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Abstract

The conjectured hardness of Boolean matrix-vector multiplication has been used with great
success to prove conditional lower bounds for numerous important data structure problems,
see Henzinger et al. [STOC’15]. In recent work, Larsen and Williams [SODA’17] attacked the
problem from the upper bound side and gave a surprising cell probe data structure (that is, we
only charge for memory accesses, while computation is free). Their cell probe data structure
answers queries in Õ(n7/4) time and is succinct in the sense that it stores the input matrix in
read-only memory, plus an additional Õ(n7/4) bits on the side. In this paper, we essentially
settle the cell probe complexity of succinct Boolean matrix-vector multiplication. We present
a new cell probe data structure with query time Õ(n3/2) storing just Õ(n3/2) bits on the side.
We then complement our data structure with a lower bound showing that any data structure
storing r bits on the side, with n < r < n2 must have query time t satisfying tr = Ω̃(n3). For
r ≤ n, any data structure must have t = Ω̃(n2). Since lower bounds in the cell probe model
also apply to classic word-RAM data structures, the lower bounds naturally carry over. We also
prove similar lower bounds for matrix-vector multiplication over F2.
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1 Introduction

Matrix-vector multiplication is one of the most fundamental algorithmic primitives. In the data
structure variant of the problem, we are given an n×n matrix M as input. The goal is to preprocess
M into data structure, such that upon receiving any n-dimensional query vector v, we can quickly
compute Mv. Constructing a data structure instead of computing Mv directly may pay off as soon
as we have to answer multiple matrix-vector multiplication queries on the same matrix M .

When defined over the Boolean semiring (with addition replaced by OR and multiplication
replaced by AND) the above problem is a special case of the well-known Online Matrix-Vector
(OMV) problem: Given a matrix M ∈ {0, 1}n×n and a stream of vectors v(1), · · · , v(n) ∈ {0, 1}n
the goal is to output the value of Mv(i) before seeing v(j) for any j ∈ {i+ 1, · · · , n}. Henzinger et
al. [HKNS15] conjectured that the OMV problem cannot be solved by any randomized algorithm
with error probability at most 1/3 within time O(n3−ε) for any constant ε > 0 (i.e. amortized
O(n2−ε) per vector v(i)). This conjecture is known as the OMV conjecture and is one of the central
conjectures in the “Hardness in P” area, along with the Strong Exponential Time Hypothesis (SETH
see [IP01]), the 3SUM conjecture (see e.g. [GO95]) and the All Pairs Shortest Paths conjecture
(APSP see e.g. [WW10]). The conjecture implies a whole range of near-tight conditional lower
bounds for classic (fully/partially) dynamic data structure problems such as dynamic reachability.
For the matrix-vector multiplication problem over the Boolean semiring, the OMV conjecture in
particular implies that for any polynomial preprocessing time and space, the query time must be
n2−o(1) [HKNS15].

The current best upper bound for the OMV problem is due to Larsen and Williams [LW17],
who gave a randomized (word-RAM) data structure with a total running time of n3/2Ω(

√
lgn) over

a sequence of n queries, i.e. amortized n2/2Ω(
√

lgn) per query. While this new upper bound is
non-trivial, it does not violate the OMV conjecture.

The holy grail is, of course, to replace the OMV conjecture by an unconditional n3−o(1) lower
bound. In contrast to SETH, 3SUM and APSP, the OMV problem is a data structure problem,
rather than an algorithmic problem. Since we have been vastly more successful in proving uncon-
ditional lower bounds for data structures than for algorithms, it does not a priori seem completely
hopeless to prove a tight unconditional lower bound for OMV in the foreseeable future. Data
structure lower bounds are typically proved in the cell probe model of Yao [Yao81]. In this model,
computation is free of cost, and the complexity of a data structure is solely the amount of memory
it uses and the number of memory accesses it performs on answering a query. In particular, lower
bounds proved in the cell probe model apply to data structures developed in the standard word-
RAM model, regardless of which unit cost instructions are available. Quite surprisingly, Larsen
and Williams [LW17] showed that the performance of their OMV data structure greatly improves
if implemented in the cell probe model (i.e. if computation is free and we only charge for accessing
memory). Their cell probe data structure for matrix-vector multiplication over the Boolean semir-
ing has a query time of O(n7/4/

√
w), where w denotes the word size (typically w = Θ(lg n)). Thus

the OMV conjecture is false in the cell probe model!
But what is then the true complexity of matrix-vector multiplication in the cell probe model?

Is it the best one can hope for, namely O(n/w) time (the size of the output measured in words)
with O(n2) bits of space? Or does one have to pay a polynomial factor in either space or time?
While not matching the OMV conjecture, a polynomial lower bound (n1+Ω(1) query time with,
say, polynomial space) would still be immensely valuable as it would be the first polynomial lower
bound for any data structure problem and would be a huge leap forward in proving unconditional
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lower bounds. Furthermore, it would still imply non-trivial polynomial lower bounds for numerous
important data structure problems via the reductions already given in previous papers.

Our main contribution is to prove (near-)tight polynomial cell probe lower bounds for the class
of succinct matrix-vector multiplication data structures. Before formally presenting our results,
we survey the current barriers for proving cell probe lower bounds as this will help understand the
context of our results.

Cell Probe Lower Bound Barriers. Much effort has gone into developing techniques for
proving data structure lower bounds in the cell probe model. For static data structures (like
matrix-vector multiplication), the current strongest techniques [Lar12b] can prove lower bounds of
t = Ω(lgm/ lgα) where t is the query time, m is the number of distinct queries in the problem and
α is the space-overhead over linear. Thus the strongest previous lower bounds peak at t = Ω(lgm)
with linear space. For matrix-vector multiplication with an n× n matrix M , there are 2n possible
queries v, thus the strongest possible lower bound current techniques would allow us to prove is
t = Ω(n). This is unfortunately not much more than the trivial t = Ω(n/w) one would get for just
writing the output.

For dynamic data structures, i.e. data structures where one receives both updates to the
input data and queries, the current strongest techniques [Lar12a, WY16] give lower bounds of
t = Ω(lgm lg n/ lg2(uw)) where u is the update time, w the word-size and n the input size/number of
updates performed. This is about a lg n factor more than for static data structures, thus still leaves
us quite far from proving lower bounds close to the conditional ones. If we restrict ourselves to lower
bounds for decision problems, i.e. problems where the answer to a query is just one bit, the situation
is worse, with the strongest lower bounds being of the form t = Ω(lgm

√
lg n/ lg2(uw)) [LWY17].

Restricted Data Structures. For many data structure problems, the lower bounds one can
prove with previous techniques are in fact tight, see e.g. [FS89, PD06, Pǎt11, PT11, Lar12a, WY16].
However, as we can see from matrix-vector multiplication, there are also problems where the current
techniques are quite far from proving what we believe should be the right lower bound. This
has resulted in researchers proving a number of exciting lower bounds for special classes of data
structures. For instance, [CGL15] consider matrix-vector multiplication over a finite field Fp of

exponential size p = 2Θ(n). This results in more queries to the problem (pn = 2Θ(n2)) and thereby
allowed [CGL15] to prove a lower bound of t = Ω(n2/ lgα). Their lower bounds hold when the
word size w is big enough to store an element of the field, i.e. w = Θ(n) bits. An interesting
interpretation of the lower bound is that, as long as we do not take advantage of the size of the
field, any data structure is bound to use Ω(n2/ lgα) query time. Another line of work has focused
on non-adaptive dynamic data structures [BL15, BBK17, RR17]. These are data structures where
the memory locations read upon answering a query depend only on the query and not on the
contents of probed cells, i.e. the query algorithm may not branch based on what it reads.

