
TIGHT LOWER BOUNDS FOR THE ONLINE LABELING PROBLEM∗

JAN BULÁNEK† , MICHAL KOUCKÝ‡ , AND MICHAEL SAKS§

Abstract. We consider the file maintenance problem (also called the online labeling problem) in
which n integer items from the set {1, . . . , r} are to be stored in an array of size m ≥ n. The items
are presented sequentially in an arbitrary order, and must be stored in the array in sorted order (but
not necessarily in consecutive locations in the array). Each new item must be stored in the array
before the next item is received. If r ≤ m then we can simply store item j in location j but if r > m
then we may have to shift the location of stored items to make space for a newly arrived item. The
algorithm is charged each time an item is stored in the array, or moved to a new location. The goal
is to minimize the total number of moves the algorithm has to do. This problem is nontrivial for
n ≤ m < r.

In the case that m = Cn for some C > 1, algorithms are known that solve the problem with cost
O(n log2(n)) (independent of r)[15, 19, 3]. For the case m = n, algorithms with cost O(n log3(n))
were given [20, 7]. In this paper we prove lower bounds that show that these algorithms are optimal,
up to constant factors. Previously, a lower bound of Ω(n log2(n)) was known for the restricted class
of smooth algorithms [11, 20].

1. Introduction.

1.1. The file maintenance problem. In the file maintenance problem n inte-
ger items from the set {1, . . . , r} are to be stored in an array of size m ≥ n. The items
are presented sequentially in an arbitrary order, and must be stored in the array in
sorted order (but not necessarily in consecutive locations). Each new item must be
stored in the array before the next item is received. If r ≤ m then we can simply store
item j in location j but if r > m then we may have to shift the location of stored
items to make space for a newly arrived item. The algorithm is charged each time an
item is stored in the array, or moved to a new location. The goal is to minimize the
total number of such moves. This problem is nontrivial when n ≤ m < r.

An alternate formulation is the online labeling problem in which arriving items
must be assigned an integer label in the range [1,m] so that the order on the labels
agrees with the numerical ordering on the items. The algorithm pays one each time an
item is labeled or relabeled. Typically in the literature the file maintenance problem
refers to the small space regime in which m = O(n). This case is the focus of this
paper.

Itai et al. [15] were the first to design an algorithm that maintains an array of size
m = O(n) making only O(n log2(n)) moves in total, i.e., the amortized cost per item
is O(log2(n)) moves. Willard [19] improved this to an algorithm with worst-case cost
O(log2(n)) moves per item, and his result was simplified by Bender et al. [3]. Dietz
[10] showed that for array size m = n1+ε, ε > 0 constant the problem can be solved

∗A preliminary version of this paper appeared in the Proceedings of the ACM Symposium on
Theory of Computing, 2012.
†Department of Theoretical Computer Science and Mathematical Logic, Charles University,

Prague. (jan.bulanek@gmail.com). Partially supported by GAUK project no. 344711 and grant
P202/10/0854 of GA ČR.
‡Computer Science Institute of Charles University, Prague. (koucky@iuuk.mff.cuni.cz). Part of

the work was done while visiting the University of Toronto, partially supported by NSERC, and
while visiting Aarhus University, partially supported by the Sino-Danish Center CTIC. Partially
supported by GA ČR P202/10/0854. The research leading to these results has received funding
from the European Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 616787.
§Department of Mathematics, Rutgers University. (saks@math.rutgers.edu). Supported in part

by NSF under grants CCF-0832787 and CCF-1218711, and by a sabbatical at Princeton Univesity.

1

with O(n log(n)) moves. For the case that the array size m is exactly the number of
items n, Zhang [20] gave an algorithm that achieves a (surprising) amortized upper
bound of O(log3(n)) moves per item; this result was simplified in [7].

In recent years there has been renewed interest in this problem because of its
applications in the design of cache-oblivious algorithms, e.g., design of cache-oblivious
B-trees [4, 8] and cache-oblivious dynamic dictionaries [5].

1.2. Our results. In this paper we prove an Ω(n log2(n)) lower bound on the
number of moves for inserting n items into an array of size m = O(n) for any online
labeling algorithm, matching the known upper bound up to constant factors. For
the case of array size m ≤ n + n1−ε (where ε is a positive constant) we prove the
asymptotically optimal lower bound Ω(n log3(n)).

The above-mentioned upper bounds work for any input domain size (arbitrary r).
As noted above, if r ≤ m then there is a trivial solution of cost n. A natural question
(which has not, to our knowledge, been addressed previously in the literature) is
whether it might be possible to improve the O(n log2(n)) upper bound if r is much
larger than m but still restricted. Our lower bounds rule out such an improvement:
we obtain an Ω(n log2(n)) lower bound provided that r is at least a sufficiently large
constant times m.

Our lower bounds extend to slightly superlinear array size. For example, in the
case m = O(n log1−ε(n)) our results give an Ω(n log1+ε/3(n)) lower bound (provided
that the range size r is large enough).

Our bound is the first lower bound for general algorithms in the small space
regime. Previously Dietz et al. [11, 20] proved a Ω(n log2(n)) lower bound for the
restricted case of so-called smooth algorithms.

Recently, Emek and Korman [14] showed that online labeling could be reduced
to the Distributed Controller problem (introduced in [1]), in which nodes in an asyn-
chronous distributed network receive requests from outside the network for units of a
limited resource, and issue usage permits in response to the requests. The number of
permits issued may not exceed the total resource supply, and the protocol must also
ensure that no request is declined until the number of permits committed exceeds a
1 − ε fraction of the supply. Protocols with message complexity O(n log2(n)) on n-
node networks are known (e.g. [1, 17]), and Emek and Korman noted that, using their
reduction, a matching Ω(n log2(n)) lower bound would follow from an Ω(n log2(n))
lower bound on the online labeling problem. Our paper provides this lower bound so
the known protocols are asymptotically optimal.

1.3. Previous and subsequent lower bounds. Lower bounds for this prob-
lem appeared previously in a paper of Dietz and Zhang [13] and papers of Dietz,
Seiferas and Zhang [11, 12]. The first two ([13, 11], also available in Zhang’s Ph.D.
thesis [20]) prove lower bounds for a restricted class of algorithms, called smooth al-
gorithms, which are limited to redistributing items in a uniform fashion. For smooth
algorithms, they proved an Ω(n log2(n)) lower bound for the small space regime (lin-
ear array size). The restriction to smooth algorithms is significant since Bender and
Hu [6] give a non-smooth algorithm which performs asymptotically better on common
input distribution while keeping the worst case time guarantees in amortized settings.
The lower bound for the small space regime of smooth algorithms is obtained by con-
sidering the trivial adversary that inserts items in decreasing order. This lower bound
clearly relies heavily on the smoothness of the algorithm; a non-smooth algorithm
can easily handle the given adversary with constant amortized time per item. It was

2

not known whether a non-smooth algorithm could give a significant advantage over a
smooth algorithm on general inputs. Our lower bound rules this out.

There is some confusion in the literature about these lower bounds; the fact that
they apply only to smooth algorithms is sometimes not mentioned (e.g., [7]), creating
the impression that the general lower bound result was already established.

The present paper deals only with linear array size and does not address the
polynomial array size regime where m = nC for some constant C > 1. For this
range of space there is an Ω(n log(n)) upper bound, and Dietz et al. [12] proved
a lower bound that matches this asymptotically. In recent work (using techniques
quite different from the present paper), we (together with M. Babka and V. Čunát)
clarified and simplified the bounds from [12] and extended their range of applicability
to superpolynomial array size. In subsequent work, we showed that the Ω(n log(n))
lower bound applies in the polynomial array size regime even if randomization is
allowed [9].

While there are some common ideas, the present paper on linear array size is quite
separate from the work on polynomial array size. In particular, the main technical
issues that need to be resolved in the papers are different (though it is certainly
possible that someone may find a way to unify them).

The main open problem left open by this paper is whether our Ω(n log2(n)) lower
bound for linear array size can be extended to apply to randomized algorithms.

1.4. Proof techniques. We will describe our results in the language of the file
maintenance problem, in which arriving integer items are placed in an array, rather
than the online labeling problem. Our main lemma (Lemma 2.3) gives a lower bound
on the cost of inserting n additional items into an array that is already partially full
with n0 ≥ n items. The Ω(n log2(n)) lower bound for file maintenance for the case
that m = Θ(n) is obtained by applying this lemma to bound the cost of inserting
the second half of the items given that the first half of the items are initially in the
array. The Ω(log3(n)) lower bound for an array of size m ≤ n+ n1−ε is obtained by
iterative application of the main lemma Θ(log n) times where we initially start with
half of the items in the array, and in each iteration we insert half of the remaining
items. The main lemma shows that each iteration costs Θ(n log2(n)). This parallels
the structure of the iterative algorithm of [20] that gave a matching upper bound.

The general idea for proving the lemma (which builds heavily on the above-
mentioned prior work [11, 20, 12]) is to build an adversary that forces the maintenance
algorithm to repeatedly move many items. To do this, at each step the adversary
identifies a densely populated (crowded) segment (consecutive sequence of locations)
of the array and inserts a new item whose value lies between two items already stored
in this crowded segment. Repeated insertions eventually force the algorithm to move
many items.

Deriving a lower bound based on this idea has various complications. The natural
measure of crowding of a segment is the ratio of stored items to the size of the seg-
ment. Whether a particular portion of the array is viewed as crowded may depend on
the scale of segments being considered; there may be a relatively small segment that
is very crowded, but larger segments containing it are uncrowded. To force the algo-
rithm to work hard, we want to identify a segment that is crowded at many different
scales. This suggests identifying a long nested sequence of segments (a segment chain)
covering a wide range of scales, such that each is crowded. The hope is that inserting
many items having value in the middle of the range of items stored in the smallest
nested segment will eventually force the algorithm to do costly rearrangements at

3

many different scales.

A straightforward way to select such segment chain is to start with the entire array,
and successively select a subsegment having the highest density among subsegments
of, say, half the size of the current segment. This results in a chain of increasing
density, but this alone does not seem to be enough to give a good lower bound.
The difficulty is that each successive selected subsegments may be chosen near the
boundary of the predecessor segment. In such a situation, the algorithm may be
able to relieve overcrowding by relatively inexpensive rearrangements that cross the
boundary of many segments in the sequence into uncrowded segments.

To prevent the algorithm from “escaping” in this way, the adversary would like to
select each subsegment in the sequence so that it has a significant buffer to its left and
right within the predecessor segment, where each buffer contains a constant fraction
of the items in the predecessor segment. The presence of such buffers will ensure that
as a segment gets crowded, all of the items in either its left or right buffer will have
to be moved.

However, when we insist on having these buffers we can no longer ensure that
the density of the segments in the sequence do not decrease (because a given segment
in the sequence may have its items concentrated near its boundary). So we have to
allow some decrease in the segment density along the sequence.

Dietz et al. [12] showed how to construct segment chains in which each successive
segment has a large left and right buffer. The drawback of their construction is that
the density of successive segments in the sequence may decrease by as much as a
constant factor, so that for a sequence of logarithmic length the density may decrease
by a fraction nΩ(1). This limits the quality of lower bounds that can be proved.

The key challenge we address is to give an adversary procedure for building seg-
ment chains that ensures large buffers, while at the same time guaranteeing that the
density degrades very slowly. This is the main new contribution in our proof. Our
approach begins with the observation that if for a given segment every subsegment
having large buffers has density significantly smaller than the given segment, then
there must be a large subsegment (located near the boundary of the given segment)
having substantially higher density than the given segment. This allows us to build a
chain of Θ(log(n)) segments, such that (1) a constant fraction of the segments have
large buffers with respect to their predecessors, (2) the segments that don’t have large
buffers have significantly higher density than their predecessor segments, and (3) the
degradation of density along the entire chain can be bounded by a constant factor.
(To give a rough idea of the choice of parameters, when m = Θ(n), we allow decrease
in density by a factor of at most (1−O(1/ log(n))) in a single step.)

