
Algorithms as Lower Bounds
Lecture 3

Part 1: Solving QBF and NC1 Lower Bounds
(Joint work with Rahul Santhanam, U. Edinburgh)

Part 2: Time-Space Tradeoffs for SAT

Ryan Williams
Stanford University

Quantified Boolean Formulas (QBF)

A Quantified Boolean Formula has the form:

 � = �� �� ⋯ �� �� 	 ��, … , ��

where �� ∈ ∃, ∀ , ��, … , �� are Boolean variables, and

	 is a Boolean formula over ��, … , ��

Typically 	 is a CNF, i.e., an AND of ORs of literals

Canonical PSPACE-complete problem

The QBF Problem

Given: Quantified Boolean Formula �
Determine: Is � true?

Simple Example

The QBF Problem

Given: Quantified Boolean Formula �
Determine: Is � true?

� = ∃� ∀� ∃� � ∨ � ∧ (¬� ∨ �)

Tree of variable assignments ����
yy

zzzz

0 110 1 1 0 0

x

� is a YES instance

Quantifier Blocks

Given a quantified Boolean formula:

 � = �� �� ⋯ �� �� 	 ��, … , ��

where �� ∈ ∃, ∀ , ��, … , �� are Boolean variables,

The number of quantifier blocks in �
= 1 + (number of alternations in �)

= 1 + (number of � such that �� ≠ ����)

Examples:

∃ �� ⋯ ∃ �� 	 ��, … , �� has 1 quantifier block

∃ �� ∀ �� ∀ �� ∃ �� 	 ��, … , �� has 3 quantifier blocks

QBF with � quantifier blocks

= Canonical �� -complete problem

(Worst-Case) Algorithms for QBF
For QBFs of size ! with � Boolean variables:

Exhaustive search takes �� ⋅ #$%� ! time

Can we do better than this? If so, how much better?

Which cases of QBF are easy wrt time complexity?

[W’02] QB CNF formulas with ! clauses in & �. (�! time

When ! ≫ �, this yields no improvement over exhaustive search

[S’10] QB CNF formulas with � variables in �
�* Ω

,

-./ , time

when each variable appears O(1) times in the CNF

Again only useful when ! = &(�)

[CIP’10] Strong ETH ⟹ QB 3-CNF formulas with two quantifier

blocks cannot be solved in &(�1�) time, for all 1 < �
OPEN: QBFs over 3-CNFs with two quantifier blocks in $(��) time??

QBF Algorithms Beating Brute Force

Thm 1 [SW’15] Quantified CNFs with #$%�(�) clauses, �
variables, and 3 quantifier blocks are solvable with zero error in

��*��/(35�)
⋅ #$%� � time

Beats exhaustive search when 3 << log n/(loglog n)

Thm 2 [SW’15] QBFs of #$%�(�) size, � variables, and 3

quantifier blocks can be solved in ��*Ω 3 ⋅ #$%�(�) time

Beats exhaustive search when 3 is large, e.g. 3 >> log n

Counterintuitive!

Problem gets easier as quantifier blocks increase!

What about when 3 = 6 log � ?

“The Log-Quantifier Barrier”

Thm 4 Suppose QBF on CNFs with � variables, #$%�(�) size and

&(log �) quantifier blocks is solvable in ��/�%$: � time …
… Then, NEXP does not have non-uniform #$%�(�)-size

&(log �)-depth circuits!

Proof Sketch

1. Give a very tight reduction from:

SAT for arbitrary Boolean formulas to

QBF on CNF formulas with &(%$: �) quantifiers

2. Appeal to the fact that faster Formula-SAT algorithms imply

circuit lower bounds.

Why is QBF hard to solve?

Compare with the two major approaches to SAT solving.

• DPLL/Branching Algorithms

Explore tree of possible variable assignments by cleverly choosing

variables to assign values to, “prune” the tree aggressively

Power of these algorithms comes from being able to choose any

variable to branch on. For QBFs, this choice is much more restricted,

due to the quantifiers

• Local Search

Perform local search of solution space for a satisfying assignment

For QBFs, the “solutions” are not polynomial-size any more (unless

PSPACE=NP), so local search of solution space becomes infeasible

This holds in practice as well – QBF is still considered intractable

Reminder of Theorem 2

Thm 2. QBF on CNFs with #$%�(�) clauses, � variables, and

3 quantifier blocks are solvable with a randomized algorithm in

��*��/(35�)
⋅ #$%� � time

Proof Idea: Think in terms of circuit complexity!

