Algorithms as Lower Bounds (and vice-versa) Lecture 1: Introduction

> Ryan Williams Stanford University

A view of algorithms and complexity – from 50,000 ft

- Algorithm designers
- **Complexity theorists**

- What makes some problems easy to solve? When can we find an *efficient* algorithm?
- What makes other problems difficult? When can we prove that a problem is not easy? (When can we prove a *lower bound on the resources needed to solve a problem*?)

The tasks of the algorithm designer and the complexity theorist appear to be inherently opposite ones.

- Algorithm designers
- **Complexity theorists**

Furthermore, it is generally believed that lower bounds are "harder" than algorithm design

- In algorithm design, we "only" have to find a single clever algorithm that solves a problem well
- In lower bounds, we must reason about all possible algorithms, and argue that none of them work well
 This belief is strongly reflected in the literature

What are lower bounds good for?

Lower bounds are one of the great scientific mysteries of our time!

Why are lower bounds hard to prove?

There are many known "no-go" theorems

- Relativization [70's]
- Natural Proofs [90's]
- Algebrization [00's]

The common proof techniques are simply not good enough to prove even **weak** lower bounds!

Great pessimism in complexity theory

"Duality" Between Algorithms and Lower Bounds

Thesis: Algorithm design is at least as hard as proving lower bounds. There are deep connections between the two... so deep that they are often the "same"

A typical theorem from Algorithm Design: "Here is an algorithm A that solves my problem, on all possible instances of the problem"

A typical theorem from Lower Bounds: "Here is a proof P that my problem cannot be solved, on all possible algorithms from some class"

Logical Circuits

A logical circuit takes 0-1 inputs and outputs a single bit Along the way, it repeatedly takes some previously-computed bits and computes a new function of these bits.

Example: Above circuit outputs 1 ⇔ at least two inputs are 1
Size or complexity of the circuit is 4,
fan-in of ANDs is 2, fan-in of the OR is 3

Circuits are a natural model for computing *finite functions*

Logical Circuits

Outputs 1 if and only if $x_1 + x_2 + x_3 + x_4 = 2 \mod 3$ [Kojevnikov, Kulikov, Yaroslavtsev '09] Above is smallest circuit over all Boolean functions of fan-in 2. "Duality" Between Circuit Analysis Algorithms and Circuit Lower Bounds

Thesis: Algorithm design is *at least as hard as* proving lower bounds.

Outline

- Circuit Analysis (Algorithms)
- Circuit Complexity (Lower Bounds)
- Connections

Circuit Analysis Problems

Circuit Analysis problems are often computational problems *on* circuits given as input:

Input: A logical circuit C =

Output: Some property of the function computed by C

Canonical Example: Circuit Satisfiability Problem (Circuit SAT) Input: Logical circuit C Decide: Is the function computed by C the "all-zeroes" function?

Of course, Circuit SAT is NP-complete

But we can still ask if there are *any* algorithms solving Circuit SAT that are faster than the obvious "brute-force" algorithm which tries all 2^n input settings to the *n* inputs of the circuit.

Generic Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, *C* = {arbitrary circuits}, *C* = {CNF formulas}

The C-SAT Problem: Given a circuit $K(x_1,...,x_n) \in C$, is there an assignment $(a_1, ..., a_n) \in \{0,1\}^n$ such that $K(a_1,...,a_n) = 1$?

C-SAT is NP-complete, for essentially all interesting C

C-SAT is solvable in O(2ⁿ |K|) time where |K| is the size of the circuit K

For simple enough circuits, we know of faster algorithms

- **3-SAT 1.308**ⁿ
- **4-SAT 1.469**ⁿ
- k-SAT 2^{n - n/(ck)} time algorithms

All known cⁿ time algorithms for k-SAT have the property that, as $k \rightarrow \infty$, the constant $c \rightarrow 2$

Strong ETH: $\forall \delta < 1, \exists k \geq 3 \text{ s.t. } k$ -SAT requires $2^{\delta n}$ time