Succinct Data Structures. The last class of data structures we consider are succinct data
structures. Succinct data structures, are data structures that use space very close to the information
theoretic minimum. More formally, we measure the space usage of a succinct data structure in terms
of its redundancy. A data structure has redundancy r bits if its space usage is Π + r bits where Π
is the information theoretic minimum for solving the problem and r = o(Π). Using succinct data
structures may be crucial in applications where memory is scarce. We typically distinguish two types
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of succinct data structures, namely systematic and non-systematic data structures. Systematic data
structures are more restricted than non-systematic ones, in the sense that they always store the
input in read-only memory and then build an r-bit data structure on the side. Non-systematic data
structures just use at most Π + r bits (and thus do not have to store the input in the format in
which it is given). Succinct data structures have been studied extensively for decades with many
fundamental and important upper and lower bounds, see e.g. [Jac88, GM07, Pǎt08, PV10]. The
current strongest technique typically allows one to prove lower bounds of the form tr = Ω(Π), see
e.g. [GM07, BL13].

The reason why we take special interest in succinct data structures, is that the matrix-vector
multiplication data structure by Larsen and Williams [LW17] in fact is a succinct data structure.
In addition to answering queries in just O(n7/4/

√
w) time, it is systematic and just stores the

input matrix as read-only, plus an additional r = O(n7/4√w) bits on the side. With the current
techniques for proving lower bounds for succinct data structures, we actually have hopes of proving
something stronger than the t = Ω(n) lower bounds we can hope for if we just consider general data
structures. Since Π = n2 for Boolean matrix-vector multiplication, it seems reasonable to hope for
something of the form tr = Ω(n2). Such lower bounds would shed interesting new light on this
central data structure problem and would bring us closer to understanding the true complexity of
matrix-vector multiplication.

1.1 Our Results

Our main results are near-matching upper and lower bounds for systematic succinct data structures
solving Boolean matrix-vector multiplication. On the upper bound side, we improve on the results
of Larsen and Williams and give a new randomized data structure with the following guarantees:

Theorem 1.1. Given any matrix M ∈ {0, 1}n×n there exists a systematic succinct data structure
R(M) consisting of r = O(n3/2(

√
w+ lgn√

w
)) additional bits, and a query algorithm such that, given

any v ∈ {0, 1}n it computes Mv over the Boolean semiring with probability ≥ 1 − 1/n by probing
at most O(n3/2√w lg n) cells of R(M) and M , where w is the word size.

Our new data structure thus improves the query time from O(n7/4/
√
w) to O(n3/2√w lg n) and

reduces the redundancy from O(n7/4√w) bits to O(n3/2(
√
w + lgn√

w
)).

We complement our new upper bound by a near-matching lower bound:

Theorem 1.2. Assume that for every matrix M ∈ {0, 1}n×n there exists a systematic succinct
data structure R = R(M) consisting of at most r = r(n) bits and there is a randomized algorithm
that given any v ∈ {0, 1}n computes Mv over the Boolean semiring with probability ≥ 1 − 1/n by
probing R and at most t = t(n) entries from M , Then for n ≤ r ≤ n2/4, t · r = Ω(n3); otherwise
for r < n, t = Ω(n2).

Our lower bound comes within polylogarithmic factors of the upper bound and is in fact higher
than what we could hope for with previous techniques (recall that previous techniques peak at
tr = Ω(Π)). The proof of our lower bound exploits the large number of possible queries and we
essentially manage to derive lower bounds of the form tr = Ω(Π lgm) = Ω(n3). Also note that
our lower bound allows the data structure to probe all of R, i.e. all the redundant bits, and still
it says that one has to read a lot from the matrix itself. Another exciting point is that our lower
bound shows that t = Ω(n2) for any r < n. Previous lower bounds of tr = Ω(Π) always degenerate
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linearly in r all the way down to r = 1. In contrast, our lower bounds say that one cannot do much
better (up to a constant factor) than reading all n2 entries of M if r < n.

Finally, we also study matrix-vector multiplication over F2. Here we prove lower bounds even
for the vector-matrix-vector multiplication where one is given a pair of vectors u, v ∈ Fn2 as queries
and must compute uᵀMv. This problem has just one bit in the output, making it more difficult to
prove lower bounds. Nonetheless, we prove the following lower bound:

Theorem 1.3. Assume that for every matrix M ∈ Fn×n2 there exists a data structure R = R(M)
consisting of at most r = r(n) bits and there is an algorithm that given u, v ∈ Fn2 computes uᵀMv
by probing R and at most t = t(n) entries from M , then for n ≤ r ≤ n2/4, t · r = Ω(n3/ lg n).
Moreover, if r < n then t = Ω(n2/ lg n).

We believe it is quite remarkable that we can get t = Ω̃(n2) lower bounds for any r < n for this
1-bit output problem. Since any uᵀMv query can be answered by just taking inner product between
u and Mv, as a corollary of the above we also get the same trade-off for matrix-vector problem over
F2. To the best of our knowledge, prior to this result there was no trade-off known for such a small
sized field. Our proof is completely information theoretic and based on an encoding argument. It
is worth noting that our proof technique can be generalized to give lower bound for the case when
the query algorithm may err with probability at most 1/64 (though any small constant probability
will work) on average over the random choices of M,u, v.

Finally, we also consider vector-matrix-vector multiplication over the Boolean semiring. Since
one can compute Mv by running the following sequence of n queries: (e(1))ᵀMv, · · · , (e(n))ᵀMv
where {e(i)}i∈[n] is the standard basis over {0, 1}n, from Theorem 1.2 we get a lower bound of
tr ≥ Ω(n2) for the Boolean uᵀMv problem. Instead of this simple reduction, even if we use the
much more elegant reduction in [HKNS15], we will not be able to derive any better lower bound
from the above theorem. However in Appendix B.2 we show how to extend the proof of Theorem 1.2
to get a t = Ω(n/ lg n) bound on the worst case number of probes into M for the Boolean vector-
matrix-vector problem with r ≤ n2/4.

2 Preliminaries

Notations. For k ∈ N, let [k] denote the set {1, 2, . . . , k}. For every v ∈ {0, 1}n and i ∈ [n], let
vi denote the i-th entry of v. All the logarithms we consider are over base 2. We use the notation
x ∈R X to denote that x is drawn uniformly at random from the domain X .

Information Theory. Throughout this paper we use several basic definitions and notations
from information theory. For further exposition readers may refer to any standard textbook on
information theory (e.g. [CT06]).

Let X,Y be discrete random variables on a common probability space. Let p(x), p(y), p(x, y) de-
note Pr[X = x],Pr[Y = y],Pr[X = x, Y = y] respectively. The entropy of X is defined as H(X) :=
−
∑

x p(x) lg p(x). The joint entropy of (X,Y ) is defined as H(X,Y ) := −
∑

(x,y) p(x, y) lg(p(x, y)).

