
Algorithms as Lower Bounds
Lecture 2: Circuits for Algorithms,

Connections, NEXP vs ACC

Ryan Williams
Stanford University

Outline

• Circuit Analysis Algorithms (Last Time)

• Circuit Complexity (Today)

• Connections

• NEXP vs ACC

Circuit Complexity of Infinite Languages

Allow a distinct logical circuit A� to run on inputs of length �

… … … …

P/poly = Class of problems solvable with a circuit family {A�}

such that ∃�	 � 1 ∀� , the size of A� is at most �k

A1 A10 A100 A1000
A10000

This is an infinite computational model

{
� | the �th Turing machine halts on blank tape} ∈ P/poly

The usual techniques of computability theory are

essentially powerless for understanding P/poly

Circuits for Algorithms

P/poly = Problems solvable with a circuit family {An}

where the number of gates of An ≤ nk

Most Boolean functions require huge circuits!

Theorem [Shannon ‘49] W.h.p., a randomly chosen function
f : {0,1}n→ {0,1} requires a circuit of size at least 2n/n

The key obstacle: Non-uniformity can be very powerful!

What “uniform” algorithms can be simulated in P/poly?

Can huge uniform classes (like PSPACE, EXP, NEXP)

be simulated with small non-uniform classes (like P/poly)?

Circuits for Algorithms

P/poly = Problems solvable with a circuit family {An}

where the number of gates of An ≤ nk

Most Boolean functions require huge circuits!

Theorem [Shannon ‘49] W.h.p., a randomly chosen function
f : {0,1}n→ {0,1} requires a circuit of size at least 2n/n

OPEN PROBLEM: Is NEXP ⊂⊂⊂⊂ P/poly?

Can all problems with exponentially long solutions

be solved with polynomial size circuit families?

Given “infinite” preprocessing time,

can one construct small-size circuits solving NEXP problems?

What “uniform” algorithms can be simulated in P/poly?

P/poly = Problems solvable with a circuit family {An}

where the number of gates of An ≤ nk

In other words, the SAT problem cannot be in P/poly

Conjecture: NP ⊄⊄⊄⊄ P/poly

The proof of a theorem is the first step to concrete numerical

tradeoffs between sizes of inputs and sizes of computations.

What “uniform” algorithms can be simulated in P/poly?

Circuits for Algorithms

P/poly = Problems solvable with a circuit family {An}

where the number of gates of An ≤ nk

Kolmogorov’s Hypothesis:

P has O(n)-size circuits

This would be remarkable…

In fact, if this could be proved true,

then a proof of P ≠ NP would follow!

(If P=NP then P does not have O(n)-size circuits.)

What “uniform” algorithms can be simulated in P/poly?

Circuits for Algorithms

Circuits for Algorithms
The “circuits for algorithms” questions have interesting

consequences, regardless of how they’re resolved.

[Karp-Lipton-Meyer ‘80] EXP⊂⊂⊂⊂ P/poly ⇒⇒⇒⇒ P ≠≠≠≠ NP

Folklore Theorem

If every problem in 2O(n) time has circuits smaller than 1.99n size

for infinitely many input lengths, then P ≠≠≠≠ NP

[BFNW ’90] EXP ⊄⊄⊄⊄ P/poly ⇒⇒⇒⇒ Pseudorandom generators

Theorem [Impagliazzo-Wigderson ‘97]

If some problem in 2O(n) time needs circuits larger than 1.99n

for almost all input lengths, then P = BPP

Theorem [IKW ’01] NEXP ⊄⊄⊄⊄ P/poly ⇒⇒⇒⇒

Can simulate MA in NSUBEXP

Outline

• Circuit Analysis Algorithms (Last Time)

• Circuit Complexity (Today)

• Connections

• NEXP vs ACC

Connections

Algorithms for Circuits (Circuit Analysis):

Designing faster circuit-analysis algorithms

Circuits for Algorithms (Circuit Complexity):

Designing small circuits to simulate complex algorithms

Can we use one of these tasks to inform the other task?

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

[Karp-Lipton-Meyer ‘80]

Suppose we had extremely efficient circuit-analysis algorithms.

Then we could prove that there are problems

solvable by an algorithm in 2n time that are not in P/poly

P = NP ⇒⇒⇒⇒ There are problems in EXP

(Circuit SAT in P) which are not in P/poly

(Circuit Minimization in P)

This is an interesting conditional statement, but it has limited

utility, since we do not believe the hypothesis is true!

