Algorithms as Lower Bounds Lecture 3: NEXP vs ACC

Ryan Williams Stanford University

Definition: ACC Circuits

An **ACC** circuit family { C_n } has the properties:

- Every C_n takes n bits of input and outputs a bit
- There is a fixed *d* such that every C_n has depth at most *d*
- There is a fixed *m* such that the gates of C_n are AND, OR, NOT, MODm (unbounded fan-in) MODm($x_1,...,x_t$) = 1 iff $\sum_i x_i$ is divisible by m

Remarks

- 1. The default size of C_n is polynomial in n
- 2. **Strength:** this is a **non-uniform** model of computation (can compute some undecidable languages)
- 3. *Weakness:* ACC circuits can be efficiently simulated by *constant-layer neural networks*

Proof Strategy for ACC Lower Bounds

1. Show that faster ACC-SAT algorithms imply lower bounds against ACC

Theorem (Example) If ACC-SAT with n inputs and 2^{n^{o(1)}} size is in O(2ⁿ/n¹⁰) time (for all constant depths and moduli), then EXP^{NP} doesn't have 2^{n^{o(1)}} size ACC circuits.

2. Design faster ACC-SAT algorithms!

Theorem For all **d**, **m** there's an $\varepsilon > 0$ such that ACC-SAT on circuits with n inputs, depth **d**, MODm gates, and $2^{n^{\varepsilon}}$ size can be solved in $2^{n-\Omega(n^{\varepsilon})}$ time

Detailed Proof

Theorem If ACC-SAT on circuits with n inputs and 2^{n^{o(1)}} size is in O(2ⁿ/n¹⁰) time, then EXP^{NP} doesn't have 2^{n^{o(1)}} size ACC circuits.

Proof Idea Show that if both:

ACC-SAT with n inputs and 2^{n^{o(1)}} size is in O(2ⁿ/n¹⁰) time
EXP^{NP} has 2^{n^{o(1)}} size ACC circuits then NTIME[2ⁿ] ⊆ NTIME[o(2ⁿ)] (a contradiction)

Work with a "compressed" version of the 3SAT problem: Exponentially long formulas are encoded with polynomial-size circuits **Theorem** If ACC-SAT on circuits with n inputs and 2^{n^{o(1)}} size is in $O(2^n/n^{10})$ time, then **EXP^{NP}** isn't in $2^{n^{O(1)}}$ size ACC. For a circuit $C : \{0,1\}^n \rightarrow \{0,1\}$, let tt(C) be its truth table: the output of **C** on all 2ⁿ assignments, in lex. order Succinct 3SAT: Given a circuit C, is tt(C) a satisfiable 3CNF? Theorem [GW, PY '80s] Succinct 3SAT is NEXP-complete. Succinct 3SAT is in NEXP: evaluate circuit C on all possible assignments, and solve the resulting 3SAT instance Succinct 3SAT is NEXP-hard. Follows from: "For all $L \in NP$, there's a TIME[poly(log n)] reduction from L to 3SAT" **Padding** \Rightarrow "For all L \in NEXP, there is a TIME[poly(n)] reduction from L to exponentially-long 3SAT" The TIME[poly(n)] reduction can be described with a circuit! **Theorem** If ACC-SAT on circuits with n inputs and 2^{n^{o(1)}} size is in O($2^{n}/n^{10}$) time, then **EXP**^{NP} isn't in $2^{n^{O(1)}}$ size ACC. For a circuit $C : \{0,1\}^n \rightarrow \{0,1\}$, let tt(C) be its truth table: the output of **C** on all 2ⁿ assignments, in lex. order Succinct 3SAT: Given a circuit C, is tt(C) a satisfiable 3CNF? **Lemma 1 [..., JMV'15]** For all $L \in NTIME[2^n]$, there is a polytime reduction R₁ from L to Succinct 3SAT such that: - $x \in L \iff R_1(x) = C_x$ encodes a satisfiable 3CNF formula - C_x is ACC, has size n^{10} , and $n + 4 \log n$ inputs, where n = |x|**Corollary Succinct 3SAT for ACC circuits of n inputs & n¹⁰ size** is in nondet $2^n poly(n)$ time but not in nondet $\frac{2^n}{n^5}$ time. (Otherwise, we'd contradict the nondet. time hierarchy!)

Theorem If ACC-SAT on circuits with n inputs and $2^{n^{o(1)}}$ size is in O($2^n/n^{10}$) time, then **EXP**^{NP} isn't in $2^{n^{o(1)}}$ size ACC.

Succinct 3SAT: Given a circuit C, is tt(C) a satisfiable 3CNF?

Say that <u>Succinct 3SAT has ACC satisfying assignments</u> if for every C such that tt(C) is a satisfiable 3CNF, there is an ACC circuit D of 2^{|C|^{o(1)}} size such that tt(D) is a variable assignment that satisfies tt(C).

