If none of the events 1), 3) and 4) occurs during the execution of the algorithm then the pattern and the
text are correctly decomposed into grammars by the BK-decomposition, the grammars are properly encoded
by Enc, and the CKP-match algorithm correctly identifies all the occurrences of the pattern grammars in the
committed text grammars, and for each of the occurrences we correctly recover the differing pairs of pattern
and text grammars. Assuming this happens, we want to argue that with a high probability our algorithm will
correctly identify k-edit occurrences of the pattern P in the text T .

After receiving a prefix of the text T [1, `], ` ≤ N , we want to determine whether some suffix of T [1, `]
has edit distance at most k from the pattern P . Let a be such that T [a, `] has the minimal distance from P .
Clearly, if the edit distance between T [a, `] and P is at most k then a ∈ {`−|P |−k+1, . . . , `−|P |+k+1}.
By Proposition 3.2 applied on u = T [1, a − 1], x = T [a, `] and y = P , each of the 2 logN copies of our
algorithm has probability at least 4/5 that the grammars of T are well aligned with grammars of P . Being
well aligned means that T [a, `] is a suffix of eval(GT

s−r+t+1, . . . , G
T
s , G

a
1, . . . , G

a
t ) and

ED(T [a, `], P ) = ED(eval(GT
s−r+t+1)[b, . . . ], eval(GP

1 ))

+
r−t∑
i=2

ED(eval(GT
s−r+t+i), eval(GP

i ))

+
r∑

i=r−t+1

ED(eval(Ga
i−r+t), eval(GP

i )),

for appropriate b. Moreover, the minimality of a implies that

ED(T [a, `], P ) = min
b

ED(eval(GT
s−r+t+1)[b, . . . ], eval(GP

1 ))

+

r−t∑
i=2

ED(eval(GT
s−r+t+i), eval(GP

i ))

+

r∑
i=r−t+1

ED(eval(Ga
i−r+t), eval(GP

i )).

Notice, regardless of whether Proposition 3.2 fails or not, the right-hand-side of the last equation is always
at least ED(T [a, `], P ) since it is an upper-bound on the true edit distance of P to some suffix of T . We will
argue that each copy of the algorithm outputs the right-hand-side value of that equation if it has value at most
k, and∞ otherwise. Moreover, if at least one of the copies of our algorithm has T [a, `] and P well aligned,
then the minimum among the values output by the different copies of our algorithm is ED(T [a, `], P ).

Since we have 2 logN copies of the algorithm, the probability that none of the decompositions aligns
T [a, `] and P well is at most (1/5)2 logN < 1/N4. This upper-bounds the probability of error of outputting
a wrong value of minb ED(T [b, `], P ) after receiving ` symbols of the text. As there will be at most N
distinct values of `, the probability of outputting a wrong estimate of the edit distance of P to some suffix of
T is at most N · 1/N4 = 1/N3, conditioned on none of the bad events 1), 3) or 4) happening. Overall, the
probability of a failure of our algorithm is at most O(logN/N) ≤ 1/

√
N , for N large enough, and it could

be made an arbitrary small polynomial in N by choosing the parameters differently (n vs N ).
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It remains to argue that the copy of our algorithm which aligns T [a, `] and P well, outputs their edit
distance. Consider the copy of the algorithm that aligns grammars of T [a, `] and P well. After arrival of
the symbol T [`] and updating the grammars, there are active grammars Ga

1, . . . , G
a
t , committed grammars

GT
1 , . . . , G

T
s and the pattern grammars GP

1 , . . . , G
P
r . If ED(T [a, `], P ) is at most k then the number of

grammars in which P differs from the last r grammars of T is at most k. Thus the CKP-match algorithm
can identify the differing grammars when computing the value ms−R+t which is set to

ms−R+t = min
b

ED(eval(GT
s−r+t+1)[b, . . . ], eval(GP

1 ))

+
r−R∑
i=2

ED(eval(GT
s−r+t+i), eval(GP

i )).

Since, ms−R+t ≤ ED(T [a, `], P ) ≤ k, we have the true value of ms−R+t. Thus,

ED(T [a, `], P ) = ms−R+t

+

r−t∑
i=r−R+1

ED(eval(GT
s−r+t+i), eval(GP

i ))

+
r∑

i=r−t+1

ED(eval(Ga
i−r+t), eval(GP

i )).

That is precisely how we evaluate the edit distance query of our algorithm.
If ED(T [a, `], P ) > k then we will output a value > k as we output some upper bound on the edit

distance. Any value > k is treated as the infinity.

7 Time complexity of the algorithm

In the first phase, we incrementally construct the grammars for the pattern P , using the BK-decomposition
algorithm from Proposition 3.4 on each symbol of P at a time. Updating the active grammars for each
new symbol takes Õ(k) time, committing each of the possible Õ(1) definite grammars to the CKP-match
algorithm takes Õ(M ·

√
K) = Õ(k2). Thus the time needed per arriving symbol of the pattern is Õ(k2).

For each symbol of the text that arrives during the second phase of the algorithm we need to update the
active grammars of the text, update ms, and evaluate the edit distance of the pattern from the current suffix
of text. This includes parts Symbol arrival, Committing a grammar and Pattern edit distance query of the
algorithm.

Symbol arrival. Appending a symbol using the BK-decomposition algorithm from Proposition 3.4 takes
Õ(k) time.

Committing a grammar. Encoding the grammar takes O(M) time using the algorithm from Proposi-
tion 3.5, and committing it to the CKP-match algorithm takes time Õ(k2), as in the pattern case.

Querying the CKP-match algorithm for Hamming distance K takes O(K) = Õ(k2) time. This recovers
at most k pairs of distinct grammars (Gi, G

′
i), 1 ≤ i ≤ k. Computing edit distance ki of each pair of strings

eval(Gi) and eval(G
′
i), takes Õ(S + k2i ) = Õ(k + k2i ) time using Proposition 2.1. If

∑
i ki ≤ k, the total

time for the edit distance computation is bounded by Õ(k2). If the computation runs for longer we can stop
it as we know ms is larger than k. Running the algorithm from Corollary 2.2 on the first pair of distinct
grammars to compute the minimum edit distance between any suffix of eval(G1) and the string eval(G

′
1)
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takes Õ(S + k2) time. Thus committing a grammar takes time at most Õ(k2) where the longest time takes
the minimization algorithm on the first pair of grammars.

Pattern edit distance query. This step requires the alignment of the last R grammars of the pattern with
the appropriate grammars of the text and computing their edit distances. Using Proposition 2.1, computing
edit distances of R pairs of grammars takes R× Õ(k2) = Õ(k2) time.

As there are at most Õ(1) committed grammars after processing each new symbol, the total time of this
step is Õ(k2) per arriving symbol.

8 Space complexity of the algorithm

During either phase of the algorithm, we store O(RL) = Õ(1) active and updated grammars and buffer last
O(R) committed grammars. This requires space Õ(k). Furthermore, the CKP-match algorithm requires
Õ(K) = Õ(k2) space. The edit distance algorithm of Proposition 2.1 cannot use more space than its
running time so each invocation uses at most Õ(k2) space. Similarly, Corollary 2.2 uses space Õ(k2). Thus
our algorithm uses space at most Õ(k2) at any point during its computation.
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