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Abstract

We consider the problem of obtaining approximation algorithms for standard edit distance
and Dyck edit distance that are simple, deterministic and fast, but whose approximation factor
may be high. For the standard edit distance of two strings, we introduce a class of simple and
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this class that achieves an O(d) approximation on inputs x, y whose edit distance is O(d). In this
paper, we (1) present a deterministic algorithm in this class that achieves similar performance
and (2) prove that no algorithm (even randomized) in this class can give a better approximation
factor. For the Dyck edit distance problem, Saha gave a randomized reduction from Dyck edit
distance to standard two string edit distance at a cost of a O(log d) factor where d is the Dyck
edit distance. We give a deterministic reduction whose description and proof are very simple.
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1 Introduction

1.1 Background

Edit distance is a measure of similarity of strings. The edit distance of two strings x and y is the
minimum number of insertions, deletions and substitutions one has to perform on x to obtain y.
This has many applications, from text-processing to bio-informatics.

The classical dynamic programming algorithm to compute edit distance of two strings of length
n runs in time O(n2) [34] and despite much e�ort there has been only limited success in improving
its running time [24, 30]. Indeed, it has been shown that improving its running time substantially
would contradict the Strong Exponential Time Hypothesis (SETH) [2, 4, 9, 19]. Hence, there is
considerable interest in designing faster algorithms for approximating the edit distance [1, 6, 8, 11�
13,28]. Recently, there has been major progress in that regard [5,7,15�17,20,27] leading to a constant
factor approximation algorithm for edit distance running in time O(n1+ϵ) for any �xed ϵ > 0 [7].
Despite its near perfect asymptotic running time its inherent complexity renders it impractical. On
top of that the approximation factor grows doubly-exponential with 1/ϵ. For practical purposes
much simpler algorithms would be needed.

A very simple algorithm for approximating edit distance was designed by Saha [31] (and used
as an ingredient to obtain fast approximation algorithms to the Dyck edit distance problem; more
on this problem below). Saha's algorithm matches symbols from x and y greedily from left to right
and whenever it encounters a mismatch, �ips a coin to choose which of the two mismatched symbols
to delete. The number of deleted symbols is obviously an upper bound on the edit distance d, and
it can be shown that with high probability, the number of deleted symbols is O(d2). While this is
a rather weak approximation, for small values of d it provides a reasonably good estimate.

A process similar to Saha's algorithm was implicitly used in randomized embeddings of edit
distance into Hamming distance of Chakraborty et al. [21]. This embedding has distortion d with
good probability and its analysis boils down to the same random walk process on a line as Saha's
algorithm. The embedding on Chakraborty et al. serves also as a basis for sketching edit distance
with best sketches of size O(d3) [14, 25]. The sketch size is directly related to the distortion of the
embedding. Practicality of the embedding was also explored for computing the join operation [35].
There are further uses of the process with applications for sublinear-time algorithms [26].

Saha's algorithm can be placed in the framework of single pass algorithms. We make a single
pass through each string, maintaining a pointer to a "current symbol" in each. At each step we
compare the current symbols. If they match then advance both pointers. If they don't match then
select one of the symbols to delete and advance that pointer. In Saha's algorithm, the selection
decisions are made uniformly at random with no memory of the previous process, but one could
allow the selection decision to depend on some past information.

This leads to two fundamental questions: (1) Can Saha's process be derandomized: is there a
deterministic selection rule that achieves a similar approximation? and (2) Are there selection rules
(deterministic or randomized) that can give a better approximation? In this paper, we provide a
positive answer to the �rst question and a partial negative answer to the second.

1.2 Our results

This paper has three main results.
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A simple deterministic single pass algorithm with O(d)-approximation factor. In
Section 5 we provide a simple deterministic rule which determines which mismatching symbol to
remove to obtain an O(d)-factor estimate of the edit distance. The rule depends on the past in
a very simple way: the choice of which symbol to delete depends only on the number of symbols
deleted so far. We call such a rule an basic selection rule. Single pass algorithms with basic selection
rule can be implemented to run in O(log n) space.

Limits on approximation quality of single pass algorithms. One might speculate that
a di�erent randomized rule could provide a better approximation factor. For example consider a
process where we pick a random positive integer i with probability O(1/i log2 i), and then during
next i mismatches we remove the mismatching symbols all either from x or from y. Such a process
seems to do well when the mismatches are located near each other in the strings. This rule is an
example of a randomized basic selection rule, i.e., for each choice of the random coins, the selection
decision only depends on the number of deletions done previously. In Section 6 we show that
no randomized basic selection rule can give approximation factor better than Ω(d), making our
deterministic procedure essentially optimal. We do not know whether a selection rule that depends
on more than the number of previous deletions can do better.

A simple deterministic reduction from Dyck edit distance approximation to stan-

dard edit distance approximation. We also consider the more general problem of approximating
Dyck edit distance. The Dyck language is the language over strings of left and right parentheses, con-
sisting of those strings that can be reduced to the empty string by repeatedly removing a matching
pair consisting of a left parenthesis followed immediately by a right parenthesis. In the generalized
Dyck language there are multiple types of left and right parentheses and a matching pair consists
of a left parenthesis followed by a right parenthesis of the same type. The Dyck edit distance prob-
lem is to determine the minimum number of symbol insertions, deletions or substitutions to put the
string of typed parentheses in the generalized Dyck language. This is an important problem for error
recovery in parsing structured texts and for other applications. It is a generalization of the standard
edit distance of two strings; there is an equivalence between the edit distance of two strings, and
Dyck edit distance of LR-strings, which are strings consisting of a single block of left parentheses
followed by a single block of right parentheses. Saha [31] found an e�cient reduction from Dyck
edit distance to edit distance, but the reduction and its proof are quite involved. One ingredient
in the reduction is the greedy randomized algorithm for ordinary edit distance mentioned earlier.
We originally attempted to make the reduction deterministic by replacing the greedy randomized
algorithm by our deterministic alternative. In doing this, we realized that there was a further sim-
pli�cation that avoids using either of these algorithms, and yields a deterministic reduction that
has similar (slightly better) time and approximation performance to Saha's and is both very simple
and has a very simple proof. This is presented in Section 7.

Our deterministic reduction can be combined with our deterministic approximation algorithm
for the ordinary edit distance to give a deterministic linear-time approximation algorithm for Dyck
edit distance whose approximation factor can be expressed as O(d log d) or O(

√
n log(n)).

