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Abstract

Edit distance is an important measure of string similarity. It counts the number of insertions,
deletions and substitutions one has to make to a string x to get a string y. In this paper we
design an almost linear-size sketching scheme for computing edit distance up to a given threshold
k. The scheme consists of two algorithms, a sketching algorithm and a recovery algorithm. The
sketching algorithm depends on the parameter k and takes as input a string x and a public
random string ρ and computes a sketch skρ(x; k), which is a digested version of x. The recovery
algorithm is given two sketches skρ(x; k) and skρ(y; k) as well as the public random string ρ used
to create the two sketches, and (with high probability) if the edit distance ED(x, y) between x
and y is at most k, will output ED(x, y) together with an optimal sequence of edit operations
that transforms x to y, and if ED(x, y) > k will output large. The size of the sketch output
by the sketching algorithm on input x is k2O(

√
log(n) log log(n)) (where n is an upper bound

on length of x). The sketching and recovery algorithms both run in time polynomial in n.
The dependence of sketch size on k is information theoretically optimal and improves over the
quadratic dependence on k in schemes of Kociumaka, Porat and Starikovskaya (FOCS’2021),
and Bhattacharya and Koucký (STOC’2023).

1 Introduction

The edit distance of two strings x and y measures how many edit operations (removing a symbol,
inserting a symbol or substituting a symbol by another) are needed to transform x to y. Computing
edit distance is a classical algorithmic problem. For input strings of length at most n, edit distance
can be computed in time O(n2) using dynamic programming [WF74, MP80, Gra16]. Assuming the
Strong Exponential Time Hypothesis (SETH), this cannot be improved to truly sub-quadratic time
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O(n2−ϵ) [BI18]. When parameterized by the edit distance k = ED(x, y), the running time has been
improved to O(n + k2) [LMS98]. The edit distance of two strings can be approximated within a
constant factor in time O(n1+ϵ) [AN20, KS20, BR20, CDG+20].

This paper concerns sketching schemes for edit distance, which consist of a sketching algorithm,
parameterized by an integer k, that takes a string x and (using a public random string ρ) maps it
to a short sketch skρ(x; k), and a recovery algorithm that takes as input two sketches skρ(x; k) and
skρ(y; k) and the public random string ρ and, with high probability (with respect to ρ), outputs
ED(x, y) when ED(x, y) ≤ k and outputs large otherwise.

The goal is to get polynomial time sketch and recovery algorithms that achieve the smallest
possible sketch length. Jin, Nelson and Wu [JNW21] proved that sketches must have length Ω(k).
For edit distance it is not apriori clear whether sketches of size kO(1)no(1) exist, even non-uniformly.
The first sketching scheme with poly(k) sketch size was found by Belazzougui and Zhang [BZ16]
who attained sketch size Õ(k8). (Here, and throughout the paper, Õ(t) means t logO(1) n, where
n is an upper bound on the length of the strings.) This was improved to Õ(k3) by Jin, Nelson
and Wu [JNW21], and then to Õ(k2) by Kociumaka, Porat and Starikovskaya [KPS21]. The above
sketches used CGK random walks on strings [CGK16] to embed the edit distance metric into the
Hamming distance metric with distortion O(k), plus additional techniques. A different approach,
based on a string decomposition technique, was used by Bhattacharya and Koucký [BK23]. Here
we will also use this technique.

The quadratic dependence on k in the (very different) sketches of [KPS21] and [BK23] and also
in the exact computation algorithm of [LMS98] is suggestive that there may be something intrinsic
to the problem that requires quadratic dependence on k for both sketching and evaluation. In
this paper, we show that this is not the case, by presenting an efficiently computable sketch of
size O(k2O(

√
log(n) log log(n))) which is k times a "slowly" growing function of n, that is intermediate

between logω(1) n and no(1). Our main result is:

Theorem 1.1 (Sketch for edit distance). There is a randomized sketching algorithm ED-sketch
that on an input string x of length at most n with parameter k < n and using a public random string
ρ produces a sketch skρ(x) of size O(k2O(

√
log(n) log log(n))), and recovery algorithm ED-recover

such that given two sketches skρ(x) and skρ(y) for two strings x and y and ρ, with probabil-
ity at least 1 − 1/n (with respect to ρ), outputs ED(x, y) if ED(x, y) ≤ k and large other-
wise. The running time of the ED-sketch is nO(1) and the running time of ED-recover is
Õ(min(n2, k32O(

√
log(n) log log(n)))).

We remark that we did not attempt to optimize the running time, or poly-log factors in the
sketch sizes. The running time of ED-sketch is largely determined by the running time of the
Ostrovsky-Rabani embedding [OR07] (see below) which runs in polynomial time, but we don’t know
the exponent. The amount of randomness the algorithm uses can be reduced to poly-logarithmic
in n.

Our sketch has the additional property that the recovery algorithm also determines an optimal
sequence of edit operations that transforms x to y.

Sketching for Hamming distance has been studied extensively and is well understood. Several
approaches yield sketches of size Õ(k) that can recover the Hamming distance and can solve the
harder problem of mismatch recovery, i.e., reconstructing the set of positions where the two strings
differ, see e.g. [CKP19, PL07]; this sketch size is information theoretically optimal. Our construction
for edit distance uses sketches for Hamming distance, but we need a more refined version of Hamming
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distance sketches that allow for recovery of all differences in regions of the strings where the density
of differences is low, even if the overall Hamming distance is large. We call this new sketch a
hierarchical mismatch recovery scheme. This is the main new technical tool.

Not much is known about sketching edit distance when we only want to approximate edit
distance from the sketches. For Hamming distance, there are known sketches of poly-logarithmic
size in n that allow recovery of Hamming distance within a (1 + ϵ)-factor [FKSV02]. For edit
distance nothing like that is known. A more stringent notion of sketching is that of embedding
edit distance metrics into ℓ1 metrics. The best known result in this direction, by Ostrovsky and
Rabani [OR07], gives an embedding of edit distance into ℓ1 with distortion (approximation factor)
sOR(n) = 2O(

√
log(n) log log(n)). Interestingly, our sketch relies on this embedding to fingerprint

strings by their approximate edit distance. The dependence of our sketch size on n in Theorem 1.1
can be stated more precisely as Õ(sOR(n)

2). Since our use of their embedding is “black box”, any
improvement on the distortion factor for embedding edit distance into ℓ1 would give a corresponding
improvement in our sketch size.

2 Our technique

The starting point of our sketch is the string decomposition algorithm of Bhattacharya and Koucký [BK23],
The algorithm basic-decomp (see Section 4.3) takes a string x and partitions it into fragments so
that each fragment can be described concisely by a small context-free grammar. The size of the
grammar is at most k′ for some chosen parameter k′. (In [BK23] this k′ is chosen to be Õ(k).) The
partitioning uses randomness to select the starting point for each fragment and has the property
that for any given position in the string, the probability that it will start a fragment is at most
p ≈ 1/k′.

The partitioning process is locally consistent, i.e., when applied to two strings x and y with
probability at least 1− Õ(ED(x, y)/k′) the decompositions of x and y are compatible. Being com-
patible means that they have the same number of fragments and ED(x, y) is equal to the sum of
edit distance of corresponding fragments. In particular, if x and y are compatibly split then to
recover ED(x, y) it suffices to reconstruct each corresponding pair of fragments of x and y that are
different and sum up their edit distances.

In [BK23] this decomposition procedure was used to obtain edit distance sketches of size Õ(k2) by
reducing the problem of sketching for edit distance to the easier problem of sketching for (Hamming)
mismatch recovery mentioned in the introduction. This is the problem of sketching two equal length
sequences so that from their sketches one can recover all the locations where the two sequences differ.

The reduction to mismatch recovery sketches proceeds as follows. The string x is decomposed
into fragments. The grammar of each fragment is encoded using some fixed-size encoding of length
Õ(k′), the encodings are concatenated and the resulting sequence is sketched using a mismatch
recovery scheme. Given the Hamming distance sketch for the sequence of fragments of x, and the
corresponding sketch for y, we can (with an additional technical trick) recover all corresponding
pairs of grammars that are different. Each pair of corresponding grammars represents a pair of
corresponding fragments of x, y, and ED(x, y) is equal to the sum of the edit distances of all
recovered pairs of fragments. There are at most k corresponding pairs of grammars that differ, and
each of them has k′ = Õ(k) bits. The size of the Hamming sketch needed to perform this recovery
is Õ(k2). This is the sketch from [BK23].

The sketch length is Õ(k2) because the sketch must handle two different extremes. If all edit
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operations appear in large clusters of size k/C, for C = Õ(1), and each cluster is contained in a
single fragment pair, then there are at most C fragment pairs that are unequal and these could
be handled by sketches of size Õ(k). On the other hand, if the edit operations are well separated,
then we could choose a value of k′ that is Õ(1) resulting in a partition into much smaller fragments
each of which has grammar size Õ(1). In this case the edit operations may appear in Ω(k) different
fragment pairs, but because the grammar size of the fragments is Õ(1) we can again manage with
sketch size Õ(k). Of course, the distribution of edit operations will rarely match either of these
extremes, there may be clusters of edit operations of varying size and density.

Decomposition tree. A natural approach to handling this is to build decompositions for many
different values of k′. We start with a decomposition obtained from parameter k′ = k0 which is
larger, but not much larger than k. We then apply the decomposition again to each fragment of the
first decomposition, using the smaller parameter k1 = k0/2. We iterate this recursively where the
value ki of k′ at recursion level i is k0/2i stopping when ki is Õ(1). This would decompose the string
into smaller and smaller fragments ending with fragments described by constant size grammars. We
call this a decomposition tree of the string. We can then do separate sketches for each of the levels
of the tree. The sketches at the top of the tree (small i) are used to find edit operations that occur
together in large clusters, and there can’t be too many of these clusters. Sketches at the bottom
of the tree (large i) are used to find edit operations in regions where the edit operations are well
spread. These edit operations may be spread over Ω(k) pairs of fragments, but each such pair has
edit distance Õ(1). The intermediate levels would handle cases where the density of edit operations
is intermediate between these extremes.

To be more explicit, the sketch associated to decomposition level i is responsible for recovering
pairs of compatible fragments at level i whose edit distance is (roughly) comparable to or larger
than ki, that could not be recovered from the sketches for previous levels of the decomposition.
There are at most Õ(k/ki) such pairs of fragments (counting only compatibly split pairs). Since
the fragments are represented by grammars of size at most ki, the level i scheme will need to find
at most Õ(k) mismatches for compatibly split fragments.

For compatible pairs of fragments at level i whose edit distance is small compared to ki, the de-
composition procedure will split them compatibly (with fairly high probability1) and the edit distance
for these will be recovered from the sketches corresponding to deeper levels of the decomposition.
In this way, all of the edit operations will be found by some level of the decomposition.

While the sketch for level i only needs to identify at most Õ(k) mismatches, it can not use an
ordinary mismatch recovery sketch for Õ(k) mismatches, because the sequences of the grammar
encodings for the level i fragments may differ in many more than Õ(k) positions, since the Õ(k)
positions account only for the differences due to pairs of fragments that must be recovered at level i
but not those due to differences coming from other fragment pairs as explained further. To deal with
this, we will need the extension of mismatch recovery mentioned earlier that handles hierarchical
mismatch recovery (which will be discussed in more detail later in this section.)

Grammar representation. From the sketch at a level i which corresponds to grammars of size
at most ki we hope to recover those fragments that have roughly ki edit operations that were not
recovered from the sketches at earlier levels. Here it becomes important how we represent the
grammars to the Hamming sketch. Each grammar is a subset of rules from a domain of polynomial
size. The grammars that we produce have the following useful property: If we represent two

1Here fairly high probability means probability at least 1 − 1/poly logn for a sufficiently large poly-logarithmic
function.
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fragments of x and y by grammars and the fragments have edit distance at most h then the grammars
will differ in at most Õ(h) rules. So if we represent the grammars by their characteristic vectors the
vectors will have Hamming distance at most Õ(h). This is useful since the fragments that contain
much less than ki edit operations and that should be recovered from a Hamming sketch for some
level > i will contribute to the Hamming sketch of level i by at most Õ(k) differences in their
grammars in total. For fragments that have edit distance ≥ ki (that were not recovered from earlier
levels) we want to recover their complete grammars.

Watermarking using edit distance fingerprints. For the level i encoding, we want that if two
corresponding fragments are at edit distance at least ti ≈ ki, then recovering the mismatches in
their grammar encodings is enough to fully recover both grammars and therefore both fragments.
To ensure this, we will watermark the grammar encodings by a special fingerprint (computed from
the entire fragment), and replace each 1 in the grammar encoding by the fingerprint. Assuming that
the watermark of the two fragments are different, then this will allow one to recover both grammars
from the set of mismatches. The watermark we use is a threshold edit distance fingerprint. This is
a randomized fingerprinting scheme depending on parameter t, that maps each string to an integer
so that if two strings have edit distance more than t, their fingerprints differ with high probability,
and if two strings have edit distance less than t/P , for some parameter P > 1 then their fingerprints
will be the same with fairly high probability (with no promise if the edit distance lies in the interval
[t/P, t].) The parameter P is a measure of the quality of the fingerprinting algorithm; with smaller
P being higher quality. Such a fingerprinting scheme can be obtained from an embedding of the
edit distance metric into the ℓ1 metric. We use the embedding of Ostrovsky and Rabani [OR07]
which has distortion sOR = 2

√
logn log logn and this distortion translates into the parameter P of the

fingerprinting scheme.
Canonical edit operations. For the sketching procedure as outlined, the recovery algorithm will

recover corresponding pairs of unequal but compatible fragments and compute their edit distance.
While the recovered fragment pairs are likely to encompass most edit differences between the two
strings, it will typically miss some pairs, and may also incorrectly recover a small fraction of the
fragment pairs. This means that the set of edit operations recovered will only be approximate. To
address this we will need to do multiple independent sketches and when doing recovery, we combine
the outcomes recovered from each independent sketch (as described below). As mentioned earlier
if ED(x, y) = k, there could be many different sets of k edit operations that transform x to y.
To output edit operations consistently among independent runs of the sketching algorithm we will
always opt for a canonical choice of the edit operations. The canonical choice prefers insertions into
x over substitutions which in turn are preferred over deletions from x. This preference is applied
on edit operations from left to right in x so the choice of edit operations corresponds to the left-
most shortest path in the usual edit distance graph of x and y. Importantly, the canonical path is
consistent under taking substrings of x and y. See Section 3.2 for details on the choice of the path.

Bad splits. For two strings x and y, as we split the fragments of each through successive levels
we will inevitably split some fragments near an edit operation; this is called a bad split. A bad
split might cause x to be divided at a particular location but not y. This causes two problems: (1)
sub-fragments of the badly split fragment may not align, and (2) the bad split may cause fragments
to the right of the badly split fragment to be misaligned. Both problems need to be dealt with.

Regularization of trees. To handle the second issue we regularize the decomposition tree. The
decomposition tree is of depth at most O(log n) and it might have degree up to n. We make it
regular as follows: for any node with fewer than n children we append dummy children to the
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right of the real children; these are thought of as representing empty strings. We do this at all
levels so that the tree has degree n in all the internal nodes and all the leaves are at depth exactly
d = O(log k +

√
log n log log n). Each node of the tree is labeled by a fragment of x and its

corresponding grammar. This ensures that the underlying tree for the decomposition is the same
for every input string. Now, in constructing the level i + 1 decomposition from the level i, the
fragments that correspond to the children of node v in the two trees are paired with each other. A
bad split arising from the decomposition of the two fragments corresponding to tree node v may
cause misalignment among the descendants of v but will not affect the alignment of nodes to v’s
right.

Sparse representation. The regularized tree is of super-polynomial size ≤ nlogn, but only has
Õ(n) nontrivial nodes that represent nonempty strings. As a result, the tree can be constructed
in polynomial time, and represented concisely by the set of ordered pairs of (node, fragment) for
nonempty fragments. Furthermore the sketching algorithm works well with the sparse representation
and its running time is at most polynomial in the number of nontrivial nodes.

Mismatch floods. The more significant issue caused by bad splits is the first one, that a bad
split at a node may result in bad splits at many of its descendants. Indeed, if the partition of the
fragments xv and yv of x and y at node v are not compatibly split, then the fragment pairs of its
children will not be aligned and the edit distances between fragments corresponding to children of v
may be arbitrarily large. This misalignment will propagate down the tree possibly resulting in huge
total edit distance between fragments for many nodes in the subtree rooted at v, and the grammar
encodings of these fragments may have a very large Hamming distance.

A node in the tree that is in the subtree of a badly split node is referred to as flooded if its
corresponding fragments need many edit operations. At level i of the tree, we only need to recover
the grammars corresponding to the unflooded nodes of the level (because we expect that the edit
operations for each flooded node will be recovered by the sketches corresponding to an unflooded
ancestor in the tree.) The usual mismatch recovery sketch does not allow for such selective recovery
of unflooded portions, because the flooded portion may cause the total number of mismatches
to far exceed the capacity of the mismatch recovery scheme. Thus we design a new variant of
Hamming schemes, which we call hierarchical mismatch recovery scheme, that recovers differences
in the unflooded parts.

Hierarchical mismatch recovery. The hierarchical mismatch recovery scheme is applied to a vector
that is indexed by the leaves of a tree. The specification of the problem includes an assignment of a
positive capacity κv to each node v in the tree, where all nodes at level i have the same capacity κi.
For any two strings x and y, the capacity function induces a load function κ̂, where the value κ̂v is
1 on leaves where x and y differ and 0 on other leaves, and the load on a node v is the minimum of
the sum of the loads of its children and its own capacity. A node v is underloaded if its load is less
than κv/R for some parameter R, and a leaf is accessible if every node on its path to the root is
underloaded. The scheme is required to recover the mismatch information for all accessible leaves.

The sketch is implemented as follows: Let d be the depth of the tree. For each node at level d−1
we apply a (standard) Hamming mismatch recovery scheme to the vector of its children that handles
(slightly more than) κd−1 mismatches. Then working the way up the tree, for each node we apply
a mismatch recovery to the vector consisting of the sketches computed at each of its children. This
is passed upwards and the final sketch at the root is the output. The specific mismatch recovery
scheme used is a superposition scheme which is described in Section 5.2. The hierarchical sketches
for two strings x and y will allow for recovery of mismatches occurring at all accessible leaves.
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The intuition behind this is as follows. For two strings x and y, label each node by the pair of
intermediate sketches for x and y at that node. This pair of sketches encodes information about the
mismatches of x and y at the leaves of its subtree. This information at node v is a compression to
Õ(κi) bits of the information from its children. Inductively one can show that for an underloaded
node the compressed string it computes has enough bits to preserve the information about accessible
mismatches that is encoded in the sketches of its children. For overloaded nodes, the compression
will destroy the information about its children, but this is not a problem because the scheme is
not required to recover mismatch information for leaves below an overloaded node. An important
thing to note is that the impact of overloaded nodes among v’s children (which may have a large
number of mismatches among its leaves) is controlled by the fact that the sketch size at those nodes
is restricted by its capacity.

In our application to sketching the grammars we assign the capacity to each level of the tree so
that the capacity is proportional to the grammar size ki we expect at that level in the decomposition
tree. Nodes that correspond to misaligned fragments (due to a bad split at an ancestor) and have
a huge edit distance will correspond to overloaded nodes, and as discussed above, the hierarchical
scheme contains the damage caused by the error flood to the subtree below the occurrence of the
bad split. The idea behind the choice of the parameters is that the probability of a bad split is
proportional to the number of edit operations in the fragment; it is roughly Õ(# of edit op’s/ki).
Hence, in expectation each edit operation is responsible for Õ(1) mismatches resulting from bad
splits that contribute to possible flooding of a node. We can adjust the parameters so that the
flooding of a node is in expectation only a tiny fraction of its capacity. We can then apply Markov’s
inequality to argue that with a good probability nodes along a chosen path are not overloaded, i.e.,
flooded. Details for our hierarchical mismatch recovery scheme are given in Section 5.1.

Parameters. For our edit distance sketch we will set the parameters as follows: κ0 = Õ(s2ORk),
κi = κ0/2

i, k0 = Õ(sORk), ki = k0/2
i and t0 = Õ(sORk), ti = t0/2

i. Our sketch will be obtained
by applying the hierarchical mismatch recovery scheme to each level of the decomposition tree with
those parameters.

Infrequent bad splits. The decomposition procedure is designed so that for a node v at level i
with fragments xv and yv, if ED(xv, yv) ≤ ki/C where C = polylog(n) the decompositions of xv
and yv will be compatible with probability 1 − 1/polylog(n). While this is near 1, it is likely a
non-trivial fraction of nodes will fail to be compatibly split even though the edit distance between
the strings is small compared to ki. As a result, for any given edit operation, there may be a small
but non-trivial chance that the recovery algorithm fails to recover it. To ensure that we get all of
the edit operations, we will need to run the scheme O(log n) times and include those edit operations
produced by more than half the runs to guarantee that every edit operation gets recovered with
good probability.

Location, location, location! The recovery procedure identifies pairs of fragments that differ,
and can therefore reconstruct the canonical edits between those fragments. But as described so far,
there is nothing that allows the reconstruction to pinpoint where these fragments appear in the full
string. Without this information, we can not combine information obtained from the independent
sketches as just described. Our sketch will need an additional component to properly position each
recovered fragment.

