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Abstract

The Hamming and the edit metrics are two common notions of measuring distances between
pairs of strings x, y lying in the Boolean hypercube. The edit distance between x and y is de�ned
as the minimum number of character insertion, deletion, and bit �ips needed for converting x
into y. Whereas, the Hamming distance between x and y is the number of bit �ips needed for
converting x to y.

In this paper we study a randomized injective embedding of the edit distance into the Ham-
ming distance with a small distortion. We show a randomized embedding with quadratic dis-
tortion. Namely, for any x, y satisfying that their edit distance equals k, the Hamming distance
between the embedding of x and y is O(k2) with high probability. This improves over the dis-
tortion ratio of O(log n log∗ n) obtained by Jowhari (2012) for small values of k. Moreover, the
embedding output size is linear in the input size and the embedding can be computed using a
single pass over the input.

We provide several applications for this embedding. Among our results we provide a one-
pass (streaming) algorithm for edit distance running in space O(s) and computing edit distance
exactly up-to distance s1/6. This algorithm is based on kernelization for edit distance that is of
independent interest.

∗The research leading to these results has received funding from the European Research Council under the Euro-
pean Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 616787. The �rst author
was partially supported by Research-I Foundation, Microsoft Research India Travel Grant and Google India Student
Travel Grant. The third author was partly supported by the project 14-10003S of GA �R.
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1 Introduction

The edit distance (aka Levenshtein distance) [Lev66] is a common distance measure between pairs
of strings x, y ∈ {0, 1}∗. It plays a central role in several domains such as computational biology,
speech recognition, text processing and information retrieval. The edit distance between x and y,
denoted by ∆e(x, y), is de�ned as the minimum number of character insertion, deletion, and bit
�ips needed for converting x into y. Another common distance measure between pairs of strings
x, y ∈ {0, 1}n is the Hamming distance, denoted by ∆H(x, y), which is the number of bit �ips needed
for converting x to y.

From computational perspective, the Hamming distance has many advantages over the edit
distance, our current understanding indicates that it is easier to compute and work with (cf. [BI15]).
A natural way of bridging the gap between applications requiring the edit distance and algorithms
working with the Hamming distance is designing an embedding of the edit distance into the Hamming
distance. By an embedding of the edit distance into the Hamming distance we mean a mapping
f of strings into (possibly di�erent) strings that transforms the edit distance of strings x and y
into a related Hamming distance of f(x) and f(y). The distortion of such an embedding is the
worst case ratio between the Hamming distance of f(x) and f(y) and the edit distance of x and y
(assuming the embedding does not shrink distances.) Embeddings with low distortion found many
applications: from computing edit distance to sketching it, e.g., [BYJKK04, OR07, AO09].

For many algorithmic applications a weaker concept�randomized embedding�su�ces. A ran-
domized embedding is a randomized mapping from strings to strings so that for any x and y, with
high probability over the randomness r, the ratio between the Hamming distance of f(x, r) and
f(y, r) and the edit distance of x and y is small (again assuming that f does not shrink distances.)
This is the type of embedding we consider in this paper. Our main result provides a linear-time
embedding with quadratic distortion between input edit distance and output Hamming distance.
The distortion does not depend on the length of the strings. A notable feature of our embedding is
that it processes the input in one-way manner using little or no space, it is a streaming algorithm.

We provide several applications of this embedding. We design a streaming algorithm for com-
puting the exact edit distance between a pair of strings provided that their edit distance is small
(o(n1/6)). An additional key ingredient of our algorithm is the kernelization of the input strings for
edit distance. This is of independent interest.

Two additional applications are in the context of communication complexity. A well-studied
one is Document Exchange problem [CPSV00], where two communicating parties Alice and Bob
hold two input strings x and y and based on the message transmitted by Alice, Bob's task is to
decide whether ∆e(x, y) > k and if ∆e(x, y) ≤ k then to report x correctly. Another important
problem related to embedding is to decide edit distance using a sketching protocol. In this problem,
given two strings x and y, we would like to compute sketches s(x) and s(y) or in other words a
mapping s : {0, 1}n → {0, 1}t such that t is much smaller compared to n and our objective is to
decide whether ∆e(x, y) > k or not having access to only s(x) and s(y). One can also view the
same problem as a two-party public-coin simultaneous communication protocol [KN97], where Alice
holds x and Bob holds y and both of them are only allowed to send one message to a third referee
whose job is to decide whether ∆e(x, y) > k or not depending on the messages he receives from
Alice and Bob. We elaborate on our results next.
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1.1 Our Main Results

Our main result shows the existence of a randomized mapping f from edit distance into Hamming
distance that at most squares the edit distance. Our result applies to the shared randomness
model. Namely, we show that for every pair of strings (x, y) ∈ {0, 1}n having a small edit distance
the Hamming distance between the encoded strings is small, provided that the encoding was done
using the same sequence of random bits.1 Formally:

Theorem 1.1. For any integer n > 0, there is ` = O(log n) and a function f : {0, 1}n × {0, 1}` →
{0, 1}3n such that for any pair of strings x, y ∈ {0, 1}n:

1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ O((∆e(x, y))2)

with probability at least 2/3 over the choice of the random string r ∈ {0, 1}`. Furthermore, f can be

computed in a streaming fashion in (non-uniform) log-space using one pass over the input string x.

We can also give a uniform version of this theorem by allowing a little bit more random bits.

Theorem 1.2. There is an algorithm A computing a function f : {0, 1}n×{0, 1}` → {0, 1}3n where

` = O(log2 n) such that for any pair of strings x, y ∈ {0, 1}n:

1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ O((∆e(x, y))2)

with probability at least 2/3 over the choice of the random string r ∈ {0, 1}`. The algorithm A on

input x and r works in a streaming fashion in log-space using one pass over its input x and random

access to r. On a word RAM with word size O(log n), A can be implemented so that it uses only

constant amount of working memory, i.e., O(1) words, and uses O(1) amortized time per output bit

(O(log n) per output bit in the worst-case.)

In both of the above theorems, with probability at least 1− 1/nΩ(1) over the choice of random
r, x can be recovered from f(x, r). Indeed, the algorithm computing f knows which is the case by
the end of its computation. Hence, the function f in both of the theorems can be made one-to-one
by appending r at the end of the output and also appending either 0n or x depending on whether
x can be recovered or not. (One would require an extra pass over x to append it.) This answers
positively Problem 59 of Dortmund Workshop on Algorithms for Data Streams 2012 [DW1] in the
randomized case whether there is an embedding which maps strings of constant edit distance into
strings of Hamming distance o(log n).

We can specify the trade-o� between the Hamming distance and its probability: for any positive
c ∈ R, the probability that ∆H(f(x, r), f(y, r)) ≤ c · ∆e(x, y)2 is at least 1 − 12√

c
− O( 1

n) (extra

O(1/n) term comes from the error incurred due to Nisan's PRG discussed in Section 5) On the
other hand ∆H(f(x, r), f(y, r)) ≥ ∆e(x, y)/2 happens with probability 1− 1/nΩ(1).

One may naturally wonder what is the distribution of the resulting Hamming distance. It very
much depends on the two strings x and y. For example if y is obtained from x by �ipping the �rst k
bits then with high probability the Hamming distance of f(x, r) and f(y, r) is O(k). On the other
hand, if y is obtained from a random x by �ipping each n/k-th bit (where n ≥ k3) then with high

1Our result can easily be extended for strings lying in a larger alphabet (See Section 6).
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probability the Hamming distance of f(x, r) and f(y, r) will be Ω(k2). Interestingly though, for
any two distinct �xed x and y, the expectation of ∆H(f(x, r), f(y, r)) is Θ(n) so the distribution is
heavy tailed. For many applications this is not any problem as in many applications one can abort
when the Hamming distance is large and retry with a new random seed.

Applications One of the important contributions of this paper is providing an algorithm e�cient
in terms of running time as well as space that computes the edit distance between two strings
with a promise that the edit distance is �small�. Moreover, our algorithm can be implemented in a
streaming fashion using only a single pass over the input. Let us �rst state our result formally.

Theorem 1.3. There is a probabilistic algorithm that on input x, y ∈ {0, 1}n and an integer s
with probability at least 1 − 1/n outputs k = ∆e(x, y) if k < s1/6, and a series of k edit operations

transforming x into y. With the remaining probability the algorithm outputs `I DO NOT KNOW'.

The algorithm accesses x and y in one-way manner, runs in time O(n + s log n) and uses space

O(s).

To the best of our knowledge this is the �rst algorithm capable of computing the exact edit
distance of two strings in a streaming fashion provided the distance is not too large o(n1/6). Fur-
thermore, it can output the sequence of associated edit operations in sub-linear space. No such
linear-time algorithm existed thus far. If we allow the algorithm O(log log k) passes over the input,
we do not have to provide the parameter s to the algorithm (Corollary 7.10).