2 Related work

Edit distance can be computed exactly in time O(n2) using dynamic programming [34]. In close to
50 years this was improved only slightly: Masek and Paterson [30] gave O(n2/ log n) time algorithm,
and the current asymptotically fastest algorithm by Grabowski [24] runs in timeO(n2 log log n/ log2 n).
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Landau et el. [28] gave an algorithm that on strings of edit distance d runs in time O(n + d2); for
large d this is again quadratic. There is an indication that the running time cannot be improved
substantially: Backurs and Indyk [9] showed that an algorithm for edit distance running in time
O(n2−δ) for some δ > 0 would contradict the Strong Exponential Time Hypothesis (SETH). Ab-
boud et al. [4] showed that even shaving an arbitrarily large polylog factor from n2 would have the
plausible, but apparently hard-to-prove, consequence that NEXP does not have non-uniform NC1

circuits. Further obstacles for progress are shown in [2, 19].
In the past two decades there has been a lot of progress in designing fast approximation algo-

rithms. An
√
n-approximation algorithm for edit distance running in linear time can be directly

obtained from the O(n + d2)-time algorithm of Landau et el. [28]. However, this algorithm relies
on longest common extension queries which require large space and sophisticated data structures to
implement them e�ciently. Bar-Yossef et al. [11] improved the approximation factor to n3/7 using
an algorithm running in quasi-linear time. Subsequently Batu et al. [13] designed quasi-linear time
algorithm with approximation factor n1/3+o(1) which was further improved by Andoni and Onak to

2Õ(
√
logn) in near-linear time [8], and to (log n)O(1/ϵ), for every ϵ > 0 where the algorithm runs in n1+ϵ

time [6]. Eventually, in the past �ve years, there was a sequence of works culminating in constant-
factor approximation randomized algorithm running in near-linear time n1+ϵ [5, 7, 15�17, 20, 27].
All these algorithms are quite involved and all of them use space at least nΩ(1). Previous to this
paper, the only small space algorithm for approximating edit distance that we are aware of is the
randomized algorithm of Saha described in the introduction, which uses logarithmic space and gives√
n-approximation.
Prior to our work there was no nontrivial deterministic polynomial-time algorithm for approxi-

mating edit distance using sub-polynomial space.
For Dyck edit distance, the dynamic programming algorithm takes time O(n3). Using fast

matrix multiplication Bringmann et al. [18] solved the exact Dyck edit distance in sub-cubic time
O(n2.824). Abboud et al. [3, 29, 32] show that algorithms for Dyck edit distance running in time
faster than matrix multiplication time O(nω) imply surprising algorithms for the k-Clique problem.
Using fast matrix multiplication Saha [32] designed (1 + ϵ)-approximation algorithm for Dyck edit
distance running in time O(nω). Recently, the running time was improved to O(n2) by Das et
al. [22] using the recent techniques for the ordinary edit distance. Using those techniques, Das et
al. also obtains O(1)-approximation algorithm for Dyck edit distance running in time O(n1.971).

Furthermore, for any k > 1, Saha [33] gives O(n2k)-time approximation algorithm for Dyck edit
distance with additive approximation O(n/k). Similarly to the algorithm of Landau et el., there are
algorithms for Dyck edit distance d running in time O(n+ d4.78) [10, 22,23].

In combination with the state of the art ordinary edit distance algorithms, Saha's [31] reduction
of Dyck edit distance to ordinary edit distance gives randomized O(log n)-approximation algorithm
for Dyck edit distance running in time O(n1+ϵ).

Given the complexity involved in any of these algorithms save Saha's reduction, it would be a
stretch to call any of them practical. Our simple deterministic reduction for Dyck edit distance
combined with our simple deterministic algorithm for ordinary edit distance could be considered
practical; the only drawback is its approximation factor O(d log d). For some applications this could
be acceptable.
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3 Basic de�nitions

Let Σ be a �xed alphabet. For x ∈ Σ∗ (the set of �nite strings over Σ), the length of x is denoted
|x|, and the index set of x, denoted INDx, is {1, . . . , |x|}. For i ∈ INDx, x[i] denotes the symbol
in position i. We frequently will be considering two strings x, y at the same time and we want to
treat i as an x-index as distinct from i as a y-index. When there is ambiguity we will write ix or iy
to indicate which string is being indexed. Similarly, for a subset A of integers we write Ax to mean
that A is viewed as a subset of INDx.

We put the usual product order on INDx × INDy: (i, j) ≤ (i′, j′) if i ≤ i′ and j ≤ j′; and
(i, j) < (i′, j′) if (i, j) ≤ (i′, j′) and (i, j) ̸= (i′, j′). We also write (i, j)≪ (i′, j′) if i < i′ and j < j′.
We refer to elements of INDx × INDy as index pairs or simply pairs.

There are di�erent variations on the notion of edit distance of two strings. In the most common
version, the edit distance of x, y is the minimum number of insertions, deletion, or substitutions
needed to transform one of the strings to the other. (This quantity is symmetric.) For our purposes
we deal with a variant where only deletions are allowed, and symbols may be deleted from either
string, with the goal of making the two strings the same. Throughout this paper edit(x, y) refers to
this variant. It is well known, and easy to show that this variant is bounded between the usual edit
distance and twice the usual edit distance. Since we are interested in weak approximations (whose
approximation factor is a large constant or super-constant) the factor 2 is not important and all our
results apply to the more common variant up to this factor of 2.

An index pair (i, j) is a matched pair if x[i] = y[j]. An ordered matching is a set M of matched
pairs that can be ordered as (i1, j1), . . . , (ik, jk) such that (i1, j1)≪ · · · ≪ (ik, jk).

An x-index (resp. y-index) is unmatched in M if it is not the �rst (resp. second) coordinate of
any pair of M . Note that by deleting the unmatched symbols we make the two strings the same.
The edit distance (with respect to deletions in both strings), denoted edit(x, y) is the minimum
number of unmatched x-indices and y-indices in any ordered matching.

4 Single pass algorithms for ordered matchings

We introduce a class of simple algorithms, called single pass algorithms, for �nding an ordered
matching of two input strings x, y. For such algorithms, we imagine the two strings being presented
to us from left to right one symbol at a time, and we build an ordered matching one pair at a time.
The state of the algorithm is given by a pair current = (currentx, currenty) of an x-index and a
y-index. Initially current = (1, 1). The algorithm proceeds through a sequence of steps. In each
step it processes the pair current. If x[currentx] = y[currenty] then current is added to the
matching and both currentx and currenty are increased by one. (This is called a match step.)
Otherwise the step is a mismatch step, and the algorithm must make a choice s which is either x or
y. A mismatch step is said to be an x-step or a y-step depending on the string selected. Choosing
string s means that the algorithm decides to leave currents of string s unmatched and increases
the index currents by 1.

The algorithm keeps track of the total number of mismatch steps (and possibly other infor-
mation). Prior to each step, the algorithm has committed to an ordered matching M from the
set {1, . . . , currentx − 1} × {1, . . . , currenty − 1} and also committed to leaving any x-index in
{1, . . . , currentx − 1} \Mx unmatched and any y-index in {1, . . . , currenty − 1} \My unmatched.
Notice that the number of indices declared unmatched is equal to the number of mismatches prior
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to the current step.
The algorithm terminates when currentx reaches 1 + |x| or currenty reaches 1 + |y|. Upon

termination, we say the indices in {currentx, . . . , |x|x} and {currenty, . . . , |y|x} are unprocessed.
(One of these sets is empty.) All unprocessed indices are unmatched and there are (|y| + 1 −
|currenty|)+(|x|+1−currentx) of them. The output of the algorithm is the number of mismatch
steps plus the number of unprocessed indices.

To fully specify the algorithm requires a selection rule which determines the choice of x or y for
each mismatch step. In general, the selection rule may depend on the entire prior history of the
algorithm. We are especially interested in selection rules called basic selection rules whose choice
depends only on the number of mismatches seen so far. A basic selection rule is thus speci�ed by
a string σ with entries from {x, y}, where the choice for the u-th mismatch is given by σ[u]. Here,
x and y are symbols that refer to the strings x and y, respectively. The deterministic single pass
algorithm with selection rule σ is denoted Aσ. Algorithm 1 provides pseudo-code for a deterministc
single pass algorithm with the selection rule γ. Except for the speci�c choice of the selection rule,
the algorithm is the same for any single pass algorithm. The selection rule γ is the one that will be
used to establish Theorem 5.1.