The mutual information between X and Y is defined as I(X;Y ) :=
∑

(x,y) p(x, y) lg p(x,y)
p(x)p(y) and the

conditional entropy of Y given X is defined as H(Y | X) := H(Y )− I(X;Y ).

Proposition 2.1 (Chain Rule of Entropy). Then H(X,Y ) = H(X) +H(Y | X).
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The seminal work of Shannon [Sha48] establishes a connection between the entropy and the
expected length of an optimal code encoding a random variable.

Theorem 2.2 (Shannon’s Source Coding Theorem [Sha48]). Let X be a discrete random variable
over domain X . Then for every uniquely decodable code C : X → {0, 1}∗, E(|C(X)|) ≥ H(X).
Moreover, there exists a uniquely decodable code C : X → {0, 1}∗ such that E(|C(X)|) ≤ H(X) + 1.

3 Upper Bound for Boolean Matrix-Vector Problem

In this section we prove Theorem 1.1 by introducing an efficient cell probe data structure for solving
Boolean matrix-vector problem (with high probability). Let us first recall the theorem.

Theorem 1.1. Given any matrix M ∈ {0, 1}n×n there exists a data structure R consisting of
O(n3/2(

√
w + lgn√

w
)) bits, and a query algorithm such that, given v ∈ {0, 1}n it computes Mv with

high probability by probing at most O(n3/2√w lg n) cells of R and M , where w is the word size.

Preprocessing. In what follows, we present an algorithm that, given a matrix M ∈ {0, 1}n×n
constructs the data structure guaranteed in Theorem 1.1. Loosely speaking, the data structure
is composed of a list L consisting of pairs (I, J), and an encoding E of all the entries (i, j) ∈⋃

(I,J)∈L(I×J) such that M(i,j) = 1. The key step of the preprocessing algorithm is deciding which
set-pairs to add to the list. Informally, going over all possible pairs (I, J), the algorithm adds a pair
(I, J) to L, if there exists a large subset of I×J of entries not “covered” by the pairs already added
in the list, and such that the “uncovered” part of the submatrix MI,J contains “few” 1-entries
per-row. The algorithm is formally described as Algorithm 2 (see Appendix A.1).

The following claim implies the first part of Theorem 1.1.

Claim 3.1. |L|+ |E| ≤ O(n3/2(
√
w + lgn√

w
)).

Proof. Observe the conditions in line 4 of the algorithm. Due to condition 1, there will be at most
n1/2√w many different pairs in L and each pair requires only 2n bits (an indicator bit per row and
column) to encode it. Therefore |L| ≤ O(n3/2√w). Condition 2 asserts that the density of 1-entries
in the submatrix covered by all the subsets of rows and columns listed in L is at most 1

n1/2
√
w

and

hence the size of |E| ≤ O(n3/2 lg n/
√
w).

Answering queries. To prove the second part of the theorem, we give a query algorithm that
receives v ∈ {0, 1}n and gets access to M , as well as to L and E , and computes Mv with high
probability. Let J = {j ∈ [n] : vj = 1} be the set of columns of M which are relevant for computing
Mv, and let U :=

⋃
(I′,J ′)∈L(I ′×J ′) be the set of all matrix indices that appear in L. Starting with

the set I = [n] of all possible rows, the algorithm “prunes” I throughout the execution. Whenever
an index i is removed from I, the algorithm fixes ui ∈ {0, 1}. During the first step, the algorithm
goes over E . If for some i ∈ I, there exists j ∈ J such that (i, j) is encoded in E , the algorithm
sets ui = 1 and removes i from I. During the second step, for every i ∈ I the algorithm samples
2
√
n lg n entries (i, j) from the set ({i} × J) \ U . If M(i,j) = 1 for at least one of these entries, the

algorithm sets ui = 1 and removes i from I. During the third step, the algorithm examines the
set R := {(i, j) : i ∈ I , j ∈ J and (i, j) /∈ U} of remaining entries. If this set has more than
O(n3/2 lg n/

√
w) elements, the algorithm reports “failure”. Otherwise for every i ∈ I, the algorithm
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probes all entries (i, j) ∈ R. If M(i,j) = 1 for at least one of these entries, the algorithm sets ui = 1
and removes i from I. Otherwise, the algorithm sets ui = 0 and removes i from I. The algorithm
terminates either by reporting “failure” or by returning u = (u1, . . . , un). It is formally described
as Algorithm 3 (see Appendix A.2).

We will first show that the algorithm probes “few” bits. Since |L|+ |E| ≤ O(n3/2(
√
w + lgn√

w
)),

and since the algorithm samples at most 2
√
nw lg n entries from each row of the matrix, we conclude

the following.

Lemma 3.2. Algorithm 3 probes at most O(n3/2√w lg n) bits of M,L, E throughout the execution.

To finish the proof of Theorem 1.1 we show that with high probability, the algorithm returns
the right answer. To this end, fix v ∈ {0, 1}n, and consider an execution of Algorithm 3 on v.
Let I1, I2 be the set I after the first step of the algorithm (lines 3-5), and the second step of the
algorithm (lines 6-9) respectively. In these notations, R ← (I2 × J) \ U . Finally, let

I∗1 :=

{
i ∈ I1 : Pr

j∈J :(i,j)/∈U
[M(i,j) = 1] >

1√
nw

}
.

Lemma 3.3. Algorithm 3 fails with probability at most 1
n . Moreover, if the algorithm does not fail,

then it returns Mv = u.

Proof. Let F be the event I2 ⊆ I1 \ I∗1 . By definition of I∗1 we get that

Pr[F ] ≥ 1−
∑
i∈I∗1

Pr[∀j ∈ J ′′(i). M(i,j) = 0] ≥ 1−
∑
i∈I∗1

(
1− 1√

nw

)2
√
nw lgn

≥ 1− 1

n

Conditioned on F occurring, for every i ∈ I2, Prj∈J :(i,j)/∈U [M(i,j) = 1] ≤ 1√
nw

. Since I2 × J 6⊆ U ,

then (I2, J) /∈ L. By the construction of L we therefore conclude that |(I2 × J) \ U| < n3/2
√
w

, and

the algorithm does not fail. We will show next that if the algorithm does not fail, then for every
i ∈ [n], ui = [Mv]i. First note that if i /∈ I2, then the algorithm finds j ∈ J such that M(i,j) = 1,
and therefore ui = 1 = [Mv]i. Otherwise, assume i ∈ I2. Then for every j ∈ J , if (i, j) ∈ U , then
Mij = 0, since otherwise (i, j) would be encoded in E and removed during the first step of the
execution. Therefore, for every j ∈ J , if M(i,j) = 1 then (i, j) ∈ (I2 × J) \ U . Since the algorithm
does not fail, it goes over all entries in (I2 × J) \ U , and therefore [Mv]i = 1 if and only if there
exists j ∈ J such that M(i,j) = 1, which in turn implies ui = 1.

4 Matching Lower Bound on Boolean Matrix-Vector Problem

In this section we consider the Boolean Mv problem, where Mv = (∨j∈[n](M(i,j) ∧ vj))i∈[n], and
prove Theorem 1.2. The presented bound matches the upper bound shown in the last section up
to some (small) polylogarithmic factor. Although Theorem 1.2 allows the query algorithm to be
randomized that returns right answer with high probability, for the sake of simplicity we focus in
this section on the deterministic regime. The full proof of the theorem is deferred to Appendix B.1.

