
Near Optimal Sized Weight Tolerant Subgraph for Single
Source Shortest Path∗

Diptarka Chakraborty†1 and Debarati Das‡2

1,2Computer Science Institute of Charles University, Malostranské námesti 25, 118 00
Praha 1, Czech Republic

August 14, 2017

Abstract

In this paper we address the problem of computing a sparse subgraph of a weighted directed graph
such that the exact distances from a designated source vertex to all other vertices are preserved under
bounded weight increment. Finding a small sized subgraph that preserves distances between any pair
of vertices is a well studied problem. Since in the real world any network is prone to failures, it is
natural to study the fault tolerant version of the above problem. Unfortunately, it turns out that
there may not always exist such a sparse subgraph even under single edge failure [Demetrescu et al.
’08]. However in real applications it is not always the case that a link (edge) in a network becomes
completely faulty. Instead, it can happen that some links become more congested which can easily be
captured by increasing weight on the corresponding edges. Thus it makes sense to try to construct a
sparse distance preserving subgraph under the above weight increment model where total increase in
weight in the whole network (graph) is bounded by some parameter k. To the best of our knowledge
this problem has not been studied so far.

In this paper we show that given any weighted directed graph with n vertices and a source vertex,
one can construct a subgraph that contains at most e · (k− 1)!2kn many edges such that it preserves
distances between the source and all other vertices as long as the total weight increment is bounded
by k and we are allowed to have only integer valued (can be negative) weight on each edge and also
weight of an edge can only be increased by some positive integer. Next we show a lower bound of
c · 2kn, for some constant c ≥ 5/4, on the size of the subgraph. We also argue that restriction of
integer valued weight and integer valued weight increment are actually essential by showing that if
we remove any one of these two restrictions we may need to store Ω(n2) edges to preserve distances.

1 Introduction
In the real world, networks are prone to failures and most of the time such failures are unpredictable
as well as unavoidable in any physical system such as communication network or road network. For
this reason, in the recent past, researchers study many graph theoretic questions like connectivity [32,
33, 31, 5, 6, 18], finding shortest distance [20], building data structures that preserves approximate
distances [29, 28, 19, 17, 21, 13, 12, 16, 15] etc. under the fault tolerant model. Normally such failures
are much smaller in number comparative to the size of the graph. Thus we can associate a parameter
to capture the number of edge or vertex failures and try to build fault tolerant data structures of size
depending on this failure parameter for various graph theoretic problems.

Unfortunately, in case of single source shortest path problem, it is already known from [20] that there
are graphs with n vertices for which to preserve the distances under even single edge failure, we need to
store a subgraph of size at least Ω(n2). On the other hand, in case of reachability problem we know the
∗The research leading to these results has received funding from the European Research Council under the European

Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 616787.
†diptarka@iuuk.mff.cuni.cz
‡debaratix710@gmail.com

1

construction of connectivity preserving subgraph of size only O(2kn) due to [6] where k is the number
of edge failures. However, in case of real world applications, it is not always the case that there are
failures of edges or vertices. Instead, for weighted graphs, weight of any edge or vertex can be increased.
For simplicity, we consider weight to be only on the edges of the graph. In general, weight of an edge
captures aspect like congestion on a particular link in a network. So it is quite natural to consider the
scenario when some links (or edges) become more congested. Again the good thing is that most of the
time such congestion is bounded, i.e., over a network total increase in congestion is bounded because of
many reasons like bounded maximum number of consumers present in a network at any particular time.
O ne can easily capture the increase in congestion by a parameter k that bounds the amount of increase
in weight of edges over the whole graph. Occurrence of such bounded congestion motivates us to study
the single source shortest path problem under this model.

In spite of being an appealing model, to the best of our knowledge this bounded congestion increase
model or bounded weight increment model has not been studied so far. In this paper we initiate the
study of single source shortest path problem in weighted directed graphs in the above model. The main
goal is to find a sparse subgraph that preserves distance between a designated source and any other
vertices under weight increment operation. We formally define such subgraph below.

Definition 1. Given a graph G along with weight function w, a source vertex s ∈ V (G) and an integer
k ≥ 1, a subgraph H = (V (G), E′) where E′ ⊆ E(G) is said to be k-Weight Tolerant Shortest-path
Subgraph (k-WTSS) of G if for any weight increment function I : E(G)→ N such that

∑
e∈E(G) I(e) ≤ k,

the following holds: for the weight function defined by w′(e) = w(e) + I(e) for all e ∈ E(G),

distG,w′(s, t) = distH,w′(s, t) for any t ∈ V (G).

Though in the above definition we restrict ourselves to an increment function whose range is N, one
can naturally extend the definition to any range of increment functions. However, if we take the range
to be rational numbers then there may not exist any sparse k-WTSS even for k = 1 (see Section 7.2).
This is the reason why we consider such restriction on increment function in the above definition.

Single source shortest path is one of the most fundamental problems in Graph Theory as well as
in computer science. Thus construction of sparse k-WTSS is interesting from both the theoretical and
practical point of view. One can also view this problem of finding k-WTSS as a generalization of
finding k-Fault Tolerant (single source) Reachability Subgraph (k-FTRS) for which optimal solution is
known due to [6]. If in the given graph one assigns zero weight to each of the edges, then any k-WTSS
of that graph will also be a k-FTRS of that graph. This is because we can view each edge fault as
incrementing weight by one and then it is easy to see that for any vertex t there exists an s − t path
if and only if shortest distance between s and t is zero under this reduction. This fact also motivates
the study of constructing k-WTSS because k-FTRS has several applications like fault tolerant strong-
connectedness [6], dominators [27, 6], double dominators [35] etc.

The main contribution of this paper is to provide an efficient construction of a sparse k-WTSS for
any k ≥ 1, where sparsity of k-WTSS depends on the parameter k.

Theorem 1. There exists an O((k)km2n)-time algorithm that for any given integer k ≥ 1, and a given
directed graph G with n vertices and m edges along with a weight function w : E(G) → Z and a source
vertex s, constructs a k-WTSS of G with at most Ok(n) edges where Ok(·) notation denotes involvement
of a constant that depends only on the value of k. Moreover, in-degree of every vertex in this k-WTSS
will be bounded by e · (k − 1)!2k.

Next, we prove a lower bound of c · 2kn for some constant c ≥ 5/4, on the size of k-WTSS.

Theorem 2. For any positive integer k ≥ 2, there exists an positive integer n′ such that for all n > n′,
there exists a directed graph G with n vertices and a weight function w : E(G)→ Z, such that its k-WTSS
must contain c · 2kn many edges for some constant c ≥ 5/4.

Note that as we have previously argued that the construction of k-WTSS implies a construction of
k-FTRS, so 2kn lower bound on the size of a k-FTRS due to [6] also directly gives the same lower bound
on size of a k-WTSS. In the above theorem we slightly strengthen that lower bound by a constant factor
for our problem.

We also show that considering rational valued (instead of integer valued as in the above two theorems)
weight function or rational valued weight increment function makes the problem of finding sparse k-WTSS

2

impossible. More specifically, we show that in both the cases there are graphs with n vertices for which
any k-WTSS must be of size at least c · n2 for some constant c > 0 even for k = 1 (see Section 7).

One can farther relax our model by also allowing decrement operation on edge weight. Weight
decrement is also natural in real world application because for any network it is possible that some links
become less congested. Unfortunately, one can easily show that there are graphs for which there is no
sub-quadratic sized subgraph that preserves the distances from a single source under this relaxed model.
Readers may refer to Appendix B for the details.

1.1 Related works
Single source shortest path is a well studied problem under the edge or vertex failure model. Similar
to our definition of k-WTSS, one can easily define k-Fault Tolerant Shortest-path Subgraph (k-FTSS)
that preserves the distance information from a specific source vertex under at most k edge failures.
Unfortunately, we know that there are weighted graphs for which no sparse k-FTSS exists even for
k = 1, i.e., there are weighted graphs with n vertices for which any 1-FTSS must contain Ω(n2) many
edges [20]. This lower bound on size of 1-FTSS is even true for undirected graphs. However, better bounds
are known for unweighted graphs for k ≤ 2. Parter and Peleg [32] provided a construction of O(n3/2)
sized 1-FTSS and showed that this bound is optimal. Later, Parter [31] extended the construction to the
case k = 2 for undirected graphs on the cost of weakening the bound. He gave an algorithm to compute
2-FTSS of size O(n5/3) along with a matching lower bound. So far there is nothing known for the case
k > 2.

However, the situation is much better for single source reachability problem which is closely related to
single source shortest path problem. Baswana, Choudhary and Roditty [6] showed that we can compute
k-FTRS, which is a subgraph that preserves the reachability information from a given source under at
most k edge failures, containing 2kn many edges. They also provided a matching lower bound. We have
already argued that computing k-FTRS can be reduced to computing k-WTSS and thus it is natural to
ask whether a similar result also holds for k-WTSS. Another interesting related problem is to compute
fault tolerant reachability oracle. It is trivial to see that using O(2kn) size k-FTRS [6] one can answer
any reachability query in O(n) time for any constant value of k. However for k ≤ 2, O(n) size data
structure is known that can answer any single source reachability query in O(1) time [27, 18]. Very
recently, existence of an efficient algorithm to find strongly connected component in fault tolerant model
has also been shown [7].

Now let us come back to the shortest path problem. Instead of preserving the exact distances
(between any pair of vertices), if we consider to preserve the distances only approximately, then much
better results are known. In the literature such approximate distance preserving subgraphs are called
spanners. Construction of spanners with both additive and multiplicative stretch have been studied
extensively [23, 4, 3, 8, 38, 1, 2]. Fault tolerant version of spanners were first introduced in the geometric
setting [29, 28, 19]. For k edge failures, construction of a (2l−1) multiplicative spanner of size Õ(kn1+1/l),
for any k, l ≥ 1, was provided in [17] whereas for k vertex failures, upper bound on size is known to be
Õ(k2−1/ln1+1/l) [21]. In case of single vertex failure in an undirected graph, construction of a O(n log n)
sized subgraph that preserves distances within a multiplicative factor of 3, is known due to [9]. The
bound on the size was later improved to 3n [33]. Braunschvig, Chechik and Peleg [16] initiated the study
of additive spanners. For β-additive spanner, Parter and Peleg [33] provided a Ω(n1+ε(β)) size lower
bound where ε(β) ∈ (0, 1). They also constructed a 4-additive spanner of size O(n4/3) that is resilient
to single edge failure. For single vertex failure, constructions of additive spanners were given in [30, 12].
Very recently, for any fixed k ≥ 1, construction of a sub-quadratic size 2-additive spanner resilient to k
edge or vertex failures has been shown for unweighted undirected graphs [15]. In the same paper, authors
also show that to achieve O(n2−ε) upper bound, one must allow Ω(εk) additive error.