Location tree. We will use technique of Belazzougui and Zhang [BZ16] (suggested to us by
Tomasz Kociumaka). We turn the decomposition tree into a binary tree by expanding each node
with n children into a binary tree of depth log(n) with n leaves. For each node in the binary tree,
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we record the length of the substring represented by its left child. We watermark this size by the
usual Karp-Rabin fingerprint of the node substring, and we sketch the sizes using the hierarchical
mismatch sketch as in the grammar tree, i.e., level by level. Fragments that contain edit operations
will differ in the Karp-Rabin fingerprint so they will reveal the size of their left child. For a given node
that contains an edit operation all of its ancestors on the path to the root will also be watermarked.
Hence we will be able to recover the information about the size of all the left children along the path.
That suffices to calculate the position of each differing fragment. We will use the same setting of
capacities for the hierarchical mismatch scheme that we use for grammars. That is clearly sufficient
as grammars are larger objects than a single integer.

Putting things together. The actual sketch consists of multiple independent sketches. Each of
these sketches is the output of the hierarchical mismatch recovery scheme applied to each of the
levels of the grammar decomposition tree, and applied to each of the levels of the binary location
tree. Its full details are provided in Section 6.

Recovery. We briefly explain the recovery of edit operations from sketches for two strings. The
reconstruction starts by running the recovery procedure for all the hierarchical mismatch recovery
sketches. This recovers various pairs of grammars with information about their location within the
original input strings x and y. From those grammars we pick only those which do not have any
ancestor grammar node recovered as well. (Descendant grammars are superseded by the ancestor
grammars.) For every pair of grammars we reconstruct the fragments they represent and compute
the associated edit operations. (The edit operations could be actually computed without decom-
pressing the grammars [GKLS22].) For each pair of recovered fragments, we use the location tree
sketches to recover the exact location of that fragment.

So for each pair of recovered fragments we calculate the canonical sequence of edit operations
and given the exact location of the fragment, we can determine the exact location within x and y
where each edit occurred. We repeat this for each independent copy of the sketch. Our final output
is the set of edit operations that appear in the majority of the copies. These are all the operations
we were supposed to find. We provide details of the analysis in Section 7.1. The analysis of the
process is somewhat delicate as one needs to deal with various dependencies among the probabilistic
events. Overall it reflects the intuition provided above.

3 Preliminaries

3.1 Strings, sequences, trees, and string decomposition

For an alphabet Γ, Γ∗ denotes the set of (finite) strings of symbols from Γ, Γn is the strings of
length exactly n and Γ≤n is the set of strings of length at most n. We write ε for the empty string
of length 0. The length of string x is denoted |x|. For an index i ∈ {1, . . . , |x|}, xi is the i-th symbol
of x.

We will consider the input alphabet of our strings to be Σ = {0, 1, . . . } which is the set of
natural numbers. For strings of length up-to n we will assume they are over sub-alphabet Σn =
{0, 1, . . . , n3− 1} so typically we will assume our input comes from the set Σ≤n

n . This assumption is
justified as for computing edit or Hamming distance of two strings of length at most n we can hash
any larger alphabet randomly to the range Σn without affecting the distance of the two strings with
high probability.

If Γ is linearly ordered then Γ∗ is also linearly ordered under lexicographic order, denoted by
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<lex, given by x <lex y if x is prefix of y or if xj < yj where j is the least index i for which xi ̸= yi.
We usually write x < y instead of x <lex y.

We write x ◦ y for the concatenated string x followed by y and for a list z1, . . . , zk of strings we
write ⊙k

i=1zi for z1 ◦ · · · ◦ zk.

Substrings and fragments For a string x and an interval I ⊆ {1, . . . , |x|}, a string z is a
substring of x located at I if |z| = |I| and for all i ∈ I, zi−min(I)+1 = xi. We denote this substring
by xI . When using intervals to index substrings, it is convenient to represent intervals in the form
(i, j] = {i+1, . . . , j} and (i, i] denotes the empty set for any i. (So a substring is always a consecutive
sub-sequence of a string.) We can also say that z is the substring of x starting at position min(I).
Furthermore, z is a substring of x if z is a substring of x starting at some position. However, the
statement that z is a substring of x says nothing about where z appears in x, and there may be
multiple (possibly overlapping) occurrences of z in x. For us it will be important where a substring
appears. For a string x and an interval I ⊆ {1, . . . , |x|}, the fragment located at I is the pair xI
together with I.

Sequences and Hamming Distance We will consider finite sequences of elements from some
domain. It will be convenient to allow sequences to have index sets other than the usual integers
{1, . . . , n}. If D is any set, a D-sequence is an indexed collection a = (ai : i ∈ D). A D-sequence
over the set A is a D-sequence with entries in A. AD denotes the set of D-sequences over A. The
Hamming Distance Ham(x, y) between two D-sequences x and y is the number of indices i ∈ D
for which xi ̸= yi. We let I ̸=(x, y) = {i ∈ D;xi ̸= yi}.

Trees Our algorithm will organize the processed data in a tree structure. To simplify our pre-
sentation we will give the tree very regular structure. For finite sets L1, . . . , Ld, T (L1 × · · · × Ld)
denotes the rooted tree of depth d where for each j ∈ {0, . . . , d− 1} every internal node v at depth
j has |Lj+1| children, and the edges from v to its children are labeled by distinct elements of Lj+1.
Each node v at depth j is identified with the length j sequence of edge labels on the path from the
root to v; under this correspondence the set of nodes at level j is L1 × · · · × Lj ; the root is the
empty sequence ε. For an internal node v at depth j, its children are nodes of the form v ◦ a where
a ∈ Lj+1. We denote their set by child(v) = {v ◦ a, a ∈ Lj+1}. The path from ε to v at depth j is
equal to the sequence of nodes v≤0, v≤1, . . . , v≤j where v≤i is the prefix of v of length i.

Usually in this paper, the sets L1, . . . , Ld are all equal to the same set L and in this case
T (L1×· · ·×Ld) is denoted T (Ld). Usually, L is a linearly ordered set and it is useful to visualize the
planar drawing of T in which the left-to-right order of the children of an internal node corresponds
to the total ordering on the edge labels. For a tree T and i ≥ 0, T≤i is the subtree of T consisting
of nodes of depth at most i.

String decompositions, and tree decompositions A decomposition of a string x is a sequence
z1, . . . , zr of strings such that x = ⊙r

i=1zi. More generally if L is a linearly ordered set then an
L-sequence (zi : i ∈ L) where each zi is a string is a decomposition of x if x = ⊙i∈Lzi where the
concatenation is done in the order determined by L. Given a decomposition (zi : i ∈ L) of x, each
substring zi is naturally associated to a location interval Loc(z)i = (si, ti] where si =

∑
j∈L,j<i |zj |

and ti = si + |zi|.
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Supppose that z = (zv : v ∈ L1 × · · · × Ld) is a labeling of the leaves of T = T (L1 × · · · × Ld)
by strings. Given such a labeling, we extend it to all nodes of the tree so that for any node v, zv is
defined to be the concatenation of the strings zℓ where ℓ is a leaf below v and the concatenation is
done in lexicographic order according to the leaves. If xε is the string labeling the root, then the T
with the node labeling z is said to be a decomposition tree for x. Note that for any j ∈ {1, . . . , d},
zj = (zv : v ∈ L1 × · · · × Lj) is the decomposition of x corresponding to the level j nodes in
the tree, and zj is a refinement of the decomposition zj−1. In a decomposition tree z, each node
v corresponds to a specific fragment whose location in x is the interval Loc(z)v = (sv, tv] where
sv =

∑
u∈Ld,u<v |zu| and tv = sv + |zv|. Hence, xLoc(z)v = zv.

3.2 Edit distance and its representation in grid graphs

For x ∈ Σ∗, we consider three edit operations on x:

• ins(i, a) where i ∈ {1, . . . , |x|+1} and a ∈ Σ, which means insert a immediately following the
prefix of length i− 1. In the resulting sequence the i-th entry is a.

• del(i) where i ∈ {1, . . . , |x|}, deletes the i-th entry of x.

• sub(i, b): replace xi by b.

For strings x, y, the edit distance of x and y, ED(x, y), is the minimum length of a sequence of
operations that transforms x to y. It is well-known and easy to show that ED(x, y) = ED(y, x).

Representing edit distance by paths in weighted grids. We define Grid to be the directed
graph whose vertex set V (Grid) is the set N × N (points) and whose edge set E(Grid) consists
of three types of directed edges: horizontal edges of the form ⟨i, j⟩ → ⟨i + 1, j⟩, vertical edges of
the form ⟨i, j⟩ → ⟨i, j + 1⟩ and diagonal edges of the form ⟨i, j⟩ → ⟨i + 1, j + 1⟩ for any i, j ≥ N.
For non-empty intervals I, J ⊆ N not-containing zero, we define the GridI×J to be the subgraph
of Grid induced on the set (I ∪ {min(I) − 1}) × (J ∪ {min(J) − 1}), and for P ⊆ E(Grid), the
restriction of P to I × J is PI×J = P ∩ E(GridI×J). We call I × J a box. A directed path from
⟨min(I)− 1,min(J)− 1⟩ to ⟨max(I),max(J)⟩ is called a spanning path of GridI×J .

As is well known, the edit distance problem for a pair of strings x, y can be represented as a
shortest path problem on a grid with weighted edges (see e.g. [LMS98]). The grid of x, y, Grid(x, y),
is the subgraph Grid(0,|x|]×(0,|y|] with edge set E(x, y) ⊆ E(Grid). For an edge e = ⟨i, j⟩ → ⟨i′, j′⟩
in Grid(x, y), let xe = xi′ if i′ = i+ 1 and xe = ε if i′ = i. Similarly, let ye = yj′ if j′ = j + 1 and
ye = ε if j′ = j. We assign a cost to edge e to be 0 if ye = xe and it is 1 otherwise. In particular,
every horizontal edge and every vertical edge costs 1, and diagonal edges cost 0 or 1 depending on
whether the corresponding symbols of x and y differ. An edge of non-zero cost is costly. If P is a
set of edges, the costly part of P , costly(P ), is the set of costly edges. Define the cost of P to be
cost(P ) = |costly(P )|.

We define an annotated edge to be a triple (e, a, b) where a, b ∈ Σ ∪ {ε}. The (x, y)-annotation
of e is the annotated edge (e, xe, ye), which is denoted e+(x, y). An annotated edge (e, a, b) is said
to be (x, y)-consistent or simply consistent if a = xe and β = ye. We emphasize that each edge e
has a unique consistent annotation with respect to any given x and y.
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For a set of edges P we write P+(x, y) for the set of annotated edges {e+(x, y) : e ∈ P}.
In particular if P is a path then costly(P+(x, y)) is the set of costly edges of P with their x, y-
annotations. When the pair x, y of strings is fixed by the context (which is almost always the case)
we write e+ for e+(x, y) and for a set P of edges, we write P+ for P+(x, y). In particular, E+ for
the set {e+ : e ∈ E(x, y)}.

It is well known and easy to see that there is a correspondence between spanning paths of
Grid(x, y) and sequences of edit operations that transform x to y where a sequence of k edit
operations corresponds to a spanning path of cost k. Thus, we will refer to a spanning path of
Grid(x, y) as an alignment of x and y. We have:

Proposition 3.1. ED(x, y) is equal to the minimum cost of an alignment of x and y, i.e., the
minimum over all alignments P of |costly(P )|.

We have the following:

Proposition 3.2. 1. An alignment P of x and y is uniquely determined by costly(P ).

2. For any alignment P of x and y, given the set costly(P+) of annotated costly edges and either
of the strings x and y, the other string is determined.

Proof. For the first part, an alignment P can be partitioned into subpaths (sets of edges) P0, P1, . . . , Pk

where for each even i, Pi consists of 0-cost edges, and for i odd, Pi consists of costly edges. All the
paths are nonempty except for (possibly) the first. Trivially costly(P ) is the union of all the paths
Pi for i odd. For each i even, we can determine Pi since we know the start and end vertex, and the
path consists entirely of diagonal edges.

For the second part, we show that costly(P+) and x determine y; the result with x and y
exchanged is proved similarly. From the first part of the proposition costly(P ) determines P . Let
e1, . . . , et be the subsequence of P obtained by deleting all vertical edges. Then |y| = t, since the
undeleted edges are in 1-1 correspondence with the indices of y. Furthermore yj is determined by
the j-th undeleted edge as follows: if the j-th edge is costly, (either vertical, or a costly diagonal
edge) then its y annotation is equal to yj , and if the j-th edge is a non-costly diagonal edge
⟨i− 1, j − 1⟩ → ⟨i, j⟩, then yj = xi.

A pair x, y of strings together with a box I × J with I ⊆ (0, |x|] and J ⊆ (0, |y|] specifies the
edit distance sub-problem ED(xI , yJ). GridI×J(x, y) denotes the (edge-weighted) sub-graph of
Grid(x, y) induced on (I ∪ {min(I)− 1})× (J ∪ {min(J)− 1}).

There may be many optimal alignments. We will need a canonical alignment for each x and
y that is unique. For any graph GridI×J(x, y), define the canonical alignment of GridI×J(x, y)
as follows: Associate each path in Grid to the sequence from {vertical,diagonal,horizontal}
which records the edge types along the path. The canonical alignment of GridI×J(x, y) is the
optimal spanning path of GridI×J(x, y) that is lexicographically maximum with respect to the
order vertical > diagonal > horizontal. The canonical alignment canon(x, y) of x and y is the
canonical alignment of Grid(x, y).

The proof of the following is left to the reader.

Proposition 3.3. For strings x, y and box I × J ⊆ (0, |x|] × (0, |y|], the (edge-weighted) graph
GridI×J(x, y) is isomorphic (in the graph theoretic sense) to Grid(xI , yJ) and so ED(xI , yJ) is
equal to the length of the shortest spanning path of GridI×J(x, y). Also, the canonical alignment of
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xI and yJ is isomorphic to the canonical alignment of GridI×J(x, y) (when viewed as paths of their
respective graphs).

Let P be an alignment of x and y. A box I × J is compatible with P provided that P passes
through ⟨min(I) − 1,min(J) − 1⟩ and ⟨max(I),max(J)⟩, and for such a box, the restriction PI×J

of P to I × J is the portion of P joining ⟨min(I) − 1,min(J) − 1⟩ and ⟨max(I),max(J)⟩. This
restriction is an alignment for GridI×J(x, y). The following proposition is straightforward.

Proposition 3.4. If P is an optimal alignment of x and y and I × J is compatible with P then
PI×J is an optimal alignment for the sub-problem GridI×J(x, y).

For strings x and y, we say a box I × J is (x, y)-compatible if I × J is compatible with the
canonical alignment canon(x, y). We have:

Proposition 3.5. Let x, y be strings and let I×J be a box that is (x, y)-compatible. The restriction
canon(x, y)I×J is equal to the canonical alignment of GridI×J(x, y).

Proof. By Proposition 3.4, the restriction canon(x, y)I×J is an optimal spanning path for GridI×J(x, y).
We claim that this restriction is equal to the canonical alignment of GridI×J(x, y). Otherwise
we could modify canon(x, y) by replacing the subpath on I × J by the canonical alignment of
GridI×J(x, y) and the result would be lexicographically larger.

3.3 Computational Considerations

Our construction uses a finite field of large characteristics to design hierarchical mismatch recovery
schemes (a certain kind of Hamming sketches). For that our algorithm picks a prime p of size roughly
nO(logn) during its initialization. Such a prime can be picked at random and tested for its primality
using standard algorithms (randomized or deterministic). The prime p can be stored as a part of
the sketch. All arithmetics over Fp can be done in time poly-logarithmic in p or n, respectively. Our
sketch could be modified to use primes of only polynomial size but for the simplicity of presentation
we use a large prime.

3.4 Function families and randomized functions

Let A,B be sets. We consider families f = (fρ : ρ ∈ Γ) of functions from A to B. The set Γ is
the randomizing parameter space and the subscript ρ ∈ Γ is the randomizing parameter. If µ is a
probability distribution over Γ, µ induces a distribution on the function family (fρ : ρ ∈ Γ), and we
say that fρ is a randomized function. We often suppress the index ρ and say that f is a randomized
function.

Evaluating a randomized function at a domain element x is in two parts. The first part is the
selection of the parameter ρ ∈ Γ according to µ, which is done by a randomized algorithm. Once ρ is
selected, fρ is a fixed (deterministic) function and the second part is to evaluate fρ(x); the algorithm
for doing this may possibly be randomized. We say that (fρ, µ) is efficiently computable provided
that the sampling of ρ according to µ and the evaluation fρ(a) can be done in time polynomial in
the size of the bit-representation of a.

A randomized A→ B function (f, µ) is pairwise independent provided that for all a, a′ ∈ A and
b, b′ ∈ B such that a ̸= a′ we have Prρ∼µ[(fρ(a) = b) ∧ (fρ(a

′) = b′)] = 1
|B|2 . We have:
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Proposition 3.6 (Dietzfelbinger [Die96]). For all positive integers m,n with m a power of 2 there
is a pairwise independent family of functions (h, µ) mapping {0, . . . , n − 1} to {0, . . . ,m − 1} that
is efficiently computable, where members of the family can be specified with O(logm+ log n) bits.

We note here a version of the Chernoff-Hoeffding bound [AS08] that will be needed in our
algorithm analysis.

Lemma 3.7. Let X1, . . . , Xr be i.i.d. 0-1 random variables with Pr[Xi = 1] = p. For δ ≥ 0,

Pr[|1
r

r∑
i=1

Xi − p| ≥ δ] ≤ 2e−2δ2r.

4 Three auxiliary procedures

The sketching scheme for edit distance that we present in Section 6 uses several auxiliary sketching
schemes. Three of these are from previous work and one is new to this paper. In this section, we
describe the key properties of the previous three schemes.

4.1 Fingerprinting

The fingerprinting problem for a Σ∗ is to define a family of sketching functions that distinguishes be-
tween distinct elements of Σ∗. More formally, given a parameter n we want a family fingerprintρ(·;n) :
Σ≤n
n → Z+ such that for any strings x, y ∈ Σ≤n

n with x ̸= y

Prρ[fingerprintρ(x;n) = fingerprintρ(y;n)] < 1/n4.

The following classic result of Karp-Rabin [KR87] provides an efficient fingerprinting scheme.
We refer to it as the Karp-Rabin fingerprint.

Theorem 4.1. There is an efficiently computable randomized function fingerprintρ(·;n) : Σ≤n
n →

{1, . . . , n5} such that for any x, y ∈ Σ≤n
n with x ̸= y, Prρ[fingerprintρ(x;n) = fingerprintρ(y;n)] <

1/n4. The number of bits needed to describe ρ is O(log n). The time to compute fingerprintρ(x;n)

is O(|x| · logO(1) n).

4.2 Threshold edit distance fingerprinting

In the threshold edit distance fingerprinting we are given a parameter n and a threshold parameter
k. We want a family of sketching functions ted-fingerprintρ(·; k, n) : Σ∗ → Z+ such that for all
x, y ∈ Σ≤n

n such that ED(x, y) ≥ k, Pr[ted-fingerprintρ(x; k, n) = ted-fingerprintρ(y; k, n)] ≤
1/n4, i.e. the sketch is very likely to distinguish strings x, y that are far. We also want that for
some inaccuracy gap s > 1, for strings x, y such that ED(x, y) < k

s , Pr[ted-fingerprint(x) ̸=
ted-fingerprint(y)] is small. Precisely we want that for all x, y:

Pr[ted-fingerprintρ(x) ̸= ted-fingerprintρ(y)] ≤
ED(x, y)

k
· s.

Note that the requirement becomes easier as s gets larger. The problem of constructing a threshold
edit distance fingerprinting scheme with inaccuracy gap s > 1 is closely related to the problem of
finding an approximate embedding function f that maps strings to vectors in Rd (for some d) so
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that ED(x, y) is approximated by |f(x)− f(y)|1 =
∑d

i=1 |f(x)− f(y)| within a factor s. This latter
problem was investigated by Ostrovsky and Rabani [OR07] and their results yield the following
consequence:

Theorem 4.2. There is an algorithm OR-fingerprint(x; k, n) for the threshold edit distance
fingerprinting problem that for arbitrary k, n ∈ N has inaccuracy gap sOR = 2O(

√
log(n) log log(n)) and

for any string x ∈ Σ≤n
n gives a fingerprint of value at most O(n4). The fingerprinting algorithm

uses a randomness parameter of length O(log3 n) and runs in time polynomial in n and k.

We refer to OR-fingerprint(x; k, n) as Ostrovsky-Rabani fingerprint.
We make a few remarks on this theorem.2 [OR07] does not provide explicit bound on the

amount of randomness needed. In particular, Lemma 9 samples random subsets and uses tail-
bound inequalities to bound the probability of bad events. One can use O(log n)-wise independent
samples to reduce the necessary randomness [FNSS92].

4.3 The procedure basic-decomp

The previous sketch for edit distance of [BK23] gave sketches of size Õ(k2) that allowed for recovery
of edit distance between strings x, y with ED(x, y) ≤ k. That work is the starting point for this
paper, and one of the key procedures in their algorithm is an essential part of our sketch-and-recover
scheme, and we now describe its important properties.