Succinct 3SAT has ACC satisfying assignments \equiv "All satisfiable formulas which are compressible have a satisfying assignment which is somewhat compressible" Lemma 2 If EXP^{NP} has 2^{n⁰⁽¹⁾} size ACC circuits then Succinct 3SAT has ACC satisfying assignments **Theorem** If ACC-SAT on circuits with n inputs and $2^{n^{o(1)}}$ size is in O($2^n/n^{10}$) time, then **EXP**^{NP} isn't in $2^{n^{o(1)}}$ size ACC.

Succinct 3SAT: Given a circuit C, is tt(C) a satisfiable 3CNF?

Lemma 2 If EXP^{NP} has 2^{n^{o(1)}} size ACC circuits then Succinct 3SAT has ACC satisfying assignments

Proof The following can be computed in **EXP**^{NP}:

On input (C, i), use an NP oracle and binary search to find the lexicographically first satisfying assignment to tt(C). Output the i-th bit of this assignment.

By assumption: there is a 2^{|C|^{o(1)}} size ACC circuit D(C, i) which outputs the i-th bit of a satisfying assignment to tt(C).
Now for any circuit C', define the circuit E(i) := D(C', i) Then E has 2^{|C|^{o(1)}} size, and tt(E) satisfies tt(C')

Theorem If ACC-SAT on circuits with n inputs and $2^{n^{o(1)}}$ size is in O($2^n/n^{10}$) time, then **EXP**^{NP} isn't in $2^{n^{o(1)}}$ size ACC.

An overview:

Assume "fast" ACC-SAT and small ACC circuits for EXP^{NP} Use to solve Succinct3SAT in NTIME[2ⁿ/n⁵] (contradiction!)

Outline of Succinct3SAT algorithm:

Given a Succinct3SAT instance C (an ACC circuit)

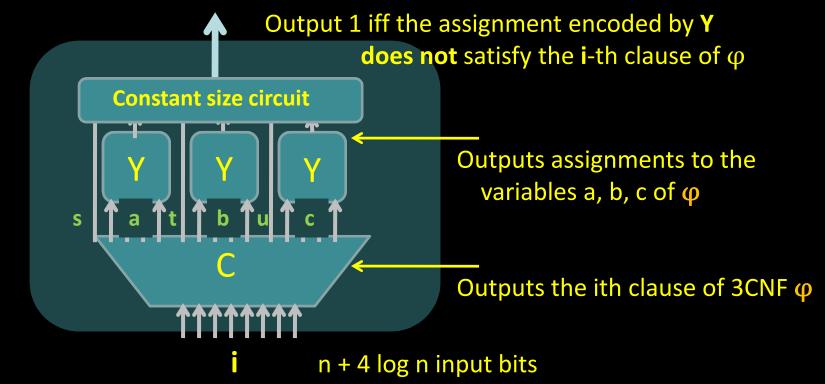
1. Guess a small ACC circuit Y encoding a satisfying assignment for the exponentially-long 3CNF tt(C)

(which exists, by Lemma 2 and small circuits for EXP^{NP})

2. Use "fast" Circuit-SAT algorithm to check that tt(D) satisfies tt(C) in O(2ⁿ/n⁵) time

Fast Algorithm for Succinct3SAT

Given Succinct3SAT instance C (an ACC circuit of n inputs) Nondeterministically guess ACC circuit Y of $2^{n^{o(1)}}$ size Y(j) is intended to output the j-th bit of a satisfying assignment for ϕ Construct the following circuit D of $2^{n^{o(1)}}$ size:



Using ACC-SAT algorithm: determine satisfiability of **D** in **o(2ⁿ) time!**

Proof Strategy for ACC Lower Bounds

1. Show that faster ACC-SAT algorithms imply lower bounds against ACC

Theorem (Example) If ACC-SAT with n inputs and 2^{n^{o(1)}} size is in O(2ⁿ/n¹⁰) time (for all constant depths and moduli), then EXP^{NP} doesn't have 2^{n^{o(1)}} size ACC circuits.

2. Design faster ACC-SAT algorithms!

Theorem For all **d**, **m** there's an $\varepsilon > 0$ such that ACC-SAT on circuits with n inputs, depth **d**, MODm gates, and $2^{n^{\varepsilon}}$ size can be solved in $2^{n-\Omega(n^{\varepsilon})}$ time

Ingredients for Solving ACC SAT

Ingredients:

1. A known representation of ACC

[Yao '90, Beigel-Tarui'94] Every ACC function $f: \{0,1\}^n \rightarrow \{0,1\}$ can be expressed in the form

 $f(x_1,...,x_n) = g(h(x_1,...,x_n))$

- **h** is a multilinear polynomial with K monomials, $h(x_1,...,x_n) \in \{0,...,K\}$ for all $(x_1,...,x_n) \in \{0,1\}^n$

- **K** is not "too large" (quasipolynomial in circuit size)

- $g : \{0,...,K\} \rightarrow \{0,1\}$ can be an arbitrary function
- 2. "Fast Fourier Transform" for multilinear polynomials: Given a multilinear polynomial h in its coefficient representation, the value h(x) can be computed over all points $x \in \{0,1\}^n$ in 2^n poly(n) time.