Theorem 4.1. Assume that for every matrix M ∈ {0, 1}n×n there exists a data structure R =
R(M) consisting of at most r = r(n) bits and there is an algorithm that given any v ∈ {0, 1}n
computes Mv by probing R and at most t = t(n) entries from M . Then for n ≤ r ≤ n2/4,
t · r = Ω(n3); otherwise for r < n, t = Ω(n2).
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To prove the theorem, we will define a family M ⊆ {0, 1}n×n of matrices, and a set of queries
v(1), . . . , v(4r/n) ∈ {0, 1}n such that the following holds for every M ∈ M. (1) The set of answers
to the queries Mv(1), . . . ,Mv(4r/n) hold a large amount of information on M ; and (2) one can
succinctly “encode” the execution of the query algorithm on the respective sequence of queries.
That is, there exists a short (in terms of t, r) string E such that given E , R, one can emulate the
query algorithm over the sequence of queries, and return the answers Mv(1), . . . ,Mv(4r/n).

For the rest of the section, we additionally assume n ≤ r ≤
√
n3/4. The proof for the case√

n3/4 ≤ r ≤ n2/4 is similar, and the differences will be discussed towards the end of the proof.

A Family of Input Matrices. LetM⊆ {0, 1}n×n be the family of all matrices M ∈ {0, 1}n×n
with the following property: If each row of M is divided into r/n contiguous blocks each containing
n2/r consecutive entries, then exactly one entry in each block is 1, and the rest are all 0s. Consider
a matrix M ∈M. Each of the r blocks in M contains exactly one 1-entry out of n2/r entries. The
following claim is thus implied from the definition of entropy.

Claim 4.2. Let M ∈RM. Then H(M) = r lg n2

r .

Encoding argument. Consider the following sequence of 4r/n vectors in {0, 1}n. For every

m ∈ [4r/n] define v(m) ∈ {0, 1}n such that v
(m)
j = 1 if and only if

j(mod n2

r ) ∈ {(m− 1)n3

4r2
+ 1, . . . ,

mn3

4r2
} .

Fix some M ∈M. When querying for Mv(1), . . . ,Mv(4r/n), the algorithm reads at most 4tr/n
bits from M . Observe that one can trivially encode all the probed entries using 4tr

n (2 lg n + 1)
bits by specifying the indices and the entry values. In turn, this encoding implies t ≥ Ω(n/ lg n).
However, by employing a subtler argument inspired by [BL13], we provide a much better bound on
t and r, which also implies the simpler one.

To this end, let b, k denote the total number of different entries and the number of different
1-entries read by the algorithm throughout this sequence of 4r/n many Mv queries respectively.
Then k ≤ b ≤ 4tr/n. Let B be the sequence of b different entries probed by the query algorithm,
when queried for Mv(1), . . . ,Mv(4r/n), in the order they are probed. That is, B : [b] ↪→ [n] × [n]
is injective. Let K := {j ∈ [b] : MB(j) = 1} ⊆ [b]. Define E to be the bit-string composed of the
three following sub-strings. The first lg(4tr/n) bits of E encode b. The next lg(4tr/n) bits encode
k. The remaining bits encode K as a subset of [b]. Since |K| = k, the following is straightforward.

Claim 4.3. E can be encoded such that |E| ≤ lg
(4tr/n

k

)
+ 2 lg(4tr/n).

Next, we show that E and R hold a “large amount” of information of M .

Lemma 4.4. The bit-string E encodes the subset of k 1-entries among all the entries probed.
Furthermore, given access to E and R one can answer all the queries Mv(1), . . . ,Mv(4r/n).

Proof. First note, that given E , one can directly decode b, k andK. We next show an emulation algo-
rithm that, given access to R, b, k,K finds the k 1-entries in question, and moreover, answers all the
queries Mv(1), . . . ,Mv(4r/n). The algorithm emulates the query algorithm for Mv(1), . . . ,Mv(4r/n).
Whenever the query algorithm probes a matrix entry, the emulation algorithm feeds it with an an-
swer as follows. If the entry has been previously probed during the execution, the query algorithm
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is fed with the same answer. Otherwise, the answer is determined to be 1 or 0 by whether the
index of the matrix entry in the sequence of probes is in K or not respectively, and the answer is
stored for later probes. The algorithm is formally described as Algorithm 1.

1: let j ← 1.
2: let Balg = ∅.
3: for i = 1, 2, . . . , 4r/n do
4: run the query algorithm for Mv(i)

5: whenever the query algorithm probes a matrix entry (p, q) ∈ [n]× [n]
6: if there exists j0 < j such that Balg[j0] = (p, q) then
7: `← j0
8: else
9: Balg[j]← (p, q), `← j and j ← j + 1.

10: if ` ∈ K then
11: feed the query algorithm with M(p,q) = 1.
12: else
13: feed the query algorithm with M(p,q) = 0.

Algorithm 1: Emulating a Sequence of Queries

To prove the lemma, it is enough to show that the emulation algorithm always feeds the query
algorithm with the correct answer. Denote the sequence of entry probes (with repetitions) per-

formed by the query algorithm by {(pm, qm)}4tr/nm=1 (we may assume for simplicity that the query
algorithm performs exactly t entry probes for each query). The crux of the argument is that for
all j ∈ [b], Balg[j] = B(j). We prove the claim by induction on m. Clearly, during the first probe,
j = 1 and therefore the condition in line 6 of Algorithm 1 is false. Therefore the algorithm sets
Balg[1] to be (p1, q1), which equals B(1). Moreover, the emulation algorithm answers 1 if and only
if 1 ∈ K, which occurs if and only if M(p1,q1) = 1. Assuming correctness for all m′ < m, we will

prove correctness for m. If there exists j0 < j such that Balg[j0] = (pm, qm), then this entry probe
has already been answered correctly by the induction hypothesis. Since the emulation algorithm
gives the same answer as before, the answer is the correct one. Otherwise, this entry has not been
probed yet, and therefore B−1((pm, qm)) = j. The emulation algorithm then answers 1 if and only
if j ∈ K, which happens if and only if M(pm,qm) = 1. Therefore the emulation algorithm always
gives the correct answer, thus finding the correct set of k 1-entries and answering all the queries
Mv(1), . . . ,Mv(4r/n).

The next lemma states that, in addition to learning the k 1-entries of M , by answering all the
queries Mv(1), . . . ,Mv(4r/n), we can learn a lot of information about the other blocks of M .

Lemma 4.5. Let M ∈RM. Then H(M |R, E) ≤ (r − k) lg n2

4r .

Proof. By Lemma 4.4, given access to only E and R, we can answer Mv(1), . . . ,Mv(4r/n), thus
finding k many 1-entries of M . Moreover, for each block in M , the algorithm finds at least 3n2/4r
many 0-entries.

By emulating the query algorithm for Mv(1), . . . ,Mv(4r/n), an algorithm can conclude from E
and R the exact locations of the k many 1-entries. Next, let i ∈ [n] and let m ∈ [4r/n]. Note that
if [Mv(m)]i = 0, then for each block in the i-th row of M , all the entries corresponding to 1-entries
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in v(m) must be 0. Since there are exactly n3/4r2 such entries, and since [Mv(m)]i = 1 for at most

r/n values of m, the algorithm learns at least 3r
n ·

n3

4r2
= 3n2

4r 0-entries in each block of M . Now the
lemma follows from the Shannon’s source coding theorem.