The adversary we describe doesn’t work exactly like this, but instead builds a
chain of segments such that every segment in the chain (not just a constant fraction)
has left and right buffers whose sizes are a constant fraction of the length of the
segment. We do this by relaxing the requirement that the length of each segment
in the chain is at least a constant fraction of the length of its predecessor. If we
encounter a segment whose items are concentrated near the boundary then the next
segment will be a small subsegment of high enough density whose distance from the
boundary is large relative to its own size, even if this distance is small relative to the
size of the predecessor segment. This raises a new problem: once we allow successive
subsegments to shrink by more than a constant fraction we face the problem that the
length of the segment chain d may not be Ω(log(n)). This is important because the
lower bound that comes out of the analysis is proportional to d2. So we need to ensure

4

that the chains have length Ω(log(n)) even though we allow the length of segments to
drop significantly. This is accomplished by a procedure (see Lemma 7.2) that allows
us to construct a sequence of segments where each selected segment satisfies a strong
uniformity property called lower balance: It has no subsegment of length at least
1/4 of its length that has density significantly smaller than the given segment. (In
the lower bound for smooth algorithms mentioned earlier, the ability to find such a
sequence is essentially built into the smoothness restriction. Our construction allows
us to dispense with this assumption.) To find the successor segment S′ of a given lower
balanced segment S we first restrict to the middle third T of the segment and choose
S′ to be a subsegment of T . The restriction to a subsegment of T ensures that S′ has
large buffers relative to S. Furthermore, the uniformity property of S ensures that the
density of T is close to that of S. We want to choose S′ inside T having density at least
that of T , having size not much smaller than T , and having the desired uniformity
property. To identify S′ we maximize a certain quality function of the form ρ(I)|I|κ
(where ρ(I) is the density of items stored in I and κ is a small positive parameter).
This balances the requirement that S′ have high density and large size. Furthermore,
choosing S′ in this way guarantees that S′ has the needed uniformity property (since
the presence of a subsegment that violates the uniformity property would imply that
there is a subsegment of S′ that has a higher quality). Maximizing the quality function
implicitly captures the process of successively choosing subsegments of significantly
higher density until one arrives at a subsegment for which no such selection is possible.

After identifying a segment chain with the required properties at each step, the
item selected by the adversary to insert is one whose value is between two items stored
in the final segment of the chain. Whenever the maintenance algorithm rearranges
some portion of the array the adversary rebuilds the affected portion of the segment
chain. To obtain our lower bound Ω(n log2(n)) we use a careful accounting argument
(see Lemma 5.1) that encapsulates and extends the clever argument used in [11, 20]
to obtain an Ω(n log2(n)) bound for smooth algorithms.

There is one additional complication that arises because we want our lower bounds
to apply even in the case that the range r of items is relatively small. In a given step,
after selecting the chain, the adversary is supposed to choose the next item to insert
to be an item that is between two items currently stored in the final segment of the
chain. However, if the set of items stored in the final segment are a consecutive subset
of the set of possible values, the adversary is unable to choose an item to insert. Of
course this is not a problem if the range of values is, for example, all rationals in
a given interval but it is a potential problem if the range is a bounded subset of
the integers. For example, we noted earlier that if the range of possible items is
small enough, r ≤ m, then there is a trivial algorithm that incurs only unit cost per
item, so our lower bound proof must fail. How large does r have to be so that the
adversary described above can avoid this problem? It is not hard to show that r ≥ 2n

is sufficient, but in fact when m = O(n) we only need r to be a (sufficiently large)
constant multiple of n. To carry out the argument for such small r, we modify the
definition of density of segments by weighting more recent items with a smaller (but
still non-negligible) weight than older items. When our adversary selects a segment
chain, the decreased weight on recent items will tilt the adversary to prefer segments
that are crowded mainly with older items over segments crowded mainly with newer
items (unless the latter is significantly more crowded than the former). The reason
we want to do this is that if the adversary continues to place items in a segment that
mainly has newer items there is a risk (because of the limited range size r) that the

5

adversary will end up with a segment where the items are consecutive integers, and
not have another item to insert. By giving more recent items a smaller (but not too
small) weight we can avoid this possibility; see Lemma 4.1.

2. The model and main results.

2.1. A two player game. In this paper, interval notation is used for sets of
consecutive integers, e.g., [a, b] is the set {k ∈ Z : a ≤ k ≤ b}. We consider an array
with cells indexed by the set [1,m] in which we store a set Y of integer-valued items.
A storage function for Y is a map f : Y −→ [1,m] that is strictly order preserving, i.e.,
for x, y ∈ Y if x < y then f(x) < f(y). In particular f is one-to-one, so |Y | ≤ m. Cells
that are in the image of f are occupied and the others are unoccupied. A configuration
is a pair (Y, f) where Y is a set of items and f is a storage function for Y .

To formalize the analysis of the file maintenance problem we define a game
Gn(m, r), where n,m, r are positive integer parameters, which is played by two play-
ers, the adversary and the algorithm. The game is played in a sequence of n steps. At
step t, the adversary selects an item yt from the set {1, . . . , r} − {y1, . . . , yt−1}, and
the algorithm responds with a storage function f t for the set Y t = {y1, . . . , yt}. We
say that item yt is inserted at step t. (Y t, f t) is called the configuration at the end of
step t and also the configuration at the beginning of step t+ 1.

An item y is moved at step t if f t(y) 6= f t−1(y). In particular yt is moved at
step t. The set of moved items at step t is denoted Movet. The cost up to step t is
χt =

∑t
i=1 |Movei|. Clearly χt ≥ t for every t. The objective of the algorithm is to

minimize χn and the objective of the adversary is to maximize χn. We write χn(m, r)
for the smallest cost that can be achieved by the algorithm against the best adversary.

Gn(m, r) is not well defined if n > m since there can be no storage function once
the number of items exceeds the number of cells. Also, if m ≥ r, there is a trivial
algorithm that achieves optimal cost n by storing each item y ∈ [r] in cell y. We
therefore assume n ≤ m < r.

2.2. The main results. In this section, we state our lower bound results for
χn(m, r). We divide our results into two theorems, corresponding to the relation
between the array size and the number of items. In formulating the theorems, we use
N for the number of items rather, to avoid confusion with the parameter n appearing
in the main lemma (Lemma 2.3 below). which is used in the proof of the theorems,
and in which n stands for the number of items inserted during a portion of the game.

The first theorem applies whenever 2N ≤ m, and gives interesting results provided
that m is not too large (slightly superlinear function of N). In the first part of the
theorem, the range [1, r] of possible items has size exponential in N . In the second
part r is at most a constant times m. Despite this strong limitation, the lower bound
is only slightly worse.

Theorem 2.1. There is a (sufficiently large) constant C1 so that the following
holds. Let m,N be integers satisfying C1 ≤ N and 2N ≤ m. Let δ = N/m. Then

1. If r ≥ N2N−1 then χN (m, r) ≥ N log2(N) δ
C1(log(1/δ))2 .

2. If r ≥ C1m then χN (m, r) ≥ N log2(N) δ2

C1(log(1/δ))2 .

Here and elsewhere in the paper, the base of logarithms is 2.
In both parts, if m = O(N) so that δ = O(1) then the lower bound obtained

is Ω(N log2(N)). The messy dependence on δ tells how our bound degrades in the
case of δ = o(1), i.e., the array is much larger than the number of items. The first
bound gives a nontrivial ω(n) bound for m up to o(n log2(N)/ log2(log(N))), while
the second bound is nontrivial for m = o(N log(N)/ log log(N)).

6

In the next result we consider array size satisfying N < m < 2N :

Theorem 2.2. There are (sufficiently large) constants C2, C3 so that the follow-
ing holds. Let m,N be integers satisfying C3 ≤ N < m < 2N and let δ = N/m.
Assume r ≥ (1

1−δ)C2N . Then:

χN (m, r) ≥ 1

C3
N log2(N) log

(
1

1− δ

)
. (2.1)

In this theorem, the array size is assumed to be at most twice the number of
items. As long as m ≥ n(1+c) for a fixed c > 0 we again get an Ω(N log2(N)) bound.
As m − n gets smaller, the bound improves. In particular For m ≤ N + N1−ε this
gives a tight lower bound of Ω(N log3(N)). For this lower bound we only need the
range of items to be polynomial in m. (We believe that it is possible to refine the
analysis to obtain an asymptotically similar lower bound when the range size is only
N + N1−O(ε) but have not included this analysis so as not to lengthen an already
lengthy paper.)

2.3. Reduction of the theorems to the main lemma. As the game has
been defined, every cell is initially unoccupied. For the proofs of the main theorems,
it will be convenient to consider a generalization of the game, in which the array is
initially partially full. This version of the game is specified by the parameters n,m
(but not r) and additionally takes a set Y 0 of items, whose size is denoted by n0 and
is required to be at least 2. The subset Y 0 is given to the algorithm who selects the
initial storage function f0 (at no cost). The game then proceeds as before, except that
the adversary is restricted to inserting items in the range (min(Y 0),max(Y 0)) (where
we assume |Y 0| ≥ 2). Note that the parameter r does not appear in this formulation.

We denote the game by Gn(m|Y 0) and write χn(m|Y 0) for the minimum cost
that can be achieved by the algorithm against the best adversary. We assume that
m ≥ n0 + n, otherwise there is not enough room to insert all of the items.

For a set Y of items, we define mingap(Y) to be the minimum absolute difference
between pairs of items in Y . The central result of this paper is:

Lemma 2.3. (The Main Lemma) There are positive constants C0, C4 so that the
following holds. Let m,n, n0 be integers and let δ0 = n0/m where:

C0 ≤ n ≤ n0 (2.2)

n+ n0 ≤ m (2.3)

δ0 ∈ (log(n)−2, 1− n−1/5). (2.4)

Let Y 0 be any set of n0 items and let µ0 = mingap(Y 0).

1. If µ0 ≥ 2n then

χn(m|Y 0) ≥ n(log(n))2 δ0(1− δ0)

C4 log2(1/δ0)
.

2. If µ0 ≥ 1 + 12/δ0, then

χn(m|Y 0) ≥ n(log(n))2 δ2
0(1− δ0)

C4 log2(1/δ0)
.

7

We point out that the condition n0 ≥ n means that the new items being added
at most doubles the number of items in the array.

We now prove Theorems 2.1 and 2.2 using Lemma 2.3. In the proof of the first
theorem we apply the main lemma once with δ0 = 1/2, and in the proof of the second
theorem we’ll apply the main lemma multiple times, with δ0 getting closer and closer
to 1 (which is why the dependence on δ0 in the lower bound is important.) In every
application of the main lemma, the array size parameter m of the lemma will be the
same as the array size parameter m in the theorem being proved, but the number
of items n in the lemma will vary and won’t be the same as the number N in the
theorem being proved.
Proof of Theorem 2.1. In the argument below we choose C1 for the theorem large
enough depending on C4 in Lemma 2.3.

Given N,m, r for the theorem, let n0 = dN/2e and n = N − n0. Let B be
the largest integer such that n0B ≤ r. Let Y 0 = {Bt : t ∈ [1, n0]}. Note that
mingap(Y 0) = B. Consider the adversary for GN (m, r) that during the first n0 steps
inserts Y 0 and then follows the optimal adversary strategy for the game Gn(m|Y 0).

For the first part of Theorem 2.1, the hypothesis that r ≥ N2N−1 implies
mingap(Y0) ≥ 2n so the first part of Lemma 2.3 applies. Under the hypothesis of
Theorem 2.1, 1− δ0 ≥ 1/2, and so the conclusion of Lemma 2.3 yields the conclusion
of the first part of Theorem 2.1.

For the second part of Theorem 2.1, the hypothesis r ≥ C1m and our freedom
to choose C1 to be a sufficiently large constant imply B ≥ bC1m/n0c ≥ C1/δ0 − 1 ≥
12/δ0 + 1 and so part (2) of Lemma 2.3 gives the desired lower bound.

We next turn to the proof of Theorem 2.2. The idea of the proof is simple: The
array size m is not much larger than N . We bound the cost as the sum of the costs
of p = Θ(log(1/(1 − δ))) “subgames” where the first subgame starts when the array
is (roughly) half full and consists of inserting the next (roughly) m/4 items. After
subgame i−1 the number of empty spaces in the array is (roughly) m/2i and in the ith
subgame we insert (roughly) m/2i+1 additional items. Corollary 2.4 below (deduced
from Lemma 2.3) says that each phase has cost Ω(m(logm)2); even though the number
of items inserted per phase is decreasing by a factor of 2, this is counterbalanced by
the increased crowding of the array.

The following consequence of Lemma 2.3 is what we need to analyze a single
subgame.

Corollary 2.4. There are positive constants C0, C5 so that the following holds.
Let m,n be integers satisfying C0 ≤ (m/2)5/6 ≤ n ≤ m/3. Let Y 0 be any set of
m− 2n items such that µ0 = mingap(Y 0) ≥ 37. Then:

χn(m|Y 0) ≥ 1

C5
m log2(m).

Furthermore, there is an adversary that achieves this bound and has the additional
property that the mingap of the items in the array after inserting the n items is at
least bµ0/37c.

Proof. For the first conclusion, we apply the second part of the main lemma with
n0 = m−2n and δ0 = n0/m = 1− 2n

m . We need to check the hypotheses of the lemma.