Designing distance oracle is another important problem and also has been studied in edge failure
model. The objective is to build a fault tolerant data structure that can answer queries about the
distances in a given graph. For single edge failure the problem was first studied in [20]. Construction of
Õ(n2)-space and O(1)-query time oracle is known for single edge failure due to [11]. In case of dual edge
failures, near optimal Õ(n2) size and Õ(1)-query time oracle was given in [22]. The problem has also
been studied under the restriction of bounded edge weights [26, 36]. For general k edge failures, Bilò
et al. [14] gave a construction of O(kn log2 n) size data structure that can report distance from a single

3

source within multiplicative factor of (2k + 1) in time O(k2 log2 n).
Another closely related problem is the replacement path problem where given a source and destination

vertex and an edge, the objective is to find a path from source to destination avoiding that particular
given edge. Though the problem was initially defined for single edge failure, later it was extended to
multiple edge failures also. Readers may refer to [37, 34, 26, 36] for recent progresses on this problem.

1.2 Our technique
Before exhibiting the technique behind our result, we first state a simple observation. If we just store
any shortest path tree rooted at s, then even after k weight increment that tree will preserve the distance
from s to t (for any t) within k additive error. It is also necessary to include a shortest path tree inside
a k-WTSS, otherwise we can never hope to get exact distances even when k = 0. Now since weight of
any path can be increased by at most k, after including any shortest s − t path in a k-WTSS it is not
required to include another s− t path that has weight more than or equal to dist(s, t) + k.

We argue that for the construction of k-WTSS it suffices to concentrate on any single vertex t and
try to build a subgraph such that the distance between s and t is preserved under weight increment
and we call such a subgraph a k-WTSS(t). This is because of the application of Locality Lemma (see
Section 4), a variant of which also appears in [6]. Locality Lemma actually says slightly more, that if we
can construct such a subgraph for a particular vertex t with an additional property that in-degree of t
in the subgraph is bounded by some value c, then we can get a k-WTSS of size at most cn.

So from now on we can only talk about constructing k-WTSS(t). Let us take a toy example which
provides a motivation behind our technique. Let the input graph be G and dist(s, t) = d. Suppose G is
such that it can be decomposed into k + 1 disjoint subgraphs G0, · · · , Gk where for 0 ≤ i ≤ k − 1, Gi
contains all the s − t paths of weight d + i present in G and any s − t path in Gi has weight exactly
d+ i. In general such a decomposition may not exist. However, if it exists then it is not hard to get such
a decomposition. Now given such a decomposition, we compute a k-FTRS(t) of G0 and for i ∈ [k − 1],
a (k − i − 1)-FTRS(t) of Gi and then take the union of them. We claim that the obtained subgraph
will be a k-WTSS(t). Say after weight increment, the shortest distance between s and t is d + j for
1 ≤ j < k. Our assumption on j is justified because j = 0, k cases are trivial as we have included
k-FTRS(t). For a similar reason we can also assume that all the shortest paths now have weight at least
d+j+1. Without loss of generality we further assume that no weight increment happens on the edges of
the current shortest path. The justification of this assumption is provided later. Due to our assumption
on decomposition of G, we know that the total increase in weight on the edges of Gj is bounded by
k− (j+1) which also implies that at most k− (j+1) many edges of Gj are affected by weight increment.
This is because our increment function is integer valued. Note that this is the place where integer valued
increment plays a crucial role. However by our construction, we have included (k − j − 1)-FTRS(t) of
Gj in our subgraph. Thus even if we consider removal of those affected edges then as there is a path
in Gj on which there is no weight increment, so by the definition of (k − j − 1)-FTRS(t) there will be
a surviving path included in our constructed subgraph. This proves the correctness. Also by the result
of [6], in-degree of t of each (k − i − 1)-FTRS(t) of Gi is bounded by 2k−i−1 and hence total in-degree
of t in the constructed k-WTSS(t) is bounded by 2k+1. Hence we get a k-WTSS of size at most 2k+1n.

We have mentioned before that there may not exist the above type of decomposition for an arbitrary
graph. In general, if we consider a subgraph by taking all the s− t paths upto some specific weight, then
that particular subgraph may also contain a s−t path with larger weight. At this point, argument stated
in the last paragraph fails. However, the nice thing is that if we just consider all the shortest paths and
build a subgraph then it is true that there will not be any s− t path of larger weight in that subgraph.
Now if we use the construction of k-FTRS on this shortest path subgraph, then we can guarantee the
preservation of distances as long as the distances do not change even after the weight increment. Though
if the distance changes, we can not say anything. This is the main challenge that we overcome in our
algorithm. For that purpose we use the properties of the farthest min-cut of the shortest path subgraph.

Baswana et al. [6] used the concept of farthest min-cut to construct k-FTRS. In their work, they
first computed a series of k farthest min-cuts by taking source sets in some nested fashion. Then they
calculated a max-flow from the final source set and kept the incoming edges of t having non-zero flow.
We further exploit their technique in this paper to get our algorithm. We consider the shortest path
subgraph and then compute a series of farthest min-cuts similar to [6]. However as mentioned in the
last paragraph, in this way we just get k-FTRS(t) of the shortest path subgraph. Now let us take the

4

farthest min-cut considering s as source. Since it is a (s, t)-cut of the shortest path subgraph, removal
of it destroys all the shortest s − t paths present in the original graph. Now if we again compute the
shortest path subgraph, we will get a subgraph containing only s − t paths of weight d + i, for some
i > 0. Then we can process this new subgraph as before to compute a sequence of k farthest min-cuts
and remove the first one. We proceed in this way until we reach at a point that we are left with s − t
paths of weight at least d+ k.

Now let us compare the situation with what we have already discussed with our toy example. Removal
of cut edges only helps us to generate some subgraph of each of Gi’s. However computing k-FTRS(t)
of just some subgraph of Gi’s may not be sufficient to get k-WTSS(t). Thus for each Gi, we try to get
a lot of subgraphs of it so that when we combine k-FTRS(t) of all of them, we get the same advantage
that we got from computing (k − i− 1)-FTRS(t) of Gi in the toy example. One way of getting a lot of
subgraphs of Gi is to try out removal of different cuts (not just the farthest one). Obviously we cannot
try for all possible cuts, because there can be too many. Moreover, each time to reach at a subgraph of
weight d+ i we may have to remove a series of cuts. As a result we may end up with exponentially many
choices on removal of cuts to get all possible subgraphs of Gi.

The good thing is that it suffices to use just a series of k farthest min-cuts computed before for the
purpose of removal. This will reduce the number of choices to only ki for any fixed Gi. In our algorithm
we establish a slightly better bound on the number of subgraphs of Gi we need to consider to construct
a k-WTSS(t). In the proof we use k-dimensional vectors to efficiently enumerate all of these subgraphs.
After getting those subgraphs we apply a construction similar to that of k-FTRS(t) from [6] to get a
bound on in-degree of t. We emphasize that actually we cannot directly apply algorithm of [6] in a black
box fashion on each of the subgraphs of Gi that we consider, because in that case it will not give us the
claimed bound.

In this paper we consider k-WTSS with respect to the weight increment on edges. Instead, it is also
possible to take weights on the vertices and performing increment over them. However, one can directly
apply our result by splitting each vertex v into two vertices vi and vo where all the incoming and outgoing
edges of v are respectively directed into vi and directed out of vo, and then considering an edge (vi, vo)
with the weight equal to that on the vertex v.

Organization of the paper
We discuss useful notations and some already known results about farthest min-cut in Section 2. Then
in Section 3.1 we provide an algorithm to compute farthest min-cut of the shortest path subgraph and a
few important properties about it. Next in Section 4, we reduce the problem of finding k-WTSS to that
of finding k-WTSS(t) for some specific vertex t using Locality Lemma. We describe our main algorithm
and its correctness in Section 5.1. We also present several lower bound results in Section 6 and Section 7.

2 Preliminaries
Notations: For any positive integer r, we denote the set {1, 2, · · · , r} by [r]. Throughout this paper
we use N to indicate the set of natural numbers including zero. For any k-dimensional vector σ and
i ∈ [k], we use the notation σ(i) to denote the value of the i-th coordinate of σ. Given a directed graph
G = (V,E) on the set of vertices of size |V | = n and set of edges of size |E| = m with a weight function
w defined on the set of edges, a source vertex s ∈ V and a destination vertex t ∈ V , we use the following
notations throughout this paper.

• V (G), E(G) : the set of vertices and edges of G respectively.

• w(P) : weight of any path P .

• distG,w(x, y) : the shortest distance between any two vertices x and y in G when weight of each
edge is defined by the weight function w.

• G+ (u, v) : the graph obtained by adding an edge (u, v) to the graph G.

• G \ F : the graph obtained by removing the set of edges F from the graph G.

• In(A) : the set of all vertices in V \A having an outgoing edge to some vertex in A ⊆ V .

5

• Out(A) : the set of all vertices in V \A having an incoming edge from A ⊆ V .

• In-Edge(A) : the set of edges incoming to A ⊆ V .

• Out-Edge(A) : the set of edges out of A ⊆ V .

• P [x, y] : the subpath of a path P from a vertex x to y.

• P ◦Q : the path formed by concatenating paths P and Q assuming the fact that last vertex of P
is same as first vertex of Q.

• E(f) : the set of edges e such that under a given flow f , f(e) 6= 0.

• MaxFlow(G,S, t) : any maximum valued flow in G from a source set S to t.

• Gshort : the shortest path subgraph of G, i.e., union of all shortest s− t paths in G.

• ShortMaxF low(G,S, t) : any maximum valued flow returned by MaxFlow(Gshort, S, t).

The following definition introduces the notion of k-WTSS with respect to a fixed vertex t.

Definition 2 (k-WTSS(t)). Given a graph G with weight function w, a source vertex s ∈ V (G), another
vertex t ∈ V (G) and an integer k ≥ 1, a subgraph Ht = (V (G), E′) where E′ ⊆ E(G) is said to be
k-WTSS(t) of G if for any weight increment function I : E(G) → N such that

∑
e∈E(G) I(e) ≤ k, the

following holds: for the weight function defined by w′(e) = w(e) + I(e) for all e ∈ E(G), distG,w′(s, t) =
distHt,w′(s, t).