To carry out the above procedure σ has to be long enough, depending on x and y. It su�ces
that σ contains at least |x| occurrences of x and at least |y| occurrences of y.

A randomized single pass algorithm is given by a randomized selection rule, which is a probability
distribution σ̃ over selection rules.

We denote the output of the algorithm with selection rule σ on inputs x, y by editσ(x, y). From
the de�nition of the algorithm, the output u counts the number of indices of x and y that are left
unmatched byM , and so editσ(x, y) is an upper bound on edit(x, y). It is not hard to show that for
every pair x, y there is a basic selection rule σ, depending on x, y, such that editσ(x, y) = edit(x, y).

We are interested in determining how well a �xed basic selection rule (possibly randomized) can
perform on all inputs x, y. Saha showed that the randomized selection rule ρ̃ in which each successive
mismatch step is selected independently to be x or y with probability 1/2 has the property that
with high probability editρ̃(x, y) = O(edit(x, y)2). In the next section we will give a deterministic
selection rule γ that achieves this same bound. On the other hand in Section 6 we show this is best
possible: for any (possibly randomized) selection rule σ̃ and any d there exists an input x, y with
edit(x, y) ≤ d such that with probability close to 1, editσ̃(x, y) = Ω(d2).

Let σ be a deterministic selection rule, and x and y be input strings. We introduce various
quantities that track the progress of the algorithm Aσ applied to x and y. These de�nitions will be
used for both our upper and lower bounds.

� c(h) = (cx(h), cy(h)) denotes the value of current at the beginning of step h of the algorithm.

� The o�set at step h is the quantity δ(h) = cx(h)− cy(h). We set δ(0) = 0.

� Let u(h) be the number of mismatch steps through the end of step h.

� Let ux(h) (resp. uy(h)) be the number of x-steps (resp. y-steps) through the end of step h.
Set ux(0) = uy(0) = 0. Obviously u(h) = ux(h) + uy(h).

� Let ∆σ(w) be the number of x entries minus the number of y entries in positions {1, . . . , w}
of σ. Set ∆σ(0) to 0.

Proposition 4.1. For any step h we have δ(h) = ux(h− 1)− uy(h− 1) = ∆σ(u(h− 1)).
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ALGORITHM 1: editγ(x, y)

Input: Strings x, y.
Output: editγ(x, y).

Set γ = xyyyxxxxxyyyyyyy · · · x4i−3y4i−1 · · · ;
Initialization: currentx = 1, currenty = 1, u = 0 ;
while currentx < 1 + |x| and currenty < 1 + |y| do

if x[currentx] = y[currenty] then
currentx = currentx + 1 and currenty = currenty + 1 ;

end

else
u = u+ 1 ;
if γ[u] = x then currentx = currentx + 1 ;
else currenty = currenty + 1 ;

end

end

Output u+ |x| − currentx + |y| − currenty + 2.

Proof. Letting M(h) denote the matching selected during the �rst h steps, we have cx(h) = |M(h−
1)| + ux(h − 1) and cy(h) = |M(h − 1)| + uy(h − 1), so the �rst equality follows. For the second
equality we note that ux(h − 1) (resp. uy(h − 1)) is equal to the number of x's (resp. y's) up to
position u(h− 1) in σ.

5 A deterministic basic selection rule giving a quadratic approxi-

mation

As mentioned earlier, Saha showed that a uniformly random selection rule ρ̃ on input x, y with
edit(x, y) = d has editρ̃(x, y) = O(d2) with high probability. In this section we attain the same
performance with a basic deterministic selection rule. De�ne the selection rule γ to consist of
alternating blocks of x's and y's, where the j-th block has length 2j − 1 and is an x-block if j is
odd and a y-block if j is even. (See Algorithm 1.) De�ne block j of γ to be the set of indices
corresponding to the j-th block.

The main result of this section is:

Theorem 5.1. On any input x, y, editγ(x, y) is at most edit(x, y)2 + 4 · edit(x, y).

We provide some intuition behind our algorithm, making some simplifying assumptions to avoid
technical complications.

Our goal is to show that Aγ outputs an estimate O(d2) on inputs x and y of edit distance d.
Let M∗ be an optimal matching between x and y. The algorithm doesn't know M∗ but the goal is
to have the algorithm follow M∗ as much as possible. We think of d as �small� since if d is larger
than

√
n we don't care what Aγ does. Since d is small, the picture of M∗ is that it consists mostly

of long perfect runs of consecutive matched pairs. Within each run, all of the matched pairs have
the same o�set, where the o�set is the x-index minus the y-index.

If the algorithm manages to synchronize with M∗ (so that (currentx, currenty) ∈M∗) then it
will stay synchronized as long as the current perfect run continues. When the current perfect run
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ends, the algorithm and M∗ may become unsynchronized, but M∗ will have at least one unmatched
index at the end of that run. Our goal is to show that the algorithm doesn't encounter too many
mismatches before becoming synchronized again. What we are aiming for (roughly) is that the j-th
time that the algorithm becomes unsynchronized from M∗, it will require at most O(j) mismatch
steps to resynchronize. Thus, after becoming unsynchronized for the j-th time, the algorithm has
had O(j2) mismatch steps while M∗ has at least j unmatched indices.

The blocks of γ are designed to attain this synchronization. The j-th block consists of 2j − 1
x's or y's. We refer to the portion of the algorithm where the j-th block of γ is being used as phase
j. The goal (roughly) is that for each phase, the algorithm should become synchronized with M∗

sometime during the phase, or if not, it is because M∗ already has a total of at least j unmatched
indices among the indices visited by the algorithm through the end of phase j. Thus after phase j,
the algorithm has had j2 mismatch steps, and M∗ will have had at least j mismatches.

As mentioned, in the �typical� situation we expect M∗ to consist of relatively few long perfect
runs of matched edges all having the same o�set. Consider a perfect run that includes the x- or
y-index at the beginning of phase j and let i be the common o�set of the pairs in the run. If |i| ≥ j
then there must already be at least j unmatched indices of M∗ before the perfect run starts. So
assume i ∈ [1− j, j − 1]. The de�nition of γ ensures that for odd j the o�set currentx− currenty
during phase j climbs from 1− j to j−1, and for even j, the o�set falls from j−1 to 1− j. In either
case, at some point during the phase the o�set will be i and the algorithm will be synchronized with
M∗.

The above sketch is based on the picture of M∗ as consisting of a small number of long �perfect
runs�, which is an oversimpli�cation. The actual argument requires some careful considerations and
is presented in Section 8.

5.1 Some remarks on derandomizing applications of the random single pass

algorithm.

The deterministic algorithm presented above has similar approximation guarantees for edit distance
as Saha's random single pass algorithm. In the introduction, it was mentioned that Saha's algorithm
appears as an ingredient in some other applications related to edit distance. One might hope that
by replacing Saha's algorithm by the above deterministic algorithm these applications could be
derandomized, but this does not seem to be the case.