- Convert part of the quantified CNF into a low-depth circuit

- Evaluate the low-depth circuit on all its inputs quickly

- Use brute-force to patch the results together

Conversion to AC0

Simple Observation:

A quantified CNF with

! clauses, �’ vars, 3 quantifier blocks

is equivalent to

evaluating an AC0 circuit of

depth 3 + � and size ��’!

Low-depth AC circuits have many known

limitations… can one algorithmically

exploit this?

depth =

Λ

V V V

inputs

.

.

.

>?, >@, … , >A

Sketch of QBF Algorithm

QBF � = B? >? ⋯ BA >A C >?, … , >A

depth D
.

.

.

Leaves: Evaluations of

CNF 	 over all 2A variable

assignments

>?

Consider the tree of all possible assignments to >?, … , >A

Sketch of QBF Algorithm

QBF � = B? >? ⋯ BA >A C >?, … , >A

.

.

.

Leaves: Evaluations of

CNF 	 over all 2A variable

assignments

>?

Consider the tree of all possible assignments to >?, … , >A

Suppose we can evaluate F on

all 2A*ℓ possible inputs, in

2A*ℓ ⋅ HIJK D time.

Define an AC0 circuit F(X’)

F L?, … , LA*ℓ

≡ BA*ℓ�?>A*ℓ�? … BA>A

 C(L?, … , LA*ℓ, >A*ℓ�?, … , >A)

Number of inputs to N is � − ℓ
Depth of N ≤ 3 + �

Size of N ≤ �ℓ #$%�(�)

|X’| = � − ℓ

|X’’| = ℓ

Divide vars into two sets:

Sketch of QBF Algorithm

QBF � = B? >? ⋯ BA >A C >?, … , >A

.

.

.

Leaves: Evaluations of

circuit N over all 2A*ℓ

assignments

>?

Consider the tree of all possible assignments to >?, … , >A

Suppose we can evaluate C on

all 2A*ℓ possible inputs, in

2A*ℓ ⋅ HIJK D time.

|X’| = � − ℓ

Make a shallower tree! Now solve the QBF � by brute

force over all 2A*ℓ assignments

to X’, using the computed truth

table for F.

Takes ��*ℓ ⋅ #$%� � time.

Goal: Pick parameter ℓ to

minimize this runtime

Evaluating an AC0 Circuit On All

Possible Inputs

Thm [IMP12] SAT of AC circuits of depth Q and size R

can be solved in �
�*

�

%$:ST�(!) #$%� ! time.

In fact, we can evaluate depth-d circuits of size m on all

2A possible inputs in the same runtime

(with an additional 2A ⋅ HIJK D factor)

Use this algorithm and set ℓ = D
U

V5W in the previous slide.

Yields an ��*��/(35�)
⋅ #$%� � time algorithm!

The case of many quantifiers

Thm 2. QBFs of #$%�(�) size, � variables, and 3 quantifier

blocks can be solved with in ��*Ω 3 ⋅ #$%�(�) time

Beats exhaustive search when 3 is LARGE, e.g. 3 >> log n

Proof Idea: Random exhaustive search!
• “Game tree evaluation” of [Snir85] and [Saks-Wigderson86]

• Randomly choose 0-1 values for variables in their quantifier order,

plug in these values, recurse.

On an existential variable, if first choice returns true then can return

true – already found a “good” choice!

On a universal variable, if first choice returns false then can return

false – already found a “bad” choice!

• Saves Ω(1) bits of guessing on average,

for every two consecutive quantifier blocks!

Some questions to think about

• QBF is easier when:

- there are << log D / log log D quantifier blocks

- there are >> log D quantifier blocks

How much easier can it get?

(Strong ETH only rules out �. XXX� time algorithms)

• Solve QBF faster than brute force when the number of

quantifier blocks is $(log �)?

• Evaluate large Boolean formulas on all possible inputs,

like we can for AC circuits?

Time-Space Lower

Bounds for SAT
A Crash Course

Introduction

How efficiently can one solve

NP complete problems?

P vs NP is currently far out of reach

But important and related questions may not be

There has been progress on the problem:

Is LOGSPACE = NP?

Are there algorithms for SAT that treat the input as

read-only and use only O(log n) additional workspace?

Progress on Weaker Questions

We believe the answer is NO!

LOGSPACE Õ P Õ NP

so LOGSPACE ≠ NP is necessary for P ≠ NP

LOGSPACE ≠ NP
� ∀∀∀∀ k, SAT cannot be solved by an algorithm using

nk time and O(log n) space

LOGSPACE vs NP

Theorem [W’ 07]
SAT can’t be solved by an algorithm using

n2 cos(π/7) – o(1) time and no(1) space
1.8011.8011.8011.801

Theorem holds for robust computational models

(Pointer machines, Random access machines, etc.)