[BK23] gives a decomposition algorithm basic-decomp that takes a string x of length at most n
and partitions x into a sequence of fragments where each fragment is represented by a small grammar
of size Õ(k). A grammar is a subset of rules from a certain domain of size polynomial in n. For
us the actual meaning of the grammar is irrelevant; however we use a procedure basic-decode
implicitly defined in [BK23] that takes as input a grammar and either outputs a string in Σ≤n or
undefined. We will represent grammars by their characteristic vector within their domain. We
say that a bit-vector is t-sparse if it has at most t 1’s in it.

We now restate the properties of algorithm basic-decomp in a form suitable for us. The
algorithm takes as input a string x, parameter n and an integer sparsity parameter k, where |x| ≤ n.
We denote this by basic-decomp(x;n, k).

basic-decomp(x;n, k) outputs:

• A string decomposition of x, z = (zi : i ∈ W ), where W is the set {0, 1}⌈logn⌉ with the
lexicographic order. (Some strings may be empty.)

• A collection grams = (gramsi : i ∈ W ) of k-sparse bit-vectors of length N = n60 such that
if zi ̸= ε then basic-decode(gramsi) = zi (so gramsi is a k-sparse encoding of zi) and
if zi = ε then gramsi is the all 0 vector 0N . Furthermore, gramsi has the following mini-
mality property : for any bit-vector b that is bit-wise less than gramsi, basic-decode(b) is
undefined. (For technical convenience we require basic-decode(0N ) to be also undefined
although 0N represents the empty string.) Each gramsi is represented as a list of positions
that are set to 1.

2We had difficulties reading the paper [OR07]. Indeed, there is a minor correctable issue in the way Lemmas 8 and
9 are presented in the paper. The lemmas claim output from ℓ1 which allows for vectors with arbitrary real numbers.
Indeed, because of the scaling in their proofs they do output vectors with real numbers. However, both lemmas need
to be applied iteratively and they assume input to be a 0-1-vector. This disparity can be corrected using standard
means but it requires additional effort.
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Theorem 4.3. The algorithm basic-decomp has the following properties for all n, k:

1. For any input x of length at most n, the running time of basic-decomp(x;n, k) as well as
the total number of ones in gramsi’s is bounded by O(|x| · logO(1) n).

2. For any pair of inputs x, y, suppose z = (zi : i ∈ W ) and grams = (gramsi : i ∈ W ) is the
output of basic-decomp(x; k), and z′ = (z′i : i ∈ W ) and grams′ = (grams′i : i ∈ W ) is the
output of basic-decomp(y; k).

(a) With probability at least 1−ssplit · ED(x,y)
k where ssplit = O(log4 n), for all i ∈W , the box

Loc(z)i×Loc(z′)i is (x, y)-compatible whenever zi is non-empty, and zi is non-empty iff
z′i is non-empty.

(b) For all i ∈W , Ham(gramsi, grams′i) ≤ sE→H ·ED(zi, z
′
i) where sE→H = O(log2 n).

The significance of Item 2a is that if for each i ∈ W , the box Loc(z)i × Loc(z′)i is (x, y)-
compatible then ED(x, y) =

∑
i∈W ED(zi, z

′
i).

Note, for Item 1, [BK23] allows the decomposition procedure to fail with probability O(1/n).
We modify the procedure that instead of failing it produces the trivial decomposition of its input
into fragments of length 1. When x ̸= y, this increases the failure probability in Item 2a by a
negligible amount. (For x = y, the procedure never fails.) For Item 2a, [BK23] does not specify
the success probability explicitly the way we do but our formula is immediate from their analysis
of probability of what they call undesirable split. The upper bound on the difference between two
grammars in terms of edit distance of x and y is also implicit in the same analysis.

Given a grammar G by its sparse representation as a list of t positions of 1’s, basic-decode(G)
runs in time O(t+|x|) if G represents a string x and in time O(t) otherwise. A grammar representing
x contains at most sE→H · |x| ones.

5 Sketch-and-recover schemes

We consider the following general setting: We have a universe of objects (such as strings, matrices,
or graphs) for which we have a specific way of comparing two objects in the universe. In this paper
the universe is strings over a given alphabet and for each pair x, y of strings, we are interested
in determining ED(x, y). A sketch-and-recover scheme consists of two algorithms: a sketching
algorithm that takes a string x over some alphabet and produces a short sketch sk(x) and a recovery
algorithm that takes a pair of sketches sk(x) and sk(y) and recovers the desired information about
the relationship between x and y.

The sketch and recovery algorithms typically take auxiliary parameters. For edit distance, the
auxiliary parameters are n, an upper bound on the length of strings the sketch will handle, and k,
a threshold parameter such that given any two inputs x, y if ED(x, y) ≤ k the recovery algorithm
will determine ED(x, y). (The precise requirements of our scheme will be given later.)

Sketch-and-recover schemes are typically randomized. We assume that the algorithms use a
randomizing parameter ρ, which is computed from a publicly available random string so that the
same value of ρ is used by the sketching and recovery algorithms. We allow the recovery algorithm to
fail with a small probability over ρ (with output undefined). We usually suppress the parameters
ρ, n and k and write simply sk(x). By the total sketch we mean the pair (ρ, skρ(x; k, n)), the sketch
together with its randomizing parameter.
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We want to implement sketch-and-recover schemes by efficient algorithms. Here efficiency is
measured by:

• The sketch length bit-length(skρ(x; k, n)), which is the number of bits in the binary encoding
of skρ(x; k, n).

• The randomness length bit-length(ρ) is the number of bits for (the binary encoding of) the
parameter ρ. We think of ρ as being determined by a randomized algorithm which runs using
a shared public string of random bits. We could just take ρ to be this shared string, but in
some cases the number of bits needed to represent ρ may be less than the number of bits
needed to generate ρ. For example, if ρ is supposed to be uniformly distributed among s-bit
primes, then bit-length(ρ) = s but the number of random bits needed by an algorithm to
generate ρ is larger than s.

• The running time of the sketch and recovery functions.

Our primary focus here is on achieving small sketch length. We also want the running time
of the sketch and recovery algorithms to be at most polynomial in the length of the strings being
sketched, but we don’t try to optimize the polynomial here.

In designing a sketch for recovering edit distance, we want our recovery algorithm to do more
than just recover the edit distance of two strings x and y from their sketch; we would also like the
recovery algorithm to provide enough information so that given one of the strings, and the output
of the recovery algorithm, one can determine the other string. For example, in the related but
easier case of sketches for Hamming distance, we want to recover the mismatch information for x, y,
MIS(x, y), which is the set {(i, xi, yi) : i ∈ I̸=(x, y)}, where I ̸=(x, y) = {i : xi ̸= yi}. We refer to
(i, xi, yi) as a mismatch triple for x, y

The analog of mismatch information for edit distance is the sequence of edit operations which
is determined by the set of costly annotated edges of the canonical alignment of x and y, as defined
in Section 3.2. In proposition 3.2 it is shown that an alignment is completely determined by its set
of costly edges and also that given the set of costly edges with their annotations and either string
x or y, one can recover the other string. We require the alignment to be canonical because the
optimal alignment is not, in general, unique and we need that the set being recovered is uniquely
determined by x and y.

5.1 Hierarchical mismatch recovery

The problem of Hamming distance recovery can be viewed as the special case of edit distance
recovery when the only edit operations allowed are substitutions (which preserve the position of
letters in the string). To formalize the problem we fix an index set D and alphabet Γ and take as
our universe the set of D-sequences over Γ. We want a sketch-and-recover scheme that supports
mismatch recovery, which is the recovery of the mismatch information MIS(u,w) defined in Section 5.

In the standard formulation, we have a parameter k and require recovery of the mismatch
information MIS(x, y) from the sketches of x and y whenever their Hamming distance is at most k.
We will need a more general formulation of mismatch recovery in which we only require recovery of
mismatch information for some indices. Those indices will be determined for each pair of strings u
and w separately.

This more general formulation is called targeted mismatch recovery. Before giving a formal
definition, we give a simple example. Consider sequences of length n = m2 for some integer m,
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where we think of a sequence u as the concatenation of m fragments u1, . . . , um each of length m.
For strings u,w we say that fragment i is overloaded if there is more than one mismatch in the
fragment, and underloaded if there is at most one mismatch in the fragment. Let F (u,w) be the
set of mismatch indices belonging to underloaded fragments. The set F (u,w) defines a targeted
mismatch recovery problem where our goal is to provide sketching and recovery algorithms so that
for any pair u,w ∈ ΓD, given the sketches of u and w, the recovery algorithm finds all mismatch
triples corresponding to F (u,w). Thus one needs to recover up to m mismatches in underloaded
fragments even if other fragments are overloaded fragments. This particular example has a simple
sketch of size Õ(m) by separately constructing an Õ(1)-size sketch of each fragment that supports
recovery of a single error.

In general, a targeted mismatch recovery problem is specified by a target function F which for
each pair u,w ∈ ΓD, is a subset F (u,w) of the set I̸=(u,w) of indices i such that ui ̸= wi. We write
MISF (u,w) as the set {(i, ui, wi) : i ∈ F (u,w)}, this is the subset of mismatch triples corresponding
to indices in F (u,w). The targeted mismatch recovery problem for a target function F is denoted
TMR(F ). The output of the recover function applied to two sketches is required to be a set of
triples (i, a, b) where i ∈ D and a, b ∈ Γ. Such a triple is called a mismatch triple. The success
conditions for TMR(F ) for the pair u,w are:

Soundness. recover(sk(u), sk(w)) ⊆ MIS(u,w), i.e. every mismatch claim is correct.

Completeness. MISF (u,w) ⊆ recover(sk(u), sk(w)) so the algorithm recovers all mismatch
triples indexed by F (u,w).

Notice, we do not require that recover(sk(u), sk(w)) ⊆ MISF (u,w), i.e., we allow the recovery
algorithm to output mismatch triples not indexed by F (u,w) as long as they are correct mismatch
triples. Thus, while Completeness depends on the target F , Soundness does not. A scheme for
targeted mismatch recovery with target function F has failure probability at most δ provided that
for any u,w ∈ ΓD, with probability at least 1−δ, both Completeness and Soundness hold. Here, the
probability is taken over the randomness of the sketching and recovery algorithms. (Our recovery
algorithms will actually be deterministic, so all the randomness is coming from the sketch.)

Hierarchical mismatch recovery (HMR) is a special case of targeted mismatch recovery It is
applicable to D-sequences indexed by a product set D = L1× · · · ×Ld, which we view as the leaves
of the tree T = T (L1 × · · · × Ld) as in Section 3.1. The target function depends on a capacity
function κ and an overload parameter R. The capacity function is a positive valued function
defined on the levels of the tree with κj denoting the capacity for nodes at level j. We require
1 ≤ κd ≤ κd−1 ≤ · · · ≤ κ0. The overload parameter R is a positive integer.

The triple consisting of L1 × · · · × Ld, κ, and R determines a hierarchical mismatch recovery
problem which is a targeted mismatch recovery problem whose target set on sequences u,w, denoted
FT,κ,R(u,w), is defined as follows.

First, the load function κ̂(u,w) induced by κ and the pair u,w is defined on the vertices of the
tree T as follows:

• For a leaf v ∈ Ld, κ̂v = 1 if uv ̸= wv, and is 0 otherwise.

• For an internal node v at level j < d, κ̂v = min(κj ,
∑

v′∈child(v) κ̂v′).
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Clearly κ̂v ≤ κj for every vertex v at level j. We say that an internal node v at level j is
R-overloaded, if κ̂v ≥ 1

Rκj and is R-underloaded otherwise. (Later we will fix the parameter R to
be 4d, and refer to nodes simply as overloaded or underloaded.)

Notice that a R-underloaded v satisfies κ̂v =
∑

v′∈child(v) κ̂v′ . A leaf is said to be R-accessible
if its path to the root consists entirely of R-underloaded nodes.

We define FT,κ,R(u,w) to be the set R-accessible leaves ℓ where uℓ ̸= wℓ. Intuitively, the
leaves below a R-overloaded node are “crowded” with mismatches and we do not require them to
be recovered. We denote by HMR(T, κ,R) the targeted mismatch recovery problem with target
function FT,κ,R. In Section 5.4 we will prove:

Theorem 5.1. Let T = T (L1 × · · · × Ld) be a level-uniform tree as defined in Section 3.1 and let
κ = (κ0, . . . , κd) be a capacity function 1 ≤ κd ≤ κd−1 ≤ · · · ≤ κ0 ≤

∏d
j=1 |Lj |. Assume that for all

j ∈ {0, . . . , d}, |Lj | and all κj are powers of two. Let Γ = Fp where p ≥ 4
∏d

j=1 |Lj |2. There is a
sketch-and-recover scheme for hierarchical mismatch recovery for (L1 × · · · × Ld)-sequences over Γ
defined by procedures hmr-sketch and hmr-recover that given δ > 0 satisfies:

1. If R ≥ 4d then for any two inputs x and y, the probabilty that HMR(T, κ,R) fails to satisfy
Soundness and Completeness is at most δ.

2. The sketch bit-size is O(κ0 · log |Γ| · (
∑d

j=1 log |Lj |+ log(1/δ))) bits.

3. The sketching algorithm runs in time O(
∏d

j=1 |Lj | · logO(1) |Γ| · log(1/δ)).

4. The recovery algorithm runs in time O(κ0 · logO(1) |Γ| · log(1/δ)).

5. If the (L1× · · · ×Ld)-sequence u is given via the sparse representation {(j, uj) : j ∈ supp(u)}
where supp(u) = {ℓ ∈ L1 × · · · × Ld : uℓ ̸= 0} then the time to construct the sketch is
O((κ0 + |supp(u)|) · logO(1) |Γ| · log(1/δ)).

6. The number of mismatch pairs output by the algorithm is at most the capacity κ0 of the root.

The sketch hmr-sketch(u) depends on L1 × · · · × Ld, κ, R, and the error parameter δ and
when we apply this sketch in our edit distance algorithm we denote it by hmr-sketch(u;L1 ×
· · ·×Ld, κ,R, δ) for the sketch of u and hmr-recover(u′, w′;L1×· · ·×Ld, κ,R, δ) for the recovery
function which takes as input the sketches u′ and w′ output by hmr-sketch on strings u′ and w′.
The dependence of both the sketching and recovery functions on the random parameter ρ is left
implicit.

We mention that our application will require a sketch-and-recovery scheme for the trivial case
that d = 0. In this case the tree is a single node and u ∈ Γ and we take the sketch to consist of the
value itself, and recovery is trivial.

5.2 Superposition sketch-and-recover schemes for targeted mismatch recovery

The next two subsections present a general approach to targeted mismatch recovery. We ap-
ply this approach in Section 5.4 to construct the sketch-and-recover scheme hmr-sketch and
hmr-recover for hierarchical mismatch recovery and prove Theorem 5.1.

We make the following assumptions:

• D = {0, . . . , |D| − 1}.
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• Γ is the field Fp for some prime larger than |D| so D ⊆ Γ.

If these assumptions do not hold we can often reduce our situation to one where it does hold.
We do not need D to be integers; it is enough that there is an easily computable 1-1 mapping m
from D to the nonnegative integers. Letting m = maxj∈D m(j) + 1, we can think of D as a subset
of {0, . . . ,m − 1}, and enlarge the domain to {0, . . . ,m − 1} defining any D-sequence to be 0 on
those indices outside of D. Similarly we can replace the range Γ by Fp for some p whose size is at
least max{|Γ|, |D|}, where we interpret Γ as a subset of Fp via some easily computable 1-1 map.

Let u,w be D-sequences over Γ. Here we use a basic technique from [PL07] (see also [CEPR09,
CKP19] for related constructions), that allows for the recovery of MIS(u,w) at a specific index i.
For a parameter α ∈ Γ, the trace of u ∈ ΓD (with respect to α), denoted trα(u) is the D-sequence
over Γ4 where for each i ∈ D, trα(u)i has entries:

trα(u)i,value = ui,

trα(u)i,product = i · ui,
trα(u)i,square = u2i ,

trα(u)i,hash = αiui.

All the calculations are done over Fp. We refer to a vector in Γ4 with indices from {value,
product, square, hash} as a trace vector and we refer to α as the trace parameter

For u,w ∈ ΓD, the trace difference of u,w is ∆α(u,w) = trα(u) − trα(w). Here, for each i,
∆α(u,w)i = trα(u)i − trα(w)i is a trace vector obtained by coordinate-wise subtraction.

Define the function restore which maps trace vectors t to Γ3 as follows:

restore(t)index =
tproduct

tvalue

restore(t)x-val =
tsquare + t2value

2tvalue

restore(t)y-val =
tsquare − t2value

2tvalue
.

It is easy to check:

Proposition 5.2. The mismatch information for (u,w) at i is completely determined by ∆α(u,w)i
as follows: i is a mismatch index of u,w if and only if ∆α(u,w)i ̸= 0 and for such an i,

restore(∆α(u,w))i,index = i,

restore(∆α(u,w))i,x-val = ui,

restore(∆α(u,w))i,y-val = wi,

and therefore restore(∆α(u,w))i = (i, ui, wi) = MIS(u,w)i.

We remark that the division by 2 in the definition of restore is the reason why we need that Γ
does not have characteristic 2. Also, note that trα(u)i,hash is not used in restore, but is used later
to check soundness. In standard binary representation of integers, all arithmetic operations over Fp

that are necessary to compute trace or its restoration at a single coordinate can be computed in
time O(logO(1) p).

We are now ready to define the class of superposition sketches for functions from D to Γ.
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Definition 1 (Superposition sketch). Let S be a set, h : D → S and α ∈ Γ. The superposition
sketch induced by (α, h) is the function trα,h that maps u ∈ ΓD to trα,h(u) ∈ (Γ4)S where for j ∈ S:

trα,h(u)j =
∑

i∈h−1(j)

trα(u)i.

In words, the function h is used to partition D into |S| classes h−1(j), and trα,h(u) at j ∈ S
is the sum of the trace vectors of u corresponding to indices of D in the class h−1(j). The size (in
bits) of the output is O(|S| log |Γ|).

Note that we can compute the superposition sketch of any D-sequence over Γ easily: Initialize
trα,h(u) to all zero and then for each i ∈ D add the trace vector trα(u)i to trα,h(u)j where j = h(i).

For u,w ∈ ΓD and h : D → Γ, a mismatch index i ∈ D is recoverable for u,w, h if h−1(h(i)) ∩
I̸=(u,w) = {i}. We now define a procedure recoverα,h that recovers all recoverable indices.

Algorithm 1 recoverα,h(trα,h(u), trα,h(w), α, h)

Input: Traces trα,h(u), trα,h(w) for two strings u,w ∈ ΓD, trace parameters α ∈ Γ, h : D → S.
Output: The set Mα,h(u,w) of mismatch triples.

1 Let ∆α,h(u,w) = trα,h(u)− trα,h(w).
2 Let J be the set of j ∈ S such that ∆α,h(u,w)j,value ̸= 0.
3 Rebuilding step: For each j ∈ J let zj = restore(∆α,h(u,w)j).
4 Filtering step: Let I = {j ∈ J, zj,index < |D| ∧ ∆α,h(u,w)j,hash = αzj,index(zj,x-val − zj,y-val)}.
5 Return Mα,h(u,w) = {zj : j ∈ I}.

In the rebuilding step, the algorithm produces a list of mismatch triples by applying restore to
every trace vector it can among the ∆α,h(u,w)j . In the filtering step, it eliminates some of these
mismatch triples, and then it outputs the rest. The following lemma shows that (1) The rebuilding
step produces all mismatch triples corresponding to recoverable indices (and possibly some others)
and (2) The filtering step with high probability eliminates all mismatch triples corresponding to
indices that are not recoverable, so Soundness holds with high probability.

Lemma 5.3. Let u,w ∈ ΓD and h : D → S be fixed. Let I and J be as in the recoverα,h(u,w).
For each j ∈ S:

1. If |h−1(j) ∩ I̸=(u,w)| = 0 then j ̸∈ J .

2. If |h−1(j) ∩ I̸=(u,w)| = 1 then zj ∈ Mα,h(u,w) and zj = (i, ui, wi) where i is the unique
mismatch index such that h(i) = j.

3. The probability that Mα,h(u,w) outputs a triple that is not in MIS(u,w) (i.e. that Soundness
fails) is at most (|D|−1)·|S|

|Γ| over a uniformly random choice of α ∈ Γ.

Proof. For the first part, if |h−1(j) ∩ I̸=(u,w)| = 0 then ∆α,h(u,w)j is equal to (0, 0, 0, 0) and so
j ̸∈ J .

For the second part, suppose i is the unique mismatch index in h−1(j). Then ∆α,h(u,w)j =
∆α(u,w)i. Since ui ̸= wi, ∆α(u,w)i,value ̸= 0 and so zj = restore(∆α,h(u,w)i) = (i, ui, wi) ∈
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MIS(u,w), by Proposition 5.2. This triple is not eliminated by the filtering step since zj,index = i <
|D| and ∆α(u,w)i,hash = (ui − wi) · αi = (zj,x-val − zj,y-val) · αzj,index .