1. Polynomials Representing ACC

Very special cases:

- 1. Writing $OR(x_1, ..., x_n)$ as a g of h: g(y) = 1 iff y > 0, h = $x_1 + ... + x_n$
- 2. Writing AND($x_1, ..., x_n$) as a g of h g(y) = 1 iff y = n, h = $x_1 + ... + x_n$
- **3.** Writing MODm(x₁, ..., x_n) as a g of h...

Slightly less special case:

[Razborov-Smolensky, Aspnes et al., Tarui]

AC0 can be represented using a *distribution* of polylog-degree polynomials over the integers.

In fact can use a "small" number **S** of polynomials (**S** = **n**^{poly(log n)})

Can take MAJORITY value of all **S** different polynomials.

Let g(y) = 1 iff $y \ge S/2$, let h be the sum of all S polynomials

2. Fast Multipoint Evaluation

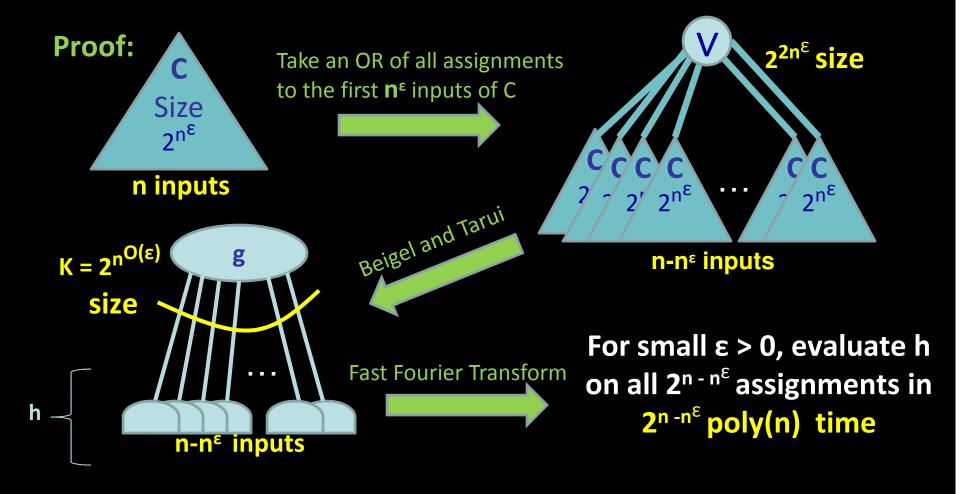
Theorem: Given the 2ⁿ coefficients of a multilinear polynomial **h** in **n** variables, the value h(x) can be computed on all points $x \in \{0,1\}^n$ in 2ⁿ poly(n) time.

Can write $h(x_1, ..., x_n) = x_1 h_1(x_2, ..., x_n) + h_2(x_2, ..., x_n)$ Want a 2ⁿ table T that contains the value of h on all 2ⁿ points. Algorithm: If n = 1 then return T = [h(0), h(1)] Recursively compute the 2ⁿ⁻¹ table T₁ for the values of h₁, and the 2ⁿ⁻¹ table T₂ for the values of h₂ Return the table T = (T₂)(T₁ + T₂) of 2ⁿ entries Running time has the recurrence R(2ⁿ) \leq 2 R(2ⁿ⁻¹) + 2ⁿ poly(n)

Corollary: We can compute g of h on all $x \in \{0,1\}^n$ in only 2ⁿ poly(n) time

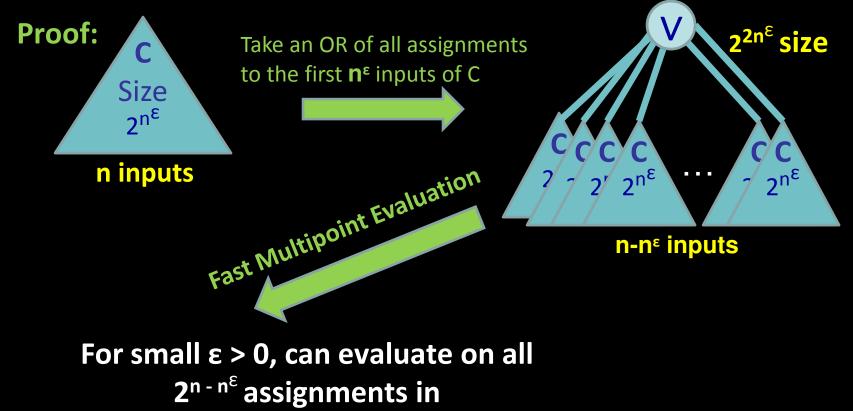
ACC Satisfiability Algorithm

Theorem For all d, m there's an $\varepsilon > 0$ such that ACC[m] SAT with depth d, n inputs, $2^{n^{\varepsilon}}$ size can be solved in $2^{n - \Omega(n^{\varepsilon})}$ time