[Kabanets-Cai ’00]

Studied consequences of MCSP in P

Given: Truth table of a Boolean function f, parameter s

Question: Does f have a circuit of size at most s?

If MCSP is in P, then

1. EXPNP requires maximum circuit complexity

(new circuit lower bounds)

2. BPP = ZPP

3. Discrete Log, Factoring, Graph Iso [AD’14] are in BPP

4. No strong pseudorandom functions (or PRGs)

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

The Natural Proofs Barrier [Razborov-Rudich ‘94]

Suppose while proving a circuit lower bound,

you construct a polytime algorithm that can:

distinguish many functions not computable with the circuits

from all “easy” functions that are computable with the circuits

(MCSP is “kind of” in P)

Then these circuits are too weak to support pseudorandom fns.

If we believe it’s possible to prove lower bounds which are

strong enough for crypto, then we must also believe that

“natural proofs” cannot establish results like P ≠ NP

Unfortunately, most known arguments for

strong circuit lower bounds can be “naturalized”

[Kabanets-Impagliazzo ‘04] Arithmetic complexity

Arithmetic formulae: Analogous to Boolean formulae, except

operations are + and * over ℤ instead of OR and AND over {0,1}

Polynomial Identity Testing (PIT): Given two arithmetic formulas

F and G, do F and G represent the same polynomial?

Examples: (x + y)2 = x2 + y2 + 2xy

(x2 + a2)·(y2 + b2) = (x·y – a·b)2 + (x·b + a·y)2

There are efficient randomized algorithms for PIT, but no

efficient deterministic algorithms are known

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

[Kabanets-Impagliazzo ‘04] Arithmetic complexity

Polynomial Identity Testing (PIT): Given two arithmetic formulas

F and G, do F and G represent the same polynomial?

Theorem [KI’04]

Deterministic efficient algorithms for Polynomial Identity Testing

⇒ ⇒ ⇒ ⇒ Arithmetic Formula Size Lower Bounds!

(NEXP not in P/poly, or the Permanent does not have

arithmetic formulas of polynomial size)

Efficient algorithms for analyzing arithmetic formulas

imply

limits on representing explicit polynomials with small formulas!

Can interesting circuit-analysis algorithms tell us

something about the limitations of circuits?

x1 Size =nc

xn

SAT and Lower Bounds [W’10,’11,’13]

A slightly faster algorithm for CCCC-SAT

⇒ Lower bounds against C C C C circuits

O(2n /n10)

0

1

0

1

1

0

1

0

1

0

0

1

x1 Size =nc

xn

Faster Algorithms Lower Bounds

Faster “Algorithms for Circuits”

An algorithm for:

• Circuit SAT in O(2n/n10)

(n inputs and nk gates)

• Formula SAT in O(2n/n10)

• ACC SAT in O(2n/n10)

• Given a circuit C that’s either
UNSAT, or has ≥ 2n-1 satisfying

assignments, determine which,

in O(2n/n10) time

(A Promise-BPP problem)

No “Circuits for Algorithms”

Would imply:

• NEXP ⊄⊄⊄⊄ P/poly

• NEXP ⊄⊄⊄⊄ (non-uniform) NC1

• NEXP ⊄⊄⊄⊄ ACC

NEXP ⊄⊄⊄⊄ P/poly

Converse: Can interesting circuit lower bounds tell us

something about circuit-analysis algorithms?

Many well-known connections between

circuit lower bounds and derandomization

e.g. EXP ⊄⊄⊄⊄ P/poly ⇒⇒⇒⇒ BPP is in SUBEXP

For restricted circuits, sometimes the techniques used to prove

circuit lower bounds can be used to derive faster SAT algorithms

Example: Boolean formulas over AND, OR, NOT, fan-in 2

[Subbotovskaya ‘61] MOD2 on n bits cannot be computed with

n1.4999 size Boolean formulas with AND, OR, NOT gates

[Santhanam’11] Satisfiabiity of O(n)-size Boolean formulas with

AND and OR gates can be solved in o(2n) time

Converse: Can interesting circuit lower bounds tell us

something about circuit-analysis algorithms?