For the third part, we only need to look on zj where |h−1(j) ∩ I̸=(u,w)| > 1 and show that
they will be filtered out. Namely, we will show that Prα[zj ∈ Mα,h] ≤ |D|−1

|Γ| . Then a union bound
over j ∈ S completes the proof. If ∆α,h(u,w)j,value = 0 then j ̸∈ J irrespective of α. Otherwise the
filtering step excludes zj unless zj,index < |D| and ∆α,h(u,w)j,hash − αzj,index(zj,x-val − zj,y-val) = 0.
Letting I ′ be the set of mismatch indices in h−1(j), the left hand side of this equation equals∑

i′∈I′ α
i′(ui′ − wi′)− αzj,index(zj,x-val − zj,y-val). Here, zj,index, zj,x-val, zj,y-val do not depend on α so

for fixed h, u, w this is a nonzero polynomial in α of degree at most |D| − 1 (nonzero because the
sum has at least two non-zero terms, and at most one is cancelled by the subtracted term). This
polynomial has at most |D| − 1 roots, so the probability that α is a root is at most |D|−1

|Γ| .

The following result gives upper bounds on the running time of the sketch and recover algorithms,
and on the space needed for the sketch

Proposition 5.4. Let Γ = Fp and let D = {0, . . . , |D|−1} with |D| ≤ p. Let S be a set, h : D → S
and α ∈ Γ. The superposition sketch trα,h maps a D-sequence u over Γ to a sketch of bit-length
O(|S| log |Γ|). The running time for the sketch algorithm is O(|D| · T ) and the running time of the
recover algorithm is O(|S| ·T ), where T is an upper bound on the time to perform a single arithmetic
operation over Γ and evaluate h at a single point.

Furthermore if a D-sequence u over Γ is given via a sparse representation, via {(j, uj) : j ∈
supp(u)} where supp(u) = {j ∈ D : uj ̸= 0} then the running time of the sketch algorithm is
O((|S|+ |supp(u)|) · T ).

5.3 Randomized superposition sketches

In order to apply the superposition sketch we need to select a good h. However, one can hardly
hope that if S is comparable in size to MIS(u,w) then one can find a single h : D → S for which all
mismatch indices I̸=(u,w) will be recoverable. Hence, we will try superposition sketches for multiple
randomly chosen h’s. Fix a (small) family H ⊆ {h : D → S} and a probability distribution µ on
H (not necessarily uniform). For β ≤ 1, we say that i is β-recoverable for u,w, µ provided that for
h ∼ µ, the probability that i is recoverable for u,w, h is at least β. (Recall that if i is recoverable
for u,w, h then for any choice of α, the output of recovery procedure from the sketches trα,h(u) and
trα,h(w) includes the triple (i, ui, wi).)

We select hash functions h1, . . . , hℓ independently according to µ, for some redundancy parameter
ℓ. We also select trace parameters α1, . . . , αℓ uniformly at random from Γ. The sketch of u consists
of the sequences h1, . . . , hℓ and α1, . . . , αℓ together with trα1,h1(u), . . . , trαℓ,hℓ

(u). For the recovery
algorithm, given the sketches for u and w we compute each of the sets Mαi,hi

(u,w) for i ∈ [ℓ] and
define Mα1,...,αℓ,h1,...,hℓ

(u,w) to be the set of triples that appear in strictly more than half of the
sets.

We refer to a scheme of the above type as a randomized superposition scheme. Such a scheme is
determined by the distribution (H,µ) over hash functions and the redundancy ℓ.

The size of the sketch in bits (not including the description of the hash functions used) is
O(ℓ · |S| · log |Γ|). The description of the hash functions depends on the method used to represent
members of H. For standard explicit choices of H (such as explicit families of O(1)-wise independent
functions), members of h are represented in O(log |H|) space.
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Proposition 5.5. Let D and S be sets and let Γ be a field of size at least 4(|D| − 1)| · |S|. For
each pair of strings u,w ∈ ΓD, suppose F (u,w) is a subset of D. Let (H,µ) be a distribution over
hash functions from D to S. Suppose that for every u,w, every index belonging to F (u,w) is 3/4-
recoverable for u,w, µ. Then for any δ > 0, the superposition sketch using (H,µ) with redundancy
ℓ ≥ 8(ln |D| + ln 1

δ + 2) satisfies the Completeness and Soundness conditions for F with failure
probability at most δ.

Proof. We show that each of Soundness and Completness fail with probability at most δ/2.
To bound the probability that Completeness fails, we claim that for each 3/4-recoverable mis-

match index i ∈ D, it is the case that for every fixed choice of α1, . . . , αℓ, the probability (with
respect to the choice of h1, . . . , hℓ) that Mα1,...,αℓ,h1,...,hℓ

(u,w) does not include index i is at most
δ/(2D). If this claim is true then summing over the at most |D| mismatch indices that are 3/4-
recoverable, the probability that the output of the scheme omits at least one such index is at most
δ/2.

So we verify the claim. Fix α1, . . . , αℓ and a 3/4-recoverable mismatch index i ∈ D. For
j ∈ {1, . . . , ℓ}, let Zj be the 0-1 indicator of the event that Mαj ,hj

includes index j. Since j is
3/4-recoverable, Zj is 1 with probability at least 3/4. Let Z =

∑ℓ
j=1 Zj . The expectation of Z is

at least 3ℓ/4. Index i is not output by the algorithm if Z ≤ ℓ/2. By the Chernoff-Hoeffding bound
(Lemma 3.7), the probability that Z ≤ ℓ/2 is at most 2e−ℓ/8 ≤ e− ln |D|−ln(1/δ)−1 ≤ δ

2D , as required
to prove the claim.

Next we bound the probability that Soundness fails. For each j ∈ {1, . . . , ℓ}, let Yj be the
indicator of the event that Mαj ,hj

(u,w) contains at least one triple that is not in MIS(u,w). By
part 3 of Lemma 5.3, for any fixed value of hj , the probability, with respect to αj that Mαj ,hj

contains any triples that do not belong to MIS(u,w) is at most (|D|−1)|S|
|Γ| which is at most 1/4 by

hypothesis. Let Y =
∑

j Yj . If Y ≤ ℓ/2 then there is no incorrect triple that is in the output
of more than ℓ/2 out of the ℓ runs, and so it suffices to show that Pr[Y > ℓ/2] ≤ δ

2 . We have
E[Y ] =

∑
j E[Yj ] ≤ ℓ/4. By the Chernoff-Hoeffding bound, the probability that the total number

of such triples exceeds ℓ/2 is at most 2e−ℓ/8 ≤ δ
2 , as required.

As an example we give a simple application of random superposition schemes that recover
all mismatch triples (with high probability) whenever Ham(u,w) ≤ K. As mentioned in the
introduction better sketches already exist.

Corollary 5.6. For any C > 1, there is a randomized superposition scheme that given alphabet Γ
of size at most n, domain D, |D| ≤ n, and positive integer K, for any string from ΓD produces
a sketch of size O(K log2 n + log2 n), and on input of two sketches for strings u,w ∈ ΓD with
Ham(u,w) ≤ K recovers all mismatches with probability ≥ 1− 1/nC .

Proof. Choose S to be a set of size between 4K and 8K. Let H be a pairwise independent family
of hash functions from D to S. By Proposition 3.6 we can describe an h ∈ H by O(log(n)) bits,
and the superposition sketch induced by h requires O(K log n) bits.

We claim that for any u,w ∈ ΣD such that Ham(u,w) ≤ K every mismatch index is 3/4-
recoverable for u,w, µ. For h ∼ µ, the probability that i is not recoverable for u,w, h is as most∑

i′ Pr[h(i) = h(i′)] where the sum is over i′ ̸= i such that i′ is a mismatch index. By pairwise
independence, Pr[h(i) = h(i′)] = 1/|S| and so the probability that i is not recoverable for u,w, h is
at most K/|S| ≤ 1/4.

The result now follows immediately from Proposition 5.5.
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5.4 Proof of Theorem 5.1

In this section we show how to apply the randomized superposition schemes of Section 5.3 to con-
struct a sketch-and-recover scheme for the hierarchical mismatch recovery and prove Theorem 5.1.
The reader should review the set-up for hierarchical mismatch recovery in Section 5.1.

Recall that the scheme depends on the domain L1 × · · · × Ld, the capacity function κ where
κ = (κ0, . . . , κd), for each j, κj ≥ κj+1 and an overload parameter R which we fix to be 4d. We
view L1 × · · · × Ld as the set of leaves of T = T (L1 × · · · × Ld). In preparation for describing the
sketch-and-recover scheme, each node v at level j < d of T is associated with a set of buckets which
are ordered pairs (v, i) where 1 ≤ i ≤ κj . We refer to (v, i) as a v-bucket, and a bucket of the root
is a root-bucket. Each leaf ℓ has only one bucket, (ℓ, 1).

The hash functions of our superposition scheme are leaf→root functions, which are functions
that map the set of leaves L1 × · · · × Ld to the set of root-buckets. We will use Proposition 5.5 to
prove that the scheme works by:

1. Describing a distribution µ over leaf→root functions.

2. Showing that for any pair of strings u,w, every leaf that belongs to FT (L1×···×Ld),κ,R(u,w) is
3/4-recoverable for u,w, µ.

To describe the distribution µ on leaf→root functions, we consider a specific representation of
a leaf→root functions, and for this we need the notions of a trajectory and routing functions.

For a leaf ℓ ∈
∏d

j=1 Lj , the modes on the path from ℓ to the root ε in T are the nodes identified
by the strings ℓ≤d, ℓ≤d−1, . . . , ℓ0. We define a trajectory for ℓ to be a sequence of buckets one for
each node on the path from ℓ to ε, (ℓ≤d, id), (ℓ≤d−1, id−1), . . . , (ℓ0, i0) where ij ∈ {1, . . . , κj}. A
trajectory is uniquely determined by the leaf ℓ and the sequence of indices (id, id−1, . . . , i0). Note
that id must equal 1.

We want a way to specify a trajectory for every leaf. We do this using a collection r = (rj : j < d)
of routing functions, one for each internal level of the tree. The routing function rj is a function from
Lj+1 ×{1, . . . , κj+1} to {1, . . . , κj}. For each v at level j rj is used to specify a function that maps
buckets corresponding to children of v to buckets of v as follows: for a ∈ Lj+1 and i ∈ {1, . . . , κj+1},
the bucket (v ◦ a, i) is mapped to (v, rj(a, i)). Thus the collection of routing functions determines a
trajectory for every leaf ℓ with sequence of indices id(ℓ) = 1 and for j < d, ij(ℓ) = rj(ℓj+1, ij+1(ℓ)).
This induces the leaf→root mapping that maps each ℓ ∈

∏d
j=1 Lj to the bucket (ε, i0(ℓ)).

We are now ready to specify the distribution µ. For each level 0 ≤ j < d, let Hj = {h :
Lj+1×{1, . . . , κj+1} → {1, . . . , κj}} be a pairwise independent family of routing functions for level
j. Independently select r0, . . . , rd−1 from H1, . . . ,Hd−1. The distribution µ on leaf→root functions
is the distribution induced by the selection of r0, . . . , rd−1. Since |Lj+1| and all values of κj are
powers of 2, by Proposition 3.6, we can choose Hj so that members of Hj can be indexed with
O(log |Lj+1| + log κj+1 + log κj) bits. Thus the total number of bits to represent a leaf→root
function in the family is O(

∑d
j=1 log |Lj |+ d log κ0)).

Lemma 5.7. For T, L1, . . . , Ld and κ as in Theorem 5.1, let µ be the distribution on leaf→root
functions induced by choosing routing functions r0, . . . , rd−1 independently from pairwise independent
distribution. For any two strings u,w in ΓL1×···×Ld , every ℓ ∈ FT,κ,4d(u,w), i.e., every 4d-accessible
mismatch leaf, is 3/4-recoverable for u,w, µ.
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Proof. Let ℓ ∈ L1 × · · · × Ld be a 4d-accessible leaf with respect to u,w where uℓ ̸= wℓ. We must
show that ℓ is 3/4-recoverable. Recall that ℓ is 4d-accessible if each node along the path from ℓ to
root is 4d-underloaded, i.e., for each j < d, κ̂ℓ≤j

< κj/4d. Let (rj : 0 ≤ j < d) be the sequence of
random routing functions selected as above and let f be the induced leaf→root function.

Let (id, . . . , i0) denote the sequence of indices (id(ℓ), . . . , i0(ℓ)) for the trajectory of ℓ. This is a
random variable depending on the choice of r0, . . . , rd−1. By definition, ℓ is not recoverable if and
only if there is a mismatch leaf ℓ′ ̸= ℓ such that f(ℓ) = f(ℓ′). If ℓ′ ̸= ℓ is a leaf such that f(ℓ′) = f(ℓ)
then the trajectories of ℓ and ℓ′ have non-empty intersection. We say that ℓ and ℓ′ merge at level j
if they are in different buckets at level j +1, but in the same bucket at level j. (Note that once the
trajectories merge, they remain the same all the way to the root.)

For j ∈ {0, . . . , d−1}, let MERGEj be the event that there is a mismatch leaf ℓ′ ̸= ℓ that merges
with ℓ at level j. We now fix j and prove that Pr[MERGEj ] ≤ 1/4d. This will finish the proof,
since summing over all the levels, we will get that the probability that ℓ is not recoverable is at
most 1/4.

We condition on the rj+1, . . . , rd−1, which determines the trajectory of all leaves up to level
j + 1. In particular this determines ij+1, . . . , id,

Consider the set of child buckets of ℓ≤j . These have the form (ℓ≤j ◦ a, i) where (a, i) ∈ Lj+1 ×
{1, . . . , κj+1}. This includes the bucket (ℓ≤j ◦ ℓj+1, ij+1) on the trajectory of ℓ.

Say that a bucket (v, i) is occupied if it lies on the trajectory of some mismatch leaf. Let OCC
be the set of pairs (a, i) ̸= (ℓj+1, ij+1) such that (ℓ≤j ◦ a, i) is occupied. The event MERGEj is
equivalent to the event that there is an (a, i) ∈ OCC such that rj(a, i) = rj(ℓj+1, ij+1). For each
(a, i) ∈ OCC, Pr[rj(a, i) = rj(ℓj+1, ij+1)] =

1
κj

since rj is a pairwise independent map whose range
has size κj , and so the conditional probability of MERGEj given rd−1, . . . , rj+1 is at most |OCC|/κj .

We need to upper bound |OCC|. Let occ(v) denote the number of occupied v-buckets. In the
above analysis |OCC| =

∑
a∈Lj+1

occ(ℓ≤j ◦ a)− 1. We claim:

Proposition 5.8. For any choice of routing functions rd−1, . . . , r0:

1. For any internal node v at level j′ < d, occ(v) ≤ min(κj′ ,
∑

v′∈child(v) occ(v
′)).

2. For any node v at level j′ ≤ d, occ(v) ≤ κ̂(v).

Proof. For the first part, let v be an internal node. Then occ(v) is trivially at most κj′ . Also, a
v-bucket is occupied if and only if some occupied child maps to it, so occ(v) ≤

∑
v′∈child(v) occ(v′).

For the second part, if v is a leaf then occ(v) = 1 if v is a mismatch leaf and 0 otherwise, so
occ(v) = κ̂(v). If v is an internal node, the first part implies occ(v) ≤ min(κj′ ,

∑
v′∈child(v) occ(v′))

and applying induction and the definition of κ̂(v) we have min(κj′ ,
∑

v′∈child(v) κ̂(v
′)) = κ̂(v).

Thus |OCC| ≤
∑

a∈Lj+1
κ̂(ℓ≤j ◦ a) − 1. We know that κ̂(ℓ≤j) ≤ κj/4d and in particular,

κ̂(ℓ≤j) < κj . Hence, κ̂(ℓ≤j) =
∑

a∈Lj+1
κ̂(ℓ≤j ◦ a) > |OCC|. It follows that for any choice of the

routing functions rd−1, . . . , rj+1, |OCC| < κj/4d. Therefore Pr[MERGEj ] ≤ 1
4d , as required to

complete the proof of the theorem.

We are ready to conclude Theorem 5.1. Let us define the sketching function hmr-sketch(u;T, κ, δ)
for targeted mismatch recovery HMR(T, κ, 4d) to be the superposition sketching function on the
tree T with the capacity function κ, where the distribution on leaf→root functions is as given in
the above lemma, and with the redundancy set to ⌈8(

∑d
j=1 ln |Lj | + log(1/δ) + 2)⌉. Let us define
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hmr-recover to be the associated recovery function. To conclude the correctness of the scheme
(the first item of Theorem 5.1) we apply Proposition 5.5 together with Lemma 5.7 with parameters
set as follows: D =

∏d
j=1 |Lj |, S = {1, . . . , κ0}, redundancy ℓ = ⌈8(

∑d
j=1 ln |Lj |+log(1/δ)+2)⌉, and

(H,µ) as defined above for (T, κ). (Notice, the theorem hypothesis that |Γ| ≥ 4
∏d

j=1 |Lj |2 implies
that |Γ| ≥ 4(|D| − 1) · |S| as required by Proposition 5.5.) The sketch consists of O(ℓ · |S|) elements
from Γ so it takes O(κ0 · log |Γ| · (log

∏d
i=1 |Lj |+log(1/δ))) bits. Evaluating a hash function from H

at a single point takes time O(d logO(1) |Γ|) so by Proposition 5.4, the sketching algorithm runs in
time O(ℓ ·

∏d
i=1 |Lj | · d logO(1) |Γ|) = O(

∏d
i=1 |Lj | · logO(1) |Γ| · log(1/δ)). If u is given via its sparse

representation then the time to construct the sketch is O((κ0 + |supp(u)|) · logO(1) |Γ| · log(1/δ)).
The recovery algorithm runs in time O(κ0 · logO(1) |Γ| · log(1/δ)) as required. Finally, each mismatch
pair that is output by the recovery algorithms must appear in more than half of the ℓ redundant
sketches. As each sketch outputs at most |S| elements, the number of mismatch pairs output by
the algorithm is at most κ0.

6 Sketch-and-recover scheme for edit distance

In this section we describe our sketch-and-recover scheme for edit distance.
This scheme takes a distance parameter k and size parameter n and has the property that given

strings x, y of length at most n, with probability at least 2/3, if ED(x, y) ≤ k the recover algorithm
on sketches of x and y will output the set of costly edges in the canonical alignment of x and y, as
defined in Section 3.2. If ED(x, y) > k the recover algorithm should output large. The strings x
and y are over the alphabet Σn = {1, . . . , n3}. We make the simplifying assumption that k ≤ n/4
otherwise each string can serve as its own sketch.

Let s = log n. Our goal is that the length of the sketch should be “nearly linear” in k, which
means k× T where T is “small”. We achieve this with T = s2ORs

O(1), where sOR = 2O(
√
s log s) is the

gap parameter from Theorem 4.2, so this is the dominant term. Our construction is multi-layered
and intricate but fairly clean. We are careless with factors of s and of constants in the sketch size;
it is clearly possible to reduce some of these factors, but it would complicate our already involved
construction.

An important note is that we use the gap threshold algorithm from Theorem 4.2 as a black box.
Improving the value of sOR in Theorem 4.2 will translate into a reduction in the sketch size.

The sketch and recover algorithms build recursive structures that are represented as labelled
trees T (W d) or T ({0, 1}ds). Both of these trees have a number of nodes that is superpolynomial
in n, so explicitly evaluating the labeling at all nodes leads to superpolynomial running time. We
can avoid this because each of these trees has the property that all but polynomially many nodes
are labelled by a default value, and the set of nodes not labelled by the default value is a rooted
subtree. Thus we only have to explicitly compute the labeling at nodes whose value is not the
default value. For example, a key step in building the sketch for x is to build a decomposition for
x on the tree T (W d) where we assign x to the root, and work our way down the tree: if node v
has been assigned xv then the children of v are assigned a (carefully chosen) decomposition of xv.
At most polynomially many nodes will be assigned a nonempty string (because there are at most
|x| nonempty substrings at each level of the tree) and the default value is the empty string ε. As
we build the tree, when we encounter a node u that is assigned the empty string whose parent is
assigned a nonempty string, we note that xu = ε and implicitly assign all descendants to ε without
doing any computation on the descendants. The set of explicitly assigned nodes is a rooted subtree
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of polynomial size and any node not appearing in the subtree is implicitly assigned to ε, and our
algorithms only pay for the explicitly assigned values.

6.1 Pseudo-code for edit distance sketch-and-recover algorithms

Our sketching algorithms and their analysis depend on various parameters. We review the param-
eters here. They are implicitly part of the input of all of our procedures.

The following parameters are set by the user of the scheme: k is the edit distance bound that
the scheme is designed to handle, and n is the upper bound on the size of the input strings. We
assume n is a power of two and that it is larger than 40ksOR, where sOR is the distortion of the
Ostrovsky-Rabani fingerprint. We use s = log n as a shorthand.

We recall the following parameters that were introduced in formulating the properties of the
Ostrovsky-Rabani fingerprint and the function basic-decomp. They are used to define other
parameters of our algorithm: N = n60 is the length of bit-vectors that represent grammars output by
basic-decomp. sE→H = O(log2 n) appears in Part 2b of Theorem 4.3 concerning basic-decomp.
It bounds how much is the edit distance of two strings multiplied when we measure the Hamming
distance of their representation by grammars. ssplit = O(log4 n) is the multiplier that appears
in the failure probability in Part 2a of Theorem 4.3. The failure probability is the ratio between
the edit distance of two strings and the desired grammar sparsity multiplied by ssplit . sOR =

2O(
√

log(n) log log(n)) is the gap parameter (distortion) from Theorem 4.2 concerning the Ostrovsky-
Rabani fingerprints. We can assume that all three constants sE→H , ssplit and sOR are integers.