Other applications of the randomized embedding considered in this paper include the document
exchange problem, design of sketching algorithm to solve gap edit distance problem, and approximate

nearest neighbor search. For the document exchange problem we �rst apply our embedding and then
use the document exchange protocol under Hamming distance, for which an e�cient communication
protocol is known [PL07]. As a consequence, we achieve O(k2 log n) bound on the number of bits
transmitted for document exchange protocol under edit metric. Moreover, in our protocol, running
time of each party will be O(n log n+ k2 log n).

In a similar fashion, our main embedding result provides a randomized sketching algorithm for k
vs. ck2 gap edit distance problem for some constant c and a randomized algorithm for approximate
nearest neighbor search problem that will return a point within the distance of O(k) times that of
the closest one under edit distance metric.

2 Our Techniques

Embedding. Our embedding scheme is based on markedly di�erent idea than previously known
embeddings of edit distance into Hamming distance. Our basic embedding scheme is based on the
idea of coupling of Markov chains known as Kruskal Principle (cf. [LRV09]). The basic randomized
scheme works as follows: First we pick (using the random string r) a sequence of random functions
h1, . . . , h3n : {0, 1} → {0, 1}. We further maintain a pointer i for current position on the input
string x, initially set to 1. In time t ≤ 3n we append the bit xi to the output, and increment i by
ht(xi) (if i exceeds n, we pad the output string with zeros).

This scheme clearly uses a linear number of bits. Using derandomization techniques such as
Nisan's pseudo-random generator [Nis90], we can reduce the number of bits to O(log2 n) in the
uniform case and O(log n) in the non-uniform case.
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To shed some light on why the basic embedding works well, consider two strings x, y ∈ {0, 1}n
of edit distance k, and consider the output f(x, r), f(y, r) of the embedding for the same random
bits r, i.e., produced using the same hash functions. Observe that as long as the pointer i points
to indices in the shared pre�x of x and y, the two output strings are equal. In the �rst iteration
when i points to an index such that xi 6= yi, the output bits become di�erent. Nevertheless, the
increment of i is done independently in the embedding of each input. This independent increment
is done in each iteration where the output bits are di�erent. The crux of our argument relies on
this independent increment to ensure that with high probability ∆H(f(x, r), f(y, r)) ≤ ck2. This is
done by reducing our problem to a certain question regarding random walks on the integer line.

Algorithm of Saha [Sah14]: An idea similar to ours is used in the algorithm of [Sah14]
for computing the edit distance of a string of parenthesis of various types from the set of well
parenthesized expressions. The main idea of the algorithm presented in [Sah14] is to process the
string left to right, push opening parenthesis on a stack and match them against closing parenthesis.
Whenever there is a mismatch remove at random either the closing parenthesis or the opening one.
This algorithm can be applied also to approximately compute the edit distance of strings by pushing
a reverse of one of the strings on the stack and matching the other string against the stack. Whenever
there is a mismatch remove at random a symbol either from the top of the stack or from the other
string.

In order to approximate the edit distance of two strings at hand it is fairly natural idea to
remove the mismatched symbols at random. Our algorithm also builds on this idea. However, while
designing an embedding protocol, there is a major technical challenge when we do not have access
to both of the strings at the same time and we should remove the mismatched characters. We do
not know which one are those. Deleting symbols at random is unlikely to provide a good result.
Moreover, we would like the embedding of x to be simultaneously close to the embedding of all the
strings y, which are relatively close (in edit distance) to x.

Hence, it is not clear that one can carry out the basic idea of mismatch removal in the case of
string embedding when we have access only to one of the strings. Indeed, one needs some oblivious
synchronization mechanism that would guarantee that once the removal process is synchronized it
stays synchronized. The existence of such a mechanism is not obvious. Surprisingly, there is an
elegant solution to this problem with a good performance.

Our solution to this problem repeats symbols random number of times instead of removing
them and we introduce correlations between the random decisions so that our process achieves
synchronization. (Indeed, deleting symbols would not work in our setting as we want to preserve the
overall information contained in the strings.) Although the underlying mechanism of our algorithm
and that of [Sah14] is di�erent, the analysis in [Sah14] eventually reduces to a similar problem about
random walks. One of an open problems about the oblivious synchronization is whether one can
design such a mechanism with a better performance than ours.

Computing edit distance. Our algorithm for small edit distance consists of two steps. In the
�rst step we produce a kernel x′ and y′ from the input strings x and y such that the edit distance
of x′ and y′ is the same as that of x and y, while the length of x′ and y′ is related to their edit
distance rather than the original input size. Then we run known algorithm [LMS98] on the kernel
to compute the edit distance. (This is akin to Fixed Parameter Tractability.)

To compute the kernel, we �rst �nd a good candidate alignment of x and y using our embedding
procedure or Saha's algorithm. By an alignment we mean a mapping of symbols from x to their
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copies in y resulting from performing edit operations on x. (See Section 7.1 for a precise de�nition.)
The candidate alignment obtained from our algorithm results from O(k2) edit operations with high
probability, where k is the edit distance of x and y. Using this alignment we reduce x and y to x′

and y′ of length O(k6) and the same edit distance. Finding the embedding and reducing the size
can be done during a single pass over the inputs.

As the size of the kernel is directly related to the quality of the initial alignment the above
procedure succeeds only with constant probability. To decrease the error probability we re-run the
embedding and kernelization procedures if we obtain a kernel that is too large. To avoid re-reading
the whole input we use the over-sized kernel from the previous trial as the input in the next trial.

Further Improvements: Since our earlier version of the paper we have realized that we could
obtain a somewhat better deterministic algorithm that uses O(k4) space and runs in time O(n+k4).
This could be done as follows. We divide the input strings into blocks of size O(k4). Then apply
the deterministic algorithm to �nd the optimal alignment between the �rst block of both the input
strings [LMS98]. It is guaranteed that the resulted alignment will be of cost at most k and thus
it will be at most 2k steps away from the desired optimal alignment. Now do the same step for
the next block. However this time, instead of considering just the current block for each input, we
consider the string resulted by appending kernel computed so far with the current block. Thus the
strings under consideration will be of size O(k4). Again apply the algorithm given in [LMS98] and
continue this process. At the end we will output the exact edit distance between the two input
strings.

Using a di�erent approach the authors claim to �nd a deterministic algorithm that uses O(k2)
space and runs in time O(n+k2). This approach is still in progress and it would be published soon.

2.1 Related Works

2.1.1 Computing and approximating edit distance

The notion of edit distance plays a central role in several domains such as computational biology,
speech recognition, text processing and information retrieval. As a consequence, computational
problems involving edit distance seek attentions of many researchers. We refer the reader to a
survey by Navarro [Nav01] for a comprehensive treatment of this topic. The problem of computing
exact edit distance (the decision problem) can be solved in O(n2) time using classical dynamic pro-
gramming based algorithm [WF74]. Later, Masek and Paterson [MP80] achieved slightly improved
bound of O(n2/ log n) and this is the best known upper bound so far for computing arbitrary edit
distance. Backurs and Indyk [BI15] indicates that this bound cannot be improved signi�cantly
unless the strong Exponential Time Hypothesis is false. They give a reduction which (implicitly)
maps instances of SAT into instances of edit distance with the edit distance close to n. This does
not exclude faster algorithms for small edit distance such as the O(n+ k2) time algorithm provided
by Landau et al. [LMS98].

So suppose the edit distance between the strings is guaranteed to be bounded by k � n. Then
the running time and the space can be improved. Ukkonen [Ukk85] provided an algorithm that
solves the decision problem in time O(kn) and space O(k). To �nd the optimal alignment (the
search problem) the algorithm uses O(n) space. Landau et al. [LMS98] solved the decision problem
within time O(n + k2) and O(n) space (by slightly modifying their algorithm the search problem
can be solved as well using O(k2) extra space). In this paper, we provide a randomized algorithm
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Table 1: Taxonomy of Algorithms Solving/ Approximating the Edit Distance

Authors Time Space
Approximation
Ratio

Solving Decision
or Search

[WF74] O(n2) O(n) Exact Search

[MP80] O(n2/ log(n)) O(n) Exact Search

[LMS98] O(n+ k2) O(n) Exact Decision

[LMS98] O(n+ k2) O(n+ k2) Exact Search

[LMS98] O(n) O(n)
√
n Search

[AKO10] n1+ε (randomized) O(n) (log n)O(1/ε) Decision

[Sah14] O(n) (randomized) O(log n) O(k) Search (streaming)

This paper
O(n+ k6)
(randomized)

O(k6) Exact
Search with a
promise (streaming and
single pass)

This paper
O(ε−1n log log k + k6+ε log n)
(randomized)

O(k6+ε) Exact
Search (streaming and
log log k pass)

for the search problem under the promise that the edit distance is small. Our algorithm runs in
time O(n + k6), uses space of size O(k6) and it is a single-pass algorithm. We can remove the
promise by paying a penalty in the number of passes over the input and slightly worse time and
space complexity. Table 1 summarizes the above results.