Hypothesis (2.2) and (2.3) are immediate. Since n ≤ m/3 and m ≤ 2n6/5 we have
1/3 ≤ δ0 ≤ 1−n−1/5 as required for (2.3), and also that µ0 ≥ 37 is at least 1 + 12/δ0.
Therefore the hypotheses of part 2 of the lemma hold, and from the conclusion we
get:

8

χn(m|Y 0) ≥ n log2(n)
δ2
0(1− δ0)

C4 log2(1/δ0)

≥ m(1− δ0)

2
log2((m/2)5/6)

1

42 · C4

1− δ0
log2(1/δ0)

≥ m log2(m) · 1

C5
,

where the final inequality uses the (numerical) fact that for δ0 ∈ [1/4, 1], log(1/δ0) ≤
3(1− δ0), and the fact that C5 can be chosen to be a large enough constant.

For the second conclusion, for ease of notation we use B to represent the number
37. We first consider the case that r = Bn0 and Y0 is the set {B, 2B, . . . , n0B}. Thus
µ0 = B. By part 2 of Lemma 2.3 here is an adversary strategy Γ for inserting the
next n items that forces the claimed lower bound on χn(m|Y 0). The final mingap is
at least 1, as required.

Now consider the general case that r is arbitrary and Y0 is a set of size n0 with
mingap at least B. Let v1 < · · · < vn0

be the items in Y0. Let G = bµ0/Bc. For
1 ≤ j < n0, let Vj be the set of items of the form vj + iG where 1 ≤ i ≤ B − 1 and
let V = V1 ∪ · · · ∪ Vn0−1. The smallest item of Vj is vj +G and the largest is at most
at most vj+1 − G. Thus the set V contains exactly B − 1 items between each pair
vj , vj+1 and so V ∪ Y0 is combinatorially equivalent to the above case that Y0 is the
set {B, 2B, . . . , n0B}. By the obvious adaptation of the strategy for that case, we
can carry out the adversary strategy while only inserting items from V , so that at
the conclusion of the game, the set of inserted items is a subset of Y0 ∪ V , and the
mingap of this set is at least G = bµ0/Bc.

We now fill in the (routine) details of the above sketch of the proof of Theorem 2.2.
Proof of Theorem 2.2. Let m, N and δ be given as in the theorem. Suppose first
that δ = N/m is bounded above by 1 − c for some positive constant c of our choice.
Then Theorem 2.2 follows from the second part of Theorem 2.1, since the quantity
δ/ log(1/δ) appearing in the conclusion of Theorem 2.1(2) can be bounded below by
a positive constant and the quantity log(1/(1 − δ)) appearing in the conclusion of
Theorem 2.2(1) can be bounded above by a positive constant.

We are left with the (main) case that δ > 1−c for a constant c > 0 of our choice; for
convenience we assume c ≤ 1/16 which implies, in particular that log(1/(1− δ)) ≥ 4.
Let ∆ = m − N and let p be the largest integer such that 2p∆ ≤ m/2, so that
2p+1∆ > m/2 and

p =
⌊
log2

(m
2∆

)⌋
≥ log

(
1

1− δ

)
− 2 ≥ 1

2
log

(
1

1− δ

)
.

For the game of inserting N items into an empty array of size m, we identify
p subgames where the subgames involve disjoint sets of steps. The first subgame
starts after z0 = m− 2p∆ items have been inserted. Subgame 1 consists of inserting
n1 = 2p−1∆ items. In general subgame i starts after zi−1 = m − 2p−(i−1)∆ items
have been inserted and consists of inserting the next ni = 2p−i∆ items. Note that
after subgame p, all of the N = m−∆ items have been inserted.

We want to apply Corollary 2.4 to each of these subgames. To apply the Corollary
to subgame i, the hypothesis of the corollary requires that ni ≤ m/3 and ni ≥

9

(m/2)5/6. The first condition holds since ni ≤ n1 ≤ m/4 (by the choice of p).
The second condition holds provided that i ≤ p

6 − 1 since then ni ≥ 21+5p/6∆ ≥
(2p+1∆)5/6∆1/6 ≥

(
m
2

)5/6
.

Thus for each of the first p
6 − 1 subgames, the Corollary gives a cost lower bound

of Θ(m log2(m)) = Θ(N log2(N)). The total cost can be bounded below by this times
p
6 − 1 = Ω(log(1/(1− δ)).

2.4. Organization of the rest of the paper. The remainder of the paper is
devoted to proving Lemma 2.3. Throughout the rest of the paper, the input parame-
ters to the lemma are fixed:

m The array size.
Y 0 The set of initial items.
n0 The size of Y 0.
µ0 The mingap of Y 0.
δ0 The initial density n0/m.
n The number of items to be inserted.

The rest of the paper is organized as follows.

• Section 3 gives some additional notation.
• Section 4 gives a full description of the adversary. The adversary is not too

difficult to describe but the choices made may strike the reader as somewhat
arbitrary. The subsequent discussion will (we hope) demystify the adversary.

• In section 5, we formulate seven (parameterized) properties of the adversary.
We then state two main lemmas. Lemma 5.1 asserts that any adversary that
satisfies these properties forces any algorithm to pay a high cost. Lemma 5.2
asserts that our adversary has these seven properties. We show how the main
lemma follows easily from these two lemmas.

• In section 6 we prove Lemma 5.1, showing that an adversary satisfying these
seven properties gives a good lower bound on any algorithm. We start with
a sketch of the main idea of the proof and then follow with the full proof.

• In section 7 we establish that our adversary has these seven properties by
proving Lemma 5.2. We begin the section with an informal discussion of how
these properties led us to the chosen adversary.

Lemma 2.3 was formulated in sufficient generality (in terms of n, n0, m and µ0,
so as to be able to prove both Theorems 2.2 and 2.1. These include both cases that
the range of possible numbers is very large, or rather small and also very dense case
where δ0 = n0/m is very close to 1. The reader may wish to focus on the following
restrictions:

• n0 = n = Θ(m). (We’ll refer to this as the case of small constant density.)
• r ≥ 2m. (We’ll refer to this as the case of large initial mingap.)

We refer to this restricted case as the illustrative case. This setting of parameters
is enough to prove the first part of Theorem 2.2 in the case that N = Θ(m) and
captures most of the difficulty of the proof. In organizing the proof, we considered
first presenting the proof for this case, and only then doing the general proof, but
decided against it because it would either require either duplicating much of the proof
of the special case when doing the general proof, or leaving the reader to extrapolate
the general proof based on the special case and a sketch of the differences. We’ll
provide some guideposts in the proof that will allow the reader to simplify details of
the general proof in order to focus on the illustrative case.

10

3. Some notation and preliminaries for the proof of the main lemma.
We introduce some terminology:

• A segment is a subinterval of the set of cells [1,m].
• A step interval is a subinterval of [0, n] representing a sequence of consecutive

steps of the game.
• An item interval is a subinterval of the set [1, r] of items. If Y ⊆ [1, r] is any

set of items, a Y -interval is a set of the form Y ∩I where I is an item interval.

Recall that at step t, Movet denotes the set of items moved at step t. For
y ∈Movet the trail of y at step t is the segment Trailt(y) between f t−1(y) and f t(y);
for yt it is just the location f t(yt). The busy region at step t, denoted Bt is the union
over y ∈Movet of Trailt(y).

We say that an algorithm is lazy if Bt is a segment. The following proposition
(assumed in Dietz et al. [12]) says that we may restrict attention to lazy algorithms.

Proposition 3.1. Given any algorithm A there is a lazy algorithm A′ such that
for any initial item set Y 0 and any item sequence y = (y1, . . . , yn) the cost of A′ on
Y 0, y is at most the cost of A on Y 0, y.

The idea is that if the busy region Bt is a union of two or more disconnected
segments, then any relocation outside of the segment that contains f t(yt) can be
deferred until later. The following (straightforward) proof makes this precise.

Proof. The algorithm A′ keeps track of the storage function gt that would be
produced by the algorithm A. Let f t be the array actually produced by A′. (Keep
in mind that since the algorithm only pays for actual moves, A′ pays nothing for
internally simulating A.)

Initially, prior to step 1, f0 = g0. At each step t, A′ updates gt−1 to gt based on
algorithm A. The storage function f t is then determined as follows.

Given an array segment T , we say that two storage functions h and h′ are similar
on T if the set of items stored by each inside T is the same (though the items need
not be stored in the same locations under both.) Let jL be the largest index such
that gt and f t−1 are similar on [1, jL] (where possibly jL = 0 so that [1, jL] is empty).
Let jR be the least index such that gt and f t−1 are similar on [jR,m] (where possibly
jR = m + 1). Note that we must have jL < gt(yt) < jR. Let M = [jL + 1, jR − 1].
and define f t so that it agrees with gt on M and agrees with f t−1 everywhere else.

We claim that the busy region Bt of A′ is equal to the segment M . Clearly
Bt ⊆ M , since A′ moves no items outside of M . For the reverse inclusion, suppose
for contradiction that j ∈ M \ Bt and assume without loss of generality that jL <
j < gt(yt). Note that the definition of f t implies that f t and gt are similar on [1, j].
Note that the condition that j 6∈ Bt implies that f t and f t−1 are similar on [1, j].
But then gt and f t−1 are similar on [1, j] contradicting the definition of jL.

Finally, we need to bound the cost of relocations by A′ from above by the cost
of relocations by A. For this, consider all relocations of a fixed item y. An easy
induction shows that up through the end of any step t the number of steps that y
was moved by A′ is less than or equal to the number of steps that y was moved by A,
with a strict inequality if f t(y) 6= gt(y).

What this proposition is that when we design an adversary, we may assume that
the algorithm it plays against is lazy. If the algorithm A against which the adversary
plays is not lazy, the adversary can conceptually simulate the lazy algorithm A′ given
by the proposition, and choose his insertions in response to the simulated A′. The
proposition implies that the cost incurred by the actual algorithm A is at least the
cost incurred by the virtual algorithm A′.

11

Therefore, for the rest of the paper we assume that the algorithm is lazy, and
refer to Bt as the busy segment at step t. It is easy to see that for lazy algorithms
Bt is the smallest segment that contains location f t(yt) and the starting and ending
location of all items that were moved at step t.

4. A description of the adversary for Lemma 2.3. In this section we present
our adversary strategy. The first subsection discusses the preliminary notion of a gap,
which is a pair of items that have been inserted such that no item between them
has been inserted yet. The second subsection describes the class of segment chain
strategies which includes our adversary strategy. The third subsection specifies our
strategy within this class.

4.1. Gaps and suitable gaps. During each step t the adversary must choose
an item yt to insert into the array. For a set Y of items, a Y -gap is a pair yL < yR of
items belonging to Y such that no item of Y has value in the item interval (yL, yR).
The gap length is yR − yL. We emphasize that a gap refers to the set of possible item
values between yL and yR and not to the region of the array in which the items are
stored.

Provided that a gap has length at least 2, there is always an item between yL and
yR that is available to be inserted. We call such a gap suitable. A suitable segment
is one that contains a suitable gap. The condition of being a suitable segment is
equivalent to: the set of items currently stored in the segment is not a consecutive
sequence of integers.

Our adversary will choose a suitable segment, identify the longest suitable gap
(yL, yR) stored in the segment and select the item b(yL+yR)/2c, which is the midpoint
of the gap rounded down to the nearest integer. The segment (resp., gap) chosen by
the adversary at step t is referred to as the chosen segment (resp., gap) at step t.

When the adversary selects the segment S, we must ensure that S contains a
suitable gap. For mingap(Y0) ≥ 2n (as in the illustrative setting mentioned at the
end of Section 2), an easy induction shows that mingap(Yt) ≥ 2n−t for every t < n.
Therefore any segment S that contains at least two items is suitable. We refer to this
case as large initial mingap. In the case of small initial mingap, mingap(Y0) < 2n,
we need to be more careful to ensure that the selected segment is suitable. This will
complicate things a bit, but not in any significant way. The reader may wish to focus
on the case of large initial mingap; we will identify the places in the argument where
the arguments diverge.

The choice of the suitable segment at step t will depend on the configuration
(Y t−1, f t−1). Intuitively, the adversary will select a suitable segment that is currently
located in an area of the array that is relatively “crowded”. A natural notion of
crowding for a segment S is the ratio of the number of items stored in the segment to
the length of the segment. This notion of crowding is sufficient for the case of large
initial mingap.

To handle both the case of large and small initial mingap, we need a notion of
crowding that depends on a weight parameter λ ∈ (0, 1]. Each item in the array is
assigned a weight which is 1 if the item belongs to the initial set Y 0 and is λ if it
was inserted by the adversary. Given a configuration (Y, f), we define the following
functions on segments S ⊆ [1,m]:

• The weight w(S) = w(S, f) is the sum of the weights of all items stored in S
under f .

• The density ρ(S) = ρ(S, f) is w(S)/|S|. The density function provides a
natural measure of crowding of S.

12

In the case of large initial mingap (mingap(Y0) ≥ 2n) we set the weight parameter
λ to 1. Thus the weight of a segment is just the number of items stored in it and the
density is the fraction of occupied cells. This is the only difference between this case
and the case of small initial mingap.

