
Approximating Edit Distance Within Constant Factor in Truly
Sub-Quadratic Time∗

Diptarka Chakraborty†1, Debarati Das‡2, Elazar Goldenberg§3, Michal Koucký¶4, and
Michael Saks‖5

1,2,4Computer Science Institute of Charles University, Malostranské náměstí 25, 118 00
Praha 1, Czech Republic

3The Academic College Of Tel Aviv-Yaffo, School of Computer Science, Tel Aviv-Yaffo,
Israel

5Department of Mathematics, Rutgers University, Piscataway, NJ, USA

July 13, 2018

Abstract

The edit distance is a way of quantifying how similar two strings are to one another by
counting the minimum number of character insertions, deletions, and substitutions required
to transform one string into the other. In this paper we study the computational problem of
approximating the edit distance between a pair of strings.

The problem of computing the exact edit distance can be solved using a classical dynamic
programming algorithm that runs in quadratic time. Andoni, Krauthgamer and Onak (2010)
show that one can compute an approximation to the edit distance within approximation factor
poly(log(n)) in nearly linear time. Recently, Abboud and Backurs (ITCS’17) showed that a truly
sub-quadratic deterministic time 1 + o(1)-factor approximation algorithm for the edit distance
problem would imply new circuit lower bounds. This raises the question whether edit distance
can be approximated within constant factor in truly sub-quadratic time.

In this paper we affirmatively answer this question: We provide an algorithm whose running
time is bounded by Õ(n2−2/7) that approximates the edit distance up-to constant factor. Our
approximation algorithm is based on a new yet simple paradigm.

∗The research leading to these results has received funding from the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 616787.
†diptarka@iuuk.mff.cuni.cz
‡debaratix710@gmail.com
§elazargo@mta.ac.il
¶koucky@iuuk.mff.cuni.cz
‖msaks30@gmail.com

1 Introduction

The edit distance (aka Levenshtein distance) [18] is a widely used distance measure between pairs
of strings x, y over some alphabet Σ. It finds applications in several fields like computational biol-
ogy, pattern recognition, text processing, information retrieval and many more. The edit distance
between x and y is defined as the minimum number of character insertions, deletions, and substitu-
tions needed for converting x into y. Due to its immense applicability, the computational problem
of computing the edit distance between two given strings x and y ∈ Σn is of prime interest to
researchers in various domains of computer science. Sometimes one also requires that the algorithm
finds an alignment of x and y, i.e., a series of edit operations that transform x into y.

The problem of computing the exact edit distance (the decision problem) can be solved in
quadratic time using a classical dynamic programming based algorithm by Wagner and Fischer [23].
Despite an extensive line of research this running time has been improved only to O(n2/ log n) by
Masek and Paterson [19] and recently Grabowski [15] gave a O(n2 log log n/ log2 n) time algorithm
which is the best known upper bound so far for computing arbitrary edit distance. Backurs and
Indyk [7] indicates that this bound cannot be improved significantly unless the Strong Exponen-
tial Time Hypothesis (SETH) is false. Moreover Abboud et al. [3] showed that even shaving an
arbitrarily large polylog factor from n2 would imply that NEXP does not have non-uniform NC1

circuits. More hardness results can be found in [2, 12].
A natural question that arises is whether one can obtain an algorithm that runs in truly sub-

quadratic time and approximates the edit distance between given input strings. Approximating
edit distance would be sufficient for many applications. The state of the art result is the work of
Andoni et al. [5] that provides an algorithm that approximates edit distance within (log n)O(1/ε)

factor in time O(n1+ε). They also show that an O(log n)-approximation is the best possible for
a large class of algorithms. Recently, Abboud and Backurs (ITCS’17) showed that a truly sub-
quadratic deterministic time 1 + o(1)-factor approximation algorithm for the edit distance problem
would imply new circuit lower bounds. Very recently, Boroujeni et al. [11] gave a truly sub-quadratic
quantum algorithm running in time Õ(n1.781) for constant factor approximation of edit distance.
Their algorithm achieves its speed-up using Grover’s quantum search.

In this paper we design the first truly sub-quadratic time classical algorithm computing constant
factor approximation for edit distance. Formally our main result is as follows:

Theorem 1.1. There is a randomized algorithm that approximates the edit distance between any
pair of input strings x, y ∈ Σn within a constant factor, runs in time Õ(n12/7), and has probability
of error at most 1/n5.

Notice, 12/7 = 1.714 . . . so our algorithm is faster than that of Boroujeni et al. [11]. We did
not try to optimize the constant in the approximation factor but we prove it is at most 252. One
can easily reduce the approximation factor by tweaking our algorithm, we believe it readily gives
an approximation factor 5 + ε, for any ε > 0, while increasing the running time only by a constant
factor. The algorithm can be also made to output an approximate alignment of the two strings.

The running time of the algorithm depends on the actual edit distance: If k is the edit distance
of the input strings x and y, and θ = k/n is their normalized edit distance, then our algorithm runs
in time Õ(n12/7θ4/7) = Õ(n8/7k4/7). This should be compared to the best known algorithm for the
exact edit distance of Landau et al. [17] that runs in time O(n+ k2). (Our analysis of the running
time of our algorithm breaks down for too small θ, so in that range we actually use the algorithm
of Landau et al.)

