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Definition: ACC Circuits

An ACC circuit family { Cn } has the properties:

• Every Cn takes n bits of input and outputs a bit 

• There is a fixed d such that every Cn has depth at most d

• There is a fixed m such that the gates of Cn are 

AND, OR, NOT, MODm (unbounded fan-in)

MODm(x1,…,xt) = 1  iff ∑∑∑∑i xi is divisible by m

Remarks

1. The default size of Cn is polynomial in n

2. Strength: this is a non-uniform model of computation

(can compute some undecidable languages)

3. Weakness: ACC circuits can be efficiently simulated by 

constant-layer neural networks



Proof Strategy for ACC Lower Bounds

1. Show that faster ACC-SAT algorithms imply 

lower bounds against ACC

Theorem (Example)  

If ACC-SAT with n inputs and 2no(1)
size is in 

O(2n/n10) time (for all constant depths and moduli), then 

EXPNP doesn’t have 2no(1)
size ACC circuits. 

2. Design faster ACC-SAT algorithms!

Theorem For all d, m there’s an ε > 0 such that 

ACC-SAT on circuits with n inputs, depth d, MODm gates, 

and 2nε
size can be solved in 2n - ΩΩΩΩ((((nε)  time



Detailed Proof

Theorem If ACC-SAT on circuits with n inputs and 2no(1)
size 

is in O(2n/n10) time, then 

EXPNP doesn’t have 2no(1)
size ACC circuits. 

Proof Idea Show that if both:

• ACC-SAT with n inputs and 2no(1)
size is in O(2n/n10) time

• EXPNP has 2no(1)
size ACC circuits

then NTIME[2n] ⊆⊆⊆⊆ NTIME[o(2n)] (a contradiction)

Work with a “compressed” version of the 3SAT problem:

Exponentially long formulas are encoded with 

polynomial-size circuits 



Theorem If ACC-SAT on circuits with n inputs and 2no(1)
size is 

in O(2n/n10) time, then EXPNP isn’t in 2no(1)
size ACC. 

For a circuit C : {0,1}n →→→→ {0,1}, let tt(C) be its truth table: 

the output of C on all 2n assignments, in lex. order

Succinct 3SAT: Given a circuit C, is tt(C) a satisfiable 3CNF?

Theorem [GW, PY ’80s] Succinct 3SAT is NEXP-complete. 

Succinct 3SAT is in NEXP: evaluate circuit C on all possible 

assignments, and solve the resulting 3SAT instance

Succinct 3SAT is NEXP-hard. Follows from: 

“For all L ∈ NP, there’s a TIME[poly(log n)] reduction from 

L to 3SAT”

Padding ⇒ “For all L ∈ NEXP, there is a TIME[poly(n)] 

reduction from L to exponentially-long 3SAT”

The TIME[poly(n)] reduction can be described with a circuit!



Theorem If ACC-SAT on circuits with n inputs and 2no(1)
size is 

in O(2n/n10) time, then EXPNP isn’t in 2no(1)
size ACC. 

For a circuit C : {0,1}n →→→→ {0,1}, let tt(C) be its truth table: 

the output of C on all 2n assignments, in lex. order

Succinct 3SAT: Given a circuit C, is tt(C) a satisfiable 3CNF?

Lemma 1 […, JMV’15] For all L ∈ NTIME[2n], there is a 

polytime reduction RL from L to Succinct 3SAT such that:

- x ∈ L  ⇔ RL(x) = Cx encodes a satisfiable 3CNF formula

- Cx is ACC, has size n10, and n + 4 log n inputs, 

where n = |x|

Corollary Succinct 3SAT for ACC circuits of n inputs & n10 size

is in nondet �� ��	
 � time but not in nondet 
��

��
time. 

(Otherwise, we’d contradict the nondet. time hierarchy!)



Theorem If ACC-SAT on circuits with n inputs and 2no(1)
size is 

in O(2n/n10) time, then EXPNP isn’t in 2no(1)
size ACC. 

Succinct 3SAT: Given a circuit C, is tt(C) a satisfiable 3CNF?

Say that Succinct 3SAT has ACC satisfying assignments if 

for every C such that tt(C) is a satisfiable 3CNF, 

there is an ACC circuit D of 2|C|o(1)
size such that 

tt(D) is a variable assignment that satisfies tt(C). 

Succinct 3SAT has ACC satisfying assignments

≡≡≡≡ “All satisfiable formulas which are compressible have a 

satisfying assignment which is somewhat compressible”

Lemma 2 If EXPNP has 2no(1)
size ACC circuits then

Succinct 3SAT has ACC satisfying assignments



Theorem If ACC-SAT on circuits with n inputs and 2no(1)
size is 

in O(2n/n10) time, then EXPNP isn’t in 2no(1)
size ACC. 

Succinct 3SAT: Given a circuit C, is tt(C) a satisfiable 3CNF?

Lemma 2 If EXPNP has 2no(1)
size ACC circuits then

Succinct 3SAT has ACC satisfying assignments

Proof The following can be computed in EXPNP:

On input (C, i), use an NP oracle and binary search to find 

the lexicographically first satisfying assignment to tt(C). 