We can easily extend the above definition for increment function I : E(G)→ R. However in the above
definition we just consider I : E(G)→ N because only with this extra restriction we can hope for sparse
k-WTSS(t) (see Section 7). Following is an alternative definition of k-WTSS in terms of k-WTSS(t).

Definition 3. A subgraph H is k-WTSS of G if and only if it is k-WTSS(t) for all t ∈ V (G).

2.1 Max-flow and farthest min-cut
Algorithm described in this paper heavily exploits the connection between min-cut, max-flow and the
number of edge disjoint paths present in a graph. Let us start with the following well known fact.

Theorem 3. In any graph with unit capacity on edges, there is a flow of value r from a source set S
to a destination vertex t if and only if there exist r edge disjoint paths that originate from the set S and
terminate at t.

Now we define (S, t)-min-cut in a graph G.

Definition 4 ((S, t)-min-cut). In any graph G an (S, t)-cut is a set of edges C ⊆ E(G) such that every
path from any vertex s ∈ S to t must pass through some edge in C. An (S, t)-cut is called (S, t)-min-cut
if it has the smallest size among all other (S, t)-cuts.

Any (S, t)-cut C partitions the vertex set V (G) into two subsets A(C) and B(C) where A(C) is the
set of all the vertices reachable from S in G \ C and B(C) = V (G) \ A(C). Note that S ⊆ A(C) and
t ∈ B(C). From now onwards, we assume this pair of vertex sets (A(C), B(C)) to be output of a function
Partition(G,C).

For our purpose we do not just consider any (S, t)-min-cut, instead we consider the farthest one.

Definition 5 (Farthest Min Cut). Let S be a source set and t be a destination vertex in any graph
G and suppose for any (S, t)-min-cut C, (A(C), B(C)) = Partition(G,C). Any (S, t)-min-cut Cfar
is called farthest min-cut, denoted by FMC(G,S, t), if for any other (S, t)-min-cut C, it holds that
A(C) (A(Cfar).

The following lemma given by Ford and Fulkerson establishes the uniqueness of farthest min-cut and
also provides an algorithm to compute it.

6

Lemma 2.1. [24] Suppose f be a max-flow in G from any source set S to t and Gf be the corresponding
residual graph. If B be the set of vertices from which there is a path to t in Gf and A = V (G) \B, then
the set C of edges that start at A and terminate at B is the unique farthest (S, t)-min-cut.

Now we state following three important properties of farthest min-cut from [6].

Lemma 2.2. [6] For any graph G, a source set S and a destination vertex t, let C = FMC(G,S, t) and
(A,B) = Partition(G,C) and for any edge (s, b) ∈ (S × B) define G′ = G + (s, b). Then the value of
max-flow from S to t in G′ is exactly one greater than that in G and FMC(G′, S, t) = C ∪ {(s, b)}.

Lemma 2.3. [6] Consider a source vertex s and a destination vertex t in any graph G. Let S ⊆ V (G)
such that s ∈ S and t 6∈ S and f be a max-flow from S to t in G and C = FMC(G,S, t), (A,B) =
Partition(G,C). Then we can always find a max-flow fmax from s to t such that E(fmax) ⊆ E(A)∪E(f).

Lemma 2.4. [6] Consider a source vertex s and a destination vertex t in any graph G. Let S ⊆ V (G)
such that s ∈ S, t 6∈ S and (A,B) = Partition(G,FMC(G, s, t)). Then for (A′, B′) = Partition(G,FMC(G,S, t)),
B′ ⊆ B.

3 Farthest Min-cut of Shortest Path Subgraph

3.1 Computing farthest min-cut of shortest path subgraph
In this section we give an algorithm to find farthest min-cut of the shortest path subgraph of a given
graph. We are given a weighted directed graph G with two vertices s and t. The weight of each
edge of G is defined by a weight function w : E(G) → R. Let distG,w(s, t) = d. We denote the set
of all s − t paths of weight d under the weight function w by Pd and the corresponding underlying
subgraph (just the union of all paths in Pd) of G by Gshort, more specifically, V (Gshort) = V (G) and
E(Gshort) = {e | e ∈ P for some P ∈ Pd}.

Definition 6. For any graph G and two vertices s and t, for any source set S ⊆ V (Gshort), farthest
min-cut of shortest path subgraph, denoted as FSMC(G,S, t) is defined by FMC(Gshort, S, t).

For any (S, t)-cut C ofGshort we define the partition function by ShortPartition(G,C) = Partition(Gshort, C).
Now given any graph G and two vertices s and t, we want to generate the subgraph Gshort. The

procedure is as follows: For each edge (u, v) ∈ E(G) we include (u, v) in a new edge set E′ if distG,w(s, u)+
w(u, v) + distG,w(v, t) = distG,w(s, t). Then output the graph G′ = (V (G), E′).

It is easy to observe that G′ = Gshort because an edge e = (u, v) ∈ P for some P ∈ Pd if and only if
distG,w(s, u) + w(u, v) + distG,w(v, t) = distG,w(s, t).

We can implement the above procedure by first storing the values of distG,w(s, u) for all u ∈ V (G)
and distG,w(v, t) for all v ∈ V (G) which can be done in time O(mn) [10, 25] where |V (G)| = n and
|E(G)| = m. Hence the time complexity to output the subgraph G′ = Gshort will be O(mn).

Now we can simply apply well known Ford-Fulkerson algorithm [24] on the subgraph Gshort to find the
ShortMaxF low(G,S, t) and FSMC(G,S, t). The correctness of FSMC(G,S, t) follows from Lemma 2.1
applying on the subgraph Gshort.

3.2 Disjoint shortest path lemma
Let us choose any r ∈ N and then consider the following: Set S1 = {s} and for i ∈ [r], define Ci =
FSMC(G,Si, t), (Ai, Bi) = ShortPartition(G,Ci) and Si+1 = (Ai ∪ Out(Ai)) \ {t}. Let E′ ⊆ E(G)
such that E′ = {(u1, v1), · · · , (ur, vr)}, where (ui, vi) ∈ Ci.

Now let us introduce an auxiliary graph G′ = G+(s, v1)+ · · ·+(s, vr) and set w(s, vi) = distG,w(s, vi)
for i ∈ [r]. Suppose f be a max-flow from Sr+1 to t in the shortest path subgraph of G and E(t) be
the set of incoming edges of t having nonzero flow value assigned by f . Now consider a new graph
G∗ = (G′ \ In-Edge(t)) + E(t).

Lemma 3.1. There will be at least r + 1 disjoint paths in G∗ each of weight equal to distG,w(s, t).

7

s

v1

t

u2

v2

Figure 1: Suppose the yellow colored region represents Gshort. The edges of C1 and C2 are colored with
blue and red respectively. Brown colored edges are the edges added in the auxiliary graph G′ and the
edges colored with green constitute the set E(t). Paths represented by the thick edges are the 3 edge
disjoint paths in G′ when r = 2.

Note that a similar claim was shown in [6]. However, our claim is slightly more general because we
consider an edge set E′ where the edges belong to E′ may not lie on a single s − t path in G and also
we comment on the weight of the disjoint paths. Both these requirements are crucial for the proof in
Section 5. Fortunately, the proof in [6] does not rely on the fact that those edges (ui, vi)’s are part of a
single s− t path. For the sake of completeness we include the proof here.

Let us denote the shortest path subgraph (union of all minimum weight s− t paths) of G and G′ by
Gshort and G′short respectively. Now let us introduce a series of subgraphs Gi’s as follows:

G1 = Gshort, Gi = Gshort + (s, v1) + · · ·+ (s, vi−1) for 2 ≤ i ≤ r + 1.

Note that Gi+1 = Gi + (s, vi). Since w(s, vi) = distG,w(s, vi), the edge (s, vi) must belong to G′short.
This is because (ui, vi) already lie on some shortest s − t path, say P in G which is a subgraph of G′.
Then (s, vi) ◦P [vi, t] will be a minimum weight s− t path. Hence Gr+1 = G′short. Now let us first prove
the following.

Lemma 3.2. For any two vertices u, v ∈ V (Gshort), any u− v path in Gshort has weight distG,w(u, v).

Proof. For the sake of contradiction, suppose P be a u−v path in Gshort that has weight strictly greater
than distG,w(v, t). By the definition of Gshort, for all e ∈ P , e must lie in some shortest s − t path in
G. If all the edges in P lies in the same shortest s − t path then the claim is trivial. Otherwise there
must exists two consecutive edges e1 = (x, y) and e2 = (y, z) such that they lie in two different shortest
s− t paths, say P1 and P2 respectively. Observe that w(P1[s, y]) = w(P2[s, y]), otherwise either of P1 or
P2 is not a shortest s − t path. Now consider the path P3 = P1[s, y] ◦ (y, z) ◦ P2[z, t]. By construction
w(P3) = w(P1[s, y]) + w(y, z) + w(P2[z, t]) = w(P2) as w(P1[s, y]) = w(P2[s, y]). So we get another
shortest s− t path such that both e1 and e2 lie in it. We can continue this process to get a new shortest
s− t path such that all e ∈ P lie in it and this concludes the proof.

Claim 3.1. Ci = FMC(Gi, Si, t).

Proof. We know that Ci = FMC(Gshort, Si, t). Observe that for each j < i, we add Out(Aj) \ {t} to
Sj+1. Thus for each edge (s, vj), j < i, both the endpoints lie inside the source set Si. Hence Ci is also
equal to the FMC(Gi, Si, t).

Claim 3.2. The value of a max-flow from s to t in G′short is at least r + 1.

8

Proof. We use induction to show that the value of a max-flow from s to t in Gi is at least i for i ∈ [r+1].
The base case i = 1 is trivial because G1 = Gshort and there is a s − t path in Gshort. Now for the
induction argument, let us first take (A,B) = ShortPartition(G,FMC(Gi, s, t)). Then by applying
Lemma 2.4 on the graph Gi, we say that Bi ⊆ B. Hence by Lemma 2.2, we can argue that the value of
a max-flow from s to t in Gi+1 is at least one more than that in Gi which in term is at least i by the
induction argument, i.e., the value of a max-flow from s to t in Gi+1 is at least i+ 1.

Now consider a new subgraph G∗short = (Gr+1 \ In-Edge(t)) + E(t). Note that G∗short is a subgraph
of G∗.