We now turn to finish the proof of Theorem 4.1.

Proof of Theorem 4.1. First observe that r + lg
(4tr/n

k

)
+ 2 lg(4tr/n) ≥ H(R, E) ≥ I(M ; (R, E)) =

H(M)−H(M |R, E). By Lemma 4.5, the right hand side is at least r lg n2

r −(r−k) lg n2

4r = 2r+k lg n2

4r .

Rearranging we get that lg
(4tr/n

k

)
+2 lg(4tr/n)−k lg n2

4r ≥ r. Since lg
(4tr/n

k

)
≤ k lg 4etr

kn , we get that

k lg 16etr2

n3k
+ 2 lg(4tr/n) ≥ r, and as for every x, α > 0, x lg α

x ≤ α/2 we have 8etr2

n3 + 2 lg(4tr/n) ≥ r,
or tr ≥ Ω(n3). This completes the proof for the case n ≤ r ≤

√
n3/4.

The proof for
√
n3/4 ≤ r ≤ n2/4 is similar. The only difference is that in this case we choose

4r/n vectors in a slightly different way. For every m ∈ [n2/r] and i ∈ [4r2/n3], we define a vector

v(m,i) by setting v
(m,i)
j = 1 if and only if j(mod n2

r ) = m and (i− 1)n4/4r2 + 1 ≤ j ≤ in4/4r2. The
proof then follows in an analogous manner.

For the second part of the theorem, i.e. when r < n, we use a simple padding argument. If
r < n, create a new data structure R′ by appending some arbitrary bits to R such that R′ contains
exactly n bits. Now from the previous argument it follows that t ≥ Ω(n2).

5 Lower Bound on Vector-Matrix-Vector Problem over F2

This section is devoted to the proof of Theorem 1.3. To this end, assume that given a matrix
M ∈ Fn×n2 , there exists a data structure R = R(M) consisting of at most r = r(n) bits, and there
exists an algorithm that, given u, v ∈ Fn2 returns uᵀMv while probing only R and at most t = t(n)
bits from M . Under these assumptions, Theorem 1.3 states the following.

Theorem 1.3. If n ≤ r ≤ n2

64 then t · r = Ω(n3/ lg n); otherwise for r < n, t = Ω(n2/ lg n).

To prove the theorem we will show that for most matrices M ∈ Fn2 , one can succinctly (in
terms of r, t) encode M . More precisely, by fixing some parameter B and dividing M into segments
of B consecutive rows, we will show that there is a single segment that contains a large amount
of information, and moreover, there exists a short (in terms of r, t) bit-string that encodes this
segment. It is worth noting that our proof technique can be generalized to give lower bound for the
case when the query algorithm may err with probability at most 1/64 on average over the choices
of M,u, v. However for the sake of simplicity here we focus only on the query algorithm that never
errs and we defer the comment on the generalization to Appendix C.3.

We start with introducing some notations. Given u ∈ Fn2 and a subset I ⊆ [n], let uI be the

projection of u onto F|I|2 . Similarly denote MI,J for any M ∈ Fn×n2 and subsets I, J ⊆ [n].
Let B be some parameter, the value of which will be fixed later. For every i ∈ [n/B], let

Ii := {(i − 1)B + 1, . . . , iB}, and let Mi := MIi,[n] be the i-th segment of M composed of all the

rows in Ii, and M−i := M([n]\Ii),[n]. Finally, for every u, v ∈ Fn2 , M ∈ Fn×n2 and i ∈ [n/B], let
ti(u,M, v) be the number of cell probes performed by the algorithm in Mi when queried for uᵀMv.

Our first claim shows that there exists an i∗ ∈ [n/B] such that for many vectors u ∈ Fn2 , the
expected number (over random M, v) of probes performed by the algorithm on Mi∗ is not too large.

Lemma 5.1. There exists i∗ ∈ [n/B] such that Pru[EM,v[ti∗(u,M, v)] ≤ 4tB
n ] ≥ 3

4 .
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Proof. First note that Ei[Eu,M,v[ti(u,M, v)]] = Eu,M,v[Ei[ti(u,M, v)]] ≤ t. Therefore there exists
i∗ ∈ [n/B] such that Eu,M,v[ti∗(u,M, v)] ≤ tB

n . The claim now follows from Markov’s inequality.

For every u ∈ Fn2 and i ∈ [n/B], denote Mi|u := uᵀIiMi. The following lemma shows that for
most vectors u ∈ Fn2 , Mi∗|u contains a large amount of information. One may note that the lemma
is true for all i ∈ [n/B], though for our purpose it suffices to consider i∗ only.

Lemma 5.2. Suppose M ∈R Fn×n2 . Then Pru[H(Mi∗|u | R,M−i∗) ≥ n− 8r
B ] ≥ 3

4 .

We provide the proof of the above lemma in Appendix C.1. Now the following is a simple
application of union bound.

Corollary 5.3. There exists u∗ ∈ Fn2 such that

H(Mi∗|u | R,M−i∗) ≥ n− 8r/B and EM,v[ti∗(u,M, v)] ≤ 4tB/n .

Let us defineM := {M ∈ Fn×n2 : Ev[ti∗(u∗,M, v)] ≤ 8tB
n } and then Markov’s inequality implies

the following.

Claim 5.4. PrM [M ∈M] ≥ 1
2 .

The next Lemma shows that whenever M ∈M, Mi∗|u∗ can be encoded using a few bits.

Lemma 5.5. If M ∈ M then Mi∗|u∗ can be encoded using 64tB
n lg n extra bits (in addition to R

and M−i∗).

Proof. Fix some M ∈ M. Then by Markov’s inequality, Prv[ti∗(u
∗,M, v) ≤ 16tB

n ] ≥ 1
2 . Therefore

there exists a set S of 16tB
n entries in Mi∗ (note that the submatrix Mi∗ is of size nB) such that by

probing only entries from M−i∗ , R and S the algorithm can answer at least

2n−1(
nB

16tB/n

) ≥ 2n−1(
enB

16tB/n

) 16tB
n

= 2n−1− 16tB
n

lg en2

16t ≥ 2n−
32tB
n

lgn

queries of the form (u∗)ᵀMv. The set S can be encoded using 16tB
n lg(n2) bits. Let V ⊆ Fn2 denote

the set of vectors such that for any v ∈ V the query (u∗)ᵀMv can be answered by probing entries
only from M−i∗ , R,S. Observe that V is a linear subspace of Fn2 , and dim(V ) ≥ n− 32tB

n lg n.

Next, fix an ordering v(1), . . . , v(2n) of Fn2 , and consider the string E of bits constructed as
follows. Starting with an empty string E , for every k ∈ [2n], if v(k) /∈ span

(
V ∪ {v(1), . . . , v(k−1)}

)
,

append (u∗)ᵀMv(k) to E . Since dim(V ) ≥ n− 32tB
n lg n, it follows that |E| ≤ 32tB

n lg n.
Now by probing only M−i∗ , R,S, E we can answer (u∗)ᵀMv for all v ∈ Fn2 , which in terms

suffices to retrieve the string Mi∗|u∗ .

Now we are ready to prove the main result of this section. We provide here the sketch of the
proof and defer the details to Appendix C.2.