The following lemma shows that by choosing λ appropriately we can get a suffi-
cient condition for a segment to contain a suitable gap. Readers who wish to concen-
trate only on the case of large mingap can skip to the next subsection.

Lemma 4.1. (Suitable Gap Lemma) Suppose that λ ∈ (0, 1/2). Let S ⊆ [1,m] be
a segment and YS be the set of integer stored in S with a specified set Y 0

S of initial
items. Define the weight w(S) to be |Y 0

S | + λ|YS \ Y 0
S | and its density ρ(S) to be

w(S)/|S|. If:
1. The mingap of Y 0

S is at least 1 + 2
λ

2. w(S) ≥ 2
3. ρ(S) ≥ 2λ.

then S is suitable, i.e. the set of items stored in S is not consecutive.
The key hypothesis is ρ(S) ≥ 2λ. Since non-initial items are given weight only λ,

an interval S of density at least 2λ must have a substantial fraction of initial items.
Since the mingap of Y 0

S is not too small, we will be able to show that there is a pair
x < y of items stored in S that form a gap in Y 0

S that have fewer than µ(Y 0
S) items

stored between them in S, which implies that there is at least one item between them
that has not been inserted yet, so S is suitable.

Proof. Let a = |Y 0
S | and b = |YS \ Y 0

S |. We first note that a ≥ bλ. This follows
from w(S) = a+ bλ = |S|ρ(S) ≥ 2(a+ b)λ so (1− 2λ)a > bλ which implies a > bλ. In
particular, this implies a ≥ 2, since a is an integer larger than (a+bλ)/2 = w(S)/2 ≥ 1.

Let min0 and max0 be the smallest and largest items in Y 0
S . Suppose for con-

tradiction that there is no suitable gap between min0 and max0. Then all of the
max0−min0 +1 items in the range [min0,max0] must have been inserted already.
There are a − 1 gaps between items of Y 0

S , each of size at least µ(Y 0
S) so by the hy-

pothesis on λ, b ≥ (a− 1)(µ0− 1) ≥ 2(a− 1)/λ ≥ a/λ (since a ≥ 2) which contradicts
a > bλ.

When we design our adversary strategy to prove Lemma 2.3 we will ensure that
(for the case of small mingap) the segment selected by the algorithm satisfies the
hypotheses of the suitable gap lemma. We haven’t explained our strategy yet so we
can’t show this, but we sketch how this is done. We’ll choose λ to be δ0/6. Then the
hypothesis µ(Y 0) ≥ 1+12/δ0 from part 2 of Lemma 2.3 gives the needed lower bound
on µ(Y 0) in this lemma. Also our strategy will always choose a segment of weight at
least 2, and density at least δ0/3 = 2λ, so the hypotheses of the suitable gap lemma
will be satisfied.

4.2. Segment chain strategies. This section describes a general class of ad-
versary strategies from which we will select our adversary.

At each step t, our adversary will identify a segment satisfying the conditions of
Lemma 4.1 (and other conditions as well.) The adversary will actually specify a chain
of segments St1 ⊃ St2 ⊃ · · · ⊃ Std, where the parameter d will be fixed (later) to be
Θ(log(n)). (Note that, in general the first segment St1 need not equal [1,m].) The
segment Std will satisfy the conditions of Lemma 4.1 and will be used as the selected
suitable segment at step t.

This type of strategy for the adversary, where we close in on a suitable segment by
taking a chain of segments, is called a segment chain strategy. This general approach
(though not the terminology) comes from Dietz et al. [12] who used it to prove a

13

Ω(n log(n)) lower bound in the case that m is at most polynomially larger than n.
Their method of choosing this sequence can be applied to the case that m is at
most linear in n but the lower bound does not improve. Our main contribution is to
describe and analyze an alternative way to select the chain of segments which gives
an Ω(n log2(n)) lower bound.

It is natural that the segment chain selected at step t should relate to the sequence
selected at the previous step t−1 and the moves made by the algorithm. Recall that Bt

is the busy region at step t, which is determined by the moves made by the algorithm
in response to yt. Also recall that by Proposition 3.1 we assume that the algorithm
is lazy so that Bt is always a segment. Define the critical index jt−1 after step t− 1
to be the smallest index j ∈ [1, d + 1] for which Bt−1 is not a subset of St−1

j . In

particular, jt−1 = d + 1 if Bt−1 is a subset of St−1
d , and j0 = 1. Our adversary will

satisfy the following natural rule (which was also satisfied by the adversary of Dietz
et al.):

Conservative Selection Rule. For every t ≥ 2: The sequence St1, . . . , S
t
d is chosen

so that Stj = St−1
j for j < jt−1.

This rule puts no restriction on the selection of Stj for j ≥ jt−1; in particular the
adversary can use any information about the present or past configurations.

Assuming the use of a segment chain strategy with conservative selection, we now
summarize the sequence of events that occur during step t of the game. Note that the
configuration (Y t−1, f t−1), the busy segment Bt−1, and the critical index jt−1 were
determined during step t− 1.

• The adversary selects the sequence St1 ⊃ · · · ⊃ Std. (We will specify how this is
done below.) The selection will be done subject to the conservative selection
rule and will be done in a way that ensures that Std satisfies the hypothesis of
Lemma 4.1 (with respect to (Y t−1, f t−1)), and therefore contains a suitable
gap.

• The adversary chooses the longest gap in Std and lets yt be the approximate
midpoint. Y t is set to be Y t−1 ∪ {yt}.

• The algorithm selects the storage function f t for Y t.
• The choice of f t together with the previous storage function f t−1 determines

the busy segment Bt.
• The critical index jt is determined by Bt and St1, . . . , S

t
d.

4.3. Specifying the segment chain. It remains to describe how the adversary
selects the segments Stj for j ≥ jt−1. Our strategy is not hard to describe but it is
not so easy to motivate the (seemingly arbitrary) choices made. We’ll present it first
with a minimum of discussion. Hopefully the discussion in Section 7.1 and the proofs
of correctness will demystify it.

Our strategy uses an auxiliary sequence of sets T t1 , . . . , T
t
d which is interleaved

with St1, . . . , S
t
d:

T t1 ⊃ St1 ⊃ T t2 ⊃ St2 ⊃ · · · ⊃ T td ⊃ Std.

Recall that jt−1 is the critical index after step t− 1. For 1 ≤ j < jt−1, we satisfy
the conservative selection rule by setting T tj = T t−1

j and Stj = St−1
j .

The significant part of the specification consists of three parts:
• The choice of T tjt−1 for the critical level jt−1.

• For i ∈ [jt−1, d], the choice of Sti given T ti .

14

• For i ∈ [1 + jt−1, d], the choice of T ti given Sti−1.
To specify these, we will need some definitions. For a segment U :
• middle(U) is the subsegment of U defined as follows: Break U into three

segments from left to right, L,M,R where |L| = |R| = b|U |/3c. middle(U)
is the segment M (which is roughly the middle third of U).

Let (Y, f) be an arbitrary configuration with associated density ρ. Let κ > 0. For
an arbitrary segment U :

• The quality of U with respect to (Y, f) is the real number φ(U) = φκ(U) =
ρ(U)1/κ|U |.

• densify(U) is the subsegment V of U that maximizes φ(V) (breaking ties
arbitrarily).

• balance(U) is the subsegment V of U given by middle(densify(U)).
• we write ρt−1, φt−1, densifyt−1 and balancet−1 to be the functions based

on the configuration (Y t−1, f t−1)
Our adversary depends on three parameters: the length d of the segment chain

will be fixed to be Θ(log(n)) by (5.4) and the parameter κ used in the quality function
(which will be fixed to be Θ(1/ log(n)) in (5.3)) and the weight parameter λ which
appears implicitly because it determines the functions wt,ρt, and φt and therefore also
the functions densify and balance defined above. The parameter λ is 1 in the case
of large mingap and will be set to δ0/6 otherwise. We’ll explain these choices later
but for now we leave d, κ and λ as parameters. Recall, j0 = 1.

The specification of adversary Adv(d, κ, λ)

Adv1 Specification of T tj for the critical level jt−1:

Adv1.a If jt−1 = 1 then T tjt−1 is the segment of length between n/2 and n

of highest density (breaking ties by an arbitrary rule).
Adv1.b If jt−1 > 1 (and so necessarily t > 1) set T tjt−1 = T t−1

jt−1 ∪Bt−1.

Adv2 Specification of Sti given T ti for i > jt−1: Sti = balancet−1(T ti).
Adv3 Specification of T ti given Sti−1 for i > jt−1: T ti = middle(Sti−1).

It is not clear that the above adversary is well-defined, because we need that the
final segment Std in each segment chain be suitable as defined in Section 4.1; if it
isn’t then the adversary is unable to proceed with inserting an item according to the
requirements. Indeed if d is chosen too large then the chain of segments will eventually
degenerate to a segment of length 1 which will just be repeated until the chain ends.
When we fix the parameters, one of the things we’ll have to prove is that each of the
segments Std is indeed suitable (which is formulated as Property (P4) below).

Also, in our adversary we require that for all t and j, T tj and Stj are segments.
This is not immediately apparent from the description of the adversary (because of
Adv1.b) but can be proved by induction on t and for fixed t by induction on j. The
only case that requires some discussion is the definition of T tj when j is critical and

j > 1. By induction, T t−1
j is a segment, and by laziness of the algorithm Bt−1 is a

segment that must intersect T t−1
j , so their union is a segment.

Notice, in the case of Adv1.a, the whole segment [1,m] can be partitioned into
non-overlapping pieces each of size between n/2 and n. At least one of them must
have density at least δ0 so the segment T t1 selected in Adv1.a has density at least δ0.

5. Important properties of the adversary. The rest of this paper is de-
voted to proving that the above adversary, with suitably chosen parameters, gives

15

the bounds of Lemma 2.3. In this subsection we state seven properties (P1)-(P7)
that encapsulate what we need from our adversary. In subsequent sections we’ll show
that these properties imply a cost lower bound, and that our adversary satisfies these
properties.

The first three properties are fairly mild technical “boundary” conditions on the
sizes and densities of the segments appearing in a segment chain. We introduce
parameters σ and δ∗ to represent these conditions.

(P1) For each segment chain the first segment in the chain (and therefore all others)
have size at most n/2.

(P2(σ)) For each segment chain, the final segment (and therefore all others) have
size at least σ. (The reader should think of σ as a function of n that grows
slowly, but not too slowly. Later, we’ll choose it to be n1/4, but the exponent
1/4 is fairly arbitrary.)

(P3(δ∗)) Every segment in any of the segment chains has density at least δ∗. (Later
we set δ∗ = δ02δ0−1 which is between δ0/2 and δ0. In the illustrative case
in which δ0 < 1/2 the reader should think of δ∗ as cδ∗ for some constant c
around 1/2 where the constant is unimportant. (In the dense case that δ0 is
close to 1, the desired lower bound of Θ(n log2 n/(1 − δ0)) gets larger as δ0
gets closer to 1. In this case it is not enough to take the δ∗ to be a constant
fraction of δ0, instead it is roughly (δ0)2.)

The next property is crucial since without it the adversary is not well-defined.
However, it will be easy to satisfy.

(P4) For each t, Std has a suitable gap. In the case of large mingap we only need
wt−1(Std) ≥ 2 (which will follow from (P2(σ)) and (P3(δ∗))), but for the case
of small mingap, we’ll need to make sure that Std satisfies the hypotheses of
Lemma 4.1 (which will not be hard to do.)

The next simple property plays a significant role in the lower bound.

(P5) For each t and i ≥ 2, |Sti | ≤ |Sti−1|/2. (Segment sizes decrease by at least a
factor of 2 along a segment chain.)

The next property is especially important to the argument. As discussed in the
introduction, when we choose the segment chain we would like that (among other
properties) each successive segment should have density at least that of the previous
segment. We can’t necessarily do this but it’s enough that the density not decrease
by too much. This is quantified by the following property, which depends on a density
degradation parameter α:

(P6(α)) ρt−1(St1) ≥ 1
2α δ0 and for i ≥ 2, ρt−1(Sti) ≥ 1

2α ρ
t−1(Sti−1).

The value of α we’re able to achieve plays a crucial role in our lower bound. The
heart of the lower bound argument (Lemma 5.1) will give a lower bound on χn(m|Y 0)
of roughly Ω(nd2/(αd+ 1)). We will have d = Θ(log(n)) (it can’t be larger because of
(P5)) so this argument has the potential of giving a lower bound of Ω(n log2 n) if we
can make α small enough. The argument of Dietz et al. [12] constructs the segment
chain with α = O(1) which gives an Ω(n log(n)) lower bound; we’ll be able to achieve
α = O(1/ log(n)) which will give the optimal Ω(n log2 n) lower bound.

The final property (P7) is the most technical, and is crucial for the analysis. It
concerns the way that we’ll account for the cost of the algorithm, and describing this
property requires some additional terminology.