Proof of Lemma 3.1. As f be a max-flow from Sr+1 to t in Gshort and both the endpoints of the edge
(s, vi), for any i ∈ [r] are inside Sr+1, the flow f is also a max-flow from Sr+1 to t in Gr+1 = G′short.
Now by applying Lemma 2.3 on the graph G′short, we can get another max-flow fmax from s to t such
that E(fmax) ⊆ E(Ar+1) ∪ E(f). As fmax terminates t using edges from E(t), so it is a valid flow also
in G∗short. So the value of a max-flow from s to t in G∗short is also at least r + 1. Now as by Lemma 3.2
every s− t path in G∗short is of weight equal to distG,w(s, t) and G∗short is a subgraph of G∗, claim of the
lemma follows.

4 Construction of k-WTSS and Locality Lemma
Let us first recall the problem. We are given a graph G along with a weight function w : E(G)→ Z and
a source vertex s. Now suppose for every e ∈ E(G), w(e) is increased by a weight increment function
I : E(G)→ N such that total increase in weight is bounded by k, i.e.,

∑
e∈E(G) I(e) ≤ k and we denote

the new weight function (after increase in weight) by w′ where w′(e) = w(e) + I(e). The problem is to
find a subgraph H such that for any vertex t ∈ V (G) in H there always exists an s − t path of weight
distG,w′(s, t). We call this subgraph H a k-WTSS. Now if we just want the requirement of existence of
path in H to be true for a fixed vertex t instead of all vertices, then we call such a subgraph k-WTSS(t).
In this section we reduce the problem of finding k-WTSS to the problem of finding k-WTSS(t) for any
fixed vertex t ∈ V (G). The following lemma, a variant of which also appears in [6], serves our purpose.

Lemma 4.1 (Locality Lemma). Let there be an algorithm A that given a graph G and a vertex t ∈ V (G),
generates a subgraph Ht of G such that:

• Ht is a k-WTSS(t); and

• in-degree of t in Ht is bounded by a constant ck.

Then one can generate a k-WTSS of G such that it has only ck · n edges.

Proof. Given the algorithm A we design another algorithm A′ which generates k-WTSS in n rounds. We
consider some arbitrary ordering among the vertices as (v1, v2, · · · , vn). The description of algorithm A′
is as follows: In the first round we start with the graph G0 = G which is trivially a k-WTSS and generate
another graph G1 such that in G1 in-degree of v1 is bounded by ck and G1 is a k-WTSS. Similarly in
the i-th round, a graph Gi is generated such that in-degree of every vertex vj for j ≤ i is bounded by ck
and Gi is k-WTSS.

Now we describe round i in details. We start with a graph Gi−1 which we know is a k-WTSS and
in-degree of any vertex vj for j < i is bounded by ck. Let Hi be the k-WTSS(vi) output by algorithm
A. We define Gi to be a subgraph of Gi−1 where the incoming edges of vi is restricted to that present
in Hi. Hence this process assures that in Gi the in-degree of vertices v1, · · · , vi are bounded by ck.

Now we need to prove that for each i ∈ [n], Gi is also a k-WTSS and we do that inductively.
The base case is true as G0 = G is trivially k-WTSS. Next assuming Gi−1 is a k-WTSS we prove
the same for Gi. Now consider any increment function I. Let F be the set of edges for which I
has non zero value in Gi−1 i.e., F = {e ∈ E(Gi−1) | I(e) > 0}. Suppose the new weight function
is w′ defined by w′(e) = w(e) + I(e). Now consider any vertex t. Let distG,w′(s, t) = d′ and hence
by the induction argument, distGi−1,w′(s, t) = d′. Suppose the corresponding path is P in Gi−1. We
need to show there exist an s − t path R of weight d′ in Gi such that w′(R) = d′. If path P does
not pass through vi set R = P . Otherwise consider the segments P [s, vi] and P [vi, t]. We have that

9

w′(P [s, vi]) + w′(P [vi, t]) = d′. Observe that w′(P [s, vi]) = distGi−1,w′(s, vi) otherwise P cannot be a
shortest s− t path under w′. Now as Gi differs from Gi−1 only at the incoming edges of vi, path segment
P [vi, t] remains intact. As Hi is a k-WTSS(vi) for Gi−1, there exist an s − vi path, say R′ in Hi of
weight distGi−1,w′(s, vi). By the construction Gi contains Hi and hence R′ ◦ P [vi, t] is a walk from s to
t of weight w′(R′) +w′(P [vi, t]) = distGi−1,w′(s, vi) +w′(P [vi, t]) = d′ in Gi. Removing loops we get our
desired path R of weight at most d′. Now as Gi is a subgraph of Gi−1, we can conclude that w′(R) = d′.
Hence Gi is a k-WTSS.

5 Construction of k-WTSS(t)
In this section we provide an algorithm to compute a k-WTSS(t) for any fixed vertex t ∈ V (G) where
source vertex is s. Without loss of generality let us first assume the following.

Assumption 1. The out degree of source vertex s is 1 and the out degree of all other vertices is bounded
by 2.

For any graph G if |Out(s)| > 1 then to satisfy our previous assumption, we can simply add a new
vertex s0 and add an edge (s0, s) and set w(s0, s) = 0. Then make this new vertex s0 as our new source.
For the justification on the bound on out degree of other vertices, we refer the readers to Appendix A.

5.1 Description of the algorithm
Before describing the algorithm let us introduce some notations that we will use later heavily. Consider
any k-dimensional vector σ ∈ {−1, 0, 1, · · · , k}k such that if σ(i) = −1 then for all i′ > i, σ(i′) = −1 where
i, i′ ∈ [k] and if σ(i) 6= −1 then for all i′ < i, σ(i′) 6= −1. We use these vectors to efficiently enumerate
all the subgraphs of G for which we want to calculate farthest min-cuts. Now for any such vector σ and
r ∈ [k], we recursively define the subgraph Gσ, set of source vertices Sσ,r and edge set Cσ,r as follows: if
σ = (−1,−1, · · · ,−1), Gσ is the union of all s − t paths in G, starting with Sσ,1 = {s}, for any r ∈ [k]
define Cσ,r = FSMC(Gσ, Sσ,r, t), Sσ,r+1 = (A∪Out(A))\{t} where (A,B) = ShortPartition(Gσ, Cσ,r).
For σ 6= (−1, · · · ,−1), Gσ is the union of all s−t paths in Gσ′ \Cσ′,σ(i)+1, where i = max{i′ | σ(i′) 6= −1}
and

σ′(i′) =

{
σ(i′) if i′ < i

−1 otherwise

Now starting with Sσ,1 = {s}, if there exists a s − t path of weight d + i then for any r ∈ [k] define
Cσ,r = FSMC(Gσ, Sσ,r, t), Sσ,r+1 = (A ∪Out(A)) \ {t} where (A,B) = ShortPartition(Gσ, Cσ,r); else
set Cσ,r = φ. We refer the reader to Figure 2 for the better understanding about the graph Gσ.

We are given a weighted directed graph G with weight function w and a source vertex s and a desti-
nation vertex t. The weight of each edge of G is defined by the weight function w : E(G)→ Z. Overall
our algorithm (Algorithm 1) performs the following tasks: For different values of σ ∈ {−1, 0, · · · , k}k it
computes the sets Cσ,i and Sσ,i for i ∈ [k]. Then for each such σ, it computes max-flow in the shortest
path subgraph of Gσ by considering Sσ,k as source and add the edges incident on t with non-zero flow
to a set E(t). At the end, our algorithm returns the subgraph Ht = (G \ In-Edge(t)) + E(t).

Our algorithm performs the above tasks in the recursive fashion. Starting with σ = (−1, · · · ,−1), it
first considers the shortest path subgraph of Gσ = G and performs k iterations on it. At each iteration it
computes the farthest min-cut Cσ,i by considering Sσ,i as source and t as sink starting with Sσ,1 = {s}.
Then it updates the graph by removing the edges present in Cσ,i and passes this new graph in the next
recursive call. Before the recursive call it also updates the σ by incrementing the value of σ(j) by one
and passes the updated value of σ to the recursive call. Here j is a parameter which denotes that the
smallest coordinate of σ that has value −1. Initially j was set to 1 and before the next recursive call we
increment its value by one. At the end of each iteration our algorithm updates the source set to Sσ,i+1

by including end points of all the edges present in the cut Cσ,i in the set Sσ,i. At the end of k iterations,
the algorithm computes max-flow in the shortest path subgraph of Gσ by considering Sσ,k as source and
add the edges incident on t with non-zero flow to a set E(t).

10

s

t

Figure 2: Region shaded with green color represents Gσ for σ = (1,−1, · · · ,−1) whereas yellow colored
region is the shortest path subgraph of G. The edges of C(−1,··· ,−1),1 and C(−1,··· ,−1),2 are colored with
blue and red respectively. Gσ is obtained by removing red colored edges.

Algorithm 1 Algorithm for computing k-WTSS(t)
Input : A graph G with weight function w and two vertices s and t
Output: A subgraph Ht

// Initialization:
For all σ ∈ {−1, 0, · · · , k}k and r ∈ [k], set Cσ,r to be φ;
Set σcurr = (−1, · · · ,−1);
RecursiveWTSS(G, σcurr, 1);
Return Ht = (G \ In-Edge(t)) + E(t);

5.2 Correctness proof
Let us start with the following simple observation.

Observation 5.1. For any σ ∈ {−1, 0, · · · , k}k, any s− t path in Gσ must have weight at least d+ i− 1
where i = min{i′ | σ(i′) = −1}.

Proof. Now for any σ, let us consider a sequence of vectors α1, · · · , αi ∈ {−1, 0, · · · , k}k where i =
min{i′ | σ(i′) = −1} as follows: for any 1 ≤ j ≤ i,

αj(i
′) =

{
σ(i′) if i′ < j

−1 otherwise

Note that αi = σ. Now we use induction on j to show that any s− t path in Gαj must have weight at
least d+ j − 1 and that will prove our claim.

As a base case when j = 1, as α1 = (−1, · · · ,−1), Gαj = G and hence the claim is trivially true. Now
suppose the claim is true for any j ∈ [i− 1] and we need to prove it for j+ 1. By the definition, Gαj+1 is
a subgraph of Gαj . By induction hypothesis all the s− t paths in Gαj have weight at least d+ j − 1. If
there is no s− t path of weight d+ j − 1 in Gαj then we are done because of our integer valued weight
function. Otherwise any such path of weight d + j − 1 must pass through the cut set Cαj ,σ(j)+1. Now
by definition, Gαj+1

is build by removing the edge set Cαj ,σ(j)+1 from the graph Gαj . Hence there will
be no s − t path of weight d + j − 1 in Gαj+1

. Since our weight function is integer valued, the claim
follows.