On the other hand, if we focus on approximating edit distance, we have much better bounds
on running time. The exact algorithm given in [LMS98] immediately gives a linear-time

√
n-

approximation algorithm. A series of subsequent works improved this approximation factor �rst

to n3/7 [BYJKK04], then to n1/3+o(1) [BES06] and later to 2Õ(
√

logn) [AO09] while keeping he run-
ning time of the algorithm almost linear. Batu et al.[BEK+03] provided an O(n1−α)-approximation
algorithm that runs in time O(nmax{α

2
,2α−1}). The approximation factor was further improved to

(log n)O(1/ε), for every ε > 0 where the approximation algorithm runs in n1+ε time [AKO10].
The result related to computing edit distance approximately in [AO09] was based on embedding

edit distance into Hamming distance [OR07], where authors showed such an embedding with dis-
tortion factor 2O(

√
logn log logn). In case of embedding of edit distance with moves 2 into Hamming

metric, the distortion factor is known to be upper bounded by O(log n log∗ n) [CM02]. Andoni et
al. [ADG+03] showed a lower bound of 3/2 on distortion factor in case of embedding from edit dis-
tance metric to Hamming metric. This lower bound was later strengthened to (log n)1/2−o(1) [KN05]
and then to Ω(log n) in [KR06].

2.1.2 Randomized embedding and its implications

Embeddings that we have talked about in the last subsection are all deterministic. If we consider
randomized embedding then we already have a much better bound on distortion factor by [Jow12].
Jowhari [Jow12] gave a time-e�cient randomized embedding from edit distance metric into Ham-
ming metric with distortion factor O(log n log∗ n) equipped with a polynomial time reconstruction
procedure. He raised the question whether it is possible to achieve distortion factor o(log n) keeping

2Similar to ∆e(x, y) with addition of a block move operation, where moving a substring of x to another location
is considered as a single operation.
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both the embedding and the reconstruction procedure time-e�cient. In this paper, we answer this
question and achieve an upper bound of O(k) on distortion factor which is a signi�cant improvement
over the previous result when k is �small� compared to n.

Jowhari's motivation behind giving such e�cient randomized embedding was to design a one-
way protocol that solves document exchange problem under edit distance metric. Before looking
at the result by Jowhari [Jow12], let us �rst shed some light on what was known earlier about this
problem. If we focus only on one-way communication protocols, then by using a simple strategy (e.g.,
see [Jow12]) involving random hash functions, we can achieve an upper bound of O(k log n) on the
total number of bits transmitted and the same bound is also known for deterministic protocol [Orl91].
Unfortunately, both the protocols incur Bob's running time exponential in k. Jowhari [Jow12]
studied this problem with the restriction that both Alice and Bob run poly(k, n)-time algorithms
and gave a protocol with a O(k log2 n log∗ n) bound on the number of bits transmitted. He actually
showed that any e�cient randomized embedding with a reconstruction procedure which is e�cient as
well, can be used to design a randomized protocol for this problem. As a consequence, our embedding
result translates into a protocol with a O(k2 log n) bound on the number of bits transmitted.

Another problem that we consider in this paper is the design of sketching algorithm to decide
edit distance. For Hamming distance, e�cient sketching algorithm is known [KOR98, BYJKK04]
that solves the k vs. (1 + ε)k gap Hamming distance problem with constant size sketches. Building
on that result, Bar-Yossef et al. [BYJKK04] gave a computation of constant size sketch that can
distinguish the two cases when edit distance is at most k and when that is at least (kn)2/3, for
k ≤
√
n. Later, improvement on distortion factor of embedding [OR07] results in solution to k vs.

2O(
√

logn log logn) · k gap edit distance problem. Our embedding result can be used to solve k vs. ck2

gap edit distance problem with high probability for some constant c using constant size sketches.

Organization of the Paper: In Section 3, we restate some of the basic facts about random
walks on the integer line. In Section 4, we provide the main randomized embedding algorithm and
also show the bound on distortion factor of that embedding. Then in Section 5, we discuss how
to reduce the number of random bits used in the embedding algorithm which implies Theorem 1.1
and Theorem 1.2. We dedicate Section 7.1 and Section 7.2 to the discussion of one of the main
applications of our embedding algorithm which is computing edit distance between a pair of strings
with a guarantee that the distance is small. In Section 8, we provide several other application of
our main embedding algorithm in the domain of communication complexity.

3 Preliminaries

In the rest of the paper, we refer to a random walk on a line as a random walk on the integer line
where in each step with probability 1/2 we stay at the same place, with probability 1/4 we step
to the left, and otherwise we step to the right. For parameters t ∈ N, ` ∈ Z, by q(t, `), we denote
the probability that a random walk on a line starting at the origin reaches the point ` at time
t for the �rst time (for convenience we set q(0, 0) = 1) and by p(t, `), we denote the probability
that a random walk on a line starting at the origin reaches the point ` within time t. Note that
p(t, `) =

∑t
i=0 q(i, `). Now a few basic facts about the functions p(t, `) and q(t, `) are mentioned

below.

Observation 3.1. Let t ∈ N then:
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1. For all ` < 0 it holds that p(t, `) ≤ p(t, `+ 1), and for all ` > 0, p(t, `) ≤ p(t, `− 1),

2. For all ` 6= 0 it holds that q(t, `) = 1
4q(t− 1, `− 1) + 1

2q(t− 1, `) + 1
4q(t− 1, `+ 1),

3. For all ` > 1 it holds that q(t, `) =
∑

j<t q(t− j, `− 1)q(j, 1).

The following is a well known fact about random walks that can be found e.g. in [LPW06,
Theorem 2.17].

Proposition 3.2 (Folklore). For any k, ` ∈ N it holds that:

∑̀
t=0

q(t, k) ≥ 1− 12k√
`
.

In particular,
∑1296k2

t=0 q(t, k) ≥ 2
3 .

4 The Basic Embedding

In this section we present our basic embedding and in the subsequent section we show how to reduce
the number of its random bits to prove our main theorems. The pseudo-code for the embedding is
given in Algorithm 1.

Algorithm 1 Basic Embedding Function f

Input : x ∈ {0, 1}n, and a random string r ∈ {0, 1}6n
Output: f(x, r) ∈ {0, 1}3n
Interpret r as a description of h1, . . . , h3n : {0, 1} → {0, 1}.
Initialization: i = 1, Output = λ;
for j = 1, 2, . . . , 3n do

if i ≤ n then
Output = Output� xi, where the operation � denotes concatenation;
i = i+ hj(xi);

end
else

Output = Output� 0;
end

end
Set f(x, r) = Output.

Let us illustrate our embedding applied on the strings: x = abc, . . . , xyz, def, . . . , xyz and
y = def, . . . , xyz, abc, . . . , xyz while using the same sequence r as random string.

As one can see, upon each block of edit changes, the output strings f(x, r) and f(y, r) become
di�erent, till they �synchronize� again. In the sequel, we justify this kind of behavior and show that
the synchronization is rapid.

We summarize here the main properties of our basic embedding:

Theorem 4.1. The mapping f : {0, 1}n × {0, 1}6n → {0, 1}3n computed by Algorithm 1 satis�es

the following conditions:
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Figure 1: Runtime example of the embedding algorithm:

1. For every x ∈ {0, 1}n, given f(x, r) and r, it is possible to decode back x with probability

1− exp(−Ω(n)).

2. For every x, y ∈ {0, 1}n, ∆e(x, y)/2 ≤ ∆H(f(x, r), f(y, r)) with probability at least 1 −
exp(−Ω(n)).

3. For every positive constant c and every x, y ∈ {0, 1}n, ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2

with probability at least 1− 12√
c
.

Moreover, both the mapping f and its decoding (given f(x, r) and r) take linear time and can be

performed in a streaming fashion.

Let us justify the properties of our basic embedding from Theorem 4.1. It is clear from the
algorithm that |f(x, r)| = 3n. For the �rst property observe that we can recover x from f(x, r) and
r provided that i = n + 1 at the end of the run of the algorithm. Since at each iteration of the
algorithm, i is incremented with probability 1/2, the probability that during 3n rounds it does not
reach n+ 1 can be bounded by 2−Ω(n) by the Cherno� bound. So unless this low probability event
happens we can recover x from f(x, r) and r.

Proving the second property is straightforward. Indeed, let k = ∆e(x, y). We claim that
k/2 ≤ ∆H(f(x, r), f(y, r)) whenever the algorithm ends with i = n+ 1 on both x and y. In such a
case x can be obtained from f(x, r) by removing all the bits where hj(f(x, r)j) = 0. Similarly for y.
Hence, y di�ers from x only in the part which is obtained from the portion of f(y, r) which bit-wise
di�ers from f(x, r). If ` = ∆H(f(x, r), f(y, r)) then we need to apply at most ` edit operations on x
to obtain all the y except for at most the last ` bits of y (in the case when they are all 0). So except
for an event that happens with exponentially small probability ∆e(x, y) ≤ 2 ·∆H(f(x, r), f(y, r)).