Our algorithm uses some large field F = Fp to represent fingerprints and compute hierarchical
mismatch recovery schemes. Here p is a prime whose bit length is at least 4(logN · log n) which is
sufficient for all those applications. We assume that the prime p is selected during the initialization
of our algorithm (see Section 3.3).

The sketching algorithm for a string x operates by implicitly building some tree data structures
to represent x, which are then compressed. The trees underlying these data structures are fixed.
The decomposition tree produced by main-decomp is T (W d), where W = {0, 1}s indexes its edges,
and d = ⌈log(20k ·sOR)⌉ is its depth. main-decomp also builds some data structures on the binary
tree T ({0, 1}sd). The nodes at level j of T (W d) correspond in the obvious way to the nodes at level
sj in T ({0, 1}sd).

The following parameters are chosen carefully for the algorithm and its analysis. They bound
quantities at nodes of T (W d): ti is the threshold of Ostrovsky-Rabani fingerprint used for substrings
at level i of the tree, ki is the sparsity of grammar bit-vectors at level i of the tree, κi is the capacity
of nodes at level i of the hierarchical mismatch recovery scheme on T (W d). The quantities shrink by
factor of 2 at each level and the latter two quantities can be defined in terms of ti. The parameters
are chosen to satisfy various constraints that arise in the analysis and we summarize the constraints
in Section 9.

Ostrovsky-Rabani
fingerprint threshold Grammar sparsity Hierarchical mismatch

recovery capacity

t0 = ⌈20k · sOR⌉2 k0 = (32ssplit log
6 n) · t0 κ0 = (512ssplit sOR log12 n) · t0

ti = ti−1/2
= t0/2

d−i
ki = ki−1/2

= (32ssplit log
6 n) · ti

κi = κi−1/2
= (512ssplit sOR log12 n) · ti
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Here by ⌈a⌉2 we mean the smallest power of two larger than a. We set sload = 64ssplit sOR log6 n,
which is used in Proposition 8.10. For j ∈ {1, . . . , d}, κj is the capacity function on T (W j ×
{1, . . . , N}) where for i ∈ {0, . . . , j + 1}, κ≤j

i = κi. Additionally we need to define a capacity for a
hierarchical mismatch recovery scheme on T ({0, 1}sd). For j ∈ {0, . . . , ds− 1}, λ≤j is the capacity
function on T ({0, 1}j) where for i ∈ {0, . . . , j}, λ≤j

i = κ⌊i/s⌋.

Algorithm 2 main-decomp(x)

Input: String x ∈ Σ≤n
n .

Output: Tree decomposition substrs of x indexed by W≤d with associated tree OR-prints of
Ostrovsky-Rabani fingerprints and grammars grams, vis-nodes which is the support of
substrs, refinement substrs∗ of the tree decomposition of x indexed by {0, 1}≤ds with
the tree of fingerprints fingerprints∗ and left child size tree left-size∗, and vis-nodes∗

which is the support of substrs∗.

6 Set substrsε = x; vis-nodes = {ε}.
7 for j = 0, . . . , d− 1 do
8 for v ∈ vis-nodes ∩W j do
9 if substrsv ̸= ε then

10 Call basic-decomp(substrsv; kj+1) to obtain decomposition (zi : i ∈ W ) of substrsv
with associated grammars (Gi : i ∈W ) where Gi ∈ {0, 1}N .

11 for each i ∈W do
12 if zi ̸= ε then
13 substrsv◦i = zi;
14 gramsv◦i = Gi;
15 OR-printsv◦i = OR-fingerprint(zi; tj+1);
16 vis-nodes = vis-nodes ∪ {v ◦ i}.
17 end
18 end
19 end
20 end
21 end
22 vis-nodes∗ = vis-nodes ∩ {0, 1}ds;
23 for each v ∈ vis-nodes∗ do substrs∗v = substrsv;
24 for j = ds− 1, . . . , 0 do
25 for each v ∈ {0, 1}j where v ◦ 0 or v ◦ 1 ∈ vis-nodes∗ do
26 substrs∗v = substrs∗v◦0 ◦ substrs∗v◦1;
27 fingerprints∗v = fingerprint(substrs∗v);
28 left-size∗v = |substrs∗v◦0|;
29 vis-nodes∗ = vis-nodes∗ ∪ {v}.
30 end
31 end
32 Output substrs, grams, OR-prints, vis-nodes, substrs∗, left-size∗, fingerprints∗,

vis-nodes∗.

The main component of our sketching algorithm is procedure main-decomp. It takes the input
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string x and recursively applies procedure basic-decomp to it with sparsity parameter kj , where
j is the recursion level. Each call to procedure basic-decomp splits a substring of x into smaller
substrings, each represented by a grammar of sparsity kj . We label the tree T (W d) by the iteratively
obtained substrings of x. The set vis-nodes traces which nodes of the tree are non-empty.

Thus we build two vertex labelings of the tree T (W d): substrs is the labeling by substrings
of x that is a decomposition tree for x, and grams labels each node, except the root, by a bit-
vector that represents a grammar that encodes substrsv. All of the labelings are represented via a
sparse representation. The algorithm constructs the set vis-nodes of nodes consisting of the root
substrsε and all nodes v for which substrsv ̸= ε. The labels substrsv and gramsv are assigned
values explicitly only if v ∈ vis-nodes; for v ̸∈ vis-nodes, substrsv and gramsv are not explicitly
assigned, and are implicitly set, respectively, to ε and the 0 vector.

Additionally, for each non-empty substring substrsv we also calculate its Ostrovsky-Rabani
fingerprint for a suitable threshold parameter. The fingerprints form another labeling OR-prints
of T (W d). The fingerprints are interpreted as elements from F.

In the second part of main-decomp we build a refinement substrs∗ of substrs. substrs∗ is
a vertex labeling of the binary tree T ({0, 1}ds) where substrs∗v is the concatenation of substrsu
for u ∈ W d that have v as its prefix. (Here we view u as a binary string of length ds.) This can
be efficiently built bottom-up starting from leaves. For each substrs∗v we calculate its Karp-Rabin
fingerprint fingerprints∗v and we set left-size∗v to be the length of substrs∗v◦0, the left child of
v. Hence, fingerprints∗ and left-size∗ are both labelings of T ({0, 1}ds). The labeling substrs of
T (W d) corresponds to a partial labeling of the binary tree T ({0, 1}ds) where only nodes at levels
that are multiples of s are labeled. substrs∗ "interpolates" this partial labeling to a full labeling of
the binary tree. As with substrs, substrs∗v is only explicitly defined for nodes where it is nonempty.
The set vis-nodes∗ traces the non-empty nodes v of substrs∗. For all other v, substrs∗v is implicitly
equal to ε and left-size∗v is implicitly set to 0.

Algorithm 3 grammar-condense(grams,OR-prints,vis-nodes)
Input: Tree of grammars grams indexed by W≤d with support vis-nodes, and tree OR-prints

of associated Ostrovsky-Rabani fingerprints.
Output: HMR sketch for each level of the grams.

33 for each j ∈ {1, . . . , d} do
34 Let gramsj be the all-zero D-sequence over F where D = W j × {1, . . . , N}
35 for v ∈ vis-nodes ∩W j and i ∈ {1, . . . , N} do
36 gramsjv◦i = OR-printsv ×F gramsv,i.
37 end
38 str-skj = hmr-sketch(gramsj ;T (W j × {1, . . . , N}), κ≤j , 4(d+ 1), 1/n4).
39 end
40 Output str-sk = (str-sk1, . . . , str-skd).

After computing the decomposition of a string x, the decomposition is condensed into hierarchical
mismatch recovery sketch in procedures grammar-condense and location-condense. The
former is used to sketch the grammar tree grams and the latter is used to sketch the tree of child-
sizes left-size∗. The first sketch will allow us to recover grammars of differing substrings between
x and y, the second will be used to determine the exact position of the differing substrings in x and
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y. The grammar-condense takes each of the layers of grams, and applies to it hmr-sketch
with a suitable choice of parameters. Each layer of grams is a sequence of grammars represented
by a binary vector. Each of the binary vectors is multiplied by a corresponding Ostrovsky-Rabani
fingerprint so that if two corresponding nodes in the decomposition of x and y are labelled by
substrings of x and y of large edit distance then the multiplied grammar vectors will differ in each
non-zero entry. Those non-zero positions will be recovered from the hierarchical sketch if the path
to the root in the tree of grammars is not overloaded. The collection of the hierarchical sketches,
one for each layer of T (W d), is the sketch output by grammar-condense.

Algorithm 4 location-condense(left-size∗,fingerprints∗,vis-nodes∗)
Input: Tree of Karp-Rabin fingerprints fingerprints∗ for the refined tree decomposition substrs∗

of x indexed by {0, 1}≤ds with left child size tree left-size∗ of substrs∗ supported on
vis-nodes∗.

Output: HMR sketch for each level of the left-size∗.

41 for each j ∈ {0, . . . , ds− 1} do
42 Let left-sizej be the all-zero D-sequence over F where D = {0, 1}j .
43 for v ∈ vis-nodes∗ ∩ {0, 1}j do
44 left-sizejv = n×F fingerprints∗v +F left-size∗v.
45 end
46 loc-skj = hmr-sketch(left-sizej ;T ({0, 1}j), λ≤j , 4ds, 1/n4).
47 end
48 Output loc-sk = (loc-sk0, . . . , loc-skds−1).

Similarly, each of the sd layers of left-size∗ consists of integers from {1, . . . , n}. Each of the
integers is offset by a corresponding Karp-Rabin fingerprint from fingerprints∗ so that if the
fingerprints in x and y differ the corresponding values will differ. (Here, we assume that the field
F is of characteristic larger than the maximum value of the fingerprint times n so the mapping is
invertible.) Again, hierarchical mismatch recovery sketch of each fingerprinted layer with suitable
parameters allows to recover sizes of left substrings for differing pairs of corresponding nodes in
substrs∗ for x and y. Summing-up the sizes of the left subtrees along a path from some node in
T ({0, 1}ds) to the root allows to recover the position of a differing substring in the decomposition of
x and y, respectively. So the collection of the hierarchical sketches, one for each layer of left-size∗,
is the sketch output by location-condense.

Algorithm 5 main-sketch(x)

Input: String x ∈ Σ≤n
n .

Output: A sketch main-sk of x.

49 Invoke main-decomp(x) which outputs substrs, grams, OR-prints, vis-nodes, substrs∗,
left-size∗, fingerprints∗, vis-nodes∗.

50 str-sk = grammar-condense(grams,OR-prints,vis-nodes).
51 loc-sk = location-condense(left-size∗,fingerprints∗,vis-nodes∗).
52 Output main-sk = (str-sk, loc-sk).

Procedure main-sketch builds a single instance of a sketch for x using a single call to each of

29



the procedures main-decomp, grammar-condense, location-condense. ED-sketch applies
the procedure main-sketch (10s + 50)-times using independent randomness to get a sequence of
sketches for x. Their concatenation is the sketch for x.

Algorithm 6 ED-sketch(x, k, n)

Input: String x ∈ Σ≤n
n , integer parameters k and n.

Output: A sketch sk of x.

53 Determine t1, . . . , td, κ
≤1, . . . , κ≤d, λ≤0, . . . , λ≤ds−1.

54 OR-print = OR-fingerprint(x; 20ksOR).
55 for i ∈ {1, . . . , 10s+ 50} do main-ski = main-sketch(x);
56 Output sk = (OR-print,main-sk1, . . . ,main-sk10s+50).

6.2 Pseudo-code for the recovery algorithm

The recovery of edit distance from sketches of x and y starts in procedures find-strings and
find-locations. find-strings takes two sketches str-sk(x) and str-sk(y) that were produced
by grammar-condense. str-sk(x) consists of d hierarchical mismatch recovery sketches, each of
them sketches a level of the grammar tree of x. Similarly for str-sk(y).

Algorithm 7 find-strings(str-sk(x), str-sk(y))
Input: hmr-sketch sketches str-sk(x) and str-sk(y) of grammars for tree decompositions of x

and y.
Output: Sequences found-strv(x) and found-strv(y) indexed by some str-nodes ⊆ W≤d of

substrings on which x and y differ.

57 Set str-nodes = ∅.
58 for j ∈ {1, . . . , d} do
59 gram-mismatchj = hmr-recover(str-skj(x), str-skj(y)).
60 str-nodesj = {v ∈W j ; ((v, i), α, β) ∈ gram-mismatchj for some i ∈ {1, . . . , N}, α, β ∈ F}.
61 for v ∈ str-nodesj do
62 found-gramv(x) = found-gramv(y) = 0N .
63 for each ((v′, i), α, β) ∈ gram-mismatchj where v′ = v do
64 if α ̸= 0 then found-gramv,i(x) = 1;
65 if β ̸= 0 then found-gramv,i(y) = 1;
66 end
67 found-strv(x) = basic-decode(found-gramv(x)).
68 found-strv(y) = basic-decode(found-gramv(x)).
69 if found-strv(x) and found-strv(y) are both defined then
70 Add v to str-nodes.
71 end
72 end
73 end
74 Output (found-strv(x) : v ∈ str-nodes) and (found-strv(y) : v ∈ str-nodes).

find-strings calls the recovery procedure hmr-recover on each corresponding pair of hier-
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archical sketches. The call to hmr-recover provides a list gram-mismatch of mismatch triples.
Each mismatch triple ((v, i), α, β) asserts that the i-th bit of the grammar at node v of the decom-
position tree grams for x is 1 if α is non-zero, and the same bit of a grammar for y is 1 if β is
non-zero. Grammars for which we get some mismatch triple are decoded by basic-decomp.

If all non-zero entries of the grammar were recovered then basic-decomp returns the corre-
sponding string otherwise it returns undefined. (The latter case occurs if only a subset of ones
was recovered for the given grammar vector.) This provides a collection of substrings of x from
its substrs, and similarly for y. We organize the substrings as a partial labeling of T (W d), for
which str-nodes identifies the support of the labeling. The two partial labelings for x and y are
the output of the procedure.

Algorithm 8 find-locations(loc-sk(x), loc-sk(y), str-nodes)
Input: hmr-sketch sketches loc-sk(x) and loc-sk(y) of substring locations for refined tree de-

compositions of x and y, str-nodes are nodes of the decomposition for which we want to
recover their starting position.

Output: Sequences found-startv(x) and found-startv(y) indexed by some loc-nodes ⊆
str-nodes of starting positions of substrings on which x and y differ.

75 for j ∈ {0, . . . , ds− 1} do
76 size-mismatchj = hmr-recover(loc-skj(x), loc-skj(y)).
77 for (v, α, β) ∈ size-mismatchj do
78 found-sizev(x) = α mod n (over N)
79 found-sizev(y) = β mod n (over N)
80 end
81 end
82 loc-nodes = ∅.
83 for v ∈ str-nodes do
84 found-startv(x) =

∑
u a left ancestor of v found-sizeu(x).

85 found-startv(y) =
∑

u a left ancestor of v found-sizeu(y).
86 Comment: u ∈ {0, 1}<|v| is a left ancestor of v if u is a prefix of v and v|u|+1 = 1.
87 if found-startv(x) and found-startv(y) are both defined then
88 Add v to loc-nodes.
89 end
90 end
91 Output (found-startv(x) : v ∈ loc-nodes) and (found-startv(y) : v ∈ loc-nodes).

Similarly, find-locations gets two sketches loc-sk(x) and loc-sk(y) that were produced by
location-condense, and a set of target nodes str-nodes from the tree decomposition of x and
y. loc-sk(x) consists of sd − 1 hierarchical mismatch recovery sketches, each of them sketches a
level of the left-size∗ tree of x. Similarly for y. On each pair of sketches for x and y we apply
hmr-recover to identify differences between the values at a given level of left-size∗ tree for x and
y. (A difference at node v might come from two sources: either the actual values left-size∗v for x and
y differ or the associated substrs∗v differ.) For each node v where the recovery procedure identifies
a difference we recover the value left-size∗v for x and y, respectively, and store it in found-sizev.
After we find all recoverable differences between left-size∗ for x and y, for each node v ∈ str-nodes

31



where we identified a difference, we attempt to calculate the starting position in x and y, resp.,
of the substring substrsv of x and y. The starting position of substrsv is given by the sum of
left-size∗u over all nodes u in T ({0, 1}ds) which we reach from right on the path from v to root. (If
any of the left-size∗u does not have its value defined then the starting position for v will remain
undefined.) We return two sequences found-startv(x) and found-startv(y) of starting positions
we calculated.

Procedures find-strings and find-locations are called from main-reconstruct which at-
tempts to reconstruct edit distance information from a pair of sketches main-sk(x) and main-sk(y)
obtained from a single run of main-sketch. main-sk(x) consists of str-sk(x) and loc-sk(x), and
similarly for main-sk(y). Sketches str-sk(x) and str-sk(y) are sent to find-strings to recover
differing pairs in substrs of x and y: collections found-str(x) and found-str(y) indexed by some
subset str-nodes of the tree nodes.

Then find-locations is applied on loc-sk(x), loc-sk(y) and str-nodes to obtain starting
locations found-start(x) of substrings found-str(x) within x and similarly starting positions
found-start(y) of substrings of y. The set of substrings for which the starting position was re-
covered is identified by loc-nodes. We let top-nodes be the set of nodes from loc-nodes that
do not have any other node from loc-nodes on their path to the root in T (W d). For each node
v ∈ top-nodes we have recovered substrings found-strv(x) and found-strv(y) and their respec-
tive positions found-startv(x) and found-startv(y) in x and y. We evaluate the edit distance of
the two substrings positioned at those locations and we calculate the costly edges of their canonical
alignment. Union of all the edges over v ∈ top-nodes is the output of main-reconstruct.

Algorithm 9 main-reconstruct(main-sk(x),main-sk(y))
Input: A pair main-sk(x), main-sk(y) from a single run of main-sketch, where main-sk(x)

consists of str-sk(x) and loc-sk(x).
Output: Set of candidate costly edges for some pairs of substrings where x and y differ.

92 Call find-strings(str-sk(x), str-sk(y)) to get (found-strv(x) : v ∈ str-nodes) and
(found-strv(y) : v ∈ str-nodes) for some str-nodes ⊆W≤d.

93 Call find-locations(loc-sk(x), loc-sk(y), str-nodes) to get (found-startv(x) : v ∈ loc-nodes)
and (found-startv(y) : v ∈ loc-nodes) for some loc-nodes ⊆ str-nodes.

94 Let top-nodes = {v ∈ loc-nodes; v has no proper prefix in loc-nodes}.
95 for v ∈ top-nodes do
96 Calculate the canonical alignment canon+(found-strv(x), found-strv(y)) of the string

found-strv(x) starting at location found-startv(x) and the string found-strv(y) starting
at location found-startv(y).

97 Let candidsv = costly(canon+(found-strv(x), found-strv(y)).
98 end
99 candids←

⋃
w∈top-nodes candidsv.

100 Output candids.

The main recovery function is given by ED-recover. It receives two sketches for x and y. The
sketch of x contains Ostrovsky-Rabani fingerprint OR-print(x) of the whole x and a sequence of
sketches main-sk1(x), . . . , main-sk10s+50(x). Similarly for the sketch of y. If OR-print(x) differs
from OR-print(y) then x and y are of edit distance more than k. Otherwise we invoke proce-
dure main-reconstruct for each main-ski(x) and main-ski(y), i = 1, . . . , 10s+50. Each call to
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main-reconstruct produces a collection of costly edges that should be part of the canonical align-
ment of x and y. Some of the edges might be misidentified by a given call to main-reconstruct
so as the final output of ED-recover we output only edges that main-reconstruct outputs
more than half of the time.

Algorithm 10 ED-recover(sk(x), sk(y); k, n)
Input: Sketch of x: sk(x) = (OR-print(x), main-sk1(x), . . . , main-sk10s+50(x)) and sketch of

y: sk(y) = (OR-print(y), main-sk1(y), . . . ,main-sk10s+50(y)).
Output: Edit distance of x and y if it is smaller than k, and large otherwise.

101 if OR-print(x) ̸= OR-print(y) then return large;
102 for i ∈ {1, . . . , 10s+ 50} do
103 candidsi = main-reconstruct(main-ski(x),main-ski(y))
104 end
105 Let found-edges be the set of edges that appear in more than half of the sets candidsi.
106 if |found-edges| > k then return large;
107 Return found-edges.