Note that the above observation is true only because we consider the range of our weight function w
to be Z. Otherwise above observation will trivially be false.

11

Procedure: RecursiveWTSS(Gcurr, σ, j)

if there exists an i ∈ [j − 1] such that σ(i) ≥ k − j + i− 1 then
return;

end
Define σcurr by setting σcurr(j) = 0 and σcurr(i) = σ(i) for all i 6= j;
if distGcurr,w(s, t) = d+ j − 1 then

S1 ← {s};
for i = 1, · · · , k do

Cσ,i ← FSMC(Gcurr, Si, t);
RecursiveWTSS((Gcurr \ Cσ,i), σcurr, j + 1);
σcurr(j)← σcurr(j) + 1;
(Ai, Bi)← ShortPartition(Gcurr, Cσ,i);
Si+1 ← (Ai ∪Out(Ai)) \ {t};

end
f ← ShortMaxF low(Gcurr, Sσ,k+1, t);
Add incoming edges of t present in E(f) in E(t);

end
else

Define σcurr by setting σcurr(j) = 0 and σcurr(i) = σ(i) for all i 6= j;
RecursiveWTSS(Gcurr, σcurr, j + 1);

end

Now let us consider any increment function I : E(G) → N such that
∑
e∈E(G) I(e) ≤ k and then

denote the set of edges with non-zero value of the function I by F , i.e., F = {e ∈ E(G)|I(e) > 0}. So
clearly |F | ≤ k. Now suppose distG,w′(s, t) = d′ = d+ j for some 0 ≤ j ≤ k where w′(e) = w(e) + I(e).
Thus we need to show that there also exists an s− t path of weight d′ in the subgraph Ht under the new
weight function w′.

Suppose P be an s − t path in G such that w′(P) = d′ = d + j. For simplicity let us assume the
following.

Assumption 2. For all e ∈ P , I(e) = 0.

In other words we are assuming that w′(P) = w(P). At the end of the current subsection we discuss
how to remove this assumption.

Lemma 5.1. One of the following three cases must satisfy.

1. There exists a σ such that P belongs to the subgraph Gσ where σ(j) = −1 and for some positive
integer r, the last edge of P belongs to the edge set Cσ,r.

2. There exists a σ such that P belongs to the subgraph Gσ where σ(j+ 1) = −1, σ(j) 6= −1 and there
is no i ∈ [j − 1] such that σ(i) ≥ k − j + i− 1.

3. There exists a σ such that P belongs to the subgraph Gσ where if i = min{i′ | σ(i′) = −1} then i ≤ j
and for any i′ ≤ i, σ(i′) < k− j+ i′−1 and P passes through all the cut sets Cσ,1, · · · , Cσ,k−j+i−1.

Proof. Here we describe a procedure to find desired σ for the path P . Let us initialize σ = (−1, · · · ,−1).
So Gσ = G and thus trivially P belongs to Gσ. Suppose P pass through edges of the cut sets
Cσ,1, · · · , Cσ,r1 , but does not pass through any edge of Cσ,r1+1. Note that r1 will be equal to 0 if
P does not pass through any of Cσ,1. Update σ by setting σ(1) = r1. By the definition of Gσ, P belongs
to it. Now suppose P passes through edges of the cut sets Cσ,1, · · · , Cσ,r2 , but does not pass through
any edge of Cσ,r2+1. Then update σ by setting σ(2) = r2. Now proceed in this way until σ(j) is set or
we reach at a point where for some i ∈ [j − 1], P passes through all the cut sets Cσ,1, · · · , Cσ,k−j+i−1.
This process may stop prematurely if P reaches t before satisfying either of above two conditions, but
in that case the last edge, say (v, t) of P must belong to some cut set Cσ,r. Hence we will be in the first
case and this completes the proof.

Now let us call the path P is of type-1, type-2 and type-3 respectively depending on which of the
above three cases it satisfies.

12

Type-1: This case is the simplest among the three.

Lemma 5.2. If P is a type-1 path then P is contained in the subgraph Ht.

Proof. Suppose (v, t) is the last edge of the path P . Now as (v, t) ∈ Cσ,r for some σ and r, (v, t) ∈ E(t).
Thus by the construction of the subgraph Ht, the edge (v, t) belongs to Ht. Also by the construction
of the subgraph Ht, for all the vertices u 6= t, In-Edge(u) belong to Ht. Hence P must lie completely
inside Ht.

Type-2: As path P belongs to the subgraphGσ where σ(j) 6= −1 and σ(j+1) = −1, by Observation 5.1,
w(P) ≥ d + j. However by our Assumption 2, w(P) = d + j and so it must pass through an edge
(ur, vr) ∈ Cσ,r for all r ∈ [k]. Now consider an auxiliary graph G′σ = Gσ + (s, v1) + · · · + (s, vk) and
extend the weight function w as w(s, vr) = w(P [s, vr]). Then define another graph G∗σ = (G′σ \ In-
Edge(t)) + E(t). By Lemma 3.1 we can claim the following.

Corollary 5.1. There will be k+ 1 edge disjoint paths in G∗σ each of weight w(P) under weight function
w.

Now we use the above corollary to conclude the following. The argument is similar to that used in [6].

Lemma 5.3. If P is a type-2 path then there exists an s− t path of weight d′ in the subgraph Ht under
the new weight function w′.

Proof. By Corollary 5.1, we get k + 1 edge disjoint paths P1, · · · , Pk+1 each of weight w(P) = d + j.
Since |F | ≤ k where F = {e ∈ E(G)|I(e) > 0}, at least one of the k+ 1 many edge disjoint paths, say P1

must survive in G∗σ \F . If P1 also belongs to the subgraph Ht then we are done. Otherwise P1 must take
some of the (s, vr)’s as the first edge and the remaining portion P1[vr, t] lies inside Ht. Now consider
the following path R = P [s, vr] ◦ P1[vr, t]. By the construction of G′σ, w′(R) = w′(P1) = w(P) and this
completes the proof.

Type-3: Suppose P is a type-3 path and thus belongs to Gσ for some σ where if i = min{i′ | σ(i′) =
−1} then i ≤ j and for any i′ ≤ i, σ(i′) < k − j + i′ − 1 and P passes through all the cut sets
Cσ,1, · · · , Cσ,k−j+i−1. P passes through an edge (ur, vr) ∈ Cσ,r for all r ∈ [k − j + i − 1]. For ease of
representation let us define v0 = s. Now if there exists a positive integer r ∈ [k − j + i − 1] such that
w(P [vr−1, ur]) > distGσ,w(vr−1, ur), replace the portions of path P [vr−1, ur] by the vr−1 − ur path of
weight distGσ,w(vr−1r, ur). We do this until there is no such r and after that we call this new path as
P ′.

Now consider an auxiliary graph G′σ = Gσ+(s, v1)+· · ·+(s, vk−j+i−1) and extend the weight function
w as w(s, vr) = w(P [s, vr]). Next define another graph G∗σ = (G′σ \ In-Edge(t)) + E(t). Now we use a
slightly different argument than that used previously.

Let us now analyze by considering the following two cases separately.

Case 1: [w(P [s, u1]) = distGσ,w(s, u1)]

Claim 5.1. There will be at least k− j + i edge disjoint paths in G∗σ each of weight at most d+ j under
weight function w. Moreover, at least one path among them will be of weight d+ i− 1.

Proof. Let us consider a new weight function w1 as follows:

w1(e) =

{
distGσ,w(s, vr) if e = (s, vr) for some r ∈ [k − j + i− 1]

w(e) otherwise

Then by Lemma 3.1, G∗σ has (k − j + i) edge disjoint paths, say P1, · · · , Pk−j+i each of weight d+ i− 1
under the new weight function w1 where the weight bound follows from Observation 5.1. Now since by
Assumption 1 the out degree of s is 1, so |Cσ,1| = 1. As both P and P ′ pass through the edge (u1, v1) and
w(P [s, u1]) = distGσ,w(s, u1), so from the construction of P ′ it can be observed that w1(s, v1) = w(s, v1).
Now consider the path that takes (s, v1) as the first edge and say it is P1. Then

w(P1) = w(s, v1) + w(P1[v1, t]) = w1(s, v1) + w1(P1[v1, t]) = w1(P1) = d+ i− 1.

For any other path, say P2, clearly w(P2) ≤ w1(P2)+(j−i+1) = d+j because for any 2 ≤ r ≤ k−j+i−1,
w(s, vr)− w1(s, vr) ≤ j − i+ 1.

13

So we get k − j + i edge disjoint paths P1, · · · , Pk−j+i each of weight at most d + j and suppose
P1 has weight d + i − 1. Let us also extend the weight function w′ by setting w′(s, vr) = w(s, vr) and
extend I by setting I(s, vr) = 0. If any one of these k − j + i edge disjoint paths, say Q satisfies that
w′(Q) ≤ d + j, then we are done. This is because in that case either Q lies inside Ht which makes Q
to be our desired path or for some r ∈ [k − j + i − 1], Q must take (s, vr)’s as the first edge and the
remaining portion Q[vr, t] lies inside Ht. In the second case, we consider the path R = P [s, vr] ◦Q[vr, t].
Note that w′(R) = w′(Q) ≤ d+ j.

Now we argue that there must exists one path among k − j + i edge disjoint paths such that it will
have weight at most d+j under the weight function w′. Otherwise for all r ∈ [k−j+i], w′(Pr) ≥ d+j+1.
Hence I(P1) ≥ j − i+ 2 and I(Pr) ≥ 1 for all 2 ≤ r ≤ k − j + i. Thus∑

e∈E(G∗σ)

I(e) ≥ (j − i+ 2) + (k − j + i− 1) ≥ (k + 1).

However as I(s, v1) = I(s, v2) = · · · = I(s, vσ(i)) = 0,∑
e∈E(G∗σ)

I(e) ≤
∑

e∈E(G)

I(e) ≤ k

which leads to a contradiction.

Case 2: [w(P [s, u1]) > distGσ,w(s, u1)]
In this case also by the argument used in the first part of the proof of Claim 5.1, we can claim the

following.

Claim 5.2. There will be at least k− j + i edge disjoint paths in G∗σ each of weight at most d+ j under
weight function w.