For example, Kociumaka and Saha [26] gave a sublinear time approximation algorithm which for
a parameter p ∈ [1, d] gives an O(dp)-factor approximation to edit distance in time O(n/p). Their
algorithm generalizes Saha's algorithm as follows: For a parameter p < d, their algorithm proceeds
similarly to our simple one pass algorithms: it moves pointers in strings x and y from left to right
but instead of moving them by one step at a time, at each time step it picks a random jump of
expected length O(p) and moves them by this amount. Additionally if there is a mismatch then
it selects one of the pointers at random and advances the pointer by one. Hence, the algorithm
runs in expected time O(n/p) and provides O(dp)-approximation to edit distance. The algorithm
makes random choices in two places: to select the length of the jump and to select which pointer to
advance on a mismatch. One could use our selection rule (the string γ) to chose which pointer to
advance on a mismatch to partially derandomize the algorithm. However, the other randomness is
essential as there cannot be any deterministic sublinear time algorithm for edit distance (not even
for testing string identity).

One application of the random single pass algorithm that was mentioned in the introduction
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was the randomized reduction of Dyck edit distance to standard edit distance. It turns out that
this reduction can be derandomized using our deterministic single pass algorithm. But in working
out the details we found a signi�cant simpli�cation of the reduction that eliminates the need for
either the randomized or deterministic single pass algorithm. This will be presented in Section 7.

6 Limits on the approximation quality of basic selection rules

In Section 5 we gave a basic selection rule that gives a quadratic approximation to edit distance.
Earlier, Saha showed that the uniform random selection rule gives a quadratic approximation with
high probability. In this section we show that no (possibly randomized) basic selection rule can do
better than a quadratic approximation.

Theorem 6.1. For any (possibly randomized) selection rule σ̃, for any d ≥ 1, for any ϵ > 0 there
is a pair of strings x, y with edit(x, y) ≤ 6d such that:

Pr[editσ̃(x, y) ≤ ϵd2] < ϵ.

The proof will follow some preliminaries. Let d be given and de�ne:

� n = 2d2

� Σ be the alphabet consisting of n+ 2d+ 2 letters, {c−d, c−d+1, . . . , c0, . . . , cn+d, c}.

� x is the string obtained from the string c1, . . . , cn by replacing all of the symbols cjd by c for
j ∈ {1, . . . , 2d}.

� For each i ∈ [−d, d], yi is the string c1+ic2+i · · · cn+i.

Clearly edit(x, yi) ∈ [4d, 6d] for each i. We will prove:

Lemma 6.2. Let σ be a deterministic selection rule. For q ≤ d, let Iq = {i ∈ [−d, d] : editσ(x, yi) <
qd}. Then |Iq| ≤ q + 1.

The proof will make use of notation and Proposition 4.1 from Section 4.
For each integer i ∈ [−d, . . . , d] de�ne Li = {w ≥ 0 : ∆σ(w) = i}. Clearly the sets Li are

pairwise disjoint. For i ∈ [−d, d] let Ni = Li ∩ {0, . . . , ⌈qd⌉ − 1}.

Lemma 6.3. For i ∈ Iq, we have |Ni| ≥ d.

Proof. Fix i ∈ Iq and consider the execution of Aσ on (x, yi). Divide the string x into blocks
x1, x2, . . . , x2d where each block has length d. Each block ends with the symbol c.

Let S be the set of steps of Aσ(x, yi) that �nd a match. Since all matching pairs of indices for x
and yi are of the form (j + i, j) for some j, for any h ∈ S we have cx(h) = cy(h) + i thus δ(h) = i.
By Proposition 4.1 we have ∆σ(u(h−1)) = i, and thus u(h−1) ∈ Ni, where u(h−1) is the number
of mismatches found through the end of step h− 1.

Call a block of x good if the run of Aσ(x, y) matches at least one symbol in the block and bad
otherwise. Since editσ(x, yi) < qd ≤ d2 there are at least d good blocks j1 < · · · < jd. For 1 ≤ s ≤ d
let hs be the �rst step of the algorithm that �nds a match in block js. By the previous paragraph
we have u(hs − 1) ∈ Ni for each s. But we also have u(h1 − 1) < u(h2 − 1) < · · ·u(hd − 1) since
each block ends with a c which adds a mismatch. Therefore |Ni| ≥ d, as required.
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Proof of Lemma 6.2. From Lemma 6.3 we have

|Iq|d ≤
∑
i∈Iq

|Ni| ≤ ⌈qd⌉ ≤ (q + 1)d,

where the second inequality comes from the fact that Ni are disjoint subsets of {0, . . . , ⌈qd⌉ − 1}.
Therefore |Iq| ≤ q + 1.

Proof of Theorem 6.1. Fix ϵ > 0. If ϵ < 4/d then Pr[editσ̃(x, yi) < ϵd2] = 0 since ϵd2 < 4d ≤
edit(x, yi) and the output of any single pass algorithm is at least the edit distance. So assume
ϵ ≥ 4/d and let q = ϵd. Let Zi be the random variable that is 1 if editσ̃(x, yi) < ϵd2 and 0 otherwise,
and set pi = Pr[editσ̃(x, yi) < ϵd2] = Eσ̃[Zi]. Let Z =

∑d
i=−d Zi, and note that Lemma 6.2 implies

Z ≤ q + 1 and so q + 1 ≥ Eσ̃[Z] =
∑d

i=−d pi. Therefore there is an i such that pi ≤ q+1
2d+1 = ϵd+1

2d+1

and since ϵd ≥ 4 this is at most 2ϵd
2d+1 < ϵ.

We believe that it should be possible to make our lower bound work for the case of strings over
binary alphabets, possibly with a loss of log factors. Indeed, if x is a randomly chosen string then
any of its shifts by i symbols will have edit distance Ω(i). Flipping d well-spaced bits in each such
shift will give strings yi with properties similar to our strings x and yi. This would seem to require
non-trivial technical work to work out the details.

7 A simple and deterministic reduction from Dyck edit distance

approximation to edit distance approximation

Given any language L, the edit distance problem for L (with respect to insertions and deletions)
is: given a string x, what is the minimum number of symbol insertions and deletions that need to
be applied to x to put it in L. A well-studied case of this problem is the case where L is a Dyck
language; this is known as the Dyck edit distance problem.

The Dyck language is de�ned as follows. Let T be a �nite set and let L(T ) be the set of symbols
of the form (t for each t ∈ T (left parentheses) and R(T ) be the set of symbols of the form )t for
t ∈ T (right parentheses). Let T̂ be the set L(T )∪R(T ); as usual, T̂ ∗ is the set of �nite strings over
T̂ . For any t ∈ T , the ordered pair (t, )t is called a matched pair of parentheses. If x is a string in T̂ ∗,
a removable pair is a pair of consecutive entries that form a matched pair. The Dyck language D(T )
for T is the set of strings in T̂ ∗ that can be reduced to the empty string by successively removing
removable pairs. The Dyck edit distance editD(x) is the minimum number of symbol additions or
deletions that transform x to a string in D(T ). It is not hard to show that if editD(x) = k then x
can be transformed into a string in D(T ) by k deletions, that is, insertions are not needed.