The rest of this section is devoted for the proof of Property 3. We will need the following main
technical lemma. Together with Proposition 3.2 it implies the theorem.

Lemma 4.2. Let x, y ∈ {0, 1}n be of edit distance ∆e(x, y) = k. Let q(t, k) be the probability that

a random walk on the integer line starting from the origin visits the point k at time t for the �rst

time. Then for any ` > 0, Pr[∆H(f(x, r), f(y, r)) ≤ `] ≥
∑`

t=0 q(t, k) where the probability is over

the choice of r.

Consider two strings x, y ∈ {0, 1}n such that ∆e(x, y) = k. We will analyze the behavior of the
embedding function on these two strings. We are interested in the Hamming distance of the output
of the function. Let y = x(0), x(1), . . . , x(k) = x be a series of strings such that ∆e(x

(`−1), x(`)) = 1.
Such strings exist by our assumption on the edit distance of x and y. Let i` be the �rst index on which
x(`−1) and x(`) di�er. To ease the notation assume i1 < · · · < ik (we will remove the assumption in
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the end of the proof). For a �xed value of h1, . . . , h3n we de�ne a function ix : [3n]→ [n+ 1] such
that ix(j) is the value of i in the j-th iteration of Algorithm 1 applied on x.

Let dj measure the di�erence between deleted and inserted bits between x and y that were seen
till iteration j, i.e. d0 is initialized to 0, and dj is de�ned recursively as follows: whenever j is such
that ix(j) /∈ {i1, . . . , ik} then dj = dj−1. Otherwise, suppose ix(j) = i`, then dj = dj−1 − 1 when
x(`+1) is obtained by deletion from x(`), it is dj−1 when it was a bit �ip and dj−1 + 1 when it was a
insertion. The main observation is as follows:

Observation 4.3. Let j ∈ [3n] be such that ix(j) ∈ [i`, i`+1), then:

1. If ix(j) = iy(j) + dj, then xix(j) = yiy(j) so f(x, r)j = f(y, r)j.

2. Moreover if ix(j) = iy(j) + dj and for every j′ ≥ j if ix(j′) < i`+1, then ix(j′) = iy(j
′) + dj.

Overall, for every j′ ≥ j satisfying ix(j′) < i`+1 it holds that f(x, r)j′ = f(y, r)j′ .

The �rst item follows easily by the de�nition of dj and x
(0), . . . , x(k). As for the second item,

observe that as long as ix(j′) < i`+1 the increment of ix(j′), iy(j
′) is identical as xix(j′) = yiy(j′), so

in particular hj′(xix(j′)) = hj′(yiy(j′)).
To bound ∆H(f(x, r), f(y, r)) we de�ne the following randomized process which is induced by

the behavior of the algorithm on x and y. The process consists of a particle moving randomly on
the integer line and a goalspot. In the beginning both the particle and the goalspot are located at
the origin. The process lasts 3n units of time.

The goal spot is moved according to dj , i.e. whenever ix(j) hits an index i`, then the goalpost
is moved according to the following rule:

• If x(`) is obtained from x(`−1) by a bit �ip then the goalspot remains in its place.

• If x(`) is obtained from x(`−1) by a bit insertion then the goalspot shifts one step to the right.

• If x(`) is obtained from x(`−1) by a bit deletion then the goalspot shifts one step to the left.

The particle moves according to the following rule: If j is such that f(x, r)j = f(y, r)j then
the particle is idle. Otherwise, it makes a step according to hj(xix(j)) − hj(yiy(j)). Clearly,
∆H(f(x, r), f(y, r)) equals the number of steps in which the particle is not idle (including the
steps it remains in its place). Observe that whenever f(x, r)j 6= f(y, r)j then xix(j) 6= yiy(j). There-
fore, in such a case, since hj is random, the particle shifts to the left/right with probability 1/4 and
stays in its place with probability 1/2.

Let j ∈ [3n] satisfying i` ≤ ix(j) < i`+1. The goalpost position in iteration j measures the
di�erence between deleted and inserted bits in the series x(1), . . . , x(`), namely it equals dj . The
particle position measures the di�erence between the increments of ix(j) and iy(j). Therefore, if the
particle reaches the goalspot position then by Observation 4.3 it holds xix(j) = yiy(j). And by the
second item of Observation 4.3 this implies that the particle would stay idle till the next iteration
in which ix(j) = i`+1. Therefore, we need to analyze how many steps the particle performs after
it becomes non-idle till it reaches the goalspot again. For this sake we de�ne a new process that is
easier to analyze:

The Kennel Struggle: Let us consider a process involving a dog, a cat and a kennel. All the
involving entities are located on the integer line. In the beginning the kennel is located on the origin
and so are the dog and the cat. The dog would like the cat to step out of the kennel. To this end
the dog can perform one of the following actions:

11



The dog can bark, forcing the cat to perform a random step (de�ned shortly). Alternatively, the
dog can move with kennel one step towards his preferred side. Whenever the cat is in the kennel
the dog must perform an action. If the cat is not in the kennel, the dog may perform an action or
stay idle. The dog's decision is based only on the cat position. Upon performing k actions the dog
gives up and vanishes so the kennel is empty from then on (where k = ∆e(x, y)).

The cat, upon each dog barking, or whenever she is not at the kennel performs a random step:
she steps to the left/right with probability 1/4 and stays in its place with probability 1/2. If the
cat �nds the kennel empty, then she happily stays there and the game is over.

It can be easily seen that for each con�guration of the particle and goalpost process, there is a
strategy for the dog such that: The distribution of the cat steps equals to the distribution of the
particle moves, with the little change that we do not stop the particle and goalpost process after 3n
steps (in the kennel struggle we skip the idle steps). Observe that if we do not end the particle and
goalpost process after 3n steps the number of steps made by the particle is just larger. Therefore,
an upper bound on the number of cat steps under any dog strategy, translates into an upper bound
on the number of particle non-idle steps, which in turn bounds the Hamming distance of x and y.

Fix a strategy S for the dog, and denote by pS(`) the probability that after at most ` steps
the cat reaches an empty kennel, provided that the dog acts according to S. The following claim
implies Lemma 4.2.

Lemma 4.4. Let k ∈ N. Consider the kennel struggle, where the dog performs k actions. For every

strategy S of the dog, pS(`) ≥
∑`

t=0 q(t, k).

Proof. The lemma is a consequence of the following claim.

Claim 4.5. The following dog's strategy S minimizes pS(t) for every t: Wait till the cat reaches the

kennel and then push the kennel to the right.

Let us conclude the proof using the claim. Consider the dog's strategy given by Claim 4.5. In
this strategy the probability pS(`) is given by:

∑
t1,...,tk|t1+···+tk≤`

(q(t1, 1) · · · q(tk, 1)) =
∑̀
t=0

∑
t1,...,tk|t1+···+tk=t

(q(t1, 1) · · · q(tk, 1)). (1)

On the other hand, the inner sum in (1) equals the probability that a random walk on line starting
at the origin reaches place k at time t. To see that, observe that the last event can be phrased
as follows: First compute the probability that the walk reaches place 1 in t1 steps. Conditioned
on that compute the probability that it reaches 2 in t2 steps, and so on. Clearly, these events are
independent. In order to get a total number of t steps we require t1 + · · ·+ t2 = t.

Let us put things together. If the dog acts according to the strategy given by Claim 4.5 (which
minimizes pS(`) for every `), then for all values of ` > 0: pS(`) =

∑`
t=0 q(t, k). The lemma

follows.

Proof of Claim 4.5. Consider the best strategy for the dog. That is, a series of decisions conditioned
on the current position of the cat. We �rst argue that all of the actions performed by the dog must be
pushing kennel one step away from the cat. Initially the distance between the cat and the kennel is
0. Now let us just consider a series of movements performed by the cat. Then we consider a strategy
by the dog consisting of only one single action. We claim that for any value of t ∈ N, the probability
that the cat reaches an empty kennel within t steps, i.e., the quantity pS(t), is minimized when the
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dog pushes the kennel further from the cat. Let us �rst recall that for parameters t ∈ N, ` ∈ Z, by
q(t, `), we denote the probability that a random walk on a line starting at the origin reaches the
point ` at time t for the �rst time and by p(t, `), we denote the probability that a random walk on
a line starting at the origin reaches the point ` within time t.

Now if dog chooses to bark, then the value of the quantity pS(t) will be

1

4

t−1∑
i=0

q(i,−1) +
1

2

t−1∑
i=0

q(i, 0) +
1

4

t−1∑
i=0

q(i, 1) =
1

2
+

1

2

t−1∑
i=0

q(i, 1) =
1

2
+

1

2
p(t− 1, 1)

where the �rst equality follows from the symmetric nature of the function q(·, ·) and thus we get
q(i, 1) = q(i,−1).