Each of the segment chains St1, . . . , S
t
d has length d. We say that the segment Stj

is at level j. For each j ∈ [1, d], we define Σj ⊆ [1, n] to be the set of steps t ∈ [n] such
that Bt is not a subset of Stj . Therefore, according to the definition of the adversary,

16

Σj is the set of steps t such that St+1
j is not determined by the conservative selection

rule, but rather is rebuilt. We use the set Σj to define a partition Πj of [1, n] into
intervals where the first interval starts at 1 and ends at the smallest element of Σj
and each successive interval ends at the next smallest element of Σj ∪ {n}. These
intervals are called the epochs at level j. We also define the partition Π0 to be the
trivial partition consisting of the single epoch [1, n], and Πd+1 to be the partition
into n singleton sets. Epochs at different levels are considered to be distinct objects
even though they may consist of the same set of steps. We will often compare their
associated sets of steps by inclusion. We make a few observations:

• By the conservative selection rule, for each epoch E, all of the segments Stj
are the same for all t ∈ E. We therefore define SE to be this unique segment.
For the epoch [1, n] at level 0 we define S[1,n] = [1,m], and for the singleton
epochs at level d+ 1, SE is not defined.

• The definition of Σj implies that Σj ⊆ Σj+1 and therefore the partition of
[1, n] into epochs at level j + 1 refines the partition into epochs at level j.

Each epoch E is an interval [sE , cE] where sE is the start time of the epoch and
cE is the closing time. The closing times of the epochs at level j are the elements of
Σj ∪ {n} and the start times are each 1 more than the closing time of the previous
epoch. We write Etj for the epoch at level j that contains step t.

An epoch is said to be terminal if it contains n, so it is the final epoch at its level.
An epoch is non-terminal otherwise.

We now build a rooted tree, called the epoch tree whose nodes are the epochs at
all levels together with one leaf for each t ∈ [1, n]:

• The root is the level 0 epoch [1, n].
• For an epoch at level j ≥ 1, its parent is the unique epoch at level j − 1 that

contains it.

Thus the tree has depth d + 1 and it has n leaves corresponding to singleton
subsets. We visualize the tree as ordered so the leaves are in order from left to right.

Observe that for each t ∈ [1, n] the path from the root [1, n] to the leaf {t}
traverses the sequence Et1, . . . E

t
d of epochs and this sequence corresponds precisely to

the sequence St1, . . . , S
t
d of segments selected by the algorithm at step t.

The epoch tree will provide a convenient way to account for the cost of relocations
done by a given algorithm. Fix a segment chain strategy and an algorithm. Let χ
denote the cost of the algorithm against that strategy.

We define a move to be a pair (y, t) where y is an item and t a step such that the
algorithm moves item y at step t. The cost χ incurred by the algorithm is the total
number of moves.

For accounting purposes, we assign each move (y, t) to the smallest epoch E such
that t ∈ E and f t−1(y) ∈ SE . In terms of the epoch tree, we travel from the leaf
t to the root and assign (y, t) to the first epoch encountered on the path for which
SE contains f t−1(y). (By definition (y, t) is not assigned to a leaf.) Thus if (y, t) is
assigned to epoch E at level i then f t−1(y) ∈ Sti \Sti+1. Denoting the cost of all moves
assigned to E by qE we have:

χ =
∑
E

qE . (5.1)

We are now ready to state the final property of the adversary.

17

Fig. 5.1: An epoch tree

This figure depicts an epoch tree for a 12 step game played on an array with 50
positions. Each non-leaf in the tree is an epoch, which is an interval of steps. Epochs
are denoted by [a, b]. The leaves correspond to the individual steps. Each epoch E is
associated to a segment of the array SE. Segments of the array are denoted by 〈r, s〉.
The segments corresponding to non-leaves are nested as one moves away from the
root. For each step t, the sequence of segments labeling the non-root, non-leaf nodes
along the path to t gives the segment chain at time t.
Each leaf is labeled by the busy segment Bt. Note that an epoch E containing t ends
at step t if and only if Bt is not a subset of SE.

(P7) For any non-terminal epoch E with start time s we have qE ≥ 1
8w

s−1(SE),
that is, the total cost of moves assigned to E is at least a 1/8 fraction of the
weight of the associated segment SE at the start of the epoch.

We now formulate two lemmas concerning these properties. The first lemma
gives a lower bound on the cost incurred by any algorithm against a segment chain
strategy that satisfies the above properties, in terms of the parameters σ, α and λ in
the properties. This lemma encapsulates and extends the main accounting argument
of Dietz et al. [11, 20], which they used to prove an Ω(log2(n)) amortized lower bound
for the special case of smooth algorithms.

Lemma 5.1. (Properties imply lower bound) Let m,n, n0, δ0 and Y 0 be as in
Lemma 2.3. Let σ ≥ 1 and α, λ be positive parameters. If a segment chain strategy
produces segment chains with d levels satisfying (P1)-(P7) then the cost incurred by
the algorithm satisfies

χn(m|Y 0) ≥ λδ∗nd2

128(αd+ λ
σ + 1− δ0)

. (5.2)

18

We next turn to the second lemma, Lemma 5.2, which shows that with suitable
parameters our adversary satisfies (P1)-(P7). Before giving the specific parameter
choices, we give some intuition for these choices. The choice of parameters is directly
motivated by the expression in the lower bound. We would like the numerator to be
large, while keeping the denominator small.

The main parameter in the numerator is the depth of the segment chains d.
Property (P5), which requires segment sizes to at least halve each time, and property
(P4) which requires that each Std be suitable, limit d to be O(log(n)). We will indeed
be able to choose d to be Θ(log(n)) (here and elsewhere in this overview the Θ(·) may
have an implicit dependence on δ0). The numerator also involves λ and δ∗ which are
both at most δ0 and we’ll pick them to be Ω(δ0). Thus the numerator will just be
Θ(n log2(n)) (where we again hide the dependence on δ0).

The denominator must be at least 1 − δ0 and we’ll be able to achieve a bound
of Θ(1 − δ0). To do this we’ll need that the parameter α which bounds the density
degradation along each chain by O((1− δ0)/d) so (ignoring the dependence on δ0) we
need α to be O(1

log(n)). We’ll also need that λ/σ = O(1 − δ0) but ensuring it is a

minor detail.
The density degradation parameter α is the crucial part of the denominator.

The parameter α is closely related to the input parameter κ of the adversary (which
determines the quality function). As we’ll see later in Lemma 7.3, α is in fact O(κ).
Since we want α to be O(1

log(n)) we’ll want to choose κ to be O(1
log(n)).

On the other hand, if we make κ too small then this has the effect of making the
quality function depend mostly on the density and very little on the size. This can be
bad because, as the adversary builds a segment chain the segment sizes may shrink
rapidly along the chain, which could force us to make the length d of the segment
chains smaller than Θ(log(n)) in order to be sure that the final segment in each chain
is suitable (as required by property (P4)).

Fortunately, as we’ll show, we will be able to choose κ (and hence also α) to be
Θ(1

log(n)) and d to be Θ(log(n)). Thus we’ll get the Θ(n log2 n) lower bound.

With all of this in mind, we now specify the parameters.
We choose the input parameters to our adversary as follows:

κ = 2 log(1/δ0)
1

log(n)
(5.3)

d =

⌊
1− δ0

8C6 log(1/δ0)
log(n)

⌋
, (5.4)

λ =
1

6
δ0. (5.5)

where

C6 = 60. (5.6)

We’ll also need a lower bound on n:

C0 = 21000C6 (5.7)

(Both C6 and C0 are chosen large enough to satisfy Lemma 7.3 below.)
The auxiliary parameters needed to specify properties (P2), (P3) and (P6) are

set as follows:

19

σ = n1/4 (segment size lower bound) (5.8)

δ∗ = δ02δ0−1 (segment density lower bound) (5.9)

α = 2C6κ = 4C6 log(1/δ0)
1

log(n)
(density degradation parameter) (5.10)

Here is the promised lemma:
Lemma 5.2. Let m,n, n0, Y

0, δ0, µ0 be as in Lemma 2.3. Let the parameters be
set according to (5.3)-(5.10). Then Adv(d, κ, λ) satisfies (P1)-(P7).

5.1. Proof of lemma 2.3. Before proving Lemmas 5.2 and 5.1, we show how
they combine to prove the main lemma.

Let m,n, n0, Y
0, δ0 be as in Lemma 2.3. Lemma 5.2 implies that, with the given

setting of parameters, our adversary satisfies (P1)-(P7).
Lemma 5.1 gives a lower bound on χn(m|Y 0). The denominator of (5.2) is Θ(αd+

λ
σ + 1− δ0). The settings given by (5.10) and (5.4) give αd ≤ (1− δ0)/2. The setting

σ = n1/4 and λ ≤ 1 and the hypothesis of the main lemma that δ0 ≤ 1− n−1/5 give
λ
σ ≤ 1− δ0. So the denominator of (5.2) is Θ(1− δ0)

For the numerator, the setting of d gives d2 = Θ(log2(n))(1 − δ0)2/(log(1/δ0))2.
For large mingap λ = 1 and the fraction in (5.2) simplifies to:

χ = Θ

(
n log2(n)

δ0(1− δ0)

(log(1/δ0))2

)
,

while for small mingap λ = δ0
6 ,

χ = Θ

(
n log2(n)

δ2
0(1− δ0)

(log(1/δ0))2

)
,

as required to prove Lemma 2.3.
It remains to prove Lemmas 5.1 and 5.2. Each of these lemmas is proved in its

own section, and the two sections are completely independent so can be read in either
order.

6. Proof of Lemma 5.1. The proof that the properties give a good lower bound
is a careful accounting argument that is a reworking of the idea used in [11, 20] to
obtain an Ω(n log2(n)) bound for smooth algorithms.

6.1. Some preliminaries and an overview. For simplicity we write χ for
χn(m|Y 0). By (5.1), χ ≥

∑
E q

E . The critical property (P7) says that, for E non-
terminal, qE is bounded below by 1

8 of the weight of the associated segment SE at
the beginning of the epoch. Using this together with the lower bound on the density
of any segment from (P3(δ∗)) gives:

qE ≥ 1

8
ws

E−1(SE) ≥ δ∗

8
|SE |.

Letting N be the set of non-terminal epochs at level between 1 and d, we have:

χ ≥
∑
E∈N

qE ≥ δ∗

8

∑
E∈N

|SE |. (6.1)

20

So we are reduced to proving a lower bound on
∑
E∈N |SE |. To this end we start

with two easy observations.
Proposition 6.1.
1. For any epoch E, |E| ≤ |SE |.
2. For each level i ∈ [1, d] the sum of the lengths of all non-terminal epochs at

level i is at least n/2.
The first observation holds because during epoch E, |E| new items are stored

within the segment |SE |. The second holds since the sum of the lengths of all epochs
at level i is n and by (P1) the terminal epoch has length at most n/2.

Combining these observations with (6.1),

χ ≥ δ∗

8

∑
E∈N

|SE | ≥ δ∗

8

∑
E∈N

|E| ≥ δ∗nd

16
.

This is a non-trivial lower bound, but we want a lower bound of Ω(nd2). To
improve the bound from Ω(nd) to Ω(nd2) we try to show that the bound |SE | ≥ |E|
used above can typically be improved to |SE | = Ω(|E|d). This is not universally true
for all epochs, but the following weaker statement will suffice: for a constant fraction
of steps t, |SE | = Ω(|E|d) holds for a constant fraction of the epochs containing t. This

would follow if we could show that for a constant fraction of steps t,
∑
E:t∈E

|E|
|SE | =

O(1).
The following proposition shows that something like this holds if we replace |E| in

the numerator by a related quantity. For epoch E at level at least 1, let π(E) denote
the parent of epoch E in the tree, which is the epoch containing E whose level is one
less than that of E. Let:

∆(E) = sE − sπ(E),

which is the time from the start of π(E) until the start of E.
Proposition 6.2. For any time t,∑

E 6=[1,n]:t∈E

∆(E)

|Sπ(E)|
≤ 1

λ
(1− δ0 + dα).

Proof. For i ∈ [0, d] we make the following definitions:
• Ei denotes the epoch at level i containing t.
• si is the start time of Ei. Observe that s0 = 1 ≤ s1 ≤ · · · ≤ sd+1 = t.
• Si is the segment associated Ei.
• ρi = ρsi−1(Si), which is the density of the segment Si just prior to the start

of epoch Ei. Note that ρ0 = ρ0([1,m]) = δ0. This definition doesn’t work for
ρd+1 (since there is no segment Sd+1) so we define ρd+1 = 1 for convenience.