The following equivalent formulation of Dyck edit distance will be more convenient. Given a
string x ∈ T̂ ∗, a non-crossing matching of x is a set of ordered pairs {(i1, j1), . . . , (ik, jk)} of distinct
indices from {1, . . . , |x|} such that (1) ih < jh for each h, (2) x[ih], x[jh] is a matched pair of
parentheses for each h, (3) There are no crossing pairs, where (ih, jh), (ir, jr) are said to cross if
ih ≤ ir ≤ jh ≤ jr or ir ≤ ih ≤ jr ≤ jh. The Dyck language is the set of strings that admit a non-
crossing perfect matching. The Dyck edit distance editD(x) is the minimum, over all non-crossing
matchings of x, of the number of unmatched indices. It is well known, and easy to verify, that the
two de�nitions of editD are the same.
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Say that a string of parentheses is an LR-string if no left parenthesis follows any right parenthe-
sis. An LR-string consists of a (possibly empty) string of left parentheses followed by a (possibly
empty) string of right parentheses. It is well known that the ordinary edit distance problem for a
pair of strings x, y is equivalent to the Dyck edit problem for LR strings under the following bijec-
tive correspondence: map a pair x, y in T ∗ to the string s(x, y) ∈ T̂ ∗ given by s(x, y) = L(x)R(←−y )
where L(x) is obtained by replacing each entry of x by the corresponding left parenthesis, ←−y is y in
reverse order, and R(←−y ) is obtained by replacing each entry of←−y by the corresponding right paren-
thesis. Furthermore, this reduction preserves approximations so that an approximation algorithm
for standard edit distance gives a similar approximation for Dyck edit distance for LR strings, and
vice versa.

Saha [31] gave a randomized reduction from the approximation of Dyck edit distance for a
general string x ∈ T̂ to the approximation of Dyck edit distance for LR-strings (or equivalently
to the approximation of standard (two string) edit distance). The reduction and its analysis are
rather involved. Here we present a much simpli�ed variation on Saha's reduction. The property
of the reduction is stated in Theorem 7.1 and Corollary 7.2. The asymptotic running time and
the approximation factor are similar to (and slightly better than) that obtained in [31], and the
reduction is deterministic rather than randomized. The main advantage is that both the algorithm
and analysis are extremely simple.

We need some additional de�nitions. A maximal LR-segment of a string x is an LR-string that
is a substring of x and can not be extended to a larger LR-substring. It is easy to see that the
maximal LR-segments give a partition of x into disjoint substrings, called the LR-decomposition
of x. Say that an LR-string is two-sided if it contains at least one left parenthesis and one right
parenthesis and is one-sided otherwise. Every segment in the LR-decomposition of x is two-sided
except possibly the �rst (which might have no left parentheses) and the last (which might have no
right parentheses).

We de�ne h(x), the LR-height of x, to be the number of two-sided segments in the LR-
decomposition of x. Thus height h(x) ≤ |x|/2.

Theorem 7.1. There is a deterministic algorithm that on input a string x ∈ T̂ ∗ runs in Õ(|x|)
time and outputs a collection C(x) of LR-strings satisfying

∑
z∈C(x) |z| = |x| such that:

P1. editD(x) ≤
∑

z∈C(x) editD(z)

P2. ∑
z∈C(x)

editD(z) ≤
{

editD(x), if h(x) = 0
(3 + 2 log h(x)) · editD(x) if h(x) ≥ 1

}

(Here and elsewhere in the section, all logarithms are base 2.)
This algorithm provides a reduction of the estimation of editD(x) to the estimation of editD(z)

for all z ∈ C(x). Since each such z is an LR-string, editD(z) is equivalent to an ordinary edit
distance computation.

Saha [31] observed that the quantity h(x) in the above bound can be replaced by editD(x). Let
x̄ be the string obtained from x by successively removing removable pairs until none remain. It is
easy to show that editD(x̄) = editD(x). Also, editD(x̄) ≥ h(x̄) since for each LR-block in the
LR-decomposition, either the �nal left parenthesis or the �rst right parenthesis of the block must
be unmatched in any non-crossing matching. By preprocessing x to reduce it to x̄ (which can be
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done easily in linear time), and applying the algorithm to x̄, we can replace the 1+2 log h(x) factor
by 1 + 2 log editD(x).

Suppose A is any algorithm that on input two strings provides an upper bound on the standard
edit distance between the two strings. By the equivalence between the Dyck edit distance for LR
strings and standard edit distance of two strings mentioned earlier, we can view A as an algorithm
that takes as input an LR-string of parentheses and outputs an upper bound on the Dyck edit
distance of the string. De�ne the algorithm BA for strings x of arbitrary height to be the algorithm
that �rst removes from x all matching pairs of consecutive parenthesis to get x̄, then constructs
C(x̄) and outputs

∑
z∈C(x̄)A(z). As an immediate consequence of Theorem 7.1 we have:

Corollary 7.2. Let A be an algorithm for LR-strings as above. Suppose β(n, d) and t(n, d) are
functions such that for any LR-string z with |z| ≤ n and editD(z) ≤ d, A(z) runs in time at most
|z| · t(n, d) and editD(z) ≤ A(z) ≤ β(n, d) · editD(z). Then for any string x ∈ T̂ ∗ with |x| ≤ n and
editD(x) ≤ d, BA(x) runs in time Õ(n) + n · t(n, d) and satis�es:

editD(x) ≤ BA(x) ≤ β(n, d) · (3 + 2 log editD(x)) · editD(x).

We now describe the algorithm for Theorem 7.1 that �nds the collection C(x). The algorithm
works recursively. If x is the null string then C(x) is empty. For x non-null:

1. Construct the LR-decomposition D of x.

2. Construct the collection E of LR-strings as follows:

(a) If the �rst or last segment of D is one-sided then put that segment in E .
(b) For each two-sided segment y ∈ D: let m(y) be the minimum of the number of left and

right parentheses in y and let z(y) be the (unique) consecutive substring of y consisting
of m(y) left parentheses and m(y) right parentheses. Add z(y) to E .

3. Let x′ be the string obtained from x by deleting all of the segments of E , and recursively
construct C(x′).

4. Set C(x) = E ∪ C(x′).

A simple induction on |x| shows that
∑

z∈C(x) |z| = |x|: From the algorithm description |x| =
|x′|+

∑
z∈E |z|. By induction this is equal to

∑
z∈C(x′) |z|+

∑
z∈E |z| =

∑
z∈C(x) |z|.

We now establish that C(x) satis�es P1 and P2.
P1 is also proved by a simple induction on |x|. The basis |x| = 0 is trivial. Suppose |x| ≥ 1

and let x′ and E be as de�ned in the algorithm. Select optimal non-crossing matchings for x′

and for each z ∈ E . The union of these matchings is a noncrossing matching for x and therefore
editD(x) ≤ editD(x

′) +
∑

z∈E editD(z). By induction editD(x
′) ≤

∑
z∈C(x′) editD(z) and so

editD(x) ≤
∑

z∈C(x) editD(z) as required to establish P1.
P2 requires more work. It is proved by induction on h(x). If h(x) = 0 then x = wy where w

is a string or right parentheses and y is a string of left parentheses. The set C(x) consists of the
strings w and y. In this case we have editD(x) = |x|, editD(y) = |y| and editD(w) = |w|, so∑

z∈C(x) editD(z) = |y|+ |w| = editD(x), to establish the base case.