On the other hand, if the dog chooses to push the kennel further from the cat, then the value
of the quantity pS(t) will be

1

4

t−1∑
i=0

q(i, 0)+
1

2

t−1∑
i=0

q(i, 1)+
1

4

t−1∑
i=0

q(i, 2) =
1

4
p(t−1, 0)+

1

2
p(t−1, 1)+

1

4
p(t−1, 2) ≤ 1

2
+

1

2
p(t−1, 1).

So we can conclude that the �rst action taken by the dog that minimizes the probability of the cat
reaching an empty kennel within t steps, is pushing the kennel one step away from the cat.

Now we iteratively add actions to the dog's strategy such that the probability that the cat
reaches an empty kennel within t steps is minimized. Now we use inductive argument to prove that
given the �rst d ∈ N actions by the dog are all pushing the kennel one step further from the cat, the
(d + 1)-th action also must be pushing the kennel one step away from the cat. As the �rst d ∈ N
actions by the dog are all pushing the kennel one step further from the cat, just before (d + 1)-th
action by the dog, the distance of the cat from the kennel must be d. Now let us just consider a
series of movements performed by the cat. Then we add a new action in the strategy set S for the
dog. We claim that the quantity pS(t) is minimized when the dog pushes the kennel further from
the cat. Now consider the following:

• If the dog chooses to bark and let us denote the corresponding strategy as S1, then: for d ≥ 1,
pS1(t) = 1

4

∑t−1
i=0 q(i, d− 1) + 1

2

∑t−1
i=0 q(i, d) + 1

4

∑t−1
i=0 q(i, d+ 1) =

∑t−1
i=0 q(i+ 1, d) = p(t, d).

• If the dog chooses to push the kennel towards the cat and let us denote the corresponding
strategy as S2, then:

� for d = 1, pS2(t) = 1
4

∑t−1
i=0 q(i, 1)+ 1

2

∑t−1
i=0 q(i, 0)+ 1

4

∑t−1
i=0 q(i,−1) = 1

2 + 1
2

∑t−1
i=0 q(i, 1) =

1
2 + 1

2p(t− 1, 1) ≥ p(t− 1, 1) ≥ p(t, 2),

� for d ≥ 2, pS2(t) = 1
4

∑t−1
i=0 q(i, d− 2) + 1

2

∑t−1
i=0 q(i, d− 1) + 1

4

∑t−1
i=0 q(i, d) =

∑t−1
i=0 q(i+

1, d− 1) = p(t, d− 1).

• If the dog chooses to push the kennel further from the cat and let us denote the corresponding
strategy as S3, then: for d ≥ 1, pS3(t) = 1

4

∑t−1
i=0 q(i, d)+ 1

2

∑t−1
i=0 q(i, d+1)+ 1

4

∑t−1
i=0 q(i, d+2) =∑t−1

i=0 q(i+ 1, d+ 1) = p(t, d+ 1).

The second equality in each case except the case corresponding to d = 1 for the strategy S2 is
obtained by Observation 3.1 Item 2. The second equality in the case corresponding to d = 1 for the
strategy S2 follows from the symmetric nature of the function q(·, ·) and thus we get q(i, 1) = q(i,−1)
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and the last inequality in this case is followed from a simple fact that to visit point 2 within time t,
it has to visit point 1 within time t− 1. Now by Item 1 of Observation 3.1, it follows that for d ≥ 1,
pS3(t) is not larger than pS1(t) or pS2(t). So we can conclude that the (d+1)-th action taken by the
dog that minimizes the probability of the cat reaching an empty kennel within t steps, is pushing
the kennel one step away from the cat.

Next we divide the dog's strategy into intervals, where each interval lasts until the cat reaches
the kennel. Observe �rst that the distribution on the number of steps made by the cat in each
interval is independent on the other intervals. Therefore in order to conclude the claim we show
that in each interval separately we can replace the dog action by waiting till the cat reaches the
kennel and then pushing it to the right.

Fix such an interval. Now we show that if we replace the last action by waiting until the cat
reaches the kennel, and then pushing it to the right, the distribution on the cat steps does not
change. Let d′ be the distance of the cat from the kennel before the dog pushes the kennel. The
probability that the cat reaches the kennel in some t′ steps is given by: q(t′, d′+1). If the dog instead
waits until the cat reaches the kennel and then pushes the kennel to the right. Then probability
that the cat reaches (again) the kennel in t′ steps is given by:

∑t′

i=1 q(i, d
′)q(t − i, 1) which, by

Observation 3.1 Item 3, equals q(t′, d′ + 1), the claim follows. In such a way, it can be shown that
each kennel push in this interval, can be be replaced by waiting till the cat reaches the kennel and
then pushing the kennel to the right.

Remark: Let us come back to the assumption that i1 < i2 < . . . , < ik: Observe that if for
some subsequence ij1 , . . . , ijm we have an equality, then this translates to several actions of the dog
preformed at the same time unit (counted as m operations). By the same arguments applied before
if the dog performs m multiple actions at the same unit time, then the following strategy would
maximize the total number of steps made by the cat: Push the kennel m steps further from the
cat. It is easy to see that the number of steps made by the cat is equivalent under the following
two strategies: (i) push the kennel m steps further from the cat and (ii) wait till the cat reaches the
kennel and then push it m times. Now the previous argument applies.

5 Reducing the randomness

In this section we show how to reduce the number of random bits used by Algorithm 1 to derive
Theorems 1.1 and 1.2.

An easy observation is that for the Boolean case, one can save a half of the random bits needed
for our basic embedding function given by Algorithm 1. We may replace the current condition for
incrementing i that hj(xi) = 1 by the condition rj = xi. As one can verify in our analysis of the
third property in Theorem 4.1 this would not substantially a�ect the property of the algorithm.
It would actually improve the bound on the resulting Hamming distance by a factor of roughly 2
because the induced random walk would be non-lazy. To obtain more substantial savings we will
use tools from derandomization.

By standard probabilistic method similar to [Gol01, Proposition 3.2.3], we argue that there
exists a subset of {0, 1}6n of substantially small size (of size at most 2nc

′
), from which sampling r is

�almost� as good as sampling it uniformly from {0, 1}6n. Thus by hard-wiring R inside the algorithm
and sampling r from R, we get the desired non-uniform algorithm promised in Theorem 1.1, details
below.
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By choosing c appropriately and for large enough n, our basic embedding function f has the
property that with probability at least 3/4, for random r ∈ {0, 1}6n

1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2.

Now take a random subset R ⊆ {0, 1}6n of the size of the smallest power of two ≥ nc
′
, for some

suitable constant c′ > 0. Fix x, y ∈ {0, 1}n. By Cherno� bound, the probability that∣∣∣∣∣ Pr
r∈{0,1}6n

[
1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2

]

− Pr
r∈R

[
1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2

] ∣∣∣∣∣ > 1

n

over the random choice of R is at most 2−2n. Hence, by the union bound over all x and y, there is
a set R of the required size such that for any x, y ∈ {0, 1}n,∣∣∣∣∣ Pr

r∈{0,1}6n

[
1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2

]

− Pr
r∈R

[
1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2

] ∣∣∣∣∣ ≤ 1

n
.

Thus instead of sampling r from the whole universe {0, 1}6n we can sample r from R without
a�ecting the probability of small distortion by more than 1/n. Since R is of size at most 2nc

′
,

we need only log |R| = dc′ log ne random bits to sample a random element of R. The non-uniform
algorithm for the embedding function of Theorem 1.1 has R hard-wired as a table. On input x and
s ∈ {0, 1}log |R| the algorithm simulates Algorithm 1 on x and the s-th string in R. By properties
of R we know that such an algorithm satis�es the conclusion of Theorem 1.1.

The above algorithm has an optimal seed length but it has the disadvantage of storing a large
table of non-uniformly selected strings (the subset R). To get rid of the table we will use Nisan's
pseudo-random generator [Nis90].

Nisan's pseudo-random generator Gk,w is a function that takes a seed s of length w and k
pair-wise independent hash functions h1, h2, . . . , hk : {0, 1}w → {0, 1}w and outputs a string r ∈
{0, 1}w2kde�ned recursively as follows:

G0,w(s) = s

Gk,w(s, h1, h2, . . . , hk) = Gk−1,w(s, h1, . . . , hk−1)�Gk−1,w(hk(s), h1, . . . , hk−1)

Nisan proved that his generator satis�es the following property.

Theorem 5.1 ([Nis90]). For an arbitrary constant c0 > 0, let A be an algorithm that uses work

space of size at most c0 log n and runs in time at most nc0 with a two-way access to its input string

x and a one-way access to a random string r. There is a constant c1 > 0 such that∣∣∣∣Pr
r

[A(x, r) accepts]− Pr
r′

[A(x, r′) accepts]

∣∣∣∣ < 1

n2
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where r is taken uniformly at random, and r′ is taken according to the distribution induced by

Gc0 logn,w(s, h1, . . . , hc0 logn) where w = c1 log n, s ∈ {0, 1}w is taken uniformly at random and each

hi is sampled independently from an ensemble of pair-wise independent hash functions.