• ∆i = ∆(Ei) which is equal to si − si−1.
For any i ∈ [1, d], the step interval [si−1, si − 1] has size ∆i and is a subset of

Ei−1. During this interval of steps all inserted items are placed in Si−1 and no item
leaves Si−1. Hence the weight of Si−1 increases by λ∆i and so:

ρsi−1(Si−1)− ρi−1 = ρsi−1(Si−1)− ρsi−1−1(Si−1) = λ
∆i

|Si−1|
.

21

We also have:

ρi ≥ ρsi−1(Si−1)2−α ≥ ρsi−1(Si−1)− α.

For i ≤ d the first inequality holds by property (P6(α)) (which bounds the rate at
which density degrades along a segment chain) and for i = d + 1 it holds from the
choice we made that ρd+1 = 1. The second inequality holds because ρi and α are in
[0, 1].

Using the second inequality with the first and rearranging we get:

∆i

|Si−1|
≤ 1

λ
(ρi − ρi−1 + α) .

Summing this inequality for each Ei, the sum on the right telescopes to give:

∑
E 6=[1,n]:t∈E

∆(E)

|Sπ(E)|
≤ 1

λ
(ρd+1 − ρ0 + dα) ≤ 1

λ
(1− δ0 + dα),

as required.
Intuitively, this proposition is useful because we expect that for a “typical” epoch

E, ∆(E) = Ω(|π(E)|), i.e. the number of steps from the start of π(E) to the start of
E is typically a constant fraction of the length of |π(E)|. The technical work done in
the proof makes this intuition precise.

6.2. The proof. Following the discussion of the previous subsection, we return
to (6.1) and try to show that

∑
E∈N |SE | is a Θ(d) factor larger than W =

∑
E∈N |E|

To facilitate this comparison we define β(E) = |E|/W . Using the arithmetic-harmonic
mean inequality (which says that if X is a positive valued random variable then
E[X] ≥ 1/E[1/X]) we get:

∑
E∈N

|SE | = W
∑
E∈N

β(E)
|SE |
|E|

≥ W∑
E∈N β(E) |E||SE |

=
W 2∑

E∈N
|E|2
|SE |

≥ n2d2

4
∑
E∈N

|E|2
|SE |

.

If we can show that the denominator is O(n) (where the big O does not depend
on d) then we’ll get the desired lower bound. This is indeed true, and the conclusion
of the lemma follows immediately by combining the previous inequality with (6.1)
and the following lemma:

Lemma 6.3.

∑
E∈N

|E|2

|SE |
≤ 4n

λ

(
λ

σ
+ 1− δ0 + dα

)
.

The reader should take note that we have switched from proving a lower bound on a
sum to proving an upper bound on a related sum.

Proof. We prove the upper bound with the sum extended to the set E of all epochs
at levels from 1 to d (not just non-terminal epochs).

We will prove the bound by rewriting the sum using some elementary accounting
tricks. Here’s the first one. Recall that for a positive integer k, k2 is the sum of the
first k odd numbers. Thus, letting sE be the start time of epoch E we can write:

22

|E|2 =
∑
t∈E

1 + 2(t− sE).

We therefore have:

∑
E∈E

|E|2

|SE |
=

n∑
t=1

∑
E∈E:t∈E

1 + 2(t− sE)

|SE |
. (6.2)

We hold t fixed, and bound the inner sum (and then multiply it by n). Let E(t)
be the set of epochs at level 1 to d containing t. Let F(t) be the epochs at level 1 to
d+ 1 containing t (i.e. including the leaf {t}).

Recalling the definition of ∆(F) for an epoch F from the previous subsection, we
have that t−sE =

∑
F∈F(t):F⊂E ∆(F), where F ⊂ E is strict containment. Therefore:

∑
E∈E:t∈E

1 + 2(t− sE)

|SE |
=

∑
E∈E(t)

1

|SE |
+ 2

∑
E∈E(t)

∑
F∈F(t):F⊂E

∆(F)

|SE |

=
∑

E∈E(t)

1

|SE |
+ 2

∑
F∈F(t)

∆(F)
∑

E∈E(t):F⊂E

1

|SE |
(6.3)

Now we note that property (P5) (that the segment sizes decrease by at least a
factor of 2 down the epoch tree) implies that for any epoch D ∈ E :∑

E:D⊂E

1

|SE |
≤ 2

|Sπ(D)|
≤ 1

|SD|
. (6.4)

We can use this to bound the first sum in (6.3) by taking D to be the epoch at
level d. By property (P2(σ)), |SD| ≥ σ. For the second sum in (6.3) we take D to be
F and use the first inequality in (6.4) to get:

∑
E∈E:t∈E

1 + 2(t− sE)

|SE |
≤ 2

σ
+ 4

 ∑
F∈F(t)

∆(F)

|Sπ(F)|


We can now apply Proposition 6.2 to obtain

∑
E∈E:t∈E

1 + 2(t− sE)

|SE |
≤ 4

(
1

σ
+

1− δ0 + dα

λ

)
=

4

λ

(
λ

σ
+ 1− δ0 + dα

)
.

Summing over all t ∈ [n] and using (6.2) gives the desired bound.
This completes the proof of Lemma 5.1.

7. Proof of Lemma 5.2. In this final section we show that the given strategy
satisfies properties (P1)-(P7). We start with a detailed informal overview of the ideas
of the adversary construction.

23

7.1. Motivating our adversary strategy. Our adversary has a reasonably
short description, but the specific choices made in the definition may seem arbitrary:

• Why do we introduce the auxiliary sets T ti ?
• Why do we choose the particular quality function?
• If i > j then it follows that Sti = middle(densifyt−1(middle(Sti−1))) from

the above. Why do we need the two applications of middle?
These issues were introduced at a high level in Section 1.4. Here we consider them

again in more technical detail, and show how we arrived at the specific choices. The
proof in the later subsections can in principle be read without reading this section,
but the technicalities involved in the proof hide the main ideas, which we discuss in
this subsection. To simplify the discussion in this section we restrict to the case of
large initial mingap. For this case the weight of a segment is the number of items,
and the density is the fraction of occupied locations, and a segment is suitable (as
defined earlier) if and only if there are at least two items stored in it.

As remarked following the statement of Lemma 5.1, when we apply the lemma
to get a lower bound of Ω(n log2(n)), we want the depth of the hierarchy to be
d = Θ(log(n)), and the density degradation parameter α = O(1/ log(n)). The reader
should keep these parameters in mind.

7.1.1. Satisfying (P1)-(P6). Achieving all of the desired properties except
(P7) with the desired parameter values is straightforward. In discussing these proper-
ties, we’ll reason inductively. We start by proving the properties for the first segment
chain. Then for step t > 1 we prove the properties for the tth segment chain assuming
that they hold for the t− 1st chain. When considering the tth chain we reason about
the segments by increasing level. A natural attempt for selecting the first step is to
take S1

1 to be the segment of size bn/2c having highest density, and for i ≥ 1, define
S1
i to be the subsegment of S1

i−1 of size b|S1
i−1|/2c having highest density. This does

not quite work because it might not satisfy (P6(α)); for a segment S, all subintervals
of some fixed size k might have density less than, say 0.9ρ(S). This difficulty disap-
pears if we relax the requirement that S have size exactly k: it is easy to show that
for a segment S of size at least 8 and k ≤ |S|/2, there must be a subsegment of size
between k/2 and k having density at least that of S.

So for a given configuration and segment S consider the subsegment of size be-
tween |S|/4 and |S|/2 having maximum density (breaking ties arbitrarily). We’ll refer
to this as the densest large subsegment of S.

This suggests we choose S1
1 to be the densest large subsegment of [1,m] and for

i ≥ 2 choose S1
i to be the densest large subsegment of S1

i−1. The resulting sequence has
nondecreasing density (so certainly satisfies (P3(δ∗) and (P6(α))) and as the segment
sizes decrease by at most a factor of 4, we can continue it for Θ(log(n)) levels and
have conditions (P1)-(P6) hold for the first segment chain.

Next let’s consider the case t > 1. Assume that we’ve already selected the segment
chain for step t− 1 so that conditions (P1)-(P6) hold. We want to build the chain for
step t so that these continue to hold. Let jt−1 be the critical level for step t − 1, as
defined earlier, i.e., the first level for which Bt−1 is not a subset of St−1

j (or d + 1 if

there is no such level). For i < jt−1 the segment chain restriction requires Sti = St−1
i

and it is easy to check that properties (P1)-(P6) are preserved, because after the move
by the algorithm the set of items stored in St−1

i changes only by the addition of the
newly inserted item yt−1. For levels i ≥ jt−1, it is not in general sufficient to take
Sti = St−1

i because the algorithm may have moved many items out of St−1
i and so

the density restrictions (P3(δ∗)) and (P6(α)) need not hold. Instead, we rebuild the

24

segments Sti for i ≥ jt−1, iteratively taking Sti to be the densest large subsegment of
Sti−1. This adversary satisfies (P1)-(P6). We will refer to this adversary as the naive
adversary.

7.1.2. Requiring left and right buffers. We now turn our attention to con-
dition (P7). Let E be an epoch at level i with associated segment S and start time
s, and let Z be the set of items stored in S immediately prior to step s. We want to
ensure that the number of moves charged to E is a constant fraction of |Z|. Consider
the set Z ′ of items of Z that move at least once during E and for each y ∈ Z ′, let ty
be the first step during the epoch that it moves. Under our convention for charging
moves to epochs, we charge the move (y, ty) to E provided that at step ty, y is not
stored within the successor interval Sti+1. So qE is at least the number of items y ∈ Z
that move during epoch E such that the first step it is moved it is not in the successor
interval of S. To ensure that this is large, at the start time s we split S into three
segments L,M,R where L is on the left and R is on the right. These are referred to,
respectively, as the left buffer and right buffer of S. Let YL, YM and YR be the sets
of items stored in each of these sets. We want our strategy to satisfy two conditions:

1. L,M,R are chosen so that YL and YR each contain a constant fraction of
items from Z.

2. At every step t ∈ E, we restrict the choice of Sti+1 so that it does not contain
any items from YL ∪ YR that have not yet moved during epoch E. More
precisely, let BE,t−1 be the union of the busy segments from the beginning
of E until step t− 1; this is the region where the algorithm has shifted items
during epoch E. Let M t = M ∪ BE,t−1. We require that Sti+1 ⊆ M t. In
particular, when t is the start time of E we require Sti+1 ⊆M .

If the selection strategy chooses Sti+1 for each t ∈ E to satisfy these two conditions,
then (P7) holds for epoch E because the second condition implies that qE is at least
the number of items y ∈ YL ∪ YR that move at least once during the epoch and by
the (assumed) laziness of the algorithm, during the epoch either all of the items in
YL move, or all of the items in YR move.

7.1.3. Failure of the naive adversary. Unfortunately, the naive adversary
does not meet these two conditions. We now discuss why, and modify the strategy
so that it satisfies the above two conditions (and therefore (P7)) while preserving
(P1)-(P6). To focus attention on the two conditions, we fix an epoch E at level i with
start time s. The segment S associated to this epoch is equal to Sti for all t ∈ E. The
epoch E is divided into one or more epochs at level i + 1. Let H be the set of start
times for level i+ 1 epochs during E. The two conditions restrict the choice of Sti+1

for each t ∈ H.
For each step t ∈ H, the naive adversary selects Sti+1 to be the densest large

subsegment. Condition 2 above requires that Sti+1 ⊆ M t (and not just Sti+1 ⊆ S) so
it is natural to modify the definition of Sti+1 to be the subsegment of M t (rather than
the subsegment of S) of maximum density and size between |M t|/4 and |M t|/2.

The modified algorithm will still satisfy (P1), (P2(σ)) and (P5). However, where
before we could be sure that the density of Sti+1 is at least the density of S, now
we only have that it is at least the density of M t, but the density of M t might be
much lower than that of S. Thus conditions (P3(δ∗)), (P4) and (P6(α)) are no longer
guaranteed.

7.1.4. Enforcing κ-lower balance. To solve this problem we’ll insist that every
segment chosen to start a new epoch satisfy a condition that will ensure that the

25

density of M t is either greater than that of S or only slightly less. More precisely, we
introduce a property of segments called κ-lower balance, where κ > 0 is a parameter
that we will eventually take to be Θ(1/ log(n)). We will say S is κ-lower balanced
with respect to a given configuration if every subsegment of size at least |S|/4 has
density at least the density of S times

(
1
4

)κ
, which for small κ is (1 − O(κ)). If we

knew that each selected segment satisfied this additional condition then for every step
t ∈ H, M t (which has size at least |S|/4) will have density at least 1 − O(κ) times
that of S. This will be enough to get (P1)-(P7).

So we modify the construction of the segments Sju once again so that whenever a
new epoch is started, the segment chosen for that epoch is κ-lower balanced. This is
done as follows. Fix an epoch E at level i with start time s and associated segment
S as before, and assume inductively that S is κ-lower balanced at the beginning of
the epoch. We split S into three parts L,M,R where M is the middle third of S. By
κ-lower balance we know that L,M ,R all have density at least

(
1
4

)κ
times the density

of S, and consequently L and R each contain about 1/3 of the items stored in S.