So assume h(x) ≥ 1. We �rst note that h(x′) ≤ h(x)/2. Let y1, . . . , yh(x) be the sequence
of two-sided segments of the LR-decomposition of x. Let wi be the segment of yi obtained by
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deleting z(yi) (where z(yi) is as de�ned in Step 2b of the algorithm). The string x′ is equal to the
concatenation of w1, . . . , wh(x). Since each non-null wi is one-sided, every two-sided segment in the
decomposition of x′ is a concatenation of 2 or more wi segments and therefore h(x′) ≤ h(x)/2.

Applying the induction hypothesis to x′ yields:∑
z∈C(x′)

editD(z) ≤
{

editD(x
′), if h(x′) = 0

(3 + 2 log h(x′)) · editD(x′) if h(x′) ≥ 1

}

We claim that the two expressions on the right hand side are bounded above by (1+2 log h(x)) ·
editD(x

′). If h(x′) = 0 then editD(x
′) ≤ (2 log h(x)+1) ·editD(x′) since log h(x) ≥ 0. If h(x′) ≥ 1

then since h(x) ≥ 2h(x′) we have 3 + 2 log h(x′) ≤ 1 + 2 log h(x)
To complete the induction we will prove:

Lemma 7.3.

1. editD(x
′) ≤ editD(x)

2.
∑

z∈E editD(z) ≤ 2 · editD(x)

The lemma su�ces to complete the induction step for P2:

∑
z∈C(x)

edit(z) =
∑

z∈C(x′)

editD(z) +
∑
z∈E

editD(z)

≤ (2 log h(x) + 1) · editD(x) + 2 · editD(x) = (2 log h(x) + 3) · editD(x),

as required.
So it su�ces to prove Lemma 7.3.

Proof. Let M be a maximum non-crossing matching for x. For z ∈ E ∪ {x′}, let Mz be the set
of pairs of M with both ends in z and let Nz be the set of pairs with one end in z and one end
out, and let Uz be the set of indices corresponding to z that are unmatched in M . Note that
editD(x) ≥ |Ux′ |+

∑
z∈E |Uz|.

Proposition 7.4. For each z ∈ E:

1. editD(z) ≤ |Uz|+ |Nz|

2. The indices of z that belong to pairs of Nz are either all left parentheses or all right parentheses.

3. |Uz| ≥ |Nz|.

Proof. For the �rst part, we note that the number of indices of z that are left unmatched by Mz is
|Uz|+ |Nz|.

For the second part, any pair in Nz that includes an index to a left parenthesis of z must have
its other end after z, and any pair in Nz that includes an index to a right parenthesis of z must
have its other end before z. If there were a pair of each type then, since z is an LR string, they
would cross, which is a contradiction that proves the second part.

For the third part, we note that this is trivial for a one-sided block since Nz = ∅. So consider a
two-sided block. By the second part of the proposition, we assume, without loss of generality, that
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all indices of z that are matched in Nz correspond to left parentheses, and note that z has |z|/2 left
indices and |z|/2 right indices. We then have:

|Nz|+ |Mz| ≤ |z|/2 ≤ |Uz|+ |Mz|.

where the �rst inequality comes from the fact that the pairs in Nz ∪Mz correspond to distinct left
parentheses of z and the second inequality comes from the fact that every right parenthesis of z
either belongs to Uz or is paired in Mz. The third part of the proposition follows.

Continuing with the proof of the lemma: For the �rst part, we note that editD(z) is at most
the number of indices of x′ that are unmatched in Mx′ . The indices that are not matched in N ′

x

are the indices in Ux′ (those indices of x′ unmatched in M) together with the at most
∑

z∈E |N(z)|
indices of x′ that belong to pairs from

⋃
z Nz.

Applying part 3 of the proposition we then establish the �rst part of the lemma:

editD(x
′) ≤ |Ux′ |+

∑
z∈E
|N(z)| ≤ |Ux′ |+

∑
z∈E
|U(z)| ≤ editD(x).

To prove the second part of the lemma, we apply parts 1 and 3 of the proposition to get:∑
z∈E

editD(z) ≤
∑
z∈E
|Uz|+ |Nz| ≤

∑
z∈E

2|Uz| ≤ 2 · editD(x).

As observed earlier, Lemma 7.3 completes the proof of Theorem 7.1.

8 Proof of Theorem 5.1

8.1 Preliminaries

To prove the main theorem we need to observe some simple facts. We use notation from Section 4.
Recall, our selection rule γ consists of alternating blocks of x's and y's, where the j-th block has
length 2j − 1 and is an x-block if j is odd and a y-block if j is even. We note some elementary
properties of γ. (The rudimentary induction proofs are omitted.)

Proposition 8.1.

1. Block j of γ starts at position (j − 1)2 + 1 and ends in position j2.

2. For 0 ≤ q < 2j − 1, ∆γ((j − 1)2 + q) = (−1)j · (j − 1 − q). In particular, for any t < j2,
|∆γ(t)| < j.

The following two propositions give simple criteria for showing the presence of unmatched indices
in an ordered matching:

Proposition 8.2. Let M be a matching. Suppose i < j.

1. If M contains a matched pair (i′, j′) with i′ ≤ i and j′ ≥ j then there are at least j − i
unmatched y-indices in {1, . . . , j − 1}.
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2. If M contains a matched pair (j′, i′) with i′ ≤ i and j′ ≥ j then there are at least j − i
unmatched x-indices in {1, . . . , j − 1}.

Proof. For the �rst part, since j′y is matched to i′x and j ≤ j′, y-indices in {1, . . . , j − 1} can only
be matched to x-indices in {1, . . . , i′ − 1} so at least j − i′ ≥ j − i y-indices in {1, . . . , j − 1} are
unmatched. The second part is proved similarly.

Proposition 8.3. Let M be a matching. Let i < i′ and suppose (i, j) and (i′, j′) are index pairs
having the same o�set, i.e. i − j = i′ − j′. If (i, j) ∈ M , and (i′, j′) ̸∈ M then some x-index in
{i+ 1, . . . , i′} or y-index in {j + 1, . . . , j′} is unmatched by M .

Proof. Let c = i−j. Let ℓ be the least index in [j, j′] such that (ℓ+c, ℓ) ̸∈M . Then (ℓ+c−1, ℓ−1) ∈
M and so (ℓ+c)x can only be matched to a y-index> ℓ (otherwise the pair would cross (ℓ+c−1, ℓ−1))
and similarly ℓy can only be matched to an x-index > ℓ+ c. Thus if both are matched in M , then
their pairs would cross, so one of them is unmatched.

8.2 Proof of Theorem 5.1

We are ready to prove the main theorem of this section. Consider the execution of Aγ on x, y and let
M be the resulting ordered matching. Let k = k(x, y) be the number of completed blocks of γ when
we run Aγ(x, y). Thus k is the largest integer j so that Aγ(x, y) has at least j2 mismatch steps.
Following notation from Section 4, c(h) = (cx(h), cy(h)) is the value of current at the beginning of
step h and δ(h) = cx(h)− cy(h).

We �rst prove an upper bound on the cost of Aγ(x, y).

Lemma 8.4. editγ(x, y) ≤ k2 + 3k + |(|x| − |y|)|.