7 Analysis of the sketch-and-recover scheme

7.1 Main result

An execution of ED-sketch and ED-recover on a pair of strings x, y consists of evaluation of
ED-sketch(x) and ED-sketch(y) and of ED-recover(ED-sketch(x),ED-sketch(y)) where
all three evaluations use the same randomizing parameter ρ. The execution of ED-sketch(x),
ED-sketch(y) and ED-recover(ED-sketch(x),ED-sketch(y)) succeeds provided that

• If ED(x, y) > k then ED-recover outputs large, and

• If ED(x, y) ≤ k then ED-recover outputs costly(canon+(x, y)),

and fails otherwise.
In this section we prove the main result of the paper:

Theorem 7.1. The pair of algorithms ED-sketch and ED-recover provides a sketch-and-recover
scheme for edit distance. Given sufficiently large size parameter n, s = log n, distance parameter
k ≤ n/40s2OR and alphabet Σn:

1. ED-sketch runs on strings x of length at most n and outputs a sketch str-sk(x) of length at
most O(ks2ORs

O(1)).

2. The running time of ED-sketch is Õ(|x| · T (n)) and the running time of ED-recover is
Õ(min(n2, k3s2OR)), where T (n) ≥ n is the time to compute OR-fingerprint on inputs of
length n. (Recall, T (n) is polynomial in n.)

3. For all x,y of length at most n, the execution of ED-sketch(x), ED-sketch(y), and ED-recover(
ED-sketch(x), ED-sketch(y)) fails with probability at most 1/3.
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As usual, the value 1/3 for failure probability is arbitrary, and can be replaced by any function
δ > 0 by repetition: construct a sketch consisting of r = O(log(1/δ)) independent sketches of x and
of y, apply the recovery algorithm to each pair of corresponding sketches, and take majority vote.

The bounds on the sketch size and running time are straightforward and given in Section 7.2.
The most significant part of the analysis is the upper bound on the failure probability. This

proof is contained in Sections 7.4 to 8.2.

7.2 Time and space analysis

In this section we prove parts 1 and 2 of Theorem 7.1. For part 1 we bound the size of the
output of ED-sketch. The output consists of 10s + 50 independent instances of the output of
grammar-condense and location-condense. Each call to grammar-condense produces d
sketches using hmr-sketch, each of bit-size Õ(s2ORk). Each call to location-condense produces
ds− 1 sketches using hmr-sketch, each of bit-size Õ(s2ORk). Hence, the total size of the sketch is
Õ(k2O(

√
log(n) log log(n))).

For part 2 we bound the time of ED-sketch and ED-recover. Let m = |x| and T (n)
be the time to compute OR-fingerprint on strings of length at most n. ED-sketch makes
one call to OR-fingerprint which takes time T (n) and then makes 10s + 50 = Õ(1) inde-
pendent calls to main-sketch. main-sketch calls main-decomp, grammar-condense, and
location-condense.

main-decomp constructs substrs, grams, OR-prints, substrs∗, left-size∗, and fingerprints∗.
Even though each of these is defined on trees which have (roughly) nd nodes, which is superpoly-
nomial in n, the time to compute them will be polynomial in m as we use sparse representation
for each labeling of the tree. Sets vis-nodes and vis-nodes∗ determine the nodes with non-empty
labels in those trees.

Since substrs is a decomposition tree for x, each layer is a decomposition of x and has at most
m nonempty strings, so |vis-nodes| ≤ dm. Thus, the total cost of calls to basic-decomp for
strings on a single layer of substrs is Õ(m). Hence, each layer of grams contains in total Õ(m)
ones in the grammar bit-vectors. To construct OR-prints, we apply OR-fingerprint to each
nonempty substrsv. This takes total time Õ(m · T (n)).

The decomposition tree substrs∗ also uses a sparse representation and is explicitly defined on
the set vis-nodes∗ which consists of all nodes in the binary tree that are ancestors of a node in
vis-nodes. Since each node in vis-nodes has at most ds ancestors |vis-nodes∗| = Õ(m). Hence,
left-size∗v can be computed in time Õ(m). We apply fingerprint to each node of substrs∗ in
vis-nodes∗. We need Õ(m) time to compute the fingerprints for nodes on a single layer of substrs∗.
Thus the total time to compute substrs∗, left-size∗, and fingerprints∗ is Õ(m).

grammar-condense involves the computation of d instances of hmr-sketch. The j-th in-
stance is for gramsj which is the j-th layer of grams. Thus the sparse representation of gramsj

contains at most Õ(m) entries so the time to compute a single hmr-sketch is Õ(m+ s2ORk).
Similarly location-condense involves the computation of ds − 1 instances of hmr-sketch.

The j-th instance is for the function left-sizej which has at most m non-zero entries so again the
time of hmr-sketch is Õ(m+ s2ORk).

Thus the overall time of ED-sketch is Õ(m · T (n) +m+ s2ORk).
Next we consider the time of ED-recover. We will argue first that its running time is at

most Õ(n2). Then we point out how to make it faster. find-strings is applied to each pair
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str-skj(x), str-skj(y) for j ∈ {1, . . . , d} and find-locations is applied to each pair loc-skj(x),
loc-skj(y) for j ∈ {0, . . . , ds− 1}.

Each call to find-strings runs hmr-recover whose running time is Õ(s2ORk). This produces
a set of at most Õ(s2ORk) mismatch pairs. This determines the set str-nodes of nodes, also of size
at most the number of mismatch pairs. For each node v ∈ str-nodes we use the mismatch pairs to
construct found-gramj

v, which is a proposed reconstruction of gramsv. We apply basic-decode
to each of these to get found-strv. The total time is within Õ(n).

Similarly, each call to find-locations runs hmr-recover. This produces a set of at most
Õ(s2ORk) mismatch pairs. For each node in str-nodes we calculate a sum of at most sd elements.
Hence, the total time is Õ(n).

Last, for each node v in str-nodes we have to compute the edit distance of found-strv(x) and
found-strv(y) which takes time O(|found-strv(x)| · |found-strv(y)|). By Corollary 7.8 (which is
stated later) under normal execution, both found-strv(x) and found-strv(y) are real substrings
of x and y, respectively. Thus the sum of lengths of found-strv(x) at the same layer of the
decomposition tree is at most n. Thus the total time needed for the reconstruction is Õ(n2) under
normal execution. If the recovery algorithm runs for more time than Õ(n2) we can terminate it
as the execution is abnormal and the result might be incorrect. That happens with only small
probability as shown later.

To obtain a faster running time for the recovery, observe that one does not have to expand the
grammars to compute their canonical alignment. Using the result of [GKLS22] one can compute
the set of costly edges of the canonical alignment for two strings represented by grammars of size at
most g in time Õ(g+k′2) where k′ is the edit distance of the two strings. The total size of grammars
we will recover is Õ(ks2OR), their number is also at most Õ(ks2OR), and the edit distance we care for
is k. Hence running the edit distance algorithm on all recovered pairs of grammars costs at most
Õ(k3s2OR).

7.3 Upper bound on the failure probability

Having proved parts 1 and 2 of Theorem 7.1, we now turn to the proof of Part 3. In this section
we state Theorem 7.2 and use it to prove Part 3 of Theorem 7.1. The proof of Theorem 7.2 will be
divided into several subsections.

We fix strings x and y and consider an execution of ED-sketch(x), ED-sketch(y) and
ED-recover(ED-sketch(x),ED-sketch(y)). We want to show that the probability of failure is
at most 1/3.

Recall that the algorithm ED-recover first compares OR-print(x) and OR-print(y) and
outputs large if they are unequal. If they are equal then it executes ED-recover to produce
the set found-edges of annotated edges and outputs large if |found-edges| > k and outputs
found-edges if |found-edges| ≤ k.

It simplifies the discussion to modify ED-recover so that it starts by computing found-edges
and only then compares OR-print(x) to OR-print(y) and outputs large if the fingerprints differ
and outputs found-edges otherwise. This modified algorithm clearly has the same output behav-
ior as ED-recover but has the analytic advantage that the (random) value of found-edges is
independent of the event OR-print(x) = OR-print(y).

We will prove:

Theorem 7.2. If ED(x, y) < 20ksOR then Pr[found-edges ̸= costly(canon+(x, y))] ≤ 1/4.

35



Using this theorem, it is easy to bound the failure probability of ED-recover to complete the
proof of the third part of Theorem 7.1.

We divide into three cases depending on ED(x, y).
Case (1): ED(x, y) ≥ 20ksOR. The algorithm correctly outputs large unless OR-fingerprint(x) =

OR-fingerprint(y) and by Theorem 4.2, OR-fingerprint(x) = OR-fingerprint(y) happens
with probability at most 1/n4.

Case (2): 20ksOR > ED(x, y) > k. The algorithm correctly outputs large if OR-fingerprint(x) ̸=
OR-fingerprint(y) or if found-edges = costly(canon+(x, y)) (since |costly(canon+(x, y))| =
ED(x, y)). So the output will be incorrect only if found-edges ̸= costly(canon+(x, y)). By
Theorem 7.2 this happens with probability at most 1/4.

Case (3): k ≥ ED(x, y). Success requires the algorithm to output costly(canon+(x, y)). This
will fail only if OR-fingerprint(x) ̸= OR-fingerprint(y) or found-edges ̸= costly(canon+(x, y)).
By Theorem 4.2, Pr[OR-fingerprint(x) ̸= OR-fingerprint(y)] ≤ ksOR

20ksOR
= 1

20 and by Theo-
rem 7.2, Pr[found-edges ̸= costly(canon+(x, y))] ≤ 1

4 so the overall error probability is less than
1/3..

It remains to prove Theorem 7.2 which is done in the sections that follow. Since the hypothesis
of Theorem 7.2 is that ED(x, y) < 20ksOR this assumption is made throughout.

7.4 Normal executions

In this section we identify certain events in the execution of ED-sketch and ED-recover as
abnormal and prove that the probability of an abnormal execution tends to 0 as n gets large.

On input x, ED-sketch constructs a sequence of sketches main-ski(x) for i ∈ {1, . . . , 10s+50}.
For each corresponding pair main-ski(x) and main-ski(y), the recovery algorithm applies

main-reconstruct(main-ski(x),main-ski(y)). If the output is defined then it is a set candidsi
of annotated edges. The set candidsi is supposed to “approximate” costly(canon+(x, y)) in a
suitable sense. The final output found-edges of ED-recover is the set of annotated edges that
appear in more than half the sets of candidsi.

Each run of main-sketch(x) constructs a labeling substrs(x) of the tree T (W d) by substrings
and another labeling grams(x) of the same tree where for each v ̸= ε, gramsv is a bit-vector
of length N that encodes a grammar for grams(x). By the properties of basic-decomp these
labelings satisfy:

D1(x): substrs(x) is a decomposition tree for x

D2(x): For each node v at a level j ≥ 1 for which substrsv(x) ̸= ε, gramsv(x) is an encoding
of substrsv(x), i.e. substrsv(x) = basic-decode(gramsv(x)), and the number of 1’s in
gramsv(x) is at most kj

We now identify four abnormal events. We will prove that it is very unlikely that any of these
conditions occur.

Fingerprinting abnormality. There is a node v, such that substrs∗v(x) ̸= substrs∗v(y) and
fingerprints∗v(x) = fingerprints∗v(y).

Threshold detection abnormality. There is a node v at a level j, such that ED(substrsv(x),
substrsv(y)) ≥ tj and OR-printsv(x) = OR-printsv(y).
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HMR abnormality. One of the calls to hmr-recover within the recovery algorithm fails to
satisfy the Completeness and Soundness conditions (see Theorem 5.1).

An execution of ED-sketch(x), ED-sketch(y), and ED-recover(ED-sketch(x),ED-sketch(y))
is abnormal if any of these abnormalities ever occurs and is normal if no such abnormality occurs.
We define Normal to denote the event that the execution is normal, and Abnormal to denote
the event that the execution is abnormal.

Lemma 7.3. For any x, y, Pr[Abnormal ] tends to 0 as n gets large.

Proof. First consider decomposition abnormality for x. The decomposition tree is built in main-decomp,
which grows a decomposition starting at the root by calling basic-decomp on each node for which
substrsv is nonempty. D1 or D2 fail only if some of the calls to basic-decomp returns undefined.
By Theorem 4.3 the probability that a particular call to basic-decomp(z) returns undefined is at
most 1/n4. In a given call to main-decomp(x), the number of nonempty strings at each level of the
decomposition is at most |x| ≤ n so the number of calls made to basic-decomp(z) for nonempty z
is at most dn. So the probability that there is a call to basic-decomp that returns undefined is
at most d/n3. If every call to basic-decomp is defined then a simple induction using the properties
of basic-decomp ensures that the resulting tree satisfies D1 and D2. Taking a union bound over
the 10s+50 calls to main-decomp still gives a probability of abnormality that is ≤ 1/n for n large
enough. Similarly for y.

The probability that a fingerprinting abnormality occurs at a particular node v ∈ vis-nodes∗

is at most 1/n4 by Theorem 4.1. Similarly, the probability that a threshold detection abnormality
occurs at v ∈ vis-nodes is at most 1/n4 by Theorem 4.2. Taking a union bound over the at most
sdn nodes in vis-nodes and vis-nodes∗, and the 10s+50 calls to main-sketch yields a probability
of either of these abnormalities that is at most 1/n for n large enough.

An HMR abnormality occurs if one of the calls to hmr-recover fails. (A failure of hmr-recover
is determined by the randomness used to build the sketches of x and y). We set the failure param-
eter of the hierarchical mismatch recovery scheme to be 1/n4 and the number of its instances is
(sd)O(1) so the overall probability of failure tends to zero as n grows.

7.5 Reduction to the main lemma

In this section we introduce the Main Lemma (Lemma 7.5) and use it to prove Theorem 7.2.
We need to define some subsets of the edge set of Grid(x, y).
The i-th vertical edge slice SV (i) of the grid graph Grid(x, y) consists of all edges that join a

vertex with first coordinate i− 1 to a vertex with first coordinate i. The j-th horizontal edge slice
SH(j) consists of all edges that join a vertex with second coordinate j − 1 to a vertex with second
coordinate j.

Note that a vertical edge slice consists of horizontal and diagonal edges but not vertical edges,
and a horizontal edge slice consists of vertical and diagonal edges but not horizontal edges. The
union of all of the slices is the entire edge set of Grid(x, y). We leave the proof of the following
observation to the reader.

Proposition 7.4. Any spanning path of Grid(x, y) contains exactly one edge from each horizontal
slice and from each vertical slice. In particular, costly(canon+(x, y)) contains at most one edge
from any slice.
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The sketch-and-recover scheme ED-sketch+ED-recover operates by performing 10s+50 in-
dependent executions of main-sketch+main-reconstruct and taking majority vote. The Main
Lemma below states the key property of a single instance of main-sketch+main-reconstruct,
and Theorem 7.2 follows easily from it.

Lemma 7.5. (Main Lemma) Let x, y be strings such that ED(x, y) < 20ksOR. Consider a single
run of main-sketch on x and y producing main-sk(x) and main-sk(y), followed by a run of
main-reconstruct on main-sk(x),main-sk(y), which produces the set candids of annotated
edges. For any (horizontal or vertical) edge slice S

Pr[(candids ∩ S ̸= costly(canon+(x, y)) ∩ S) ∧ Normal ]

tends to 0 as n gets large.

Proof of Theorem 7.2 assuming Lemma 7.5. Assume ED(x, y) < 20ksOR. We must establish an
upper bound on Pr[found-edges ̸= costly(canon+(x, y))]. We have:

Pr[found-edges ̸= costly(canon+(x, y))]

≤ Pr[Abnormal ] + Pr[found-edges ̸= costly(canon+(x, y)) ∧ Normal ].

Since the first term tends to 0 as n gets large it suffices to prove:

Pr[found-edges ̸= costly(canon+(x, y)) ∧ Normal ] ≤ 1

5
, (1)

The hypothesis of the theorem assumes n is sufficiently large. We choose n large enough so that
in Lemma 7.5 for any edge slice S the probability that candids(x, y)∩S ̸= costly(canon(x, y))∩S
is at most 1/10.

We note that every edge of Grid(x, y) lies in some (horizontal or vertical) edge slice. It follows
that found-edges = costly(canon+(x, y)) if and only if for all edge slices S we have found-edges∩
S = costly(canon+(x, y)) ∩ S. Define the bad event B(S) to be the event that for more than half
of the sets (candidsi : i ∈ {1, . . . , 10s + 50}), candidsi ∩ S ̸= costly(canon+(x, y)) ∩ S. By the
definition of found-edges, if found-edges ̸= costly(canon+(x, y)) then there is at least one slice
S for which B(S) happens and so:

Pr[found-edges ̸= costly(canon+(x, y)) ∧ Normal ] ≤
∑
S

Pr[B(S) ∧ Normal ].

Consider a particular slice S. By Lemma 7.5 and the above choice of n, for each i, Pr[(candidsi∩
S ̸= costly(canon+(x, y)) ∩ S) ∧ Normal ] ≤ 1/10. Therefore the Chernoff-Hoeffding bound
(Lemma 3.7), implies that Pr[B(S) ∧ Normal ] ≤ 2e−0.32(10s+50) which is easily less than 1

102
−s ≤

1
10n . Since the number of horizontal and vertical slices are each at most n:

Pr[found-edges ̸= costly(canon+(x, y)) ∧ Normal ] ≤ 2nmax
S

Pr[B(S) ∧ Normal ]

≤ 1

5
,

as required to complete the proof of Theorem 7.2.

It remains to prove Lemma 7.5.
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7.6 Preliminaries for the proof of Lemma 7.5

Lemma 7.5 concerns a single execution of main-sketch applied to x and y producing outputs
main-sk(x) and main-sk(y) and a single instance of main-reconstruct applied to main-sk(x)
and main-sk(y).

main-decomp(x) generates three (partial) labelings substrs,grams, and OR-prints of the
nodes of the tree T (W d). substrs(x) is a string decomposition tree of x. The set vis-nodes(x) is
the set of nodes v such that substrsv(x) ̸= ε. For all v ∈ vis-nodes, gramsv(x) is a bit-vector of
length N such that
basic-decode(gramsv(x)) = substrsv(x); OR-printsv(x) is the Ostrovsky-Rabani fingerprint of
substrsv(x).

main-decomp(x) also generates three partial labelings substrs∗, left-size∗, and fingerprints∗

of the binary tree T ({0, 1}ds). substrs∗(x) is a refinement of substrs(x) to the tree T ({0, 1}ds).
substrs∗v(x) is explicitly defined on the set vis-nodes∗, consisting of those binary strings that are
prefixes (ancestors) of nodes in vis-nodes. For v ∈ vis-nodes∗, left-size∗(x) is the size of the
string assigned by substrs∗ to the left-child v ◦ 0 of v, and fingerprints∗v(x) is the Karp-Rabin
fingerprint of substrs∗v(x).

The sketch main-sk(x) consists of two separate sketches: str-sk(x) and loc-sk(x). str-sk(x)
is a sequence of d HMR sketches str-skj(x) produced by grammar-condense, one for each layer
j = 1, . . . , d of grammars in grams. loc-sk(x) is a sequence of ds sketches loc-skj(x) produced by
location-condense for each layer j = 0, . . . , ds− 1 of left-size∗(x).

We make the following definitions associated to substrs(x) and substrs(y): For each node v:

• Iv(x) denotes the interval location Loc(substrs)v(x) where substrsv(x) is located within x
(as defined in Section 3.1). startv(x) is the left endpoint of Iv(x). This is equal to the sum
of the lengths of all strings at leaves that are to the left of (lexicographically precede) v. Note
that Iv(x) = (startv(x), startv(x) + |substrsv(x)|].

• Gridv denotes the subgrid GridIv(x)×Iv(y), and Ev = Ev(x, y) denotes the set of its edges.
E+

v denotes the set of annotated edges {e+ : e ∈ Ev}.

• EDv = ED(substrsv(x), substrsv(y)), and the canonical path canon(x, y)Iv(x)×Iv(y) is de-
noted by canonv. costly(canonv) is the set of costly edges of canonv (which has size EDv),
and costly(canon+

v ) is the set of costly edges with annotations.

The procedure main-reconstruct, using subroutines find-strings and find-locations
constructs a set candids of annotated edges as follows:

• find-strings takes as input str-sk(x) and str-sk(y) and constructs (partial) labelings found-str(x)
and found-str(y) of the tree T (W d). For a node v ∈W≤d, if found-strv(x) (resp. found-strv(y))
is defined, its value is a string.

• find-locations takes as input loc-sk(x) and loc-sk(y) and constructs two (partial) labelings
found-start(x) and found-start(y) of T (W d). For a node v ∈W d, if found-startv(x) (resp.
found-strv(y)) is defined, its value is a nonnegative integer.

• In main-reconstruct, the set loc-nodes is defined to be the set of nodes v for which
found-strv(x), found-strv(y), found-startv(x) and found-startv(y) are all defined.
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• In main-reconstruct the set top-nodes is defined to be the subset of loc-nodes consisting
of those nodes in loc-nodes that have no ancestor in loc-nodes.

• For each node v ∈ top-nodes, main-reconstruct computes a set of annotated edges
candidsv.

• The output of main-reconstruct is the set candids =
⋃

v∈top-nodes candidsv.

For each v ∈ top-nodes the set candidsv is computed in main-reconstruct as follows.
found-strv(x) and found-strv(y) together with found-startv(x) and found-startv(y) determine
an edit distance problem, and that problem has a unique canonical path. The set of costly annotated
edges in that path is candidsv. In the procedure main-reconstruct, candidsv is evaluated only
for v ∈ top-nodes, but the definition makes sense for all v ∈ loc-nodes, and in what follows we
will refer to candidsv for v ∈ loc-nodes.