There are ensembles of pair-wise independent hash functions mapping w bits into w bits where
each function is identi�ed by a binary string of length O(w). Nisan [Nis90] gives several such
examples and there are many others. In particular, the ensemble given by Dietzfelbinger [Die96]
can be evaluated on word RAM with word size O(w) using O(1) multiplications and bit operations.

We would like to apply Theorem 5.1 on Algorithm 1. However, Theorem 5.1 applies only for
decision algorithms. Therefore we de�ne the following algorithm A:

Algorithm 2 Hamming Distance Test

Input : x, y ∈ {0, 1}n, k ∈ {1, . . . , 3n}, and a random string r ∈ {0, 1}6n
Output: Accept i�: ∆H(f(x, r), f(y, r)) = k
Compute ∆H(f(x, r), f(y, r)) for the basic embedding function f by simultaneously computing
f(x, r) and f(y, r) while counting the Hamming distance of f(x, r) and f(y, r);
Accept if ∆H(f(x, r), f(y, r)) = k;

Given the properties of our Algorithm 1 for the basic embedding function, it is clear that A
processes its input in logarithmic space using one-way access to its random string r. Hence, we can
apply Theorem 5.1 on algorithm A. That implies that the distributions of the Hamming distance
∆H(f(x, r), f(y, r)) on a random string r and a random string r′ sampled according to Nisan's
pseudo-random generator are close in `∞ distance.

Hence, instead of providing Algorithm 1 with completely random string we will provide it with
a seed of length O(log n) and a sequence O(log n) of hash functions that will be expanded by the
Nisan's pseudo-random generator into a full pseudo-random string r′. This r′ is used in place of r
to compute f(x, r′). Since each hash function can be speci�ed using O(log n) bits this algorithm
will require only O(log2 n) random bits in total.

Furthermore, it is clear from the description of the Nisan's pseudo-random generator, that each
bit of r′ can be obtained by evaluating at most O(log n) hash functions. When computing r′ bit
by bit we only need to evaluate O(1) hash function on average. Thus when using Dietzfelbinger's
hash functions on a RAM with word size O(log n) we can compute f(x, r′) in a streaming fashion
spending only O(1) operations per output bit on average and O(log n) in the worst-case. This proves
Theorem 1.2.

6 Non-binary alphabets

Our results carry over directly to larger alphabets of constant size. For alphabets Σn where the
size of Σn depends on n we assume that the symbols are binary encoded by strings of length
log |Σn|. Our basic embedding given by Algorithm 1 only needs that each h1, . . . , h3n is a pair-wise
independent hash function from Σn to {0, 1}. Such a hash function is obtained for example by

selecting a random vector r ∈ {0, 1}log |Σn| and a bit b, and taking the inner product of the binary
encoding of an alphabet symbol with r and adding b over GF2. Hence, one needs only 1 + log |Σn|
bits to specify each hash function.

Thus Theorem 4.1 will use n · (1 + log |Σn|) random bits, Theorem 1.1 will have ` = O(log n+
log log |Σn|) and Theorem 1.2 will have ` = O((log n+ log log |Σn|)2).
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7 Computing the Edit Distance

In the following three sections we develop our streaming algorithm for computing edit distance.
The algorithm is based on �rst extracting a kernel from its input that preserves the edit distance
and then processing the kernel using a known o�-line algorithm for edit distance. The next section
builds the necessary combinatorial tools while the subsequent sections provide the algorithmic tools.

7.1 Kernelization: Information Theoretic Perspective

In this section we present the main combinatorial tools to produce a kernel from two strings x and
y. An alignment of two strings x, y ∈ {0, 1}n is a function a : [n]→ [n] ∪ {S,D} that is increasing,
i.e., for all i < j, if a(i), a(j) ∈ [n] then a(i) < a(j), and that maps symbols of x to corresponding
symbols of y, i.e., for all i, if a(i) ∈ [n] then xi = ya(i). The alignment represents edit operations
that produce y from x: xi is deleted when a(i) = D, it is substituted by another symbol when
a(i) = S and it is preserved and mapped to a(i)-th symbol of y otherwise. (Insertions are encoded
in an alignment only implicitly and there might be an ambiguity as to where precisely a substituted
symbol is mapped.) The cost of an alignment is the cost of the associated edit operations, i.e.,
c(a) = 2|a−1(D)| + |a−1(S)|. (The number of insertions equals the number of deletions.) Clearly,
the edit distance of x and y is the cheapest cost of an alignment of x and y. For an alignment a
we let its displacement be d(a) = maxi,a(i)∈[n] |a(i) − i|. Clearly, d(a) ≤ c(a). For i ≤ j ∈ [n], the
block xi,...,j is the substring xixi+1 · · ·xj . We say that a preserves the block xi,...,j if for all ` ∈ [i, j),
a(` + 1) = a(`) + 1. Note, a block xi,...,` might not be preserved under a even though xi,...,j and
xj+1,...,` are preserved for some j as there might be an insertion between the two blocks.

An integer ` is a period of a string w if there exist p ∈ {0, 1}` and an integer r such that w is a
pre�x of pr. A string is periodic if its minimum period is less than a half of its length.

The following lemma shows whenever two strings share a long periodic substring, then a de�ation
of some of the periods in both strings preserves the edit distance between the original strings.

Lemma 7.1 (De�ation). Let x, y ∈ {0, 1}n. Let x = uwv and y = u′wv′ for some strings

u,w, v, u′, v′. Let K and k be integers such that ∆e(x, y) ≤ k and | |u| − |u′| | ≤ K. Let ` be the

minimal period of w and p ∈ {0, 1}`, r > 0 be such that w = pr. Let t = 2K + 3k+ (`+ 2) · (k+ 1).
If |w| ≥ t then for all r′ such that r′ ≥ t/`, ∆e(x, y) = ∆e(up

r′v, u′pr
′
v′).

Proof. Let a be an alignment of x and y of the minimum cost. The only symbols from x's copy of w
that can be mapped outside of y's copy of w are the �rst and last K + d(a) ≤ K + k symbols of x's
w. Thus at least |w|−2(K+k) symbols of x's w are mapped to y′s w or are deleted or substituted.
Hence, there must be a block in x's w of length at least (|w| − (2K + 3k))/(k + 1) ≥ ` + 2 that is
preserved under a and mapped within y's w. Pick an inner sub-block of length ` of the preserved
block so the sub-block does not contain the �rst and last symbol of the preserved block. We can
remove the sub-block from x and its image from y and shift the alignment to get an alignment
of upr−1v and u′pr−1v′ of the same cost. (The removal does not a�ect periodicity of w as we are
removing a block of size `.) Hence, ∆e(up

r−1v, u′pr−1v′) ≤ ∆e(x, y). Similarly, instead of removing
the sub-block, insert its copy immediately after the sub-block in x and after its image in y. Again,
extending the alignment yields, ∆e(up

r+1v, u′pr+1v′) ≤ ∆e(x, y). As this holds for all r ≥ t/` the
edit distance is always the same.

The following property of periodic strings is well known (see Proposition 2.1 in [CR94]).
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Proposition 7.2. Let w, u, v ∈ {0, 1}∗ be such that wu = vw. Then w = pru′ for some strings p, u′

and an integer r such that |u′| ≤ |p| ≤ |u|.

The next lemma deals with strings which are far from being periodic. A string w is called
(t, `)-periodic free if no block w of length more than t is periodic with a period smaller or equal to
`. The lemma shows that if x, y share a long periodic free substring, then we can shrink the size of
the shared part of x and y while preserving the edit distance.

Lemma 7.3 (Shrinkage). Let x, y ∈ {0, 1}n. Let x = uwv and y = u′wv′ for some strings

u,w, v, u′, v′. Let K, k and t be integers such that ∆e(x, y) ≤ k, | |u| − |u′| | ≤ K, and assume

w is (t,K + k)-periodic free. Let s = K + 2k + (k + 1) · (t + 1). For any s′ ≥ s, if |w| ≥ 2s′ and
w′ = w1,...,s′w|w|+1−s′,...,|w| then ∆e(x, y) = ∆e(uw

′v, u′w′v′).

Proof. Let a be an alignment of x and y of the minimum cost. Assume |w| ≥ 2s. By the same
argument as in Lemma 7.1 there is a preserved sub-block wi,...,j of w1,...,s of length at least (s−K−
2k)/(k + 1) = t + 1 that is mapped by a within y's copy of w. The image of wi,...,j must overlap
wi,...,j in y in at least j − i+ 1− (K + k) symbols. This implies that either wi,...,j is periodic with a
period at most K + k by Proposition 7.2 or wi,...,j is mapped to itself in y. The former possibility
is excluded by the assumption that w is (t,K + k)-periodic free so wi,...,j is mapped to itself in y.
Similarly, there must be a sub-block wi′,...,j′ within the last s symbols of w that is mapped to itself
in y's copy of w. Hence, all the symbols between wi,...,j and wi′,...,j′ must also be mapped to itself
as a is of minimal cost. Thus, the whole wi,...,j′ is preserved by a and ∆e(x, y) ≥ ∆e(uw

′v, u′w′v′).
On the other hand, if we take the minimum cost alignment a′ of uw′v and u′w′v′ then by the same
argument on these words the block ws′,s′+1 = ws′w|w|+1−s′ must be preserved by a′ and mapped
to itself in y. So the alignment a′ can be extended into the same cost alignment of x and y giving
∆e(x, y) ≤ ∆e(uw

′v, u′w′v′). The lemma follows.