For restricted circuits, sometimes the techniques used to prove

circuit lower bounds can be used to derive faster SAT algorithms

Can “mine circuit lower bound proofs” for other algorithms!

[W’14] [AWY’15] applied the polynomial method of R-S to:

� Solve all-pairs shortest paths in
��

� ����
time

� Find a disjoint pair of sets among a set system

� Compute partial match queries in batch

� Evaluate a CNF formula on many assignments of one’s

choice

� Find a longest common substring with don’t cares

� Solve 0-1 Integer LP faster than �� time

Are interesting circuit lower bounds equivalent

to interesting circuit-analysis algorithms?

[Impagliazzo-Kabanets-Wigderson’02]

There are “non-trivial” CAPP algorithms

IF AND ONLY IF

NEXP is not in P/poly

What does non-trivial mean?

We call a nondeterministic algorithm A “non-trivial for CAPP” if:

- For every �, A(C) runs in 2��
time on circuits C of size �

and uses �� bits of advice

- For infinitely many �, there’s ≥ 1 accepting computation path

on all C of size �, and every accepting path outputs a value �
within 1/10 of the acceptance probability of C

Are interesting circuit lower bounds equivalent

to interesting circuit-analysis algorithms?

[W ’13]

There are “non-trivial” algorithms for MCSP

IF AND ONLY IF

NEXP is not in P/poly

What does non-trivial mean?

We call an algorithm A “non-trivial for MCSP” if for all k,

- A(f) runs in poly(2�) time on a Boolean function f of 2� bits

- For infinitely many �,

- There is an f on � bits such that A(f) outputs 1

- For all sufficiently large f computable with an �� size

circuit, A(f) outputs 0

Questions

How can algorithms help prove lower bounds?

How can lower bounds help design algorithms?

• Make progress on both algorithms and lower

bounds by studying both algorithms and

complexity as a unit

• Next, an explicit example: NEXP vs ACC

Outline

• Circuit Analysis Algorithms (Last Time)

• Circuit Complexity (Today)

• Connections

• NEXP vs ACC

Definition: ACC Circuits

An ACC circuit family { Cn } has the properties:

• Every Cn takes n bits of input and outputs a bit

• There is a fixed d such that every Cn has depth at most d

• There is a fixed m such that the gates of Cn are

AND, OR, NOT, MODm (unbounded fan-in)

MODm(x1,…,xt) = 1 iff ∑∑∑∑i xi is divisible by m

Remarks

1. The default size of Cn is polynomial in n

2. Strength: this is a non-uniform model of computation

(can compute some undecidable languages)

3. Weakness: ACC circuits can be efficiently simulated by

constant-layer neural networks

Where does ACC come from?

Prove P ≠ NP by proving NP ⊄⊄⊄⊄ P/poly.

The simple combinatorial nature of circuits should make it

easier to prove impossibility results.

Ajtai, Furst-Saxe-Sipser, Håstad (early 80’s)

MOD2 ∉ AC0 [i.e., nO(1) size ACC with only AND, OR, NOT]

Razborov, Smolensky (late 80’s)

MOD3 ∉ (AC0 with MOD2 gates)

For p ≠ q prime, MODp ∉ (AC0 with MODq gates)

Barrington (late 80’s) Suggested ACC as the next step

Conjecture Majority ∉ ACC

Conjecture (early 90’s) NP ⍧ ACC

Conjecture (late 90’s) NEXP ⍧ ACC

ACC Lower Bounds

EXPNP = Exponential Time with an NP oracle

NEXP = Nondeterministic Exponential Time

Theorem 1 There is a problem Q in EXPNP such that for

every d, m there is an ε > 0 such that Q does not have ACC

circuits with MODm gates, depth d, and size 2nε

Theorem 2 There is a problem Q in NEXP such that Q does

not have npoly(log n) size ACC circuits of any constant depth

Remark Compare with the following:

[MS 70’s] EXP(NPNP) doesn’t have o(2n/n) size circuits

[K82] NEXPNP ⊄⊄⊄⊄ SIZE(npoly(log n))

[BFT’98] MA-EXP ⊄⊄⊄⊄ SIZE(npoly(log n))

How do we get started?

Find a nice property of ACC that NEXP doesn’t possess.

Turn this into a proof.