We are hoping that candids is close, in a suitable probabilistic sense to the set costly(canon+(x, y)).
To show this we will need to consider certain properties for classifying nodes.

The first set of properties is determined by substrsv(x) and substrsv(y) produced by the
main-sketch.

• v is compatible if the box Iv(x) × Iv(y) is (x, y)-compatible. (Recall that the box I × J is
(x, y)-compatible provided that the the canonical alignment canon(x, y) passes through the
corner points of Iv(x)× Iv(y).) The importance of this property is that if v is compatible then
canonv is equal to canon(x, y)∩Ev, the portion of canon(x, y) that lies inside Gridv. This
means that if we are able to reconstruct the substrings substrsv(x) and substrsv(y) and the
intervals Iv(x) and Iv(y), costly(canon+

v ) will give us the portion of costly(canon+(x, y))
that lies inside of Gridv.

• v is compatibly split provided that all of the children of v are compatible. This depends on
the run of basic-decomp on the strings substrsv(x) and substrsv(y) that occurs inside of
main-decomp.

We say that:

• found-strv(x) (respectively, found-strv(y)) is a correct reconstruction provided that it is
defined and equal to substrsv(x) (respective, substrsv(y)).

• found-startv(x) (resp. found-startv(y)) is a correct reconstruction provided that it is
defined and equal to startv(x) (resp. startv(y)).

• We say that v is correctly reconstructed if found-strv(x), found-strv(y), found-startv(x)
and found-startv(y) are all correct reconstructions.

Lemma 7.6. Let v ∈W≤d. Under a normal execution:

1. If found-strv(x) and found-strv(y) are both defined by find-strings then found-strv(x) =
substrsv(x) and found-strv(y) = substrsv(y).

2. If found-startv(x) and found-startv(y) are both defined by find-locations then startv(x) =
found-startv(x) and startv(y) = found-startv(y).
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Proof. Fix a node v ∈W≤d and let j = |v|.
Proof of Part 1. found-strv(x) and found-strv(y) are determined during iteration j of the

main loop in find-strings as follows: hmr-recover(str-skj(x), str-skj(y)) is evaluated and
assigned to gram-mismatchj . This is a set of mismatch triples of the form ((w, i), α, β) where
(w, i) ∈W j×{1, . . . , N}, and α ̸= β ∈ F. Letting gram-mismatchj

v denote the set of those triples
involving the node v, found-gramv(x) and found-gramv(y) are determined by gram-mismatchj

v.
Under a normal execution, the call to hmr-recover is Sound, so gram-mismatchj

v is a subset
of the mismatch information MIS(gramsjv(x),gramsjv(y)).

Claim 7.7. found-gramv(x) ≤ gramsv(x) and found-gramv(y) ≤ gramsv(y), where ≤ is entry-
wise.

Proof. We prove the first inequality; the second is analogous. Fix an index i ∈ {1, . . . , N}. As-
sume that found-gramv,i(x) = 1 we must show that gramsv,i(x) = 1. From the construc-
tion of found-gram(x) in find-strings, found-gramv,i(x) = 1 implies that there is a mis-
match triple ((v, i), α, β) ∈ gram-mismatchj such that α ̸= 0. Since gram-mismatchj ⊆
MIS(gramsj(x),gramsj(y)) this implies that gramsjv,i(x) = α ̸= 0 which implies that gramsv,i(x) =
1 by the definition of gramsj .

Now if found-gramv(x) = gramsv(x) and found-gramv(y) = gramsv(y) then we have
found-strv(x) = basic-decode(found-gramv(x)) = basic-decode(gramsv(x)) = substrsv(x)
and similarly found-strv(y) = substrsv(y). The conclusion of the first implication holds in this
case. Now consider the case found-gramv(x) ̸= gramsv(x). By Claim 7.7, found-gramv(x) <
gramsv(x). By the minimality property of basic-decode (see Section 4.3) found-strv(x) =
basic-decode(found-gramv(x)) is undefined. So the premise of the implication does not hold.
Similarly when found-gramv(y) ̸= gramsv(y). This completes the proof of the first part of the
lemma.

The argument for the second part of the lemma is similar, but has important differences.
found-startv(x) and found-startv(y) are determined in find-locations. The main loop of
find-locations has ds iterations, corresponding to the levels of the binary tree T ({0, 1}ds).
In iteration i = 0, . . . , ds − 1, hmr-recover is applied to loc-ski(x), loc-ski(y) to produce
size-mismatchi. The sketches loc-ski(x) and loc-ski(y) are sketches of the D-vectors left-sizei(x)
and left-sizei(y) for D = {0, 1}i. size-mismatchi is a set of mismatch triples of the form (w,α, β)
where w ∈ {0, 1}i and α, β ∈ F. Let Li be the subset of nodes u that appear as first coordinate of
some mismatch triple in size-mismatchi. size-mismatchi is used to define found-sizeu(x) and
found-sizeu(y) for all u ∈ Li. The soundness of hmr-recover (since the execution is normal)
implies Li ⊆ MIS(left-sizei(x), left-sizei(y)) and this implies found-sizeu(x) = left-sizeu(x) and
found-sizeu(y) = left-sizeu(y).

Now found-startv(x) is the sum of found-sizeu(x) over left ancestors u of v. It is undefined
if any of the summands is undefined. If all summands are defined, then by the above, the sum is
equal to the sum of left-sizeu(x) over all left ancestors u of v which is equal to startv(x). The
same argument applies to show found-startv(y) = startv(y), completing the proof of the second
part of the lemma.

Corollary 7.8. Under a normal execution, suppose that v ∈ W≤d is placed in loc-nodes by
main-reconstruct. Then
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1. v is correctly reconstructed, i.e. candidsv = costly(canon+
v ).

2. If, in addition, v is compatible, then candidsv = costly(canon+(x, y)) ∩E+
v .

Proof. By the code for main-reconstruct, v ∈ loc-nodes implies found-strv(x), found-strv(y),
found-startv(x) and found-startv(y) are all defined, and candidsv is the set of costly edges
in the canonical path for the edit distance problem defined by found-strv(x), found-strv(y),
found-startv(x) and found-startv(y). By Lemma 7.6, this is equal to the set of costly edges in
the canonical path associated to substrsv(x), substrsv(y), Iv(x) and Iv(y) which is the set canon+

v .
For the second part, when v is compatible, the conclusion follows from the first part together with
Proposition 3.5.

8 Proof of Lemma 7.5.

Suppose S is an arbitrary slice. Without loss of generality, assume that S = SV (b) is the b-th
vertical edge slice. We say that slice S is correctly reconstructed provided that candids(x, y)∩S =
costly(canon+(x, y)) ∩ S. We need to show:

Pr[slice S is not correctly reconstructed ∧ Normal ]→ 0 (2)

as n gets large.
Since substrs(x) is a string decomposition tree of x, for each level j ∈ {0, . . . , d} there is a

unique node w(j) of T (W d) such that b ∈ Iw(j)(x), and the sequence w(0), . . . , w(d) forms a root-
to-leaf path. The following lemma implies that, under a normal execution, whether S is correctly
reconstructed only depends on the reconstruction of nodes in w(0), . . . , w(d).

Proposition 8.1. Assume a normal execution, and suppose S is the b-th vertical edge slice.

1. candids ∩ S =
⋃

j∈{0,...,d}:w(j)∈top-nodes candidsw(j) ∩ S

2. If w(j) is compatible and w(j) ∈ loc-nodes then candidsw(j) ∩ S = costly(canon+) ∩ S.

Proof. For the first part, by definition in main-reconstruct candids∩S =
⋃

v∈top-nodes candidsv∩
S. To establish the claimed equality it suffices to show that candidsv∩S = ∅ for v ̸∈ {w(0), . . . , w(d)}.
By Corollary 7.8, candidsv = costly(canon+

v ). The path canonv only contains edges in vertical
slices SV (ℓ) for which ℓ ∈ Iv(x). Since b ̸∈ Iv(x), canonv ∩ S = ∅.

For the second part, suppose w(j) is compatible. By Corollary 7.8(2), candidsw(j) = costly(canon+)∩
E+

w(j). Since b ∈ Iw(j)(x), E+
w(j) includes the edge of canon from slice S, and the equality follows.

As a corollary we get a sufficient condition for S to be correctly reconstructed:

Corollary 8.2. Assume a normal execution. If either of the following conditions hold then S is
correctly reconstructed:

1. costly(canon+) ∩ S = ∅ and none of the nodes w(0), . . . , w(d) is in loc-nodes.

2. There is an index j ∈ {1, . . . , d} such that w(j) ∈ loc-nodes and w(0), . . . , w(j) are all
compatible.
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Proof. For (1), if {w(0), . . . , w(d)}∩ loc-nodes = ∅ then by Proposition 8.1(1), candids∩S = ∅ =
costly(canon+) ∩ S.

For (2), let j be the least index satisfying the hypothesis of (2). By definition of top-nodes
in main-reconstruct, w(j) is the unique node among w(0), . . . , w(d) that belongs to top-nodes
and so by Proposition 8.1(1), candids∩S = candidsw(j)∩S, which is equal to costly(canon+)∩S
by Proposition 8.1(2).

Our strategy is to show that with fairly high probability one of the two sufficient conditions of
this corollary is satisfied. To this end we define the following events, indexed by j ∈ {0, . . . , d}:

T(j) is the event that EDw(j) < tj .

T(≤ j) is the event that EDw(i) < ti for all i ≤ j.

C(j) is the event that w(j) is compatible.

C(≤ j) is the event that w(0), . . . , w(j) are all compatible.

Recall that we have a global hypothesis that ED(x, y) < ⌈20ksOR⌉2 = t0, so that T(0) holds.
Also, C(0) holds trivially. The following proposition says that if EDw(j) < tj and w(j) is compatible
then w(j + 1) is almost certainly compatible:

Proposition 8.3. 1. For all j ∈ {1, . . . , d}, Pr[T(j − 1) ∧ C(j − 1) ∧ ¬C(j) ∧ Normal ] ≤
1

log2 n
.

2. Pr[∃j ∈ {1, . . . , d} such that T(≤ j − 1) ∧ ¬C(≤ j) ∧ Normal ] ≤ 1
logn .

Proof. For the first part, note that events T(j−1) and C(j−1) are determined by the first j−1 levels
of substrs(x) and substrs(y). Consider an arbitrary setting of the first j − 1 levels of substrs(x)
and substrs(y) for which T(j − 1) and C(j − 1) hold. Then EDw(j−1) < tj−1. By Theorem 4.3,
the conditional probability given this setting that w(j − 1) is not compatibly split is at most:

ssplit EDw(j−1)

kj
≤

ssplit tj−1

kj
≤ 1

log2 n
, (3)

where the final inequality uses the definitions of tj−1 and kj . Since this holds for any setting of the
first j − 1 levels of substrs(x) and substrs(y) for which T(j − 1) and C(j − 1) hold, we conclude
that:

Pr[T(j − 1) ∧ C(j − 1) ∧ ¬C(j) ∧ Normal ] ≤ 1

log2 n
,

as required for the first part.
For the second part, if there is an index j such that T(≤ j − 1) ∧ ¬C(≤ j) and i is the least

such index then T(i− 1) ∧ C(i− 1) ∧ ¬C(i) holds. Therefore:

Pr[∃j ∈ {1, . . . , d},T(≤ j − 1) ∧ ¬C(≤ j) ∧ Normal ]

≤
j∑

i=1

Pr[T(j − 1) ∧ C(j − 1) ∧ ¬C(j) ∧ Normal ] ≤ j

log2 n
≤ 1

log n
(4)

where the second to last inequality uses the first part of this proposition.
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Let q ∈ {0, . . . , d} be the largest index for which T(≤ q) holds. We emphasize that q is a random
variable that depends on the execution. The following result says that with fairly high probability
w(0), . . . , w(q) are all compatible and if q < d then with fairly high probability w(q + 1) is also
compatible.

Corollary 8.4. 1. Pr[(q < d) ∧ w(0), . . . , w(q + 1) are not all compatible ∧ Normal ] ≤ 1
logn .

2. Pr[(q = d) ∧ w(0), . . . , w(d) are not all compatible ∧ Normal ] ≤ 1
logn .

Proof. For both parts, T(≤ q) holds so the event whose probability is being bounded is included in
the event whose probability is bounded in the second part of Proposition 8.3.

To prove (2) we need an upper bound on:

Pr[S is not correctly reconstructed ∧ Normal ]
= Pr[S is not correctly reconstructed ∧ Normal ∧ (q = d)]

+ Pr[S is not correctly reconstructed ∧ Normal ∧ (q < d)] (5)

The first term is easy to bound:

Proposition 8.5.

Pr[S is not correctly reconstructed ∧ Normal ∧ (q = d)] ≤ 1

log n

Proof. We write the probability as:

Pr[S is not correctly reconstructed ∧ Normal ∧ (q = d)]

= Pr[S is not correctly reconstructed ∧ Normal ∧ (q = d) ∧ C(≤ d)]

+ Pr[S is not correctly reconstructed ∧ Normal ∧ (q = d) ∧ ¬C(≤ d)]. (6)

In the final expression, the second term is at most 1
logn by Corollary 8.4(2). We claim that

the first term is 0. To prove this we assume a normal execution where q = d and C(≤ d) both
hold and show that S is necessarily correctly reconstructed. Since C(≤ d) holds, every node in
w(0), w(1), . . . , w(d) is compatible. If one of them belongs to loc-nodes then by Corollary 8.2(2),
S is correctly reconstructed.

Now assume that no node of {w(0), . . . , w(d)} belongs to loc-nodes. By assumption, EDw(d) <
td = 1, which implies that substrsw(d)(x) and substrsw(d)(y) are the same string, which implies
that costly(canonw(d)) = ∅, and the desired conclusion follows from Corollary 8.2(1).

To bound the second term in (5), we have:

Pr[S not correctly reconstructed ∧ Normal ∧ (q < d)] =

Pr[S is not correctly reconstructed ∧ Normal ∧ (q < d) ∧ ¬C(≤ q + 1)]+

Pr[S is not correctly reconstructed ∧ Normal ∧ (q < d) ∧ C(≤ q + 1)]. (7)

The first term is at most 1
logn by the Corollary 8.4(1). To bound the second term define the

events:
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STR(v): found-strv(x) and found-strv(y) are both defined.

LOC(v): found-startv(x) and found-startv(y) are both defined.

SIZ(v): found-sizev(x) and found-sizev(y) are both defined.

We will prove:

Lemma 8.6. Pr[¬STR(w(q + 1)) ∧ Normal ∧ (q < d) ∧ C(≤ q + 1)] ≤ 1
logn .

Lemma 8.7. Pr[¬LOC(w(q + 1)) ∧ Normal ∧ (q < d) ∧ C(≤ q + 1)] ≤ 1
logn .

STR(w(q + 1)) and LOC(w(q + 1)) together imply that w(q + 1) is correctly reconstructed.
If in addition C(w(q + 1)) holds then by Corollary 8.2(2), S is correctly reconstructed. Therefore
these two lemmas imply:

Pr[S is not correctly reconstructed ∧ Normal ∧ (q < d) ∧ C(≤ q + 1)] ≤
Pr[¬STR(w(q + 1)) ∧ Normal ∧ (q < d) ∧ C(≤ q + 1)]+

Pr[¬LOC(w(q + 1)) ∧ Normal ∧ (q < d) ∧ C(≤ q + 1)] ≤ 2

log n
.

This bounds the second term on the right of (7). Combined with the upper bound on the first
term we have Pr[S not correctly reconstructed ∧ Normal ∧ (q < d)] ≤ 3

logn , and combining this
with Proposition 8.5 yields Pr[S is not correctly reconstructed ∧ Normal ] ≤ 4

logn as required for
Lemma 7.5.

To prove Lemmas 8.6 and 8.7 we will need.

Proposition 8.8. Assume a normal execution for strings x,y. Let v ∈W≤d with j = |v| such that
substrsv(x) ̸= substrsv(y).

1. The following two conditions are together sufficient for found-strv(x) and found-strv(y) to
both be defined:

(a) OR-printsv(x) ̸= OR-printsv(y)

(b) For the HMR-recovery problem associated to (gramsj , T (W j × {1, . . . , N}), κ≤j , 4(d +
1), 1/n4) (see the procedure grammar-condense), all of the nodes v≤0, . . . , v≤j−1 are

1
4(d+1) -underloaded (as defined in Section 5.1)

2. The following condition is sufficient for found-startv(x) and found-startv(y) to both be
defined: View v as a node of T ({0, 1}ds) where its depth is js. For every i ≤ js, for the
HMR-recovery problem associated to (left-sizei, T ({0, 1}i), λ≤i, 4ds, 1/n4) all of the nodes
v≤0, . . . , v≤i−1 are 1

4ds -underloaded.

Proof. In both parts we apply Theorem 5.1. Since the execution is normal, there is no HMR-
abnormality so all executions of hmr-recover satisfy Completeness (see Section 5.1), that every
mismatch triple with accessible index is correctly recovered, and Soundness, that no incorrect triple
is recovered.
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When hmr-recover is applied to hmr-recover(str-skj(x), str-skj(y)) it recovers all 1
4d -

accessible mismatch triples correctly. We claim that all indices belonging to {(v, i) : i ∈ {1, . . . , N}}
are 1

4d -accessible and for this we need that v≤0, . . . , v≤j = v are all 1
4d -underloaded in T (W j ×

{1, . . . , N}). Condition 2(b) says that v≤0, . . . , v≤j−1 are all 1
4d -underloaded. v itself is also 1

4d -
underloaded, because the load on v is at most the number of mismatches between gramsjv(x) and
gramsjv(y) (defined by grammar-condense) which is at most the total number of non-zero entries
in both. By Theorem 4.3, gramsv(x) and gramsv(y) each have at most kj non-zero entries, so the
load of v is at most 2kj which is at most 1

4 log(n)κj (with room to spare).
Therefore all indices in {(v, i) : i ∈ {1, . . . , N}} are 1

4d -accessible and so all mismatches between
gramsjv(x) and gramsjv(y) are recovered correctly. Condition 2(a) requires OR-printsv(x) ̸=
OR-printsv(y) hence all non-zero entries of gramsjv(x) and gramsjv(y) are mismatches. Thus
found-gramv(x) = gramsv(x) and found-gramv(y) = gramsv(y) which implies basic-decode(
found-gramv(x)) = substrsv(x) and basic-decode(found-gramv(y) = substrsv(y), complet-
ing the proof of the first part.

For the second part, we are now working on the binary tree T ({0, 1}ds), from the code for
find-locations, if found-sizev≤i

(x) is defined for all i < j then found-startv(x) will be defined.
found-sizev≤i

(x) is defined from the run of hmr-recover on the HMR-sketch of (left-sizei,
T ({0, 1}i), λ≤i, 4ds, 1/n4) produced by location-condense. The mismatch triples of this run
correspond to nodes w at level i for which left-sizeiw(x) ̸= left-sizeiw(y) or fingerprints∗w(x) ̸=
fingerprints∗w(y). Since we are assuming a normal execution, fingerprints∗w(x) ̸= fingerprints∗w(y)
if and only if substrs∗w(x) ̸= substrs∗w(y). Since substrsv(x) ̸= substrsv(y) by hypothesis, it fol-
lows that substrsw(x) ̸= substrsw(y) for all ancestors w of v. (If substrsw(x) = substrsw(y) then
basic-decomp acts identically on both and so the substrs(x) and substrs(y) would be identical
below w.) Therefore for i ≤ j, there is a mismatch triple corresponding to v≤i. Thus in the HMR-
recovery problem associated to (left-sizei, T ({0, 1}i), λ≤i, 4ds, 1/n4), if every node on the path from
v≤i to the root (including v≤i) is 1

4ds -underloaded then the mismatch triple associated to v≤i will be
recovered. The hypothesis of the second part ensures that v≤0, . . . , v≤i−1 are all 1

4ds -underloaded.
v≤i is also because its load is just 1. Therefore found-sizev≤i

(x) and found-sizev≤i
(y) will both be

defined, as required to conclude that found-startv(x) and found-startv(y) to both be defined.

It remains to prove Lemmas 8.6 and 8.7.

8.1 Proof of Lemma 8.6

For i, j with 0 ≤ i ≤ j ≤ d define the following event:

F(i, j): w(i) is 1
4(d+1) -overloaded with respect to the HMR-recovery problem associated with

(gramsj , T (W j × {1, . . . , N}), κ≤j , 4(d + 1), 1/n4), which means the load of node w(i) in
T (W j × {1, . . . , N}) satisfies κ̂≤j

w(i) ≥
1

4(d+1)κ
≤j
i .

Note that by the first part of Proposition 8.8:
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Pr[¬STR(w(q + 1)) ∧ Normal ∧ (q < d) ∧ C(≤ q + 1)]

≤ Pr[(OR-printsw(q+1)(x) = OR-printsw(q+1)(y)) ∧ (q < d) ∧ Normal ]

+ Pr[
∨

0≤i≤q

(F(i, q + 1) ∧ Normal ∧ (q < d) ∧ C(≤ i) ∧ T (≤ i))]

= Pr[
∨

0≤i≤q

(F(i, q + 1) ∧ Normal ∧ (q < d) ∧ C(≤ i) ∧ T (≤ i))]

≤ Pr[
∨

0≤i<j≤d

(F(i, j) ∧ Normal ∧ C(≤ i) ∧ T (≤ i))] (8)

The equality holds since EDw(q+1) ≥ tq+1 by definition of q and so a normal execution implies
OR-printsw(q+1)(x) ̸= OR-printsw(q+1)(y).