Output the i-th bit of this assignment.

By assumption: there is a 2|C|o(1)
size ACC circuit D(C, i) which 

outputs the i-th bit of a satisfying assignment to tt(C). 

Now for any circuit C’, define the circuit E(i) := D(C’, i)

Then E has 2|C|o(1)
size, and tt(E) satisfies tt(C’)



Theorem If ACC-SAT on circuits with n inputs and 2no(1)
size is 

in O(2n/n10) time, then EXPNP isn’t in 2no(1)
size ACC. 

An overview:

Assume “fast” ACC-SAT and small ACC circuits for EXPNP

Use to solve Succinct3SAT in NTIME[2n/n5] 

(contradiction!)

Outline of Succinct3SAT algorithm:

Given a Succinct3SAT instance C  (an ACC circuit)

1. Guess a small ACC circuit Y encoding a satisfying 

assignment for the exponentially-long 3CNF tt(C)

(which exists, by Lemma 2 and small circuits for EXPNP)

2. Use “fast” Circuit-SAT algorithm to check that tt(D)

satisfies tt(C) in O(2n/n5) time



Given Succinct3SAT instance C (an ACC circuit of n inputs)

Nondeterministically guess ACC circuit Y of 2no(1)
size

Y(j) is intended to output the j-th bit of a satisfying assignment for φφφφ

Construct the following circuit D of 2no(1)
size:

Fast Algorithm for Succinct3SAT

Using ACC-SAT algorithm: determine satisfiability of D in o(2n) time!

i n + 4 log n input bits

C

Output 1 iff the assignment encoded by Y

does not satisfy the i-th clause of φ

Y

s

Y Y

a bt u c

Constant size circuit

Outputs the ith clause of 3CNF φφφφ

Outputs assignments to the 

variables a, b, c of φφφφ



Proof Strategy for ACC Lower Bounds

1. Show that faster ACC-SAT algorithms imply 

lower bounds against ACC

Theorem (Example)  

If ACC-SAT with n inputs and 2no(1)
size is in 

O(2n/n10) time (for all constant depths and moduli), then 

EXPNP doesn’t have 2no(1)
size ACC circuits. 

2. Design faster ACC-SAT algorithms!

Theorem For all d, m there’s an ε > 0 such that 

ACC-SAT on circuits with n inputs, depth d, MODm gates, 

and 2nε
size can be solved in 2n - ΩΩΩΩ((((nε)  time



Ingredients for Solving ACC SAT

Ingredients:
1. A known representation of ACC

[Yao ’90, Beigel-Tarui’94] Every ACC function 
f : {0,1}n→ → → → {0,1} can be expressed in the form  

f(x1,...,xn) = g(h(x1,...,xn))

- h is a multilinear polynomial with K monomials,  
h(x1,...,xn) ∈∈∈∈ {0,…,K}  for all (x1,...,xn) ∈∈∈∈ {0,1}n

- K is not “too large” (quasipolynomial in circuit size)
- g : {0,...,K}  →→→→ {0,1} can be an arbitrary function

2. “Fast Fourier Transform” for multilinear polynomials: 

Given a multilinear polynomial h in its coefficient 

representation, the value h(x) can be computed over 
all points x ∈ {0,1}n in 2n poly(n) time.



1. Polynomials Representing ACC

Very special cases:

1. Writing OR(x1, …, xn) as a g of h: 

g(y) = 1 iff y > 0,  h = x1 + … + xn

2. Writing AND(x1, …, xn) as a g of h

g(y) = 1 iff y = n,  h = x1 + … + xn

3. Writing MODm(x1, …, xn) as a g of h…

Slightly less special case:

[Razborov-Smolensky, Aspnes et al., Tarui]

AC0 can be represented using a distribution of polylog-degree 

polynomials over the integers.

In fact can use a “small” number S of polynomials (S = npoly(log n))

Can take MAJORITY value of all S different polynomials. 

Let g(y) = 1 iff y ≥ S/2, let h be the sum of all S polynomials



2. Fast Multipoint Evaluation

Theorem: Given the 2n coefficients of a multilinear

polynomial h in n variables, the value h(x) can be 
computed on all points x ∈∈∈∈ {0,1}n in 2n poly(n) time.

Can write  h(x1, … , xn) = x1 h1(x2, …, xn) + h2(x2, …, xn)

Want a 2n table T that contains the value of h on all 2n points.