We consider a step t ∈ E that starts a new i + 1 epoch (this includes the case
t = s) and describe how we’ll select Sti+1. As previously defined, let M t = M∪BE,t−1.
By κ-lower balance, the density of M t at the start of E is at least 1−O(κ) times the
density of S. This is still true at step t since both S and M t contain the same items
they had at the beginning of the epoch plus the items added during the epoch. We
need to select Sti+1 ⊆ M t that is κ-lower balanced. If M t were κ-lower balanced we
could just take Sti+1 to be M , but in general M t need not be κ-lower balanced, so
we’ll need to search for a large κ-lower balanced subsegment.

It turns out to be easier to find a subsegment with a closely related property
called κ-upper balance. S is κ-upper balanced if every subsegment of size at least
|S|/4 has density at most the density of S times 4κ. While κ-upper balance does not
imply κ-lower balance, it is not hard to show that if U is κ/24-upper balanced then
the middle third of U is κ-lower balanced. So we’ll find a large subset of M t that is
κ/24-upper balanced and has density at least that of M t and then take Sti+1 to be
the middle third.

The following simple iterative process can be used to find a κ/24-upper balanced
subset of M t. Initialize the set A to be M t and perform the following iteration: If
A is κ/24-upper balanced then stop. Otherwise, since κ/24-upper balance is violated
there is a subset A′ of size at least |A|/4 that has density more than 4κ times that
of A. Now replace A by A′ and repeat. Since during each iteration the density of A
increases by a factor at least 4κ at each step this must terminate.

This gives a well defined process for selecting the segment Sti+1 at the start of a
level i epoch: Start from M t, apply the iterative process until it terminates and then
take the middle third.

7.1.5. Controlling segment lengths. There is one remaining issue: the it-
erative process must terminate but might require many iterations, and |Sti | may be
much smaller than |Sti−1|. Therefore it is no longer immediate that we can continue
this for Ω(log(n)) levels (while ensuring that the final segment has at least 2 items).
Nevertheless, we can indeed continue this for Ω(log(n)) levels. In the troublesome
case that |Sti | is much smaller than |Sti−1| (because the selection of Sti took many
iterations), the density of Sti will be significantly higher than that of Sti−1. Since the
density can not rise above 1, this can be used to show that the segment sizes can’t
shrink too quickly. A convenient way to simultaneously account for size and density
is to measure the quality of a segment by a function that combines both the density

26

and size. A natural form for such a function is φ(U) = ρ(U)α|U |β . It’s easy to check
that if β/α ≥ κ then this function increases during each of the above iterations. So
we fix α = 1 and β = κ, and for this choice of φ its not hard to show that in passing
from Sti to Sti+1, the function φ decreases by at most a factor (1−O(κ)). This implies
that we can take the depth to be Θ(1/κ). For κ = Θ(1/ log(n)) this gives what we
want.

The introduction of the quality function φ allows for a slight simplification of the
selection of Sti . The proof that φ is nondecreasing in each iteration actually shows
that if U is a segment whose φ value is at least that of any subsegment of U then U
is κ-upper balanced. So to obtain a κ-upper balanced subset of M t we can (and do)
replace the iterative process by the function densify of the previous section which
selects the subset of maximum φ value.

To summarize, for the start time s of E, having chosen S = Ssi−1 the selection of
Sti involves three steps: first we partition S into L,M,R and restrict to the middle
third M of S (this corresponds to the set T si in the definition of the adversary). The
process of constructing Sti+1 for t ∈ E with t > s is similar except we take T ti to be
M t instead of M .

7.2. The proof that the adversary satisfies (P1)-(P7). The remainder of
this section gives the proof of Lemma 5.2 that our adversary with the parameters
chosen according to (5.6)-(5.10) satisfies (P1)-(P7).

We start by noting that property (P1) and (P5) which require that the initial
segment of every chain have size at most n/2 and the segments decrease in size by
at least a factor of 2 are obvious from the definition of the adversary. It remains to
verify the remaining five properties.

7.2.1. Properties of balance and φ. Property (P6(α)) asserts that in each
selected segment chain, the density of a selected segment can not be much smaller
than its predecessor segment. The proof sketch of the previous subsection explained
qualitatively how the function balance accomplishes this; here we provide the tech-
nical details. This will also be needed to establish (P3(δ∗)) and (P2(σ)) which give
lower bounds on the density and weight of any segment occurring in any chain, and
(P4) which establishes that there is always a suitable gap.

Let us fix a configuration (Y, f) and let ρ be the associated density function.
Let κ > 0. We start by formally defining κ-upper balance and κ-lower balance with
respect to the configuration (Y, f), which were mentioned in the previous subsection.

• S is κ-upper balanced (with respect to ρ) if every subsegment of size at least
|S|/4 has density at most ρ(S)4κ.

• S is κ-lower balanced if every subsegment of size at least |S|/4 has density at
least ρ(S)(1/4)κ.

Recall the following definitions:

• The quality of U with respect to (Y, f) is the real number φ(U) = φκ(U) =
ρ(U)1/κ|U |.

• densify(U) is the subsegment of V of U that maximizes φ(V) (breaking ties
arbitrarily).

• balance(U) is the subsegment V of U given by middle(densify(U)).

Proposition 7.1. Let (Y, f) be an arbitrary configuration and let ρ be the asso-
ciated density function. Let T be a segment and D = densify(T).

1. φ(T) ≤ |T |, i.e. the quality of a segment is at most its length. [This holds
since ρ(T) ≤ 1.]

27

2. ρ(D) ≥ ρ(T), i.e. applying densify to T produces a segment that is at least
as dense.

3. D is κ-upper balanced. [Proof: If U is a subsegment of D of length at least
|D|/4, the choice of D implies φ(U) ≤ φ(D), which implies φ(U)κ ≤ φ(D)κ

which implies ρ(U)(1
4)κ ≤ ρ(D), which is the condition of κ-upper balance.]

Lemma 7.2. Fix a configuration (Y, f). Let T be an arbitrary segment, let D =
densify(T) and S = balance(T) = middle(D). Assume that:

|S| ≥ 4 AND κ ≤ 1/24 ln(4).

Then:

1. For any subsegment U of S having size at least |S|/4,

ρ(U)/ρ(T) ≥ ρ(U)/ρ(D) ≥ (
1

4
)24κ.

2. S is 25κ-lower balanced with respect to ρ.
3. φ(S)/φ(T) ≥ 1

3 (1
4)24.

Proof. We first show that parts 2 and 3 follow easily from part 1. For part 2, let
U be a subsegment of S of size at least |S|/4. We have

ρ(U)

ρ(S)
=
ρ(U)

ρ(D)

ρ(D)

ρ(S)
≥
(

1

4

)24κ

·
(

1

4

)κ
=

(
1

4

)25κ

,

where the inequality uses part 1 and the fact that D is κ-upper balanced (by Propo-
sition 7.1) and that |S| ≥ |D|/4.

For part 3, note that

φ(S)

φ(T)
≥ φ(S)

φ(D)
=
|S|
|D|

(
ρ(S)

ρ(D)

)1/κ

≥ 1

3

(
1

4

)24

,

by applying part 1 with U = S.

It remains to prove the first part. From Proposition 7.1, D is κ-upper balanced.
D\U consists of 2 segments L (on the left) and R (on the right). The κ-upper balance
of D implies that ρ(L) and ρ(R) can’t be much higher high than ρ(D), and we’ll show
that this implies that the density of U can’t be much lower lower ρ(D). We have:

|D|ρ(D) = w(D) = w(L) + w(R) + w(U) = |L|ρ(L) + |R|ρ(R) + |U |ρ(U),

which implies:

ρ(U)

ρ(D)
=

1

|U |

(
|D| − |L| ρ(L)

ρ(D)
− |R| ρ(R)

ρ(D)

)
.

Since |S| ≥ 4 and S = middle(D) it follows that |D| ≥ 8 and |S| ≤ |D|/2. Since
U ⊆ S = middle(D), we have |L|, |R| ≥ |D|/4 and since D is κ-upper balanced, it
follows that ρ(L)/ρ(D) and ρ(R)/ρ(D) are each at most 4κ. So:

28

ρ(U)

ρ(D)
≥ 1

|U |
(|D| − (|L|+ |R|)4κ)

≥ 1

|U |
(|D|4−κ − |L| − |R|)

=
1

|U |
(|D|4−κ − |D|+ |U |)

=
1

|U |
(|U | − |D|(1− e− ln(4)κ))

≥
(

1− |D|
|U |

ln(4)κ)

)
≥ (1− 12 ln(4)κ) ≥

(
1

4

)24κ

,

where the final inequality uses the hypothesis that κ ≤ 1/(24 ln(4)) and the inequality
(1− x) ≥ e−2x for x ≤ 1/2.

7.2.2. Some technical inequalities involving the parameters. Our aim
is to establish that the adversary satisfies (P1)-(P7) with the parameter choices of
Equations (5.3)-(5.10).

We complete the proof in the next two subsections. The main part of the argument
is an induction which provides a lower bound on the density and quality of all of the
segments Sti and T ti produced by the adversary. Obviously the selected values of the
parameters will play a role, and this role shows up as certain arithmetic inequalities
that are required for the argument. Each of these inequalities can be verified by a
routine calculation by plugging in the specific values of the parameters.

In preparation for this, we now collect all of the technical inequalities that are
needed for the coming argument. We mention the role each inequality plays in the
argument and highlight the most important ones. This section is optional for the
reader; the reader can go directly to the next section and when encountering one of
these needed inequalities in the next section, the reader can either do the (usually
easy) verification himself or take our word for it.

Readers who choose to read this section may find the brief comments after each
one hard to follow completely, because they refer forward to specific details in the
subsequent proofs. The hope is that giving the reader an impression of the role that
these technical properties play will facilitate reading the proof.

Here are the hypotheses carried over from Lemma 2.3:
(A1) n ≥ C0

(A2) δ0 ∈ (log(n))−2, 1− n−1/5).
The following properties of the chosen parameters can be deduced from (A1)-(A2)

and the definitions of the parameters (5.3)-(5.10).
(R1) δ∗σ ≥ 2. This is a technical condition that ensures that Std satisfies the hy-

potheses of Lemma 4.1 and thus has a suitable gap. It holds with a lot of
room to spare.

(R2) σ ≥ 4. For (P2), every segment Sti has size at least 4. This is a minor technical
hypothesis of Lemma 7.3, which is needed so that we can apply Lemma 7.2.
It holds trivially.

(R3) (1/δ0)1/κ ≤
√
n. This is a significant inequality. In the basis of our induction,

we want to show that (at the beginning of step t) the chosen segment T t1 has

29

quality value at least
√
n/2. This quality function value is easily bounded

below by n
2 δ

1/κ
0 . Since we want this to be at least

√
n/2 this restricts κ to

be large enough. On the other hand we want κ to be O(1/ log(n)) so that
the density degradation parameter α is that small. Fortunately these two
restrictions can both be satisfied by the selected value of κ.

(R4) σ ≤ 2−2C6d
√
n. We want every segment to have length at least σ. The length

of a segment is bounded below (at each step) by the quality function value,
and the analysis will give us a lower bound on that. Our induction argument
will lead to equations (7.11) and (7.9) which give lower bounds on the quality
function value of all of the selected segments, and these lower bounds are all
at least 2−2C6d

√
n. By adjusting the multiplicative constant for d we can

make this as close to
√
n as we want. We arbitrarily chose σ to be n1/4 and

adjusted d appropriately.
(R5) 2−2dC6κδ0 ≥ δ∗. For (P3(δ∗)) we need that every segment in every segment

chain has density at least δ∗. This will follow immediately from the present
inequality, and (7.10) which says that every segment in a segment chain has
density at least 2−2dC6κδ0.

(R6) κ ≤ 1
24 ln(4) and κ ≤ 1/50. These are minor (and easily verifiable) technical

upper bounds needed, respectively, for the hypothesis of Lemma 7.2, and the
end of the proof of (P7)).

(R7) α = 2C6κ. This is a restatement of the definition (5.10) of α, which relates it
to the adversary parameter κ. We prove (7.4) and (7.5) which give a lower
bound on the ratio of densities of successive Sti in each chain as 2−2C6κ, so
setting α = 2C6κ gives us property Property (P6(α)) which requires that the
ratio of densities of successive subsegments is at most 2−α.

7.2.3. The behavior of φ and ρ along a segment chain. The next step in
establishing the remaining properties is to prove a lemma that for each step t, gives a
lower bound on ρt−1 and φt−1 of the first segment St1 and also shows that as we move
from a segment to its successor, ρt−1 and φt−1 can’t decrease by much.