Builds on work of Fortnow, Lipton, Viglas, Van Melkebeek

[W’07] SAT can’t be in n2 cos(π/7) time and no(1) space

[W’10] SAT can’t be in n1.3 time on offline one-tape TMs

[W’10] QBFk can’t be in nk+1-εk time and no(1) space

[DvMW’09]

Tautologies can’t be solved with nondeterminism

in n41/3
time and no(1) space

Some Time-Space Lower Bounds

Above results hold for other NP-hard problems as well

• All above lower bounds (and more) can be

unified under a common formal framework

that we call “alternation trading proofs”

• A search for alternation-trading proofs can be

implemented on a computer by solving LPs

(Leads to proofs of new lower bounds!)

• This reduction to LP can also be used to

show limitations on the proof method

Making a Proof System

Outline

• Background

– Alternating Algorithms

– Alternation-Trading Proofs

• Examples of Time Lower Bounds

• Automating The Process

Deterministic Algorithms:
Exactly one possible step at any point.

x is accepted ñ on input x, an accept state is reached

Nondeterministic Algorithms:
Multiple possible steps at any point.

x is accepted ñ on input x, some sequence of steps

reaches an accept state

Alternating algorithms:
Massively parallel algorithms. Extension of nondeterminism.

Each state is classified as one of two modes:

EXISTENTIAL (Nondeterministic) and

UNIVERSAL (Co-nondeterministic)

Alternating Algorithms

0

0

∃

∃∀

∀ 1∃

∀

∀

11

0

1

1 Picture an alternating algorithm’s

computation on input x as a tree.

Nodes = Configurations

Edges = Steps

Leaves = Deterministic

computations that accept (1) or

reject (0)

Alternating Algorithms

Input x is accepted ñ on input x, the value of the root is 1.

Value of ∃-node v is:

1 iff some child of v is 1.

Value of a ∀-node v is:

1 iff all children of v are 1.

0

0

0

∃

∃∀

∀ 1∃

∀

∀

11

An alternating algorithm is said to

run in time t if

the depth of the tree is t

(Its runtime is limited only by the

longest path in the tree)

Alternating Algorithms

Note: Completely unrealistic model of computation!

Still useful for classifying the complexity of problems.

We can use this unrealistic model as a gateway to lower

bounds for realistic models!

0

0

∃

∃∀

∀ 1∃

∀

∀

11

Algorithm makes k alternations if

the maximum number of times the

mode switches on any path

(from ∃ to ∀, or ∀ to ∃) is k

We’ll call these

k-alternating algorithms

(The example is 1-alternating.)

Number of quantifier blocks

= 1 + (Number of alternations)

Alternating Algorithms

DTIME[nk]
Problems solved by deterministic algorithms in nk time.

DTS[nk] = DTISP[nk, no(1)]
Solved by deterministic algorithms in nk time and no(1) space.

Let C be a complexity class. Define the alternating complexity classes:

(∃ t(n)) C
Tree has existential paths of length O(t(n)) from the root,

then the subtrees represent computations from class C

(∀ t(n))C
Tree has universal paths of length O(t(n)) from the root,

then the subtrees represent computations from class C

Examples:

(∃ n)DTIME[n] = NTIME[n], (∀ n)DTIME[n] = coNTIME[n]

(∃ n)(∀ n)DTIME[n] = Σ2 TIME[n]

Some Complexity Class Notation

Outline

• Background

– Alternating Algorithms

– Alternation-Trading Proofs

• Examples of Time Lower Bounds

• Automating The Process

An alternation-trading proof of SAT œ DTS[nc] works by:

1. Proving NTIME[n] À DTS[nc+o(1)]

2. Proving SAT Œ DTS[nc] î NTIME[n] Õ DTS[nc+o(1)]

1. Prove NTIME[n] À DTS[nc+o(1)] by assuming the opposite,

and apply three rules to derive a contradiction

(e.g. prove NTIME[t] Õ NTIME[t1-ε], contradict NTIME hierarchy)

• Speedup Lemma [Kannan, Fortnow-van Melkebeek]:

DTS[nk] Õ (∃ nx+o(1)) (∀ log n) DTS[nk-x] 1 £ x £ k
DTS[nk] Õ (∀ nx+o(1)) (∃ log n) DTS[nk-x]