NTIME[t(n)] = Class of problems solvable by

nondeterministic algorithms running in t(n) time

Nondeterministic Time Hierarchy [SFM ’78]

For functions t, T such that t(n+1) ≤ o(T(n)),

NTIME[t(n)] ⊊ NTIME[T(n)]

Corollary There are NTIME[2n] problems that aren’t

solved by nondeterminstic algorithms in O(2n/n) time.

Idea: Try to show that, if NEXP were in ACC,

then this corollary can be contradicted

Nice Property: “Fast” Satisfiability

Let C be a class of Boolean circuits

We will look at ACC-SAT.

The C-SAT Problem:
Given a circuit K(x1,…,xn) ∈ C, is there an assignment

(a1, …, an) ∈ {0,1}n such that K(a1,…,an) =1 ?

Proof Strategy for ACC Lower Bounds

1. Show that faster ACC-SAT algorithms imply

lower bounds against ACC

Theorem (Example)

If ACC-SAT with n inputs and 2no(1)
size is in

O(2n/n10) time (for all constant depths and moduli), then

EXPNP doesn’t have 2no(1)
size ACC circuits.

2. Design faster ACC-SAT algorithms!

Theorem For all d, m there’s an ε > 0 such that

ACC-SAT on circuits with n inputs, depth d, MODm gates,

and 2nε
size can be solved in 2n - ΩΩΩΩ((((nε) time

Proof Idea: Assume

• NEXP has polynomial size circuits

• Circuit-SAT with n inputs and nO(1) size is in O(2n/n10) time

Karp-Lipton, Meyer ‘80: P = NP ⇒⇒⇒⇒ EXP ⊄⊄⊄⊄ P/poly

Assume P = NP and EXP ⊂ ⊂ ⊂ ⊂ P/poly

EXP ⊂ ⊂ ⊂ ⊂ P/poly ⇒ ∃⇒ ∃⇒ ∃⇒ ∃ polysize circuits C encoding accepting

computation tableaus:

For every exptime machine M and every string x,

C(M,x,i,j) prints the content of the jth cell of M(x) in step i

The behavior of M(x) can be simulated as follows:
(∃∃∃∃ C)(∀∀∀∀ i, j) [C makes consistent claims of cells j, j+1, j+2 in steps i, i+1]

This part is computable in coNP

P = NP ⇒ ⇒ ⇒ ⇒ (∃∃∃∃ C)R(x,C) , where R(x,C) is a poly-time computable predicate

This is an NP problem

P = NP ⇒ ⇒ ⇒ ⇒ M(x) is in P. But then we contradict the time hierarchy!

Proof Idea: Assume

• NEXP has polynomial size circuits

• Circuit-SAT with n inputs and nO(1) size is in O(2n/n10) time

Impagliazzo-Kabanets-Wigderson ’01:

NEXP ⊂ ⊂ ⊂ ⊂ P/poly ⇒ ∃⇒ ∃⇒ ∃⇒ ∃ circuits C encoding accepting tableaus:

For every nondeterministic 2n time machine M and every string x,

C(M,x,i,j) prints the jth cell of M(x) in step i, for some accepting path

The behavior of M(x) can be simulated as follows:
(∃∃∃∃ C)(∀∀∀∀ i, j) [C makes consistent claims of cells j, j+1, j+2 in steps i, i+1]

Express this part as a Circuit-SAT instance with n variables??

⇒ ⇒ ⇒ ⇒ (∃∃∃∃ C)R(x,C) , where R(x,C) is an O(2n/n10) time predicate

⇒ ⇒ ⇒ ⇒ M(x) is in nondeterministic O(2n/n10) time.

But then NTIME[2n] ⊆ ⊆ ⊆ ⊆ NTIME[2n/n10],

contradicting the nondeterministic time hierarchy!

The major difficulty:
The number of inputs to the Circuit-SAT instance would be ≈ 2n

Detailed Proof

Theorem If ACC-SAT on circuits with n inputs and 2no(1)
size

is in O(2n/n10) time, then

EXPNP doesn’t have 2no(1)
size ACC circuits.

Proof Idea Show that if both:

• ACC-SAT with n inputs and 2no(1)
size is in O(2n/n10) time

• EXPNP has 2no(1)
size ACC circuits

then NTIME[2n] ⊆⊆⊆⊆ NTIME[o(2n)] (a contradiction)

Work with a “compressed” version of the 3SAT problem:

Exponentially long formulas are encoded with

polynomial-size circuits