Proof sketch of Theorem 1.3. We consider the term H(Mi∗|u∗ | R,M−i∗) which is at least n − 8r
B

by the choice of u∗ and then use the Shannon’s source coding theorem along with Lemma 5.5 and
Claim 5.4 to show that H(Mi∗|u∗ | R,M−i∗) ≤ 64tB

n lg n+ n
2 + 1.

Now for r ≥ n by substituting B = b32r
n c, we conclude that 2048tr

n2 lg n ≥ n
4 , and thus tr ≥

Ω(n3/ lg n).
For r < n we use the following simple padding argument. Append R with some arbitrary bits

so that the size (no. of bits) of the new data structure R′ becomes n. Now from the previous
argument it follows that t ≥ Ω(n2/ lg n), thus completing the proof.

10



References

[BBK17] J. Boninger, J. Brody, and O. Kephart. Non-adaptive data structure bounds for dynamic
predecessor search. Electronic Colloquium on Computational Complexity (ECCC), 24:50,
2017.

[BL13] K. Bringmann and K. G. Larsen. Succinct sampling from discrete distributions. In
Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC
’13. ACM, 2013.

[BL15] J. Brody and K. G. Larsen. Adapt or die: Polynomial lower bounds for non-adaptive
dynamic data structures. Theory of Computing, 11:471–489, 2015.

[CGL15] R. Clifford, A. Grønlund, and K. G. Larsen. New unconditional hardness results for
dynamic and online problems. In 56th Annual Symposium on Foundations of Computer
Science, 2015, pages 1089–1107, 2015.

[CT06] T. M. Cover and J. A. Thomas. Elements of information theory (2. ed.). Wiley, 2006.

[FS89] M. L. Fredman and M. E. Saks. The cell probe complexity of dynamic data structures.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages
345–354, 1989.

[GM07] A. Gál and P. B. Miltersen. The cell probe complexity of succinct data structures.
Theoretical Computer Science, 379:405–417, July 2007.

[GO95] A. Gajentaan and M. H. Overmars. On a class of O(N2) problems in computational
geometry. Comput. Geom. Theory Appl., 5(3):165–185, October 1995.

[HKNS15] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strength-
ening hardness for dynamic problems via the online matrix-vector multiplication con-
jecture. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, 2015, pages 21–30, 2015.

[IP01] R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Computer and System
Sciences, 62(2):367–375, March 2001.

[Jac88] G. J. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 1988.

[Lar12a] K. G. Larsen. The cell probe complexity of dynamic range counting. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, pages 85–94,
2012.

[Lar12b] K. G. Larsen. Higher cell probe lower bounds for evaluating polynomials. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, pages 293–301, 2012.

[LW17] K. G. Larsen and R. R. Williams. Faster online matrix-vector multiplication. In Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
2017, pages 2182–2189, 2017.

11



[LWY17] K. G. Larsen, O. Weinstein, and H. Yu. Crossing the logarithmic barrier for dynamic
boolean data structure lower bounds. CoRR, abs/1703.03575, 2017. Available from:
http://arxiv.org/abs/1703.03575.
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[PV10] M. Pǎtraşcu and E. Viola. Cell-probe lower bounds for succinct partial sums. In Proc.
21st ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 117–122, 2010.

[RR17] S. N. Ramamoorthy and A. Rao. Non-adaptive data structure lower bounds for me-
dian and predecessor search from sunflowers. Electronic Colloquium on Computational
Complexity (ECCC), 24:40, 2017.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell system technical journal,
27, 1948.

[WW10] V. V. Williams and R. Williams. Subcubic equivalences between path, matrix and tri-
angle problems. In 51st Annual IEEE Symposium on Foundations of Computer Science,
pages 645–654, 2010.

[WY16] O. Weinstein and H. Yu. Amortized dynamic cell-probe lower bounds from four-party
communication. In 57th Annual IEEE Symposium on Foundations of Computer Science,
pages 305–314, 2016.

[Yao81] A. C. Yao. Should tables be sorted? J. ACM, 28(3):615–628, 1981.

12

http://arxiv.org/abs/1703.03575


A Pseudocodes from Section 3

A.1 Pseudocode for the preprocessing algorithm

1: let L ← ∅.
2: for all (I, J) ∈ 2[n] × 2[n] do
3: let U :=

⋃
(I′,J ′)∈L(I ′ × J ′).

4: add (I, J) to L if all of the following conditions hold.

1. |(I × J) \ U| ≥ n3/2
√
w

;

2. ∀i ∈ I, Prj∈J :(i,j)/∈U [M(i,j) = 1] ≤ 1√
nw

.

5: let E be the list of all (i, j) ∈
⋃

(I,J)∈L(I × J) such that M(i,j) = 1.
6: return L, E

Algorithm 2: Preprocessing M

A.2 Pseudocode for the query algorithm

1: let I ← [n], J ← {j ∈ [n] : vj = 1}.
2: let U ←

⋃
(I′,J ′)∈L(I ′ × J ′).

3: for all (i, j) encoded in E do
4: if i ∈ I and j ∈ J then
5: set ui = 1 and let I ← I \ {i}.
6: for all i ∈ I do
7: sample uniformly (with repetition) 2

√
nw lg n entries from {j ∈ J : (i, j) /∈ U}.

denote the set of sampled entries J ′′(i).
8: if there exists j ∈ J ′′(i) such that M(i,j) = 1 then
9: set ui ← 1 and let I ← I \ {i}.

10: let R ← (I × J) \ U .
11: if |R| ≥ n3/2/

√
w then

12: return “failure”
13: for all i ∈ I do
14: if there exists j ∈ J such that (i, j) ∈ R and M(i,j) = 1 then
15: set ui ← 1 and let I ← I \ {i}.
16: else
17: set ui ← 0 and let I ← I \ {i}.
18: return u = (u1, . . . , un)

Algorithm 3: Querying Mv
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B Extensions for Theorem 1.2

B.1 Lower Bound for Randomized Query Algorithms

In this section we will extend the lower bound results shown previously to the case of randomized
query algorithms, thus completing the proof of Theorem 1.2. Assume that given a matrix M ∈
{0, 1}n×n there exists a data structure R = R(M) consisting of at most r = r(n) bits and there
exists a randomized algorithm that, given v ∈ {0, 1}n returns Mv with probability ≥ 1 − 1

n by
probing R and at most t = t(n) entries from M .

Theorem 1.2. If n ≤ r ≤ n2/4, then t · r ≥ Ω(n3); otherwise for r < n, t ≥ Ω(n2).

The proof will employ similar arguments to the proof of Theorem 4.1. We will therefore focus
only on the case n ≤ r ≤

√
n3/4. Consider the vectors v(1), . . . , v(4r/n) from the proof of The-

orem 4.1. Fix some M ∈ M, and run the query algorithm on Mv(1), . . . ,Mv(4r/n). For every
j ∈ [4r/n], denote the string of random bits used by the algorithm when queried for Mv(j) by xj ,
and let X :=

〈
x1, . . . , x4r/n

〉
. Let F denote the indicator for the event that the query algorithm

failed answering at least one of the queries. Applying union bound, p := Pr[F = 1] ≤ 1/3. Let
B, b,K, k be as in the proof of Theorem 4.1. If F = 0, we encode the string E the same way as in
the previous proof and append 0 as its first bit, whereas if F = 1 we let E be an encoding of M and
append 1 as its first bit. In a similar manner to the one presented in Algorithm 1, given R, E and
X, one can emulate the sequence of queries Mv(1), . . . ,Mv(4r/n) performed by the query algorithm,
while using x1, . . . , x4r/n as random strings respectively. By computing H(F,M | R, E , X) in two
different ways we get the following.