To prove an upper bound on the right hand side of (8) we will prove an upper bound on E[κ̂≤j
w(i)]

and use Markov’s inequality. To obtain such an upper bound, we introduce an auxiliary integer
labeling load-ubj on the internal nodes of T (W j × {1, . . . , N}) which depends on the execution of
ED-sketch on x and y and is an upper bound on κ̂≤j . (Below, sE→H is the parameter appearing
in Theorem 4.3.)

load-ubj
v =


min(sE→H EDv, κj) if |v| = j and OR-printsv(x) = OR-printsv(y)
2kj if |v| = j and OR-printsv(x) ̸= OR-printsv(y)∑

w∈child(v) load-ubj
w if |v| < j and v is compatibly split

κ|v| if |v| < j and v is not compatibly split

Proposition 8.9. Suppose j ∈ {1, . . . , d}. For all internal nodes v of T (W j × {1, . . . , N}), κ̂≤j
v ≤

load-ubjv.

Proof. Fix j ∈ {1, . . . , d} and let v be an internal node of T (W j × {1, . . . , N}). We proceed by
reverse induction on |v|.

The base case is |v| = j. κ̂≤j is defined on the nodes of T (W j × {1, . . . , N}). The leaves of this
tree are pairs (v, i) ∈ W j × {1, . . . , N} and by definition, κ̂≤j

v◦i is 1 if and only if gramsjv◦i(x) ̸=
gramsjv◦i(y). Thus for v with |v| = j in T (W j×{1, . . . , N}), by definition κ̂≤j

v = min(κj ,
∑N

i=1 κ̂
≤j
v◦i) =

min(κj ,Ham(gramsjv(x),gramsjv(y))).
Ham(gramsjv(x),gramsjv(y)) = Ham(gramsv(x)×FOR-printsv(x),gramsv(y)×FOR-printsv(y)).

If OR-printsv(x) = OR-printsv(y), by Theorem 4.3, Ham(gramsv(x),gramsv(y)) ≤ sE→H EDv,
and so κ̂≤j

v ≤ min(sE→H EDv, κj). If OR-printsv(x) ̸= OR-printsv(y), this is at most the total
number of nonzero entries of gramsv(x) and gramsv(y) which is at most 2kj .

Now suppose v is a node of depth i < j. By definition:

κ̂≤j
v = min(κ|v|,

∑
w∈child(v)

κ̂≤j
w ).

If v is not compatibly split, then load-ubj
v = κ|v| ≥ κ̂≤j

v , as required.
If v is compatibly split, then by the induction hypothesis
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load-ubj
v =

∑
w∈child(v)

load-ubj
w

≥
∑

w∈child(v)

κ̂≤j
w

≥ κ̂≤j
v .

Let i ≤ d. For the analysis we will fix the outcome of the decomposition tree up-to level i, and
analyze the decomposition conditioned on the fixed part. Let g≤i(x), g≤i(y) be possible outcomes
for the random variables substrs≤i(x) and substrs≤i(y) and let Ai = A(g≤i(x), g≤i(y)) denote the
event that substrs≤i(x) = g≤i(x) and substrs≤i(y) = g≤i(y). The event Ai determines the value
for EDv for all v at depth at most i, and we denote this value by EDv(Ai). Ai also determines
whether C(≤ i) and T(≤ i) hold. We now will show:

Proposition 8.10. Let i ≤ j ≤ d. Let g≤i(x) and g≤i(y) be a possible outcome for the first i levels
of substrs(x) and substrs(y). Let v be an internal node in T (W≤j × {1, . . . , N}) at depth i such
that under the event Ai, v is compatible and EDv < tv. Then

1. E[load-ubjv|Ai] ≤ sload EDv(Ai)× (j − i+ 2).

2. For any R, Pr[κ̂≤j
v ≥ 1

Rκi|Ai] ≤ R
4 log5 n

.

Note that the event κ̂≤j
v ≥ 1

Rκ
≤j
i is precisely the event that v is R-overloaded, and this will allow

us to prove an upper bound on the right hand side of (8).

Proof. The main thing to prove is the first part. The second part follows easily from the first part:

Pr[κ̂≤j
v ≥

1

R
κi|Ai] ≤

RE[κ̂≤j
v |Ai]

κi

≤ RE[load-ubj
v|Ai]

κi

≤ Rsload EDv(Ai)(2 log n)

κi

≤ Rsload ti(2 log n)

κi

≤ R

4 log5 n
.

Here the first inequality comes from Markov’s inequality, the second comes from Proposition 8.9,
the third comes from the first part of this proposition, the fourth comes from the hypothesis that
EDv(Ai) < ti and the final inequality follows from the definitions of ti and κi.

We prove the first part by reverse induction on i. The base case is i = j. In this case, using
Theorem 4.2 we have:
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E[load-ubj
v|Aj ] = Pr[OR-printsv(x) = OR-printsv(y)|Aj ] · sE→H ·EDv(Aj)

+ Pr[OR-printsv(x) ̸= OR-printsv(y)|Aj ] · 2kj

≤ sE→H EDv(Aj) +
EDv(Aj) · sOR

tj
· 2kj

≤ (sE→H + sload ) ·EDv(Aj) ≤ 2sload ·EDv(Aj). (9)

Now suppose i < j and condition on Ai. Suppose v is a node at depth i.
Let CS be the set of nodes that are compatibly split

E[load-ubj
v|Ai] = Pr[v ̸∈ CS|Ai] · κi + Pr[v ∈ CS|Ai] · E[load-ubj

v|Ai ∧ v ∈ CS]

≤ Pr[v ̸∈ CS|Ai] · κi + E[load-ubj
v|Ai ∧ v ∈ CS].

By Theorem 4.3:

Pr[v ̸∈ CS|Ai] · κi ≤ ssplit
EDv(Ai)

ki+1
κi ≤

sload
2

EDv(Ai). (10)

To bound the second summand we condition further on the (i + 1)-st level of substrs(x) and
substrs(y). This extension determines whether v is compatibly split, and we let g≤i+1(x), g≤i+1(y)
denote a possible extension of g≤i(x), g≤i(y) to level i + 1 such that v is compatibly split. Let
Ai+1 = A(g≤i+1(x), g≤i+1(y)).

Let CSv(Ai+1) be the set of children of v that are compatibly split and NCSv(Ai+1) be the set
of children of v that are not compatibly split, conditioned on Ai+1. In what follows we write #A for
the cardinality of the set A instead of |A| to avoid confusion with the | in conditional expectation.

E[load-ubj
v|Ai+1] =

∑
w∈child(v)

E[load-ubj
w|Ai+1]

≤
∑

w∈child(v)

Pr[w ∈ NCSv|Ai+1]κi+1

+
∑

w∈child(v)

Pr[w ∈ CSv|Ai + 1]sload EDw(Ai+1)× (j − i+ 1)

≤ κi+1 × E[#NCS(v)|Ai+1]

+sload EDv(Ai)× (j − i+ 1)

For each child w of v, by Theorem 4.3, Pr[w ∈ NCS(v)|Ai+1] ≤ ssplit
EDw(Ai+1)

ki+2
. Therefore

E[#NCS(v)|Ai+1] ≤
∑

w∈child(v)
ssplit EDw(Ai+1)

ki+2
= ssplit

EDv(Ai)
ki+2

where the final equality uses that
v is compatibly split. Therefore:

κi+1 × E[#NCS(v)|Ai+1] ≤ ssplit
κi+1

ki+2
EDv(Ai) ≤

1

2
sload EDv(Ai). (11)
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and so:

E[load-ubj
v|Ai+1] ≤ sload EDv(Ai)× (j − i+

3

2
)

This upper bound is the same for all extensions Ai+1 of Ai for which v is compatibly split, so:

E[load-ubj
v|Ai ∧ (v ∈ CS)] ≤ sload EDv(Ai)× (j − i+

3

2
)

Combining with (10) yields the desired conclusion:

E[load-ubj
v|Ai] ≤ sload EDv(Ai)× (j − i+ 2)

Using this Proposition we obtain:

Lemma 8.11. 1. For all i, j with 0 ≤ i ≤ j ≤ d, Pr[F(i, j) ∧ Normal ∧ C(≤ i) ∧ T (≤ i)] ≤
1

log4 n
.

2. Pr[
∨

0≤i<j≤d(F(i, j) ∧ Normal ∧ C(≤ i) ∧ T (≤ i))] ≤ 1
log2 n

.

Proof. For the first part, apply Proposition 8.10(2) with R = 4(d+1) ≤ 4 log n to get Pr[F(i, j) ∧ Normal |Ai] ≤
1

log4 n
, and then average over all choices of Ai for which C(≤ i) ∧ T (≤ i) hold. The second part

follows immediately by applying a union bound to the first part,

The second part of this lemma implies that the right hand side of (8) is at most 1
logn , as required

to prove Lemma 8.6.

8.2 Proof of Lemma 8.7

The proof of this lemma is closely related to that of Lemma 8.6 and we will reuse parts of that
proof. One difference is that in find-locations the HMR-recovery operates on the tree T ({0, 1}ds)
rather than T (W d×{1, . . . , N}). Since the depth of this tree is up-to ds−1 the overload parameter
for the HMR-recovery scheme is set to 1

4ds instead of 1
4(d+1) . Levels of the binary tree are denoted

by ordered pairs (i, r) where 0 ≤ i ≤ d and 0 ≤ r ≤ s − 1. Level (i, r) refers to level is + r of
T ({0, 1}ds). (If i = d then r can only be 0.) Level (i, 0) in the binary tree corresponds to level i in
T (W d). The order on levels (i, r) is lexicographic. We say that v has depth (i, r) if |v| = is + r,
and has depth at most (i, r) if |v| ≤ is+ r.

The nodes in the path of T ({0, 1}ds) that corresponds to the path from w(0) to w(d) in T (W d)
are denoted by w(i, r) where (0, 0) ≤ (i, r) ≤ (d, 0).

For m = is+r we abbreviate the HMR-recovery problem (left-sizem, T ({0, 1}m), λ≤m, 4ds, 1/n4)
by loc(i, r). We write λ≤(i.r) for λ≤m. Recall that by definition, for a node v at depth (i′, r′) ≤ (i, r),
its capacity for loc(i, r) is λ

≤(i,r)
v = κi′ , and its load is denoted λ̂

≤(i,r)
v .

The algorithm find-locations, perform ds instances of HMR-recovery corresponding to the
labelings left-sizej for 0 ≤ j ≤ sd − 1. This is not done for the final level sd because left-size∗v
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is not defined for leaves of the binary tree. For analysis purposes it is convenient to augment
the algorithm by defining left-sizev = 0 for all v ∈ vis-nodes∗ and performing HMR sketch-
and-recover for level sd, and including it as part of the sketch. We assume that the (trivial)
recovery of this level defines found-size∗v(x) = found-size∗v(y) = 0 for all nodes v ∈ {0, 1}ds
where substrs∗v(x) ̸= substrs∗v(y).) This additional step plays no role in recovering the canonical
alignment of x, y, but makes it easier to reuse a part of the proof of Lemma 8.6. We must prove:

Pr[¬LOC(w(q + 1, 0)) ∧ Normal ∧ (q < d) ∧ C(≤ q + 1)] ≤ 1
logn .

Analogous to the events F(i, j) defined in the previous section, for (i, r) ≤ (j, t), we define the
bad events:

L((i, r), (j, t)) is the event that w(i, r) is 1
4ds -overloaded with respect to loc(j, t), i.e., λ̂≤(j,t)

w(i,r) ≥
1

4dsκi.

We have:

Pr[ ¬LOC (w(q + 1, 0)) ∧ Normal ∧ (q < d) ∧ C(≤ q + 1)]

≤ Pr[
∨

(j,t)<(q+1,0)

¬SIZ(w(j, t)) ∧ Normal ∧ (q < d) ∧ C(≤ q + 1)]

≤ Pr[
∨

(i,r)<(j,t)≤(d,0)

L((i, r), (j, t)) ∧ Normal ∧ C(≤ i) ∧ T(≤ i)] (12)

We will bound this last quantity by 1
logn . The first step is to show that it suffices to bound the

probability of bad events of the form L((i, 0), (j, 0)):

Proposition 8.12. For (i, r) < (j, t) ≤ (d, 0), if t ̸= 0, event L((i, r), (j, t)) implies (is contained
in) event L((i, 0), (j+1, 0)), and if t = 0 event L((i, r), (j, t)) implies L((i, 0), (j, 0)), and therefore:

Pr[
∨

(i,r)<(j,t)≤(d,0)

L((i, r), (j, t)) ∧ Normal ∧ C(≤ i) ∧ T(≤ i)]

= Pr[
∨

i<j≤d

L((i, 0), (j, 0)) ∧ Normal ∧ C(≤ i) ∧ T(≤ i)] (13)

Proof.

Claim 8.13. For any (i, r) < (j, t), L((i, r), (j, t)) implies L((i, 0), (j, t)).

Proof. From the recurrence relation for λ̂≤(j,t), and the fact that λ of a node is at most λ of its
parent it follows that λ̂≤(j,t) at a node is at most the λ̂≤(j,t) of its parent, and therefore λ̂≤(j,t)

does not decrease along paths to the root. Therefore λ̂
≤(j,t)
w(i,r) ≤ λ̂

≤(j,t)
w(i,0). Since λ(i,0) = λ(i,r) = κi,

L((i, r), (j, t)) implies L((i, 0), (j, t)).

Claim 8.14. If (i, 0) ≤ (j, t) with t ̸= 0 then L((i, 0), (j, t)) implies L((i, 0), (j + 1, 0)).

Proof. This follows from a more general claim: If v is any node of the binary tree at level (i, r) ≤ (j, t)

and (j, t) < (j′, t′) then λ̂
≤(j,t)
v ≤ λ̂

≤(j′,t′)
v . We prove this by reverse induction on (i, r). For the basis,

(i, r) = (j, t), we have that λ̂≤(j,t)
v is 0 or 1, and is 1 if and only if substrs∗v(x) ̸= substrs∗v(y). So we

need that if substrs∗v(x) ̸= substrs∗v(y) then λ̂
≤(j′,t′)
v ≥ 1. Since substrs∗v(x) ̸= substrs∗v(y) there
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is a descendant w of v at level (j′, t′) such that substrs∗w(x) ̸= substrs∗w(y) and so λ̂
≤(j′,t′)
w = 1.

Since λ̂≤(j′,t′) does not decrease along paths to the root, λ̂≤(j′,t′)
v ≥ 1, as required for the basis step.

For the induction step, if (i, r) < (j, t) then by induction we have:

λ̂≤(j,t)
v = min(λ≤(j,t)

v ,
∑

w child of v

λ̂≤(j,t))

≤ min(λ≤(j′,t′)
v ,

∑
w child of v

λ̂≤(j′,t′)
v ) = λ̂≤(j′,t′)

v ,

Combining the claims we have that for t ̸= 0, L((i, r), (j, t)) implies L((i, 0), (j, t)) implies
L((i, 0), (j, 0)), and if t = 0 then the first claim gives L((i, r), (j, 0)) implies L((i, 0), (j, 0)).

It is useful to recall the connection between the trees T (W d) and T ({0, 1}sd). Since W = {0, 1}s,
there is a natural mapping from W d to {0, 1}sd, where v = v1 . . . , vj maps to the binary string
v1 ◦ · · · ◦ vj of length sj. This gives a 1-1 correspondence from nodes at level j in T (W d) to nodes
at level (j, 0) in T ({0, 1}sd). For node v in T (W d), let v′ be the associated node in T ({0, 1}sd). The
HMR-recovery problem for (gramsj , T (W j × {1, . . . , N}), κ≤j , 4ds, 1/n4) analyzed in the previous
subsection operated on the tree T (W j × {1, . . . , N}).

Proposition 8.15. For any j ≤ d, and for any node v of T (W j), for any execution, if the cor-
responding node v′ in T ({0, 1}sd) is 1

4ds -overloaded for loc(j, 0) then v is 1
4ds -overloaded for the

HMR-recovery problem for (gramsj , T (W j × {1, . . . , N}), κ≤j , 4ds, 1/n4).

Proof. First we claim that for any non-leaf node v of T (W j ×{1, . . . , N}), λ̂≤(j,0)
v′ ≤ κ̂≤j

v . We prove
this by reverse induction on |v|. For the basis, |v| = j, λ̂

≤(j,0)
v′ ∈ {0, 1} and is 1 if and only if

substrsv(x) ̸= substrsv(y). If substrsv(x) ̸= substrsv(y) then gramsv(x) ̸= gramsv(y), which
implies that for some a ∈ {1, . . . , N} the child (v, a) of v satisfies gramsv◦a(x) ̸= gramsv◦a(y)
which implies that κ̂≤j

v ≥ 1.
For the induction step, suppose |v| = i < j. For a node u at level less than (i + 1, 0) in

T ({0, 1}ds), let D(u) be the set of its descendants at level (i+ 1, 0).

Claim 8.16. For all u that is a descendant of v at level less than (i + 1, 0) (including v itself):
λ̂
≤(j,0)
u = min(κi,

∑
w∈D(u) λ̂

≤(j,0)
w ).

This claim follows easily by (reverse) induction using the recurrence λ̂≤(j,0)
u = min(λu,

∑
w∈child(u) λ̂

≤(j,0)
w )

and the fact that λ(i,r) = κi for any r ∈ [0, s).
Observe that D(v′) = {w′ : w is a child of v in T (W d)}. From the previous claim using the

induction, we have:

λ̂
≤(j,0)
v′ = min(κi,

∑
w a child of v in T (W d)

λ̂
≤(j,0)
w′ )

≤ min(κi,
∑

w a child of v

κ̂≤j
w ) = κ̂≤j

v .

Since λ
≤(j,0)
v′ ≤ κ≤j

v , it follows that if v′ is overloaded with respect to loc(j, 0) then v is 1
4ds -

overloaded with respect to (gramsj , T (W j × {1, . . . , N}), κ≤j , 4ds, 1/n4).
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We can now complete the proof of Lemma 8.7 Given these propositions we have:

Pr[
∨

(i,r)<(j,t)≤(d,0)

L((i, r), (j, t)) ∧ Normal ∧ C(≤ i) ∧ T(≤ i)]

= Pr[
∨

i<j≤d

L((i, 0), (j, 0)) ∧ Normal ∧ C(≤ i) ∧ T(≤ i)]

≤
∑

i<j≤d

Pr[L((i, 0), (j, 0)) ∧ Normal ∧ C(≤ i) ∧ T(≤ i)]

=
∑

i<j≤d

Pr[λ̂≤(j,0)
w(i,0) ≤

1

4ds
κi ∧ Normal ∧ C(≤ i) ∧ T(≤ i)]

≤
∑

i<j≤d

Pr[κ̂≤j
w(i) ≤

1

4ds
κi ∧ Normal ∧ C(≤ i) ∧ T(≤ i)]. (14)

Using the second part of Proposition 8.10, each term in the final expression is at most ds
log5 n

≤
1

log3 n
, and summing over all i, j gives an upper bound of 1

logn , as required to prove Lemma 8.7.

9 Constraints for the choice of our parameters

In Section 6.1 we defined various parameters for the scheme. The parameters ti, ki and κi are
adjusted to satisfy various constraints that arise in the analysis. As stated in Theorem 7.1, the length
of the sketch is Õ(κ0) so we choose the parameters to satisfy the constraints while (approximately)
minimizing κ0. For convenient reference, here we collect the constraints that these parameters must
satisfy.

• t0 = ⌈20ksOR⌉2. This ensures that condition C(0) holds as noted prior to Proposition 8.3,

• td = 1 which is used inside the proof of Proposition 8.5.

For j ∈ {1, . . . , d}:

1. kj ≥ κj−1
2ssplit
sload

. This is used both in (10) and (11) to bound the contribution of nodes that
are not compatibly split to the expectation of κ̂≤j .

2. tj ≥ 2sOR
sload

kj . This is used in (9) to bound the contribution to κ̂≤j from leaves for which
OR-printsv(x) ̸= OR-printsv(y).

3. kj ≥ (ssplit log
2 n) · tj−1. This is used in (3) to bound the probability that a node v for which

OR-printsv(x) = OR-printsv(y) is not compatibly split by 1
log2 n

. This constraint does not
need to be explicitly enforced because it follows from the combination of constraints 1 and 4

4. κj ≥ (8sload log6 n) · tj . This allows us to use Markov’s inequality to deduce the second part
of Proposition 8.10 to bound the probability that a node is overloaded with respect to κ̂≤j .
κj ≥ 4kj . When doing hmr-recover on the sketches str-skj(x), str-skj(y), every node v at
level j is underloaded.
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5. κj ≥ (8 log n) · kj . This is used in the proof of Proposition 8.8. This constraint does not need
to be explicitly enforced because it follows from the combinations of constraints 3 and 4.

6. sload ≥ sE→H . This is used in the basis step of the proof of Proposition 8.10. It is implied by
the constraint obtained by multiplying together 1, 2, and 4.
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