• Slowdown Lemma: If NTIME[n] Õ DTS[nc+o(1)] , then

… (∃ na1) (∀ na2) DTS[na3] Õ … (∃ na1) DTS[nmax{c a2, c a3}]

… (∀ na1) (∃ na2) DTS[na3] Õ … (∀ na1) DTS[nmax{c a2, c a3}]

• Combination:

(∃ na)(∃ nb)DTS[nd] Õ (∃ nmax{a,b}) DTS[nd]
(∀ na)(∀ nb)DTS[nd] Õ (∀ nmax{a,b}) DTS[nd]

Alternation-Trading Proofs

For all 1 £ x £ k, DTS[nk] Õ (∃ nx+o(1)) (∀ log n) DTS[nk-x]

“Every nk time, no(1) space algorithm can be simulated by

a 1-alternating algorithm that ∃-guesses nx+o(1) bits,

∀-guesses O(log n) bits, then runs in nk-x time, no(1) space”

Speedup Lemma

C0

…

Cnk-x

…

C2nk-x

…

Cnk

nnnno(1)o(1)o(1)o(1)

nnnnkkkk

∃

∃∃

∃ ∃

∃

∀

∃ ∃

C0

Cnk-x

Cnk

…

nnnnkkkk----xxxx

nnnnkkkk----xxxx

Ci nk-x � C(i+1)nk-x

0
1

nx

i

nk-x steps

If NTIME[n] Õ DTS[nc], then

… (∃ na1) (∀ na2) DTS[na3] Õ … (∃ na1) DTS[nc max{a2, a3}]

“If SAT has an nc time algorithm, then can remove an

alternation from any alternating algorithm, at a time cost of c.”

Slowdown Lemma

Slowdown Lemma

∀

∃
…

…

O(na1)

O(na2)

DTS[na3]

If NTIME[n] Õ DTS[nc], then

… (∃ na1) (∀ na2) DTS[na3] Õ … (∃ na1) DTS[nc max{a2, a3}]

“If SAT has an nc time algorithm, then can remove an

alternation from any alternating algorithm, at a time cost of c.”

Slowdown Lemma

∀

∃
…

…

O(na1)

O(na2)

DTS[na3]

Non-det.

computation

running in

nmax{a2, a3} time

If NTIME[n] Õ DTS[nc], then

… (∃ na1) (∀ na2) DTS[na3] Õ … (∃ na1) DTS[nc max{a2, a3}]

“If SAT has an nc time algorithm, then can remove an

alternation from any alternating algorithm, at a time cost of c.”

Slowdown Lemma

∀

∀
…

…

O(na1) By hypothesis,

can replace

nondet. nmax{a2, a3}

time

w/ DTS[nc max{a2, a3}]
DTS[nc max{a2, a3}]

If NTIME[n] Õ DTS[nc], then

… (∃ na1) (∀ na2) DTS[na3] Õ … (∃ na1) DTS[nc max{a2, a3}]

“If SAT has an nc time algorithm, then can remove an

alternation from any alternating algorithm, at a time cost of c.”

Outline

• Background

– Alternating Algorithms

– Alternation-Trading Proofs

• Examples of Time Lower Bounds

• Automating The Process

Time-Space Lower Bound for SAT

Alternation-Trading Proof that SAT œ DTS[n21/2-ε]

[Lipton-Viglas’99]

Suppose SAT Œ DTS[nc]. Then NTIME[n] Õ DTS[nc+o(1)], and

NTIME[n2] Õ DTS[n2c+o(1)] (Slowdown)

Õ (∃ nc+o(1))(∀ log n) DTS[nc] (Speedup, x=c)

Õ (∃ nc+o(1))DTS[nc2+o(1)] (Slowdown)

Õ NTIME[nc2+o(1)]

Contradiction to nondeterministic time hierarchy, when c < 21/2

Each class in the above list of inclusions is a line in the proof

Example 1

Example 2
Alternation-Trading Proof that SAT œ DTS[n1.6]

Suppose SAT Œ DTS[nc]. Then NTIME[n] Õ DTS[nc+o(1)], and

NTIME[nc/2+2/c] Õ DTS[nc2/2+2] (Slowdown)

Õ (∃ nc2/2)(∀ log n)DTS[n2] (Speedup, x=c2/2)

Õ (∃ nc2/2)(∀ log n)(∀ n)(E log n)DTS[n] (Speedup, x=1)

Õ (∃ nc2/2)(∀ n)(E log n)DTS[n] (Combination)

Õ (∃ nc2/2)(∀ n)DTS[nc] (Slowdown)

Õ (∃ nc2/2)DTS[nc2] (Slowdown)

Õ (∃ nc2/2)(∃ nc2/2)(∀ log n)DTS[nc2/2] (Speedup, x=c2/2)

Õ (∃ nc2/2) (∀ log n)DTS[nc2/2] (Combination)

Õ (∃ nc2/2)DTS[nc3/2] (Slowdown)

Õ NTIME[nc3/2]

Contradiction when c3/2 < c/2 + 2/c.