H(F,M | R, E , X) = H(M | R, E , X) +H(F |M,R, E , X)

= H(F | R, E , X) +H(M | F,R, E , X)

Note that H(F | R, E , X) ≤ H(F ) < 1 and H(F |M,R, E , X) = 0, since given E one learns also F .
Rearranging we get that

H(M | R, E , X) ≤ 1 +H(M | F,R, E , X) .

H(M | R, E , X) ≤ 1 +H(M | F,R, E , X)

= 1 + p ·H(M | F = 1, R, E , X) + (1− p) ·H(M | F = 0, R, E , X)

≤ 1 + 0 + (1− p)(r − k) lg n2

4r

(1)

where the last inequality follows from the same arguments as in Lemma 4.5.

Proof of Theorem 1.2. First observe that from the Shannon’s source coding theorem,

H(E) ≤ (1− p)
(

lg

(
4tr/n

k

)
+ 2 lg

4tr

n

)
+ pr lg

n2

r

and hence

r + (1− p)
(

lg

(
4tr/n

k

)
+ 2 lg

4tr

n

)
+ pr lg

n2

r
= H(R) +H(E)

≥ H(R, E)

≥ I((M,X); (R, E)) = H(M,X)−H(M,X|R, E) .
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Since M,X are independent, we get that the r.h.s is at least H(M) −H(M | R, E , X). From (1)
we get that this is at least

r lg n2

r −
(

1 + (1− p)(r − k) lg n2

4r

)
= pr lg n2

r + 2(1− p)r + (1− p)k lg n2

4r − 1 .

Rearranging we get that

lg

(
4tr/n

k

)
+ 2 lg(4tr/n)− k lg n2

4r ≥ 2r − r/(1− p)− 1/(1− p) ≥ r/3

By the same arguments as in the proof of Theorem 4.1, we get that 8etr2

n3 + 2 lg(4tr/n) ≥ r/3, or
tr ≥ Ω(n3).

B.2 Lower Bounding Boolean Vector-Matrix-Vector Problem

In this section we extend the technique from Section 4 to get a lower bound on Boolean uᵀMv
problem, albeit a weaker one. Assume that given a matrix M ∈ {0, 1}n×n, there exists a data
structure R = R(M) containing at most r = r(n) bits, and there exists an algorithm that, given
u, v ∈ {0, 1}n returns uᵀMv = (∨i,j∈[n](M(i,j) ∧ui ∧ vj)) while probing only R and at most t = t(n)
bits from M .

Let us first observe an easy corollary of Theorem 1.2. Since answer of each Mv query can be
derived from the following sequence of n queries: (e(1))ᵀMv, · · · , (e(n))ᵀMv where {e(i)}i∈[n] is the
standard basis over {0, 1}n, we get an lower bound of tr ≥ Ω(n2) for the Boolean uᵀMv problem
for n ≤ r ≤ n2/4. In this section we will prove a better lower bound for Boolean uᵀMv problem as
stated in the following theorem.

Theorem B.1. If r ≤ n2/4 then t ≥ Ω(n/ lg n).

We prove the above theorem for n ≤ r ≤
√
n3/4. The proof extends for all r < n2/4 by

arguments similar to those used in the proof of Theorem 4.1. First note, that when comparing
with the matrix-vector problem, the main caveat of the vector-matrix-vector problem is that each
query results in exactly one bit, rather than n bits. Loosely speaking, we have observed that
by querying Mv(1), . . . ,Mv(4r/n), where v(1), . . . , v(4r/n) are defined as before, we gain a lot of
information about M . This approach seems less beneficial when concerning vector-matrix-vector
queries. More specifically, it seems that we need n times more queries to get the same amount of
information. By using the trivial argument demonstrated right before Theorem B.1 we can not get
our claimed bound. A more subtle observation into the proof of Lemma 4.4 shows that we can get
a lot of information when the answer to the query is 0. Particularly, assume uᵀMv = 0. Then we
know that whenever ui = vj = 1, M(i,j) = 0. In what follows, we will need the following notation.

Notation 1. Let x ∈ {0, 1}n. Suppose x ∈ {0, 1}n denotes the complement of x. That is, xj = 1
if and only if xj = 0 for every j ∈ [n].

Clearly, xᵀx = 0, and moreover, x is the unique heaviest vector (in terms of Hamming weight)
satisfying this property.

Lemma B.2. There exists a bit-string E = E(M) such that |E| ≤ 4tr
n (2 lg n + 1) and given access

to E and R one can get the answers of Mv(1), . . . ,Mv(4r/n).
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1: let u(∗) ← 0n.
2: for all u ∈ {0, 1}n do
3: run the query algorithm for uᵀMv(j)

4: whenever the query algorithm probes a matrix entry (p, q) ∈ [n]× [n]
5: if (p, q) is encoded in E then
6: feed the query algorithm with the corresponding bit in E as M(p,q).
7: else
8: stop the query algorithm.
9: if the query algorithm outputs uᵀMv(j) = 0 and wt(u) > wt(u(∗)) then

10: u(∗) ← u.
11: return u(∗)

Algorithm 4: Finding u(j)

Proof. For every j ∈ [4r/n], let u(j) := Mv(j). Take E to be the encoding of the list of all entries
of M probed throughout the sequence of queries (u(1))ᵀMv(1), · · · , (u(4r/n))ᵀMv(4r/n), in the order
they are probed. For simplicity, we may assume that the query algorithm probes exactly t matrix
entries for each query. For each entry we encode it’s location in the matrix (using 2 lg n bits),
and its value (one more bit). Then E is composed of 4r/n “segments” of t entries each. Clearly
|E| = 4tr

n (2 lg n+1). Let j ∈ [4r/n]. Now we provide an emulation algorithm that, given access to E
and R, finds u(j), and thus finds Mv(j) = u(j). The emulation algorithm starts by setting u(∗) to be
all 0 vector and goes over all u ∈ {0, 1}n and emulates the query algorithm for uᵀMv(j). Whenever
the query algorithm probes an entry of M , the emulation algorithm looks for the encoding of this
entry in E . If it finds this entry, it feeds it to the query algorithm. Otherwise, it breaks and continues
to the next u ∈ {0, 1}n. If the query algorithm terminates, and the answer is 0, then the algorithm
compares the Hamming weight of u (denoted as wt(u)) with that of u(∗). If wt(u) > wt(u(∗)) the
algorithm replaces u(∗) with u. The algorithm is formally given as Algorithm 4.

It is straightforward that u(∗) is the unique u ∈ {0, 1}n that satisfies the following.

1. Every entry probed by the query algorithm when querying uᵀMv(j) is encoded in E (thus
given access to E , R, one can answer uᵀMv(j));

2. uᵀMv(j) = 0; and

3. u is of maximal Hamming weight.

Therefore, u(∗) = u(j).

We can now prove Theorem B.1 using similar arguments to those in the proof of Theorem 4.1.
Suppose while probing entries of the matrix M we read total k 1-entries. Then by following the
argument of the proof of Theorem 4.1, we get that

r + 4tr
n (2 lg n+ 1) ≥ H(R, E) ≥ H(M)−H(M |R, E)

≥ 2r + k lg n2

4r ≥ 2r.