Note that on the contrary to Claim 5.1, now we do not have the extra guarantee that at least of the
edge disjoint paths must have weight d + i − 1. Now just like the previous case, we only need to argue
that there must exists one path among k− j+ i edge disjoint paths, say P1, · · · , Pk−j+i such that it will
have weight at most d+ j under the weight function w′ and we will be done.

Now suppose w(P [s, u1]) = distGσ,w(s, u1) + l, for l > 0. Consider the path that takes (s, v1) as the
first edge and say it is P1. Then by the argument used in the proof of Claim 5.1, one can show that

w(P1) = w(s, v1) + w(P1[v1, t]) = (distGσ,w(s, v1) + l) + w1(P1[v1, t]) = d+ i+ l − 1.

Let Q be a shortest s− v path in Gσ under weight w. Now since w(P [s, u1]) > distGσ,w(s, u1) and P is
a shortest s− t path under the weight w′ (recall that w′ = w + I), I(Q) ≥ l + 1. Moreover,∑

e∈Q and e 6∈P

I(e) ≥ l + 1.

Now if for all r ∈ [k− j + i], w′(Pr) ≥ d+ j + 1, it must satisfy that I(P1) ≥ j − i− l+ 2 and I(Pr) ≥ 1
for all 2 ≤ r ≤ k − j + i.∑

e∈E(G∗σ)

I(e) ≥ (l + 1) + (j − i− l + 2) + (k − j + i− 2) ≥ (k + 1).

However as I(s, v1) = I(s, v2) = · · · = I(s, vσ(i)) = 0,∑
e∈E(G∗σ)

I(e) ≤
∑

e∈E(G)

I(e) ≤ k

which again leads to a contradiction.
Now from the above we can conclude the following.

Lemma 5.4. If P is a type-3 path then there exists an s − t path of weight w(P) = d′ in the subgraph
Ht under the new weight function w′.

14

Removing Assumption 2: Suppose P be one of the shortest paths from s to t in G under the
new weight w′, i.e., w′(P) = d′. Then consider the following set S = {e ∈ P |I(e) > 0} and suppose∑
e∈S I(e) = k′ ≤ k. Now define the following new weight function:

w′′(e) =

{
w(e) if e ∈ P
w′(e) otherwise

Now w′′(P) = d′ − k′. Then use the argument same as before to show that there exists a path, say R in
Ht of weight at most d′ − k′ under this new weight function w′′. Clearly, w′(R) ≤ w′′(R) + k′ = d′.

5.3 Bound on size of E(t)
Before establishing the upper bound on the size of the set of edges E(t), let us define Cσ,k+1 =
FSMC(Gσ, Sσ,k+1, t) for any σ ∈ {−1, 0, · · · , k}k. Now as FSMC(Gσ, Sσ,i+1, t) = FMC(Gshortσ , Sσ,i+1, t)
for any i ∈ [k] where Gshortσ is the shortest path subgraph of Gσ, so we can restate Lemma 6.6 from [6]
in the following form.

Lemma 5.5. For any i ∈ [k], |Cσ,i+1| ≤ 2× |Cσ,i|.

Reader may note that the proof of the above lemma in [6] crucially relies on our Assumption 1.

Lemma 5.6. |E(t)| ≤ e(k − 1)!2k.

Proof. In our algorithm for each σ ∈ {−1, 0, · · · , k}k we compute the cut sets Cσ,1, · · · , Cσ,k and add
|Cσ,k+1| many edges in the set E(t) if for any i′ ≤ i, σ(i′) < k− i+ i′ − 1 where i = min{j | σ(j) = −1};
otherwise we do not compute anything. So the total number of σ for which we add edges in E(t) is
bounded by

1 + (k − 1) + (k − 1)(k − 2) + · · ·+ (k − 1)! = (k − 1)![1/0! + 1/1! + · · ·+ 1/(k − 1)!] ≤ e · (k − 1)!.

Now by applying Lemma 5.5, we get that for each such σ, |Cσ,k+1| ≤ 2k and this proves the claimed
bound.

5.4 Complexity analysis
Now we analyze the running time of our algorithm to find k-WTSS(t) for some t ∈ V (G). We first
preprocess the input graph to generate a new graph in a way so that the new graph satisfies Assumption 1.
This takes O(m) time (see Appendix A). Next we apply Algorithm 1 on this new graph which has O(m)
many vertices and edges. By the argument in the proof of Lemma 5.6 we see that our algorithm computes
k farthest min-cuts on shortest path subgraphs of Gσ for e(k − 1)! many different σ’s. Now from the
discussion in Section 3.1, assuming we have Gσ explicitly, to generate each such shortest path subgraph
on this new transformed graph we need O(m2) time and then to compute k farthest min-cuts takes
total O(

∑k
i=1 |Cσ,i| × m) = O(2km) time (see [24]). Finally, one can get k-WTSS(t) of the original

graph from that of the transformed graph in O(m) time (see Appendix A). So overall time needed to
compute k-WTSS(t) of any given graph with n vertices and m edges is O((k − 1)!2km2) = O((k)km2)
(by Stirling’s approximation). Now since by the Locality Lemma (Lemma 4.1), finding k-WTSS requires
n rounds where in each round we find k-WTSS(v) for some v ∈ V (G), computing k-WTSS takes total
O((k)km2n) time.

6 Lower Bound on the Size of k-WTSS
In this section we give construction of a graph that will establish a lower bound on the size of a k-WTSS
as stated in Theorem 2. Let us first recall Theorem 2.

Theorem 4. For any positive integer k ≥ 2, there exists an positive integer n′ such that for all n > n′,
there exists a directed graph G with n vertices and a weight function w : E(G)→ Z, such that its k-WTSS
must contain c · 2kn many edges for some constant c ≥ 5/4.

15

Proof. Let us consider l many full binary trees Ti such that for each 1 ≤ i ≤ l, Ti has height hi =
k −

∑i
j=2 j with root ri. Let Li be the set of leaves of the tree Ti and thus |Li| = 2hi . Next consider

L = ∪iLi and another set of n vertices X. Finally define a graph G with V (G) = {s}∪(∪iV (Ti))∪X and
E(G) = {(s, ri)|1 ≤ i ≤ l} ∪ {(u, v)|u ∈ L, v ∈ X} ∪ (∪iE(Ti)). Choose largest l such that

∑l
j=2 j ≤ k.

Now let us consider the following weight function w : E(G)→ N,

w(e) =

{∑i
j=2 j + i if e = (s, ri)

1 otherwise

Clearly, |E(G)| = l +
∑l
i=1(2|Li| − 1) + |L| × |X| = c · 2kn for some constant c ≥ 5/4.

It only remains to show that any k-WTSS of G must contain all the edges of G. Take any vertex
t ∈ X and consider any path P from s to t. Suppose the first edge of P is (s, ri) for some i. Then
consider the set S = {(u, v)|(u, v) ∈ Ti, u ∈ P but v 6∈ P}. Let us now consider the following increment
function I : E(G)→ {0, · · · , k},

I(e) =


i+ 1− j if e = (s, rj) and 1 ≤ j < i

1 e ∈ S
0 otherwise

Clearly,
∑
e∈E(G) I(e) ≤ k due to the choice of l. Also P will be the only shortest path from s to t in

G under the new weight function w′(e) = w(e) + I(e), ∀e∈E(G) because all the s − t paths whose first
edge is (s, rj) for j < i and all the s− t paths except P , whose first edge is (s, ri) will now have weight
k + i+ 1. This completes the proof.

7 Lower Bound for More General Model
In this section we show that size of k-WTSS of a graph can be of size at least Ω(n2) even for k = 1 if we
allow either weight function to be rational valued or increment function to be rational valued.

7.1 Lower bound for rational valued weight function
Theorem 5. If weight of an edge can be any rational value, then for every n ∈ N, there exists a directed
graph with n vertices whose 1-WTSS must contain c · n2 many edges for some constant c > 0.

Proof. Take any n ∈ N. Now consider a graph G with the vertex set V (G) = {s, v1, v2, · · · , vn−1} and
following edge set

E(G) = {(s, v1)} ∪ {(vi, vj) | i, j ∈ [n− 1] and i < j}.

So, |E(G)| =
(
n−1
2

)
+ 1. Next define the weight function w : E(G)→ Q as follows:

w(e) =


1− i+j

2n if e = (vi, vj) and j 6= i+ 1

n if e = (s, v1)

0 otherwise

Now we show that any 1-WTSS of G must contain all the edges in E(G). Note that initially for any
vertex vi, the shortest s − vi path has weight n. As (s, v1) and (vj−1, vj)’s for j ≤ i must lie on any
shortest s− vi path so they must belong to any 1-WTSS. Let us now consider any edge (vi, vj) such that
j 6= i + 1. Take an increment function I : E(G) → N such that I((vi, vi+1)) = 1 and for all other edges
e 6= (vi, vi+1), I(e) = 0. It is easy to see that the unique shortest path under the new weight function w′
defined by w′(e) = w(e) + I(e) for all e ∈ E(G) follows the original shortest path till vi from s and then
take the edge (vi, vj). Thus (vi, vj) must belong to any 1-WTSS of G and this concludes the proof.

Reader may note that the choice of weight n on the edge (s, v1) in the above mentioned construction
is arbitrary and one is free to take any value instead of n.

16

7.2 Lower bound for rational valued increment function
Theorem 6. If it is allowed to increase the weight of the edges by any rational value, then for every
n ∈ N, there exists a directed graph with n vertices whose 1-WTSS must contain c · n2 many edges for
some constant c > 0.

Proof. Consider any n ∈ N. Consider two sets of vertices A and B such that |A| = bn2 c − 1 and
|B| = n−bn2 c− 1. Now take a graph G with V (G) = {s, t}∪A∪B. Then connect s with all the vertices
in A and all the vertices in B with t. Next add an edge between any vertex in A and any vertex in B.
So we get

E(G) = {(s, v) | v ∈ A} ∪ {(u, v) | u ∈ A and v ∈ B} ∪ {(v, t) | v ∈ B}.
Hence |E(G)| ≥ c · n2 for some constant c > 0. Now consider a weight function w : E(G)→ Z such that
for all e ∈ E(G), w(e) = 1. Note that any s− t path has weight 3. Now we show that every edge in this
graph must be present in its 1-WTSS. First observe that every s− t path in G is of weight 3 and every
edge e ∈ E(G) belong to some s − t path. So it is sufficient to show that all the s − t paths in G must
be included in its 1-WTSS.