ETH: $\exists \delta > 0$ s.t. 3-SAT requires $2^{\delta n}$ time

For simple enough circuits, we know of faster algorithms

ACO-SAT Constant-depth AND/OR/NOT
 [IMP '12] ACO-SAT in 2^{n - n/(c log s)d} time where d = depth

For simple enough circuits, we know of faster algorithms

• ACC-SAT Constant-depth AND/OR/NOT/MODm MOD6 $(x_1, ..., x_t) = 1$ iff $\sum_i x_i$ is divisible by 6

[W '11] ACC-SAT in 2^{n-n^e} time for e < 1 depending on m and d

For simple enough circuits, we know of faster algorithms

 ACC-THR-SAT Constant-depth AND/OR/NOT/MODm with a layer of linear threshold fns at the bottom
 [W '14] ACC-THR-SAT is in 2^{n - n^e} time for circuits of size 2^{n^{o(1)}}

- DeMorgan-Formula-SAT
 Formulas over AND/OR/NOT, each gate has fan-in at most 2
 [Santhanam '10, CKKSZ '14]
 DM-Formula-SAT is in 2^{n-n^e} time for formulas of size < n^{2.99}
- Formulas over AND/OR/NOT/XOR with fan-in two [Seto-Tamaki '12, CKKSZ '14]
 Formula-SAT is in 2^{n-n^e} time for formulas of size < n^{1.99}
- **Circuit-SAT** Generic circuits over AND/OR/NOT, fan-in 2

Can we improve on O(2ⁿ s) time ??

Circuit Approximation Probability Problem

Let *C* be a class of Boolean circuits

C-CAPP: Given a circuit $K(\mathbf{x}_1,...,\mathbf{x}_n) \in \mathcal{C}$, output \mathbf{v} such that $|\mathbf{v} - \Pr[K(\mathbf{x}) = 1]| < 1/10$

Related to Pseudorandom Generators and Derandomization [AW'85, Nisan'91, TX'13] ACO-CAPP is in $n^{\tilde{O}(\log^{d+4}s)}$ time (n = inputs, s = size, d = depth) [GMR'12] CNF-CAPP is in ~ $n^{O(\log \log n)}$ time for poly(n) clauses [IMZ'12] DM-Formula-CAPP: 2^{n^e} time for formulas of size < $n^{2.99}$ Formula-CAPP: 2^{n^e} time for formulas of size < $n^{1.99}$ Uses old techniques from *lower bounds!*

Circuit Analysis Problems

Circuit Analysis problems can also analyze functions *directly*:

- **Canonical Example:**
 - Minimum Circuit Size Problem (MCSP) [Yablonski '59, KC'00] Input: 2ⁿ-bit truth table of $f: \{0,1\}^n \rightarrow \{0,1\}, s \in \{1,...,2^n\},$
 - Decide: Is the minimum size of a circuit computing *f* at most *s*? (Observation: MCSP is in NP)
- It is widely conjectured that MCSP is not in P

If in P: Would contradict conventional wisdom in cryptography Known: [Masek'79, AHMPS'08] DNF Minimization is NP-complete (uses lower bounds on DNF!)

Is the MCSP problem NP-complete? [MW'15]

Find any improvement over exhaustive search

Circuit Analysis Problems

Circuit Minimization (MCSP) [Yablonski '59, KC'00] Input: Truth table of a Boolean function *f*, parameter *s* Decide: Is the minimum size of a circuit computing *f* at most *s*?

[ABKvMR '06] Factoring is in ZPP^{Circuit Min} [ABKvMR '06] Discrete Log is in BPP^{Circuit Min} [Allender-Das '14] Graph Iso is in <u>RP^{Circuit Min}</u>

Open problems:

Find interesting problems in P^{Circuit Min} In P^{Circuit Min} can we *produce* a min-size circuit, given a truth table?

Exponential Time Algorithms

The topic of "Algorithms for Circuits" constitutes one small facet of the growing area of

Exact algorithms for NP-hard problems

This is a very active research area with many cool open problems.