7.2 Kernelization: Algorithmic Perspective

Let K, k be some chosen parameters. We provide an algorithm that given two strings x, y, where
∆e(x, y) ≤ k, and an alignment a of cost at most K, computes a pair of strings x′, y′ (kernel) of
length O(K2k2) so that ∆e(x

′, y′) = ∆e(x, y). The algorithm is given next. In this section we are
not concerned with the performance of the algorithm. We will focus on the performance only in
Section 7.3.

Algorithm 3 Kernelization(x, y, a,K, k)

Input : x, y ∈ {0, 1}n, an alignment a of x and y, integers K, k ≥ 5 such that ∆e(x, y) ≤ k and
c(a) ≤ K

Output: x′, y′ ∈ {0, 1}O(K2k2) such that ∆e(x
′, y′) = ∆e(x, y).

Decompose x = u0w1u1 · · ·w`u`, where ` ≤ K + 1, each wi is a maximal preserved block of x under
a, and ui ∈ {0, 1}∗.
Decompose y = v0w1v1 · · ·w`v`, where vi ∈ {0, 1}∗.
For each i let w′i = Shrink(Deflate(wi, 3(K + k)k,K + k), 5(K + k)k2).
Output x′ = u0w

′
1u1 · · ·w′`u` and y′ = v0w

′
1v1 · · ·w′`v`.
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Algorithm 4 De�ate(w, t, `)

Input : w ∈ {0, 1}n, integers ` ≥ 1, t > 4`
Output: Substring w′ of w such that w′ is (t, `)-periodic free.
Initialization: Output = λ;
while w is non-empty do

if w = prv for some maximum r ≥ t/|p| and some p, v ∈ {0, 1}∗, |p| ≤ ` then
Output = Output� pdt/|p|e;
w = v;

end
else

Output = Output� w1;
w = w2,...,|w|

end

end
Output Output.

Algorithm 5 Shrink(w, s)

Input : w ∈ {0, 1}n, an integer s ≥ 1
Output: w1,...,sw|w|+1−s,...,|w| if |w| ≥ 2s and w otherwise.

Proposition 7.4. For K ≥ k ≥ 5 the procedure Kernelization(x, y, a,K, k) outputs x′, y′ such that

∆e(x
′, y′) = ∆e(x, y) and |x′| = |y′| ≤ 12K(K + k)k2.

Notice that one can easily annotate the kernel, i.e., strings x′ and y′, so that given an alignment
of x′ and y′ we can determine the alignment of x and y. One just needs to know which parts of x′

and y′ were de�ated and by how much and how many symbols were removed by Shrink. From this
information one can also directly infer the edit operations that take x into y for the price of the
alignment.

Proof. By Lemma 7.1, removing repetitions of a period ≤ K + k that span beyond 3(K + k)k ≥
2K+3k+(K+k+2) ·(k+1) symbols does not change the edit distance of x and y. Hence, de�ation
of each wi preserves the edit distance. Once de�ated, each wi is (3(K + k)k,K + k)-periodic
free. Hence, by Lemma 7.3 we can shrink each de�ated wi to its borders of size 5(K + k)k2 ≥
K + 2k + (k + 1) · (4(K + k)k + 1) while preserving the edit distance. For the size of x′, there are
at most K + 1 di�erent w′i and each of them is of size at most 10(K + k)k2.

Remark A useful observation can be made from the previous proof. If on strings x, y and
K ≥ k ≥ 5 the procedure Kernelization(x, y, a,K, k) outputs x′, y′ such that ∆e(x

′, y′) ≤ k
then ∆e(x, y) = ∆e(x

′, y′) ≤ k. Put in contrapositive, for x, y of distance ∆e(x, y) > k, the
Kernelization(x, y, a,K, k) produces x′, y′ such that ∆e(x

′, y′) > k. Given that the procedure shrinks
the strings this is not automatic nevertheless it is true.

It is clear that the kernelization procedure can be implemented in polynomial time with random
access to a, x and y. We claim next that it can be implemented in linear time with one-way
(streaming) access to a, x and y. Furthermore, we show that in one pass we can �nd a candidate
alignment and a kernelization based on that alignment. This will be the content of the next section.
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7.3 Kernelization in a Streaming Fashion

In this section we describe a streaming algorithm to compute the edit distance of x and y. First we
describe how to compute a small kernel of x and y. We start with a streaming algorithm based on
Saha's algorithm [Sah14] or our embedding procedure that obtains a candidate alignment a:

CandidateAlignment(x, y): We maintain two pointers ix, iy to the input strings x, y which are both
initialized to 1 and we repeat the following: If xix = yiy , then the strings are aligned so we set
a(ix) = iy and increment both ix and iy by 1. Otherwise, with probability 1/2 we set a(ix) = D
and increment only ix by 1, and with the remaining probability we increment only iy by 1. When
iy = n+ 1 or iy = n+ 1 we stop. If iy = n+ 1 and ix < n we set a(ix), ..., a(n) = D.

Lemma 7.5. Let x, y ∈ {0, 1}n and let k = ∆e(x, y). Let a = CandidateAlignment(x, y). Then

with probability at least 2/3, c(a) < ck2, where c is the big-O constant in the distortion factor of the

embedding in Theorem 1.1.

The correctness of Lemma 7.5 follows directly from the correctness and properties of the embed-
ding function that uses rj = xi as the rule for incrementing i which was introduced in Section 5. It
also follows from the correctness of Saha's algorithm. We will also use the following lemma in the
analysis:

Lemma 7.6. There exists a linear time algorithm that on input w ∈ {0, 1}n, computes the shortest

p such that w can be decomposed as w = pru for some pre�x u of p.

The lemma is proven by reducing the problem to the task of string matching: That is, given
a text text and a pattern pat, verify whether pat occurs in text. If it does then output the �rst
index in which it appears. The later task can be solved in linear time using [KJP77] algorithm.
See [CR94] for details.

The De�ate and Shrink procedure (with parameters (K, k)) can be implemented simultaneously
in one-way fashion using the procedure described next.

StreamingKernelization(K, k): Set t = 3(K + k)k, ` = K + k and s = 5(K + k)k2. We maintain an
output bu�er Bout of size 2s whose last s bits are cyclic (i.e. the k-th output symbol is stored in
location k − 1 if k ≤ 2s and s + (k mod s) otherwise). Now, whenever the alignment procedure
encounters a beginning of a new preserved block w (i.e, when xix = yiy), it proceeds as follows:

Take the next t/2 unprocessed symbols from w, call that word z. Use the linear-time algorithm
whose existence is implied by Lemma 7.6 to �nd the smallest p such that |p| ≤ ` and z = pru, for
some pre�x u of p. If no such p exists we store z in Bout and continue processing the input. If there
is such a p, we check how many times p appeared previous to z and how many times it will appear
in the input starting from z. The t previously output symbols that could possibly contain p are still
in our output bu�er so we use them to check the former count and we will process the input further
to count the subsequent repetitions of p. This can be easily done in time linear in the number of
processed symbols. We output the de�ated number of repetitions of p into Bout taking into account
the repetitions already in the output. Proceed with the rest of w. When w is fully processed then
by rearranging the content of Bout, the value of Shrink(Deflate(w, t, `), s) can be extracted.

The key point is that whenever w contains a period p that spans beyond t symbols, then while
processing w in blocks of size t/2 there must be a block containing only periods of p. As we reach
this block we will correctly de�ate p's repetitions. When we reached the end of each preserved block
w, then the bu�er Bout contains the �rst s bits of the de�ated w and the last bits of w stored in
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a cyclic shift. So after rearranging the bu�er Bout indeed stores Shrink(Deflate(w, 3(K + k)k,K +
k), 5(K + k)k2).3

Overall, we can compute De�ate and Shrink during the same pass over x and y that computes
their candidate alignment. For this end, we use bu�ers of size t and 2s. Now we are ready to state
our �rst streaming algorithm, that attains success probability 2/3.

Theorem 7.7. There is a probabilistic algorithm that on input x, y ∈ {0, 1}n and an integer k,
such that ∆e(x, y) ≤ k, with probability at least 2/3 outputs m = ∆e(x, y), and a series of m edit

operations transforming x into y. The algorithm accesses x and y in one-way manner, runs in time

O(n+ k6) and uses space O(k6).