Outline

• Background

– Alternating Algorithms

– Alternation-Trading Proofs

• Examples of Time Lower Bounds

• Automating The Process

Alternation-Trading Proofs apply simple rules at every step.

Define a proof annotation to be a sequence of proof rules.

E.g.: “Slowdown Speedup Slowdown”

Question: Suppose we fix a proof annotation.

What can we say about the best lower bound proofs

that follow the rules of this annotation?

Automating The Search for Proofs

THEOREM: Given a proof annotation of Y rules, the best possible

lower bound proof following that annotation can be determined

(up to S digits of precision) in #$%�(Y, S) time.

THEOREM: Given a proof annotation of r rules, the best possible

lower bound proof following the annotation can be determined (up

to d digits of precision) in poly(r,d) time.

Automating the Process

STAGES OF THE PROOF:
1. “Normalize” proofs so they have a common format

(E.g. Proof begins with NTIME[nk] and ends with NTIME[nk-ε]

where k is a parameter to be determined… technical reduction)

2. Create a linear programming instance with variables ai, j

The ai, j’s encode the complexity class on the ith line

(a1, j’s encode NTIME[nk], aL, j’s encode NTIME[nk-ε])

For the ith rule in the annotation, have linear constraints between

ai-1, j’s and ai, j’s which encode an application of that rule.

3. Repeatedly solve the LP for fixed lower bound exponents.

Example of Linear Programming Reduction

Alternation-Trading Proof that SAT œ DTS[n21/2-ε]

NTIME[n2] Õ DTS[n2c]

Õ (∃ nc+o(1))(∀ log n) DTS[nc]

Õ (∃ nc+o(1))DTS[nc2]

Õ NTIME[nc2]

Alternation-Trading Proof that SAT œ DTS[n21/2-ε]

NTIME[na] Õ DTS[nca]

Õ (∃ nx)(∀ log n) DTS[nca – x]

Õ (∃ nx)DTS[nmax{c(ca – x), cx}]

Õ NTIME[nmax{c(ca – x), cx}]

LP Constraints:
a > c(ca – x)
a > cx
a ≥ 1
x ≥ 1
ca – x ≥ 1

Example of Linear Programming Reduction

When c < 21/2,

LP is feasible

When c ≥ 21/2

LP is not feasible

Some Experimental Results

1.414

1.464

1.514

1.564

1.614

1.664

1.714

1.764

1.814

3 13 23 33 43 53 63 73

Lo
w

e
r

B
o

u
n

d
 E

x
p

o
n

e
n

t

Number of Lines in an Alternation-Trading Proof

Best Time Lower Bound Exponents for SAT

Some Experimental Results

1.414

1.464

1.514

1.564

1.614

1.664

1.714

1.764

1.814

3 13 23 33 43 53 63 73

Lo
w

e
r

B
o

u
n

d
 E

x
p

o
n

e
n

t

Number of Lines in an Alternation-Trading Proof

Best Time Lower Bound Exponents for SAT

Example 1

Example 2

Observations on the Experiments

• The best proof annotations follow a regular pattern

• Following the pattern, a 424-line proof annotation yielded:

n1.8017 time, no(1) space lower bound

This very nearly matches the 2 cos(π/7) ~ 1.8019 lower bound,

and the proofs are virtually identical.

Conjecture: The n2 cos(π/7) time lower bound for SAT is the best

possible with alternation-trading proofs.

Similar experiments performed in other settings

New proofs discovered where progress had stalled!

THEOREM: An n2 time lower bound for SAT is not

possible with alternation-trading proofs.

Idea: Observe in every such proof, at some point we have a

speedup followed by a slowdown

Let P be a minimum length proof of n2.

Show that we can remove this “speedup slowdown” from P,

and the resulting proof P’ is still valid (with possibly different

parameter choices).

That is, we reduce the LP to a smaller one and argue that the

new one is still feasible if the old one was.

Contradiction!

Theorem [Buss-W’12]:

The best known time-space lower bounds cannot be

improved further within this proof system!

2 cos(π/7) = 1.801… is “optimal”

A New Understanding [Buss-W’12]

We need new ideas to push these

lower bounds further!

Thank you!