Let P be one such s− t path and suppose it passes through a vertex u ∈ A and v ∈ B. Next consider
a increment function I : E(G)→ Q such that

I(e) =


1

2(|A|−1) if e = (s, x) and x 6= u
1

2(|B|−1) if e = (y, t) and y 6= v

0 otherwise

Clearly, the above increment function I satisfies the condition that
∑
e∈E(G) I(e) ≤ 1 and all the s − t

paths except P has now weight strictly greater than 3 under the new weight function w′ defined by
w′(e) = w(e) + I(e) for all e ∈ E(G). Hence all the edges of path P must be included in any 1-WTSS of
G.

Remarks: We emphasize that all the lower bound results in the above section hold for undirected
graphs also. Moreover, exactly the same graphs without any direction will serve the purpose.

8 Discussion
In this paper we initiate the study of single source shortest path problem in a model where weight of any
edge can be increased. This model is motivated from congestion in any network and is simpler than the
edge fault model. To summarize, we have provided an efficient algorithm to compute a sparse subgraph
that preserves the distances from any designated source vertex and is also resilient under bounded weight
increment. When the weight increment is bounded by k then the subgraph computed by our algorithm
will be of size at most O(kkn). We also show a lower bound of 5

42kn on the size of such a subgraph.
This shows that our construction is tight upto some constant as long as k is bounded by some constant.
Though, it is interesting to farther study this problem to close the gap between the upper and the lower
bound and at this point we would like to leave this problem as open. Another open problem is to improve
the run time of the construction.

We have already shown in this paper that from the perspective of constructing sparse distance pre-
server, the weight tolerant model is much simpler than fault tolerant model. It might be possible that
the same is true for problems like finding distance oracle in this weight increment model. As a corollary
of our result one can get an Ok(n) space and Ok(n2) time data structure that will answer the distance
queries from a single source vertex, where Ok(·) notation denotes involvement of a constant that depends
only on k. It is interesting to farther study this problem to reduce the query time to Ok(1) while getting
some reasonable bound on the space requirement.

Acknowledgments
The first author would like to thank Pavan Aduri and Vinodchandran N. Variyam for some helpful
discussions during initial phase of this work and a special thank to Pavan Aduri for suggesting to study

17

this problem. Authors also thank Keerti Choudhary and Michal Koucký for many valuable suggestions
and comments.

References
[1] Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. In Proceedings

of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 351–361, 2016. URL: http://doi.acm.org/10.1145/2897518.
2897555, doi:10.1145/2897518.2897555.

[2] Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear additive
spanners. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 568–576, 2017. URL:
http://dx.doi.org/10.1137/1.9781611974782.36, doi:10.1137/1.9781611974782.36.

[3] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–1181, 1999. URL:
http://dx.doi.org/10.1137/S0097539796303421, doi:10.1137/S0097539796303421.

[4] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse spanners
of weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993. URL: http://dx.doi.
org/10.1007/BF02189308, doi:10.1007/BF02189308.

[5] Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant reachability for di-
rected graphs. In Distributed Computing - 29th International Symposium, DISC 2015, Tokyo,
Japan, October 7-9, 2015, Proceedings, pages 528–543, 2015. URL: http://dx.doi.org/10.1007/
978-3-662-48653-5_35, doi:10.1007/978-3-662-48653-5_35.

[6] Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant subgraph for single source
reachability: generic and optimal. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 509–518, 2016.
URL: http://doi.acm.org/10.1145/2897518.2897648, doi:10.1145/2897518.2897648.

[7] Surender Baswana, Keerti Choudhary, and Liam Roditty. An efficient strongly connected com-
ponents algorithm in the fault tolerant model. In 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017 (to appear), 2017.

[8] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New constructions of
(alpha, beta)-spanners and purely additive spanners. In Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada,
January 23-25, 2005, pages 672–681, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.
1070526.

[9] Surender Baswana and Neelesh Khanna. Approximate shortest paths avoiding a failed vertex: Near
optimal data structures for undirected unweighted graphs. Algorithmica, 66(1):18–50, 2013. URL:
http://dx.doi.org/10.1007/s00453-012-9621-y, doi:10.1007/s00453-012-9621-y.

[10] Richard Bellman. On a routing problem. Quart. Appl. Math., 16:87–90, 1958.

[11] Aaron Bernstein and David R. Karger. A nearly optimal oracle for avoiding failed vertices and
edges. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 101–110, 2009. URL: http://doi.acm.org/
10.1145/1536414.1536431, doi:10.1145/1536414.1536431.

[12] Davide Bilò, Fabrizio Grandoni, Luciano Gualà, Stefano Leucci, and Guido Proietti. Improved purely
additive fault-tolerant spanners. In Algorithms - ESA 2015 - 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings, pages 167–178, 2015. URL: http://dx.doi.
org/10.1007/978-3-662-48350-3_15, doi:10.1007/978-3-662-48350-3_15.

18

http://doi.acm.org/10.1145/2897518.2897555
http://doi.acm.org/10.1145/2897518.2897555
http://dx.doi.org/10.1145/2897518.2897555
http://dx.doi.org/10.1137/1.9781611974782.36
http://dx.doi.org/10.1137/1.9781611974782.36
http://dx.doi.org/10.1137/S0097539796303421
http://dx.doi.org/10.1137/S0097539796303421
http://dx.doi.org/10.1007/BF02189308
http://dx.doi.org/10.1007/BF02189308
http://dx.doi.org/10.1007/BF02189308
http://dx.doi.org/10.1007/978-3-662-48653-5_35
http://dx.doi.org/10.1007/978-3-662-48653-5_35
http://dx.doi.org/10.1007/978-3-662-48653-5_35
http://doi.acm.org/10.1145/2897518.2897648
http://dx.doi.org/10.1145/2897518.2897648
http://dl.acm.org/citation.cfm?id=1070432.1070526
http://dl.acm.org/citation.cfm?id=1070432.1070526
http://dx.doi.org/10.1007/s00453-012-9621-y
http://dx.doi.org/10.1007/s00453-012-9621-y
http://doi.acm.org/10.1145/1536414.1536431
http://doi.acm.org/10.1145/1536414.1536431
http://dx.doi.org/10.1145/1536414.1536431
http://dx.doi.org/10.1007/978-3-662-48350-3_15
http://dx.doi.org/10.1007/978-3-662-48350-3_15
http://dx.doi.org/10.1007/978-3-662-48350-3_15

[13] Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Fault-tolerant approximate
shortest-path trees. In Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw,
Poland, September 8-10, 2014. Proceedings, pages 137–148, 2014. URL: http://dx.doi.org/10.
1007/978-3-662-44777-2_12, doi:10.1007/978-3-662-44777-2_12.

[14] Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-tolerant
approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2016, February 17-20, 2016, Orléans, France, pages 18:1–18:14, 2016. URL:
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.18, doi:10.4230/LIPIcs.STACS.2016.18.

[15] Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Preserving
distances in very faulty graphs. CoRR, abs/1703.10293, 2017. URL: http://arxiv.org/abs/
1703.10293.

[16] Gilad Braunschvig, Shiri Chechik, David Peleg, and Adam Sealfon. Fault tolerant additive and (µ,
α)-spanners. Theor. Comput. Sci., 580:94–100, 2015. URL: http://dx.doi.org/10.1016/j.tcs.
2015.02.036, doi:10.1016/j.tcs.2015.02.036.

[17] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault-tolerant spanners for
general graphs. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 435–444, 2009. URL: http:
//doi.acm.org/10.1145/1536414.1536475, doi:10.1145/1536414.1536475.

[18] Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy, pages 130:1–130:13, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.130,
doi:10.4230/LIPIcs.ICALP.2016.130.

[19] Artur Czumaj and Hairong Zhao. Fault-tolerant geometric spanners. Discrete & Computa-
tional Geometry, 32(2):207–230, 2004. URL: http://www.springerlink.com/index/10.1007/
s00454-004-1121-7.

[20] Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran. Oracles
for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008. URL:
http://dx.doi.org/10.1137/S0097539705429847, doi:10.1137/S0097539705429847.

[21] Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In Proceed-
ings of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC 2011,
San Jose, CA, USA, June 6-8, 2011, pages 169–178, 2011. URL: http://doi.acm.org/10.1145/
1993806.1993830, doi:10.1145/1993806.1993830.

[22] Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proceedings of
the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York,
NY, USA, January 4-6, 2009, pages 506–515, 2009. URL: http://dl.acm.org/citation.cfm?id=
1496770.1496826.

[23] P. Erdös. Extremal problems in graph theory. In IN âĂĲTHEORY OF GRAPHS AND ITS
APPLICATIONS,âĂİ PROC. SYMPOS. SMOLENICE, pages 29–36, 1964.

[24] D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ,
USA, 2010.

[25] Lester R. Ford Jr. Network Flow Theory. Santa Monica, California: RAND Corporation, pages
P–923, 1956.

[26] Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity oracles via fast
single-source replacement paths. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 748–757, 2012. URL:
http://dx.doi.org/10.1109/FOCS.2012.17, doi:10.1109/FOCS.2012.17.

19

http://dx.doi.org/10.1007/978-3-662-44777-2_12
http://dx.doi.org/10.1007/978-3-662-44777-2_12
http://dx.doi.org/10.1007/978-3-662-44777-2_12
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.18
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.18
http://arxiv.org/abs/1703.10293
http://arxiv.org/abs/1703.10293
http://dx.doi.org/10.1016/j.tcs.2015.02.036
http://dx.doi.org/10.1016/j.tcs.2015.02.036
http://dx.doi.org/10.1016/j.tcs.2015.02.036
http://doi.acm.org/10.1145/1536414.1536475
http://doi.acm.org/10.1145/1536414.1536475
http://dx.doi.org/10.1145/1536414.1536475
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.130
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.130
http://www.springerlink.com/index/10.1007/s00454-004-1121-7
http://www.springerlink.com/index/10.1007/s00454-004-1121-7
http://dx.doi.org/10.1137/S0097539705429847
http://dx.doi.org/10.1137/S0097539705429847
http://doi.acm.org/10.1145/1993806.1993830
http://doi.acm.org/10.1145/1993806.1993830
http://dx.doi.org/10.1145/1993806.1993830
http://dl.acm.org/citation.cfm?id=1496770.1496826
http://dl.acm.org/citation.cfm?id=1496770.1496826
http://dx.doi.org/10.1109/FOCS.2012.17
http://dx.doi.org/10.1109/FOCS.2012.17

[27] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in a flow-
graph. ACM Trans. Program. Lang. Syst., 1(1):121–141, 1979. URL: http://doi.acm.org/10.
1145/357062.357071, doi:10.1145/357062.357071.