Proof. Let c be the constant term that appears in Lemma 7.5. We invoke CandidateAlignment(x, y)
procedure combined with the procedure StreamingKernelization(K = ck2, k). By Lemma 7.5 the
alignment a obtained by CandidateAlignment satis�es c(a) < K with probability at least 2/3.
Suppose that this is indeed the case, then for any preserved block w found by a we have: x =
uwv, y = u′wv′ with ||u| − |u′|| ≤ K. Hence, we can apply Proposition 7.4 and obtain that
the output of the procedure StreamingKernelization is x′, y′ such that ∆e(x

′, y′) = ∆e(x, y) and
|x′| = |y′| ≤ 12K(K + k)k2 = O(k6). Now apply the algorithm of [LMS98] that runs in time
(|x′|+ k2) = O(k6 + k2) and uses space O(|x|) = O(k6). The proof follows.

Note that there is nothing special about the alignment obtained by our embedding. We can take
any candidate alignment and apply the kernelization process in order to shrink the input size.

Theorem 7.8 (Streaming Kernelization). There is an algorithm that on input x, y ∈ {0, 1}n, an
alignment a of x and y, and parameters K ≥ k ≥ 5 satisfying d(a) ≤ K and ∆e(x, y) ≤ k outputs

strings x′, y′ of length O(K2k2) such that ∆e(x, y) = ∆e(x
′, y′), where the algorithm accesses a, x

and y in one-way manner, runs in time O(n+K2k2) and uses space O(K2k2).

One can substantially improve the error probability to obtain the following result, which is just
a restatement of Theorem 1.3.

Theorem 7.9 (Streaming Edit Distance). There is a probabilistic algorithm that on input x, y ∈
{0, 1}n and an integer s accesses x and y in one-way manner, runs in time O(n + s log n), uses
space O(s) and if ∆e(x, y) ≤ s1/6 then with probability at least 1− (1/n) correctly outputs ∆e(x, y).
In all the remaining cases the algorithm outputs `I DO NOT KNOW'.

Proof. We provide a sketch of the proof. Let s be given, set k = s1/6. Our goal is to compute a
kernel of size c1k

6 = c1s, for some constant c1 > 0, for each of the strings. Assume for a moment
that we have a multiple access to the inputs. Then by running our CandidateAlignment procedure
repeatedly if necessary, we can �nd an alignment of cost ≤ c2k

2, where c2 > 0 is some constant
to be �xed later. By Theorem 1.1, the probability that a particular run of CandidateAlignment
procedure fails to produce an alignment of cost ≤ c2k

2 is constant. Thus the probability that we
would need in total more than O(log n) runs of the CandidateAlignment procedure for the input
strings can be made less than 1/n by a suitable choice of constants. Hence, with probability at least
1− 1/n we can produce a cheap alignment in time O(n log n).

3There is a negligible di�erence in the output of the streaming de�ation algorithm and the de�ation Algorithm 4
as we ignore a partial su�x of p occuring before the �rst repetition of p. One could modify the streaming de�ation
accordingly.
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The described procedure might need several passes over the input strings when the procedure
CandidateAlignment fails to output a cheap alignment and thus also takes time O(n log n). To mit-
igate this, we run the kernelization procedure on-line fed by the output of the CandidateAlignment
procedure, and reading x and y in sync with the CandidateAlignment procedure. As we are comput-
ing the kernel, once the cost of the current alignment reaches c2k

2, we stop the CandidateAlignment
and kernelization procedures and we re-run them both with fresh randomness. The partial kernel
produced so far is of size at most c1s. At this point we do not have access to the part of x and y that
we had already turned into the partial kernel. However, this partial kernel concatenated together
with the rest of the portions of x and y has the same edit distance as the original strings. Note
that each time we encounter a failure due to an alignment of cost more than c2k

2, it is guaranteed
that ||u| + |u′|| ≤ c2k

2 + k (as the candidate alignment may shift the strings to one direction,
and the optimal to the opposite direction), where x = uwv, y = u′wv′ for any preserved block w
found by that alignment. Let us recall that we set K = ck2 in the proof of Theorem 7.7. Thus
we take c2 < c such that ||u| + |u′|| ≤ K and hence we can use Lemma 7.1 and Lemma 7.3 to
argue that the partial kernel together with the remaining input preserves edit distance. So instead
of re-running the CandidateAlignment and kernelization procedures on x and y, we re-run them on
the stored kernel and then continue with the remaining part of strings still in the input. This can
be repeated until we produce a kernel of size at most c1s for the whole input string or we fail the
whole algorithm due to too many repetitions. The fact that the partial kernel concatenated with
the remaining portions of the strings has the same edit distance as the original strings can be seen
directly from the kernelization algorithm as this corresponds to setting some of the w′i to wi in both
of the output strings.

Now let us analyze the time and space requirement of the above stated implementation of our
algorithm. The space used by the algorithm is clearly O(s). For the bound on time requirement,
observe that in the above implementation, we only need to process each bit of x and y only once and
during the run of the algorithm, intermediate kernel of length at most c1s corresponding to each
input string needs to be processed at most O(log n) times. Thus total time required is bounded by
O(n+ s log n).

If the algorithm succeeds in producing a kernel x′, y′ of x and y respectively each of size O(s),
we run the edit distance algorithm of [LMS98] on x′ and y′. Since k2 ≤ s this algorithm will run in
time O(s) and will use space O(s). If the algorithm determines that the edit distance of x′ and y′

is at most k then we output the edit distance otherwise we output `I DO NOT KNOW'.

If we allow the algorithm multiple passes over the input instead of supplying the parameter s
we can try a sequence s1, s2, . . . of s, where s1 = 2 and si = ds1+ε

i−1e. Since log(1 + ε) ≥ ε/2 for a
non-negative ε ≤ 1, this gives the following corollary.

Corollary 7.10. For every ε > 0, there is a probabilistic algorithm that on input x, y computes

k = ∆e(x, y) with probability at least 1 − 1/n, runs in time O(ε−1n log log k + k6+ε log n), space
O(k6+ε) and makes at most log log k/ log(1 + ε

6) passes over x and y.

8 Other Applications of the Main Result in Communication Com-

plexity

As a consequence of Theorem 1.1, we achieve a better bound on number of bits transmitted in
a one-way protocol solving the document exchange problem. The most obvious protocol in this
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regard is the following [Jow12]: Alice and Bob �rst compute f(x, r) and f(y, r), where r is the
shared randomness and then they run the one-way protocol for document exchange problem under
Hamming metric. We use the following lemma from [PL07] which provides an e�cient sketching
algorithm in case of Hamming distance.

Lemma 8.1 ([PL07]). For two strings x, y ∈ {0, 1}n such that ∆H(x, y) ≤ h, there exists a ran-

domized algorithm that maintains sketches of size O(h log n) and using sketches sh(x) and sh(y), it
outputs all the tuples {(xi, yi)} where xi 6= yi with probability at least (1− 1/n) in O(h log n) time.

Construction of sketch sh(x) can be done in O(n log n) time and space in one pass.

Now if ∆e(x, y) ≤ k, Bob will learn f(x, r) and then using decoding algorithm he can get back
x. After having x, Bob can decide ∆e(x, y) ≤ k in O(n+ k2) time using the algorithm by [LMS98].
This idea leads us to the following corollary.

Corollary 8.2. In the two-party communication model, there is a randomized one-way protocol that

solves document exchange problem with high probability while transmitting only O(k2 log n) bits. The
running time of each party will be O(n log n+ k2 log n).

Another straightforward but important application of Theorem 1.1 is that it provides us a
randomized sketching algorithm for k vs. ck2 gap edit distance problem for some constant c. For
this purpose, we need the following lemma from [BYJKK04].

Lemma 8.3 ([BYJKK04]). For any ε > 0 and k, k vs. (1 + ε)k gap Hamming distance problem

can be solved using an e�cient sketching algorithm that maintains sketches of size O(1/ε2) and if

the set of non-zero coordinates of each input string can be computed in time t, then running time of

Alice and Bob will be bounded by O(ε−3t log n).

Now given two input strings x and y, we can �rst use embedding f of Theorem 1.1 and then
apply the above lemma to get the following corollary.

Corollary 8.4. There exists a c ∈ N such that for any k, there is a randomized sketching algorithm

that solves k vs. ck2 gap edit distance problem with high probability using sketches of size O(1)
attaining an upper bound of O(n log n) on Alice and Bob's running time.

Among other implications of embedding, one interesting problem is to design approximate nearest

neighbor search algorithms which is de�ned as given a database of m points, we have to pre-process
such that given a query point, it would be possible to e�ciently �nd a database point close to the
query point. For Hamming metric, a search algorithm is known [IM98] that retrieves a database
point which is at most (1 + ε) times far from the closest one. Together with that, our embedding
result implies a randomized algorithm that will return a point (under edit distance metric) within
the distance of O(k) times that of the closest one.
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