Proof. Let h be the step number at termination and let u be the number of mismatches at ter-
mination. editγ(x, y) is equal to u plus the number of indices of x or y that are unprocessed
at termination. Since the algorithm terminates before γ reaches the end of block k + 1, we have
u ≤ (k+1)2− 1 = k2+2k. So it su�ces to show that the number of unprocessed indices is at most
|(|x| − |y|)|+ k.

The algorithm terminates with cx(h) = 1 + |x| or cy(h) = 1 + |y|. Assume, without loss of
generality, that currentx = |x| + 1. The number of unprocessed indices is |y| + 1 − cy(h) =
(|y|−|x|)+cx(h)−cy(h) = |y|−|x|+δ(h). By Proposition 4.1, δ(h) = ∆γ(u) which, by Proposition 8.1
is at most k since u < (k + 1)2.

Theorem 5.1 will follow if edit(x, y) ≥ max(k, |(|x| − |y|)|). Trivially, edit(x, y) ≥ |(|x| − |y|)|,
so it remains to show that edit(x, y) ≥ k. Let M∗ be an optimal ordered matching. We will show
that M∗ has at least k unmatched indices.

For j ≤ k,

� Let w(j) be the step during which the number of mismatches reaches j2. (De�ne w(0) = 0.)
Thus for j ≥ 1, step w(j) is a mismatch step that completes block j of γ and u(w(j)) = j2.
Clearly the sequence w(0), w(1), . . . is strictly increasing.

� De�ne Sj , phase j, to be the set of steps {w(j − 1) + 1, . . . , w(j)}. We refer to phase j as
an odd phase or an even phase depending on whether j is odd or even. For an odd phase we
say that x is the active string and y is the inactive string (since all mismatch steps advance
currentx) and for an even phase we say that y is active and x is inactive.
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� Let Mj be the set of pairs added to M during phase j.

� Let X≤j = {1, . . . , cx(w(j))}x and Y≤j = {1, . . . , cy(w(j))}y. De�ne X≤0 = Y≤0 = ∅. Thus
X≤j (resp. Y≤j) is the set of x-indices (resp. y-indices) whose corresponding entries were
examined by the end of phase j. De�ne Xj = X≤j\X≤j−1 and Yj = Y≤j\Y≤j−1. It will follow
from Proposition 8.6 that the sets Xj and Yj for j ≤ k are nonempty.

We prove:

Lemma 8.5. For every j ≤ k, the number of unmatched indices of M∗ in X≤j ∪ Y≤j is at least j.

Setting j = k in the lemma yields that M∗ has at least k unmatched indices, completing the
proof of Theorem 5.1. So it su�ces to prove the lemma.

We start with a short sketch. The proof is by induction on j; assume there are j− 1 unmatched
indices in X≤j−1 ∪ Y≤j−1. We want at least one index in Xj ∪ Yj to be unmatched. Assume
j is odd; we focus on the �rst index of Yj , called firsty(j). (If j is even, we focus on the �rst
index of Xj .) If firsty(j) is unmatched in M∗ we're done, so assume firsty(j) is matched to x-
index firsty(j) + i. If i ≥ j then Proposition 8.2 implies (without using the induction hypothesis)
that X≤j has j unmatched indices. (To show that these unmatched indices are in X≤j requires
firsty(j) + (j − 1) ∈ Xj which can be shown using the fact that block j of γ has 2j − 1 x's.
See Proposition 8.7 and Figure 1.) Similarly for i < j, Proposition 8.2 implies that Y≤j has
j unmatched indices. The remaining case is i ∈ [1 − j, j − 1]. By induction, it su�ces that
Xj ∪ Yj has an unmatched index. Phase j has 2j − 1 mismatch steps and (by the �nal part of
Proposition 8.6) at the start of mismatch step m of Sj the o�set of current is m − j. Thus at
the start of mismatch step i + j, current is an unmatched pair (q + i, q) with q + i ∈ Xj and
q ∈ Yj . By Proposition 8.3, the pairs (firsty(j) + i,firsty(j)) ∈ M∗ and (q + i, q) ̸∈ M∗ imply an
unmatched y-index in [firsty(j)+ 1, q] ⊆ Yj or x-index in [firsty(j)+ i+1, q+ i] ⊆ Xj , to complete
the induction.

The details of the above outline are not di�cult, but a little tedious. They rely on some detailed
claims about the sets Xj and Yj , which require carefully tracking the values of currentx, currenty
during a phase. These claims are in Propositions 8.6 and 8.7. The proof of the lemma comes after
these propositions.

The following proposition tells how the current indices change during a given phase:

Proposition 8.6.

1. cy(w(1)) = cx(w(1)) = |M1|+ 1 and δ(w(1)) = 0.

2. For odd j > 1,

(a) cy(w(j)) = cy(w(j − 1)) + 1 + |Mj |
(b) cx(w(j)) = cx(w(j − 1)) + 2j − 2 + |Mj |
(c) δ(w(j)) = j − 1

(d) δ(w(j − 1) + 1) = −(j − 1)

3. For even j > 1,

(a) cx(w(j)) = cx(w(j − 1)) + 1 + |Mj |
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(b) cy(w(j)) = cy(w(j − 1)) + 2j − 2 + |Mj |
(c) δ(w(j)) = −(j − 1)

(d) δ(w(j − 1) + 1) = j − 1

4. For any q ∈ {−(j − 1), j − 1}, if the j + q mismatch step of Sj occurs at step t then δ(t) = q.

Proof. For the �rst part: w(1) is the �rst i such that x[i] ̸= y[i]. We then have |M1| = i − 1 and
cy(w(1)) = cx(w(1)) = i.

For the second part, assume j > 1 is odd. Then step w(j − 1) is the last mismatch step of the
previous y-block. So cy(w(j − 1) + 1) = 1 + cy(w(j − 1)) and cx(w(j − 1) + 1) = cx(w(j − 1)). For
the steps of Sj prior to w(j) there are |Mj | match steps, and 2j − 2 mismatch steps (since w(j) is
the last of 2j − 1 mismatch steps of Sj) and so cy(w(j))− cy(w(j − 1)) = (cy(w(j))− cy(w(j − 1)+
1)) + (cy(w(j − 1) + 1)− cy(w(j − 1)) = |Mj |+ 1 and cx(w(j))− cx(w(j − 1)) = |Mj |+ (2j − 2).

By Proposition 4.1, δ(w(j)) = ∆γ(u(w(j) − 1)) = ∆γ(j
2 − 1) = j − 1, by Proposition 8.1.

Similarly δ(w(j − 1) + 1) = ∆γ(u(w(j − 1))) = ∆γ((j − 1)2) = −(j − 1).
The proof of the third part is nearly identical to that of the second part and is omitted.
We prove the �nal part for j odd, the case of j even is essentially the same. As shown above,

the value of δ at the start of the �rst step in Sj is 1 − j. There are 2j − 1 mismatch steps during
the phase. If s(i) is the step during which the i-th mismatch occurs then (by a simple induction)),
δ(s(i)) = i− j and δ(s(i) + 1) = 1 + i− j. So given q ∈ {1− j, . . . , j − 1}, and letting t = s(j + q),
we have δ(t) = q.