Algorithm:  If n = 1 then return T = [h(0), h(1)]

Recursively compute the 2n-1 table T1 for the values of h1, 

and the 2n-1 table T2 for the values of h2

Return the table T = (T2)(T1 + T2) of 2n entries  

Running time has the recurrence R(2n) ≤ 2 R(2n-1)  +  2n poly(n)

Corollary: We can compute g of h on all x ∈∈∈∈ {0,1}n 

in only 2n poly(n) time



ACC Satisfiability Algorithm

Theorem For all d, m there’s an ε > 0 such that ACC[m]  SAT 

with depth d, n inputs, 2nε
size can be solved in 2n - Ω(nε)  time

Proof:

n inputs

K = 2nO(ε) 

size

n-nε inputs

C

Size 
2nε

g

…

Take an OR of all assignments 

to the first nε inputs of C

C
2nεC

2nε
C

2nε
C

2nε
C

2nε
C

2nε

∨∨∨∨

…

Fast Fourier Transform
For small ε > 0, evaluate h 

on all 2n - nε
assignments in 

2n -nε
poly(n)  time

n-nε inputs

22nε
size

h



Fast Multipoint Circuit Evaluation 

Circuit Lower Bounds
Theorem If we can evaluate a circuit of size s on all 2n inputs in 

2n poly(n) + poly(s) time, then Circuit-SAT is in 2n -nε
time

Proof:

n inputs

C

Size 
2nε

Take an OR of all assignments 

to the first nε inputs of C

C
2nεC

2nε
C

2nε
C

2nε
C

2nε
C

2nε

∨∨∨∨

…

For small ε > 0, can evaluate on all 

2n - nε
assignments in  

2n -nε
poly(n) + poly(22nε

) time

n-nε inputs

22nε
size



Theorem If ACC SAT with n inputs, nO(1) size is in O(2n/n10) 

time, then NEXP doesn’t have nO(1) size ACC circuits. 

Proceed just as with EXPNP, but use the following lemma:

Lemma [IKW’02] If NEXP ⊂⊂⊂⊂ P/poly then Succinct 3SAT has 

poly-size circuits encoding satisfying assignments.

The proof applies work on “hardness versus randomness”

1. If EXP ⊂⊂⊂⊂ P/poly then EXP = MA [BFNW93]

2. If Succinct 3SAT does not have polysize SAT assignment 

circuits, then in i.o.-NTIME[2n]/n we can guess a function 

with high circuit complexity and verify it – just guess a 

satisfying assignment to a hard Succinct3SAT instance!

Can derandomize MA infinitely often with n bits of advice:

EXP = MA ⊆⊆⊆⊆ io-NTIME[2n]/n ⊆⊆⊆⊆ io-SIZE(nk)

(this is a contradiction)



Theorem If ACC SAT with n inputs, nO(1) size is in O(2n/n10) 

time, then NEXP doesn’t have nO(1) size ACC circuits. 

Proceed just as with EXPNP, but use the following lemma:

Lemma [IKW’02] If NEXP ⊂⊂⊂⊂ P/poly then Succinct 3SAT has 

poly-size circuits encoding satisfying assignments.

Lemma If P ⊂⊂⊂⊂ ACC  then all poly-size unrestricted circuit 

families have equivalent poly-size ACC circuit families. 

Corollary If NEXP ⊂⊂⊂⊂ ACC then Succinct 3SAT has poly-size 

ACC circuits encoding satisfying assignments.

This is all we need for the previous proof to go through.

Also works for quasipolynomial size circuits.



Theorem 2 Suppose we are given a circuit C with n inputs, 

and are promised that it is either unsatisfiable, or at least 

½ of its assignments are satisfying. Determine which.
If this is in O(2n/nlog n) time then NEXP **** P/poly.

Proof Idea: Same as before, but replace the succinct 

reduction RL from L to 3SAT with a succinct PCP reduction

Lemma 3 [BGHSV’05] For all L ∈ NTIME(2n),

there is a reduction SL from L to MAX CSP such that:

x ∈∈∈∈ L  ⇒⇒⇒⇒ All constraints of SL(x) are satisfiable

x ∉∉∉∉ L  ⇒⇒⇒⇒ At most ½ of the constraints are satisfiable

1. |SL(x)| = 2n poly(n)

2. The i-th constraint of SL(x) is computable in poly(n) time.

Weak Derandomization Suffices



Remark on a Nice Property of ACC 

Thm:  Given an ACC circuit C of size S and n inputs, the truth 

table of C can be produced in 2n  poly(n) + 2poly(log S) time.

The main result of this lecture is that this property 

suffices to separate NEXP from ACC.

Morally, this property should be enough to get EXP ⊄⊄⊄⊄ ACC

Observation:  Let L ∈∈∈∈ TIME[4n] \ TIME[3n].  Then the truth 

table of L ∩∩∩∩ {0,1}n cannot be produced in o(3n) time.

The non-uniformity of ACC prevents us from directly proving 

EXP lower bounds. But perhaps NP ≠≠≠≠ uniform-ACC

Q: Is there L ∈∈∈∈ TIME[3n] such that generating the 2n-length 

truth table of L on n-bit inputs requires ωωωω(3n) time?



Future Progress

• Replace NEXP with simpler complexity classes

May need to improve on exhaustive search for 

more complex problems 

Open Problem Does faster COUNTING of satisfying 

assignments for circuits imply stronger lower bounds?

• Replace ACC with stronger circuits

Design SAT algorithms for stronger circuits!

Using PCP Theorem: can weaken the hypotheses

Open Problem Can Boolean formulas of size � be evaluated on 

all n-variable assignments in ��	
 � +  �� ��	
 � time?

• Find more connections between 

algorithms and lower bounds!