Lemma 7.3. Let C6 and C0 be as in (5.6) and (5.7). Suppose that the parameters
d,κ,α,σ and δ∗ satisfy (R1)-(R7) and that n ≥ C0. Let Sti and T ti be the segments
chosen by the adversary and assume that all of them have size at least 4. For each
t ∈ [1, n] we have:

ρt−1(T t1) ≥ δ0, (7.1)

φt−1(T t1) ≥
√
n/2, (7.2)

and for i ∈ [1, d] we have:

if t starts an i-epoch then Sti is 25κ lower-balanced with

respect to ρt−1.
(7.3)

30

ρt−1(Sti)

ρt−1(T ti)
≥ 2−C6κ = 2−α/2. (7.4)

ρt−1(T ti+1)

ρt−1(Sti)
≥ 2−C6κ = 2−α/2 if i ≤ d− 1. (7.5)

φt−1(Sti)

φt−1(T ti)
≥ 2−C6 . (7.6)

φt−1(T ti+1)

φt−1(Sti)
≥ 2−C6 if i ≤ d− 1. (7.7)

Proof. We fix an epoch E and prove the result for all t ∈ E. Let i be the level of
the epoch. We divide into cases depending on whether or not t is the start time sE .

Case 1. t = sE . For (7.1) and (7.2), recall that T t1 is chosen to have highest density
among segments of length between n/2 and n. Since the m locations of the array can
be partitioned into segments of size between n/2 and n, and one of those must have
density at least the density of the entire array, we conclude that ρt−1(T t1) ≥ δ0. From

the definition of φt−1, φt−1(T t1) ≥ (n/2)δ
1/κ
0 , which is at least

√
n/2 (see (R3)).

For the proofs of the remaining parts in this case, we apply Lemma 7.2 with
T = T ti and S = Sti . The hypotheses of Lemma 7.2 require that κ be smaller than
1/24 ln(4) which is (R6) and that |Sti | ≥ 4, which is a hypothesis of the present
lemma. Since Sti = balance(T ti), part 2 of Lemma 7.2 implies that Sti is 25κ-lower
balanced. Inequality (7.4) follows from the first part of Lemma 7.2 with U = S, using
C6 = 60 ≥ 48. Inequality (7.6) follows from the third part of Lemma 7.2 with U = S.
Since Sti is 25κ-lower balanced and |T ti+1| ≥ |Sti |/4 we have (7.5) and by the definition
of φt−1 also (7.7).

Case 2. t > sE . We may assume by the first case that the four inequalities hold
with t replaced by sE . We will show that they continue to hold throughout the epoch
E. We will repeatedly use the following easy fact:

Proposition 7.4. Let S ⊆ S′ be segments and s < t be steps. Suppose that for
all steps r ∈ [s, t − 1], the busy segment Br is a subset of S. Then ρr(S), φr(S),
ρr(S)/ρr(S′) and φr(S)/φr(S′) are all nondecreasing as a function of r ∈ [s, t− 1]

Proof. This follows from: At each step in [s, t−1], both wr(S) and wr(S′) increase
by λ and wr(S) ≤ wr(S′).

Let s < t be the start time of the epoch. Note that during epoch E, the sets
Sti = Ssi and T ti = T si . Therefore (7.1) and (7.2) and (7.4) and (7.6) follow from the
corresponding inequalities for step s together with Proposition 7.4.

For (7.5) and (7.7), we cannot apply Proposition 7.4 directly because, while Sti =
Ssi , it may not be true that T ti+1 = T si+1 because there may have been one or more
new i+ 1-epochs started between s and t and so Tui+1 may change during the epoch.
Note that since the step interval [s, t] is a subinterval of the epoch E, at any time
u ∈ [s, t] that Tui+1 changes i+1 must be the critical level ju−1. We will need to make
careful use of the adversary construction (Adv1.b) of the T -set at the critical level.

Proposition 7.5. Let i ∈ [1, d] be a level and t a step that belongs to the level i
epoch E, whose start time is s. Then T ti+1 = T si+1 ∪

⋃
uB

u where u ranges over all
steps u ∈ [s, t− 1].

Proof. We prove this by induction on t ≥ s; it holds trivially for t = s. Assume
t > s; by induction it suffices to show that T ti+1 = T t−1

i+1 ∪ Bt−1. If the critical level

jt−1 is greater than i+1 then this is trivial since then Bt−1 ⊆ St−1
i+1 ⊆ T

t−1
i+1 . Otherwise

jt−1 = i + 1 and the conclusion follows directly from the definition of the adversary.

31

We are trying to show that the density of T ti+1 can not be much smaller than
the density of Sti+1. According to Proposition 7.5, the interval T ti+1 is equal to T si+1

combined with some busy sets. These busy sets are determined by the algorithms
behavior, so it is conceivable that the algorithm might be able to choose the busy sets
cleverly so as to drive the density of T ti+1 down significantly. We’ll show this can’t
happen using the first part of Lemma 7.2. What we’ll do is consider the density of the
segment T ti+1 with respect to the density function ρs−1 used during step s. Since T ti+1

is a subsegment of Sti = Ssi that contains T si+1 and is therefore of size at least |Sti |/4,

we can apply the second part of Lemma 7.2 to get that ρs−1(T ti+1)/ρs−1(Ssi) ≥
(

1
4

)25κ

which is at least 2−C6κ. Proposition 7.4 implies that the same inequality holds for
ρt−1 (keeping in mind that Sti = Ssi). Since |T ti+1|/|Sti | ≥ 1/3 we also get (7.7).

7.2.4. Completing the proof of Lemma 5.2. Using Lemma 7.3 repeatedly
we have by induction on i = 1, . . . , d for fixed t ∈ [1, n], that:

ρt−1(T ti) ≥ δ02(2−2i)C6κ (7.8)

φt−1(T ti) ≥
√
n

2
2(2−2i)C6 ≥ σ (7.9)

ρt−1(Sti) ≥ δ02(1−2i)C6κ ≥ δ∗ (7.10)

φt−1(Sti) ≥
√
n

2
2(1−2i)C6 ≥ σ. (7.11)

The final inequality of (7.10) follows from (R5). The final inequalities of (7.9)
and (7.11) follow from (R4). Note that the final inequality of (7.11) and (R2) imply
that as we proceed to level i in the induction, the hypothesis |Sti | ≥ 4 of Lemma 7.3
holds at each step.

This gives us what we need to establish the remaining properties.

Proof of Property (P2(σ)). This says that all segments selected for segment chains
have length at least σ. Since |Std| ≥ φt−1(Std) this follows from (7.11).

Proof of Property (P3(δ∗)). This says that all segments selected for segment chains
have density at least δ∗ and is included in (7.10).

Proof of Property (P4). We need to establish that the hypotheses of Lemma 4.1 (the
suitable gap lemma) are satisfied. For the lower bound on the mingap of Y 0 we have
from the hypothesis of Lemma 2.3 and the choice λ = δ0/6 that mingap(Y 0) ≥ 1 +
12/δ0 ≥ 1+2/λ as required. The hypothesis ρt−1(Sti) ≥ 2λ follows from (P3(δ∗)) and
the fact that δ∗ ≥ δ/3 ≥ 2λ. The hypothesis wt−1(Sti) ≥ 2 follows from wt−1(Sti) =
|Sti |ρ(Sti) ≥ σδ∗ by properties (P2(σ)) and (P3(δ∗)) which is at least 2 (e.g. see (R1)).

Proof of Property (P6(α)). This requires a lower bound on ρt−1(St−1
1) and on the

ratios ρt−1(Sti)/ρ
t−1(Sti−1). For the first bound we use (7.4) with i = 1 and (7.1). For

the second we combine (7.4) and (7.5). In both cases we need the fact that α = 2C6κ.

Proof of Property (P7). Let E be an epoch at level i. We want to bound qE from
below, where qE is the number of moves done during epoch E that were assigned
to epoch E, which means moves that occured during steps t ∈ E of items that were
stored in Sti \ T ti+1 prior to the move. Let s denote the start time, and c denote the
closing time, of epoch E. The busy segment Bc includes a location outside of SEi
(this is the reason that the epoch closed at step c.) Without loss of generality let us

32

say that Bc includes a location that is to the left of SEi . Let L be the left segment of
Ssi \ T si+1.

The number of moves charged to epoch E is qE . We’ll show that (1) every item
stored in L at the start time s of E moves during E and (2) the first such move is
charged to epoch E, and (3) the number of such items is at least |Ssi |ρs−1(Ssi)/8. This
immediately gives (P7).

For (1), note that Bc must include a location in Sci+1 ⊆ T ci+1 and so Bc ∪ T ci+1

is a segment that must contain all of L. By Proposition 7.5, L must be a subset of
the union of the busy segments Bs ∪ · · · ∪ Bc which means that every item stored
in L under fs−1 must move during E. For (2) consider an item y that was stored
in location ` ∈ L under fs−1. Let t be the earliest step in E that ` ∈ Bt. Thus
` 6∈ T ti+1 so ` 6∈ Sti+1 and so the move of y at step t is charged to epoch E. For (3) L
is a subsegment of Sti = Ssi of size at least |Ssi |/4. As Ssi is 25κ-lower balanced with
respect to ρs−1 by (7.3), ρ(L) ≥ ρ(Ssi)(1/4)25κ ≥ ρ(Ssi)/2, since κ ≤ 1/50 by (R6).

This completes the proof of Lemma 5.2, and thereby also the proof of Lemma 2.3.

Ackknowledgements.. We are grateful to two anonymous referees whose ex-
tensive and valuable comments helped us to improve the exposition of the paper.

REFERENCES

[1] Yehuda Afek, Baruch Awerbuch, Serge A. Plotkin, and Michael E. Saks. Local man-
agement of a global resource in a communication network. J. ACM, 43(1):1–19, 1996.

[2] Martin Babka, Jan Bulánek, Vladiḿır Čunát, Michal Koucký, and Michael E. Saks.
On online labeling with polynomially many labels. In Proceedings of the 20th Annual Eu-
ropean Symposium on Algorithms, ESA ’12, pages 121–132, 2012.

[3] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack
Zito. Two simplified algorithms for maintaining order in a list. In Proceedings of the 10th
Annual European Symposium on Algorithms, ESA ’02, pages 152–164, 2002.

[4] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious B-
trees. SIAM J. Comput., 35:341–358, 2005.

[5] Michael A. Bender, Ziyang Duan, John Iacono, and Jing Wu. A locality-preserving
cache-oblivious dynamic dictionary. Journal of Algorithms, 53(2):115 – 136, 2004.

[6] Michael A. Bender, and Haodong Hu. An adaptive packed-memory array. ACM Transac-
tions on Database Systems, 32(4):26, 2007.

[7] Richard S. Bird and Stefan Sadnicki. Minimal on-line labelling. Information Processing
Letters, 101:41–45, 2007.

[8] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious search trees
via binary trees of small height. In Proceedings of the thirteenth annual ACM-SIAM sym-
posium on Discrete algorithms, SODA ’02, pages 39–48. Society for Industrial and Applied
Mathematics, 2002.

[9] Jan Bulánek, Michal Koucký, and Michael Saks. On Randomized Online Labeling with
Polynomially Many Labels. In Proceedings of the 40th International Colloquium on Au-
tomata, Languages and Programming, ICALP ’13, pages 291-302, 2013.

[10] Paul F. Dietz. Maintaining Order in a Linked List, in Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, STOC 1982, pages 122–127.

[11] Paul F. Dietz, Joel I. Seiferas, and Ju Zhang. Lower bounds for smooth list labeling.
Manuscript, 2005. (Listed in the references of [12]).

[12] Paul F. Dietz, Joel I. Seiferas, and Ju Zhang. A tight lower bound for online monotonic
list labeling. SIAM J. Discret. Math., 18:626–637, 2005.

[13] Paul F. Dietz and Ju Zhang. Lower bounds for monotonic list labeling. In SWAT, pages
173–180, 1990.

[14] Yuval Emek and Amos Korman. New bounds for the controller problem. Distributed Com-
puting, 24(3-4):177–186, 2011.

[15] Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table implementation of priority
queues. In Proceedings of the 8th Colloquium on Automata, Languages and Programming,
pages 417–431, 1981.

33

[16] Tsvi Kopelowitz. On-Line Indexing for General Alphabets via Predecessor Queries on Subsets
of an Ordered List. In Proceedings 53rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 283–292, 2012.

[17] Amos Korman and Shay Kutten. Controller and estimator for dynamic networks. In PODC,
pages 175–184, 2007.

[18] Joel Seiferas. Personal communication, 2011.
[19] Dan E. Willard. A density control algorithm for doing insertions and deletions in a sequen-

tially ordered file in a good worst-case time. Inf. Comput., 97:150–204, April 1992.
[20] Ju Zhang. Density Control and On-Line Labeling Problems. PhD thesis, University of

Rochester, Rochester, NY, USA, 1993.

34