This proposition provides the following picture of the movement of current. (See Figure 1.) At
the start of the �rst step of an odd phase j > 1, currentx is j − 1 positions behind currenty (and
this is a local minimum for δ) and during the phase, δ gradually increases so that at the start of
the �nal step of the phase currentx is j − 1 positions ahead of currenty. During that �nal step,
currentx advances by 1 and currenty stays the same so at the start of the �rst step of the following
(even) phase j + 1, currentx is j positions ahead of currenty, and this is a local maximum for δ.

Similarly, at the start of the �rst step of an even phase j, currentx is j − 1 positions ahead of
currenty (and this is a local maximum for δ) and during the phase, δ gradually decreases, so that
at the start of the �nal step of the phase currentx is j− 1 positions behind currenty. During that
�nal step, currenty advances by 1 and currentx stays the same so at the start of the �rst step
of the following (even) phase j + 1, currenty is j positions behind currenty, and this is a local
minimum for δ.

De�ne lastx(j) = cx(w(j)) and lasty(j) = cy(w(j)); these are, respectively, the largest indices
of X≤j and Y≤j . Recall that Xj = X≤j\X≤j−1 and Yj = Y≤j\Y≤j−1. From Proposition 8.6 we
have that for j ≥ 2, lastx(j) > lastx(j − 1) and lasty(j) > lasty(j − 1) and therefore the sets Xj

and Yj are nonempty. De�ne firstx(j) = lastx(j − 1) + 1 and firsty(j) = lasty(j − 1) + 1, so that
Xj = {firstx(j), . . . , lastx(j)} and Yj = {firsty(j), . . . , lasty(j)}.

One slightly subtle point: while (lastx(j), lasty(j)) is the value of current at the start of the
�nal step w(j − 1) of Sj−1, it is not true that (firstx(j),firsty(j)) is the value of current at the
start of the �rst step w(j − 1) + 1 of Sj . For j odd we have:

� c(w(j − 1)) = (lastx(j − 1), lasty(j − 1))

� c(w(j − 1) + 1) = (lastx(j − 1),firsty(j)), since w(j − 1) is a mismatch step of even phase
Sj−1
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Figure 1: Illustration of a portion of the execution of the algorithm for an odd phase j > 1. For
t ∈ {w(j−1), w(j−1)+1, w(j), w(j)+1, w(j+1)} marking the beginning and end of phases, pairs
c(t) are represented by solid lines. Symbols e are matched in M∗.

�

c(w(j − 1) + 2) =

{
(firstx(j),firsty(j)), if w(j − 1) + 1 is a mismatch step
(firstx(j),firsty(j) + 1), if w(j − 1) + 1 is a match step.

}
For j even we have:

� c(w(j − 1)) = (lastx(j − 1), lasty(j − 1))

� c(w(j−1)+1) = (firstx(j), lasty(j−1)), since w(j−1) is a mismatch step of odd phase Sj−1

�

c(w(j − 1) + 2) =

{
(firstx(j),firsty(j)), if w(j − 1) + 1 is a mismatch step
(firstx(j) + 1,firsty(j)), if w(j − 1) + 1 is a match step.

}
For odd phase j, the y-index firsty(j) plays a central role, and for even phase j, x-index firstx(j)

plays the central role. The following proposition relates various quantities to them.

Proposition 8.7.

1. For odd j > 1,
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(a) lasty(j) = firsty(j) + |Mj |
(b) firstx(j) = firsty(j)− (j − 2)

(c) lastx(j) = firsty(j) + (j − 1) + |Mj |.

2. For even j > 1,

(a) lastx(j) = firstx(j) + |Mj |
(b) firsty(j) = firstx(j)− (j − 2)

(c) lasty(j) = firstx(j) + (j − 1) + |Mj |.

Proof. Since firsty(j) = cy(w(j − 1)) + 1 and lasty(j) = cy(w(j)) and firstx(j) = cx(w(j − 1)) + 1
and lastx(j) = cx(w(j)), all of the claimed equalities follow immediately from Proposition 8.6.

Proof of Lemma 8.5. We proceed by induction on j. Since j ≤ k, Aγ completes block j of γ.
For the base case j = 1, if (1, 1) ̸∈ M∗ then the x-index 1 is unmatched or the y-index 1 is

unmatched in M∗, so assume (1, 1) ∈M∗. Since 1 ≤ k, Aγ has at least one mismatch step, let this
mismatch step be in step i so that X≤1 = Y≤1 = {1, . . . , i}. So (1, 1) ∈ M∗ and (i, i) ̸∈ M∗ so by
Proposition 8.3, there is an index in {2, . . . , i}x ∪ {2, . . . , i}y ⊆ X≤1 ∪ Y≤1 that is unmatched, as
required.

For the induction step, assume j > 1. We'll assume that j is odd; the case that j is even is
nearly identical with x and y interchanged, and is omitted. Assume by induction that there are at
least j− 1 indices of X≤j−1 ∪Y≤j−1 that are unmatched by M∗. It su�ces to show that there is an
index in Xj ∪ Yj that is unmatched in M∗. We focus on the y-index firsty(j).

If firsty(j) is unmatched in M∗, then since firsty(j) ∈ Yj , we are done. So assume that
firsty(j) is matched in M∗ and let i be such that (firsty(j) + i,firsty(j)) ∈ M∗. We divide into
cases depending on the value of i. In the �rst two cases we show directly that X≤j ∪ Y≤j has at
least j unmatched indices; the induction hypothesis is only used in Case 3.

Case 1. i ≤ −j. Since an x-index ≤ firsty(j)− j is matched to the y-index firsty(j) by Proposi-
tion 8.2 there are at least j y-indices from {1, . . . ,firsty(j)− 1} ⊆ Y≤j that are unmatched in
M∗.

Case 2. i ≥ j. Since firsty(j) is matched to an x-index ≥ firsty(j) + j, Proposition 8.2 implies
that there are at least j unmatched x-indices in {1, . . . ,firsty(j) + j − 1} and by part 1.c.
of Proposition 8.7, firsty(j) + j − 1 ≤ lastx(j) and so the previous set is a subset of X≤j =
{1, . . . , lastx(j)}.

Case 3. −j + 1 ≤ i ≤ j − 1. By the last part of Proposition 8.6 there is a mismatch step t ≤ w(j)
during phase Sj such that δ(t) = i, i.e., cx(t) = cy(t) + i. So (firsty(j) + i,firsty(j)) ∈ M∗

and (cy(t) + i, cy(t)) ̸∈M∗ and firsty(j) < cy(t) so by Proposition 8.3 there is an unmatched
x-index in {firsty(j)+ i+1, cx(t)} or an unmatched y-index in {firsty(j)+1, cy(t)}. The �rst
set is a subset of Xj = {firstx(j), . . . , lastx(j)} since firsty(j) + i + 1 ≥ firsty(j) − (j − 2)
which is firstx(j) (by Proposition 8.7) and cx(t) ≤ cx(w(j)) = lastx(j). The second set is a
subset of Yj = {firsty(j), . . . , lasty(j)} since cy(t) ≤ cy(w(j)) = lasty(j). Therefore we have
an index in Xj ∪ Yj that is unmatched in M∗ as required to complete the induction in this
case.

This completes the proof of the Lemma 8.5 and also Theorem 5.1.
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