Fast Multipoint Circuit Evaluation ⇒ Circuit Lower Bounds

Theorem If we can evaluate a circuit of size s on all 2ⁿ inputs in 2ⁿ poly(n) + poly(s) time, then Circuit-SAT is in 2^{n -n^ε} time



 $2^{n-n^{\varepsilon}}$ poly(n) + poly($2^{2n^{\varepsilon}}$) time

Theorem If ACC SAT with n inputs, $n^{O(1)}$ size is in $O(2^n/n^{10})$ time, then NEXP doesn't have $n^{O(1)}$ size ACC circuits.

Proceed just as with EXP^{NP}, but use the following lemma: Lemma [IKW'02] If NEXP \subset P/poly then Succinct 3SAT has poly-size circuits encoding satisfying assignments.

The proof applies work on "hardness versus randomness" 1. If EXP \subset P/poly then EXP = MA [BFNW93]

2. If Succinct 3SAT does not have polysize SAT assignment circuits, then in i.o.-NTIME[2ⁿ]/n we can guess a function with high circuit complexity and verify it – just guess a satisfying assignment to a hard Succinct3SAT instance!

Can derandomize MA infinitely often with n bits of advice: $EXP = MA \subseteq io-NTIME[2^n]/n \subseteq io-SIZE(n^k)$

(this is a contradiction)

Theorem If ACC SAT with n inputs, $n^{O(1)}$ size is in $O(2^n/n^{10})$ time, then NEXP doesn't have $n^{O(1)}$ size ACC circuits.

Proceed just as with EXP^{NP}, but use the following lemma: Lemma [IKW'02] If NEXP \subset P/poly then Succinct 3SAT has poly-size circuits encoding satisfying assignments.

Lemma If $P \subset ACC$ then all poly-size *unrestricted* circuit families have equivalent poly-size ACC circuit families.

Corollary If **NEXP** \subset **ACC** then Succinct 3SAT has poly-size ACC circuits encoding satisfying assignments.

This is all we need for the previous proof to go through. Also works for quasipolynomial size circuits.

Weak Derandomization Suffices

Theorem 2 Suppose we are given a circuit C with n inputs, and are promised that it is either *unsatisfiable*, or at least ½ of its assignments are satisfying. Determine which. If this is in O(2ⁿ/n^{log n}) time then NEXP ⊈ P/poly.

Proof Idea: Same as before, but **replace** the succinct reduction **R**_L from L to 3SAT with a **succinct PCP reduction**

Lemma 3 [BGHSV'05] For all $L \in NTIME(2^n)$,

there is a reduction S_L from L to MAX CSP such that: $x \in L \Rightarrow$ All constraints of $S_L(x)$ are satisfiable $x \notin L \Rightarrow$ At most ½ of the constraints are satisfiable

1. $|S_L(x)| = 2^n poly(n)$

2. The i-th constraint of $S_{L}(x)$ is computable in poly(n) time.

Remark on a Nice Property of ACC

Thm: Given an ACC circuit C of size S and n inputs, the truth table of C can be produced in 2ⁿ poly(n) + 2^{poly(log S)} time.

The main result of this lecture is that this property suffices to separate NEXP from ACC.

Morally, this property should be enough to get EXP $\not\subset$ ACC Observation: Let $L \in TIME[4^n] \setminus TIME[3^n]$. Then the truth table of $L \cap \{0,1\}^n$ cannot be produced in $o(3^n)$ time.

The non-uniformity of ACC prevents us from directly proving EXP lower bounds. But perhaps NP \neq uniform-ACC Q: Is there $L \in TIME[3^n]$ such that generating the 2ⁿ-length truth table of L on n-bit inputs requires $\omega(3^n)$ time?

Future Progress

 Replace NEXP with simpler complexity classes
 May need to improve on exhaustive search for more complex problems

Open Problem *Does faster* **COUNTING** *of satisfying assignments for circuits imply stronger lower bounds?*

- Replace ACC with stronger circuits
 Design SAT algorithms for stronger circuits!
 Using PCP Theorem: can weaken the hypotheses

 Open Problem Can Boolean formulas of size s be evaluated on all n-variable assignments in poly(s) + 2ⁿ poly(n) time?
- Find more connections between algorithms and lower bounds!