[28] Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. Improved algorithms for con-
structing fault-tolerant spanners. Algorithmica, 32(1):144–156, 2002. URL: http://dx.doi.org/
10.1007/s00453-001-0075-x, doi:10.1007/s00453-001-0075-x.

[29] Tamás Lukovszki. New results of fault tolerant geometric spanners. In Algorithms and Data Struc-
tures, 6th International Workshop, WADS ’99, Vancouver, British Columbia, Canada, August 11-14,
1999, Proceedings, pages 193–204, 1999. URL: http://dx.doi.org/10.1007/3-540-48447-7_20,
doi:10.1007/3-540-48447-7_20.

[30] Merav Parter. Vertex fault tolerant additive spanners. In Distributed Computing - 28th
International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings,
pages 167–181, 2014. URL: http://dx.doi.org/10.1007/978-3-662-45174-8_12, doi:10.1007/
978-3-662-45174-8_12.

[31] Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 -
23, 2015, pages 481–490, 2015. URL: http://doi.acm.org/10.1145/2767386.2767408, doi:10.
1145/2767386.2767408.

[32] Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms - ESA 2013 -
21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings,
pages 779–790, 2013. URL: http://dx.doi.org/10.1007/978-3-642-40450-4_66, doi:10.1007/
978-3-642-40450-4_66.

[33] Merav Parter and David Peleg. Fault tolerant approximate BFS structures. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 1073–1092, 2014. URL: http://dx.doi.org/10.1137/1.
9781611973402.80, doi:10.1137/1.9781611973402.80.

[34] Liam Roditty and Uri Zwick. Replacement paths and k simple shortest paths in unweighted directed
graphs. ACM Trans. Algorithms, 8(4):33:1–33:11, 2012. URL: http://doi.acm.org/10.1145/
2344422.2344423, doi:10.1145/2344422.2344423.

[35] Maxim Teslenko and Elena Dubrova. An efficient algorithm for finding double-vertex dominators in
circuit graphs. In 2005 Design, Automation and Test in Europe Conference and Exposition (DATE
2005), 7-11 March 2005, Munich, Germany, pages 406–411, 2005. URL: http://dx.doi.org/10.
1109/DATE.2005.53, doi:10.1109/DATE.2005.53.

[36] Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles via fast
matrix multiplication. ACM Trans. Algorithms, 9(2):14:1–14:13, 2013. URL: http://doi.acm.org/
10.1145/2438645.2438646, doi:10.1145/2438645.2438646.

[37] Virginia Vassilevska Williams. Faster replacement paths. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, Califor-
nia, USA, January 23-25, 2011, pages 1337–1346, 2011. URL: http://dx.doi.org/10.1137/1.
9781611973082.102, doi:10.1137/1.9781611973082.102.

[38] David P. Woodruff. Additive spanners in nearly quadratic time. In Automata, Languages and Pro-
gramming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Pro-
ceedings, Part I, pages 463–474, 2010. URL: http://dx.doi.org/10.1007/978-3-642-14165-2_
40, doi:10.1007/978-3-642-14165-2_40.

20

http://doi.acm.org/10.1145/357062.357071
http://doi.acm.org/10.1145/357062.357071
http://dx.doi.org/10.1145/357062.357071
http://dx.doi.org/10.1007/s00453-001-0075-x
http://dx.doi.org/10.1007/s00453-001-0075-x
http://dx.doi.org/10.1007/s00453-001-0075-x
http://dx.doi.org/10.1007/3-540-48447-7_20
http://dx.doi.org/10.1007/3-540-48447-7_20
http://dx.doi.org/10.1007/978-3-662-45174-8_12
http://dx.doi.org/10.1007/978-3-662-45174-8_12
http://dx.doi.org/10.1007/978-3-662-45174-8_12
http://doi.acm.org/10.1145/2767386.2767408
http://dx.doi.org/10.1145/2767386.2767408
http://dx.doi.org/10.1145/2767386.2767408
http://dx.doi.org/10.1007/978-3-642-40450-4_66
http://dx.doi.org/10.1007/978-3-642-40450-4_66
http://dx.doi.org/10.1007/978-3-642-40450-4_66
http://dx.doi.org/10.1137/1.9781611973402.80
http://dx.doi.org/10.1137/1.9781611973402.80
http://dx.doi.org/10.1137/1.9781611973402.80
http://doi.acm.org/10.1145/2344422.2344423
http://doi.acm.org/10.1145/2344422.2344423
http://dx.doi.org/10.1145/2344422.2344423
http://dx.doi.org/10.1109/DATE.2005.53
http://dx.doi.org/10.1109/DATE.2005.53
http://dx.doi.org/10.1109/DATE.2005.53
http://doi.acm.org/10.1145/2438645.2438646
http://doi.acm.org/10.1145/2438645.2438646
http://dx.doi.org/10.1145/2438645.2438646
http://dx.doi.org/10.1137/1.9781611973082.102
http://dx.doi.org/10.1137/1.9781611973082.102
http://dx.doi.org/10.1137/1.9781611973082.102
http://dx.doi.org/10.1007/978-3-642-14165-2_40
http://dx.doi.org/10.1007/978-3-642-14165-2_40
http://dx.doi.org/10.1007/978-3-642-14165-2_40

A Explanations for Assumption 1
We are given a directed graph G = (V,E) and the associated weight function w : E(G) → R as input.
We claim that we can construct a new graph G′ = (V ′, E′) with a weight function w′ : E(G′)→ R such
that the out-degree of every vertex v′ ∈ V ′ is bounded by 2. Now we describe how to get such a G′ from
G. First, for each v ∈ V , we construct a binary tree Tv as follows: Define rv to be the root of Tv. Suppose
d(v) denotes the out-degree of v in G. Then Tv contains exactly d(v) many leaves, say l1v, · · · , l

d(v)
v . Let

(v, u1), · · · , (v, ud(v)) are the out edges of v in G. We delete all of them and in that place we insert the
binary tree Tv by adding an edge from vertex v to rv and adding edges from vertex liv to ui, for all
i ∈ [d(v)]. We define the weight function w′ for G′ as follows: Set, w′(v, rv) = 0, w′(liv, ui) = w(v, ui)
for all i ∈ [d(v)] and for rest of the edges e ∈ Tv set w′(e) = 0. Subsequently we observe the following
properties of G′.

1. Every vertex of G′ has out-degree at most 2 whereas in-degree is same as that of in the graph G.

2. Graph G′ has O(m) vertices and O(m) edges.

3. Every edge (v, ui) of G is represented by a path Pv→ui = (v, rv)◦(path from rv to liv in Tv)◦(liv, ui)
in G′ and w(v, ui) = w′(Pv→ui). Hence for any vertex v ∈ V (G), distG,w(s, v) = distG′,w′(s, v).

Now we show that given a k-WTSS(t), say H ′ of the graph G′ how to construct a k-WTSS(t), say H for
the graph G. We build H as follows: For each ui ∈ Out(v) of the graph G, we include an edge (v, ui) in
H if and only if the edge (liv, ui) is present in graph H ′. Now the claim is that H is a k-WTSS(t) for the
graph G. Let I : E(G) → Z be any increment function on graph G such that

∑
e∈E(G) I(e) ≤ k. Now

define another increment function I ′ : E(G′)→ Z for the graph G′ as follows: For every edge (v, ui), set
I ′(liv, ui) = I(v, ui). For all other edges e ∈ G′, set I ′(e) = 0. Clearly,∑

e∈E(G′)

I ′(e) =
∑

e∈E(G)

I(e) ≤ k.

Now from the construction we can observe that for any vertex t in G, distH,w+I(s, t) = distH′,w′+I′(s, t).
Now as H ′ is a k-WTSS(t) for the graph G′, we have that distH′,w′+I′(s, t) = distG′,w′+I′(s, t) and
therefore

distH,w+I(s, t) = distH′,w′+I′(s, t) = distG′,w′+I′(s, t) = distG,w+I(s, t).

Hence H is a k-WTSS(t) for the graph G and in-degree of any vertex in H is same as that of in H ′.
Hence for any vertex t ∈ V (G), computing k-WTSS(t) of G is same as computing k-WTSS(t) for G′
which has O(m) vertices and edges, and out-degree of every vertex is bounded by two.

B Lower Bound for Weight Decrement Model
One can relax our model by allowing decrement operation on edge weight. Unfortunately, one can easily
show that there are graphs for which there is no sub-quadratic sized subgraph that preserves the distances
from a single source under this relaxed model.

Theorem 7. If it is allowed to decrement the weight of the edges even by a integer, then for every
n ∈ N, there exists a directed graph with n vertices whose 1-WTSS must contain c · n2 many edges for
some constant c > 0.

Proof. Consider any n ∈ N. Consider two sets of vertices A and B such that |A| = bn2 c − 1 and
|B| = n−bn2 c− 1. Now take a graph G with V (G) = {s, t}∪A∪B. Then connect s with all the vertices
in A and all the vertices in B with t. Next add an edge between any vertex in A and any vertex in B.
So we get

E(G) = {(s, v) | v ∈ A} ∪ {(u, v) | u ∈ A and v ∈ B} ∪ {(v, t) | v ∈ B}.
Hence |E(G)| ≥ c · n2 for some constant c > 0. Now consider a weight function w : E(G)→ Z such that
for all e ∈ E(G), w(e) = 2. Note that every s − t path has weight 6. Now we show that every edge in
this graph must be present in its 1-WTSS. Let us take any edge e ∈ E(G) and decrement its weight by
1. It is now easy to see that any s − t path that passes through e has weight 5 whereas all other s − t
paths still have weight 6. Hence the edge e must be included in any 1-WTSS of G.

21

	Introduction
	Related works
	Our technique

	Preliminaries
	Max-flow and farthest min-cut

	Farthest Min-cut of Shortest Path Subgraph
	Computing farthest min-cut of shortest path subgraph
	Disjoint shortest path lemma

	Construction of k-WTSS and Locality Lemma
	Construction of k-WTSS(t)
	Description of the algorithm
	Correctness proof
	Bound on size of E(t)
	Complexity analysis

	Lower Bound on the Size of k-WTSS
	Lower Bound for More General Model
	Lower bound for rational valued weight function
	Lower bound for rational valued increment function

	Discussion
	Explanations for Assumption 1
	Lower Bound for Weight Decrement Model