Now by rearranging the terms, we get that t ≥ Ω(n/ lg n). �
Using the argument similar to that in Appendix B.1 we can also extend Theorem B.1 to ran-

domized query algorithms.

16



Theorem B.3. Assume that for every matrix M ∈ {0, 1}n×n there exists a data structure R
consisting of at most r = r(n) bits and a query algorithm that can answer any uᵀMv query with
error probability at most 1/n by probing R and at most t = t(n) entries of M . Then for r ≤ n2/4,
t ≥ Ω(n/ lg n).

Note: Though in both Theorem 1.2 and Theorem B.3 we consider the error probability to be at
most 1/n, one can easily generalize the results for error probability to be any 1/n < ε < 1. However
we will lose extra lg n factor in the lower bound. More specifically, given any randomized algorithm
A with probability of error ε, we can boost the success probability to (1 − 1/n) by repeating A
O(lg n/ lg(1

ε )) times and taking the majority vote. Now let us denote the new algorithm to be B.
Observe that B probes at most O(t lg n/ lg(1

ε )) cells of the matrix and thus we will lose O(lg n/ lg(1
ε ))

factor in all the bounds given in Theorem 1.2 and Theorem B.3.

C Missing details from Section 5

C.1 Proof of Lemma 5.2

Proof of Lemma 5.2. Let U = {u ∈ Fn2 : H(Mi∗|u | R,M−i∗) < n − 8r
B }, and let u(1), . . . , u(`) ∈ U

be a sequence in U such that u
(1)
Ii∗
, . . . , u

(`)
Ii∗

are linearly independent over F|Ii∗ |2 . Then the random
variables Mi∗|u(1) , . . . ,Mi∗|u(`) ,M−i∗ are independent. To see this, first note that by the definition
,M−i∗ is independent of Mi∗ and hence of Mi∗|u(1) , . . . ,Mi∗|u(`) . Next observe that for any k ∈ [`]

and b ∈ Fn2 , PrM [Mi∗|u(k) = b] = 1/2n. Now since the vectors u(1), . . . , u(`) are linearly independent,

for any b(1), . . . , b(`) ∈ Fn2 , PrM [for all k, Mi∗|u(k) = b(k)] = (1/2n)`. Therefore

r ≥ H(R) ≥ I(R;Mi∗|u(1) , . . . ,Mi∗|u(`) |M−i∗)
= H(Mi∗|u(1) , . . . ,Mi∗|u(`) |M−i∗)−H(Mi∗|u(1) , . . . ,Mi∗|u(`) | R,M−i∗)

≥
∑̀
j=1

(
H(Mi∗|u(j) |M−i∗)−H(Mi∗|u(j) | R,M−i∗)

)

≥
∑̀
j=1

(
n−

(
n− 8r

B

))
=

8r`

B
,

thus ` ≤ B/8 implying |{uIi∗ : u ∈ U}| ≤ 2B/8 and we get that |U | ≤ 2n−2.

C.2 Completing the proof of Theorem 1.3

Proof of Theorem 1.3. We prove the theorem by showing that n− 8r
B ≤

64tB
n lg n+ n

2 + 1. Setting
B = b32r

n c then implies the theorem.
To this end, let 1M∈M denote the indicator random variable for the event M ∈M. By definition

of u∗ we have

n− 8r

B
≤ H(Mi∗|u∗ | R,M−i∗) ≤ H(Mi∗|u∗ ,1M∈M | R,M−i∗) . (2)
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Applying the chain rule of entropy we get that

H(1M∈M,Mi∗|u∗ | R,M−i∗) = H(1M∈M | R,M−i∗) +H(Mi∗|u∗ | R,M−i∗ ,1M∈M)

≤ H(1M∈M) +H(Mi∗|u∗ | R,M−i∗ ,1M∈M) .
(3)

Clearly, H(1M∈M) ≤ 1. Next we bound H(Mi∗|u∗ | R,M−i∗ ,1M∈M) as follows.

H(Mi∗|u∗ | R,M−i∗ ,1M∈M) =

= H(Mi∗|u∗ | R,M−i∗ ,1M∈M = 1) · Pr[1M∈M = 1] +H(Mi∗|u∗ | R,M−i∗ ,1M∈M = 0) · Pr[1M∈M = 0].

(4)

Conditioned on 1M∈M = 1, Lemma 5.5 guarantees that we can encode Mi∗|u∗ using at most
64tB
n lg n bits in addition to R,M−i∗ . Therefore by the Shannon’s source coding theorem

H(Mi∗|u∗ | R,M−i∗ ,1M∈M = 1) · Pr[1M∈M = 1] ≤ 64tB

n
lg n · 1 .

Claim 5.4 implies that

H(Mi∗|u∗ | R,M−i∗ ,1M∈M = 0) · Pr[1M∈M = 0] ≤ n · 1

2
.

Plugging the last two inequalities into (4) we get that H(Mi∗|u∗ | R,M−i∗ ,1M∈M) ≤ 64tB
n lg n+ n

2 .

Plugging this into (2), (3) we get that n − 8r
B ≤

64tB
n lg n + n

2 + 1. Now for r ≥ n by substituting
B = b32r

n c, we conclude that 2048tr
n2 lg n ≥ n

4 , and thus tr ≥ Ω(n3/ lg n).
For r < n we use the following simple padding argument. Append R with some arbitrary bits

so that the size (no. of bits) of the new data structure R′ becomes n. Now from the previous
argument it follows that t ≥ Ω(n2/ lg n), thus completing the proof.

C.3 Extension of Theorem 1.3

Comment on query algorithms with error. In Theorem 1.3 we consider query algorithms
those always output the correct answer and provide lower bound. It is worth noting that our
proof technique can be generalized to give lower bound for the case when the query algorithm may
err with probability at most 1/64 (though any small constant probability will work) on average
over the choices of M,u, v. We need to modify the proof a bit by considering the event that the
algorithm (say A) errs, i.e., A(u,M, v) 6= uᵀMv. From Pru,M,v[A(u,M, v) 6= uᵀMv] ≤ 1/64, using
Markov’s inequality we can deduce that Pru[PrM,v[A(u,M, v) 6= uᵀMv] ≥ 1/16] ≤ 1/4. Now we
choose u∗ that satisfies Corollary 5.3 and PrM,v[A(u∗,M, v) 6= (u∗)ᵀMv] ≤ 1/16. The existence
of such a u∗ follows from simple union bound. Similarly PrM [Prv[A(u∗,M, v) 6= (u∗)ᵀMv] ≥
1/4] ≤ 1/4. Now define M := {M ∈ Fn×n2 : Ev[ti∗(u∗,M, v)] ≤ 16tB

n } and hence PrM [M ∈
M and Prv[A(u∗,M, v) 6= (u∗)ᵀMv] ≤ 1/4] ≥ 1/2. Next we modify Lemma 5.5 by saying that for
any M ∈M,

Pr
v

[A(u∗,M, v) = (u∗)ᵀMv and ti∗(u
∗,M, v) ≤ 64tB

n
] ≥ 1

2
.

The remaining argument will be the same and we will get similar lower bound. One can further
extend this lower bound result to randomized query algorithms that given u, v output correct answer
with high probability, by using the technique described in Appendix B.1.
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