1

We can also improve the running time of our algorithm for the price of worse (constant) ap-
proximation factor. We can use our algorithm recursively to answer edit distance queries on short
strings made by our algorithm. This gives a constant factor approximation algorithm running in
time Õ(n

1+
√

5
2

+ε) = O(n1.618+ε), for any fixed ε > 0, for edit distance k ≥ n1−β , where β > 0 is a
constant depending on ε. We elaborate on this and further improvements in Section 2.

The main idea that our algorithm is based on is as follows: If x and y are of small (normalized)
edit distance θ then in the optimal alignment of x and y, many substrings of x are matched with
substrings of y of edit distance roughly θ. Our approach is based on sampling random substrings of
x and finding for them good matches in y. Then we extend the found matches to larger substrings.
This saves time if there are not too many candidates in y that match a sampled substring of x. Our
key insight is that one can save also in the case when there are too many candidates for the match.
In that case we obtain a substantial information about a non-trivial part of y (and x). In that case
we can remove close matches from y and x to reduce their size. In this way we either eventually
run out of x, or we find good matches for most of x. This uses an idea closely related to periodicity
of strings that was used previously in [14, 13]. The actual details are a little bit more tricky. We
elaborate more on our approach in Section 1.2.

1.1 Related work

The question of approximating edit distance has been studied extensively. Landau at al.[17] provide
a
√
n-approximation that runs in linear time. This is done by showing an exact algorithm that runs

in timeO(n+k2), where k is the edit distance between the input strings. A series of subsequent works
improved this approximation factor first to n3/7 [8], then to n1/3+o(1) [10] and later to 2Õ(

√
logn) [6]

while keeping the running time of the algorithm almost linear. Batu et al. [9] provided an O(n1−α)-
approximation algorithm that runs in time O(nmax{α

2
,2α−1}). The approximation factor was further

improved to (log n)O(1/ε), for every ε > 0 where the approximation algorithm runs in n1+ε time [5].
The idea behind the algorithm provided by [5] is sampling nε characters from x and then

computing the edit distance between the sampled part of x and y using the dynamic programming
algorithm in a way that preserves the distance between the original strings. Using this method one
can only approximate the edit distance between the input strings but not find a global alignment
converting x into y. Contrary, our algorithm does output such an alignment. Moreover, if one
wants to use [5] to get a constant factor approximation then it has to sample a constant fraction of
x. However, since in [5] the simple dynamic programming is applied on the sampled string, then
this approach cannot be used directly to find a constant factor approximation algorithm in truly
sub-quadratic time.

Another way to efficiently approximate edit distance (used in [6]) is based on embedding edit
distance metric into Hamming metric. The idea is to first apply embedding algorithm on two input
strings and then compute the hamming distance between resulting strings in linear time. In this
technique the distortion factor of the embedding translates into the approximation factor. However
this technique again fails to produce a constant factor approximation to edit distance since a lower
bound of Ω(log n) on the distortion factor is already known [16].

Recently, Boroujeni et al. [11] studied the question of approximating edit distance in the quan-
tum computational model. They show the existence of a quantum algorithm that approximates edit
distance within (7 + ε) factor whose run time is Õ(n2−1/7/ε). They obtain also a faster Õ(n1.781)-
time quantum algorithm for some constant factor approximation of edit distance. Our algorithm is

2

classical and faster. Hence with the current state of knowledge, quantum machinery has no advan-
tage over classical computation for computing and approximating edit distance (up to a constant
factor).

A special case of computing edit distance is when input strings have no repeated characters.
Alternatively we can think of input strings x and y as permutations on n characters. In that case
the Ulam distance between x and y is the minimum number of character insertion and deletion
operations required to convert x into y. Using a simple reduction to the problem of finding longest
increasing sequence, Ulam distance can be computed in O(n log n) time. A recent result [20] provides
a randomized algorithm that approximates Ulam distance within (1+ε) factor with high probability
in time Õε(

√
n+ n/k), where k is the Ulam distance between the input strings.

A recent, active line of work achieves tight lower bounds for fundamental problems under various
computational assumptions including Strong Exponential Time Hypothesis (SETH). A celebrated
result of Backurs and Indyk [7] proves that computing the edit distance cannot be done in truly
sub-quadratic time unless the SETH is false. This was further extended by [4] showing that no truly
sub-quadratic algorithm exists even under weaker computational assumptions. Recently, Abboud
and Backurs [1] showed that a truly sub-quadratic deterministic time 1 + o(1)-factor approximation
algorithm for the edit distance problem would imply new circuit lower bounds. This can be thought
of as a barrier to obtaining better approximation factor.

1.2 Our Technique

Previous approximation algorithms share a similar meta structure: As a first stage a sampling
procedure or a dimension reduction is used in order to obtain much shorter substrings with similar
edit distance. In the second stage known edit distance algorithms are applied on the shrunken
strings. Finally, the output of the algorithm is used to estimate the edit distance between the input
strings. Our approach differs from this.

We will not compute the edit distance directly, rather we will focus on solving the gap version
of edit distance that is for given θ verifying whether the edit distance of two input strings is smaller
than θ or substantially larger than θ. To approximate the edit distance we can then try various θ
of the form 2−i to find the right cost.

We view the problem of estimating the edit distance between two strings x and y of length1

n as the problem of finding a shortest path in the edit distance graph Gx,y associated with them.
The graph Gx,y is a directed grid graph with vertices {0, 1, . . . , n} × {0, 1, . . . , n} with vertical and
horizontal edges of cost 1 and each diagonal edge (i− 1, j − 1)→ (i, j) of cost 0 or 1 depending on
whether the corresponding symbols xi and yj match or not. The cost of the shortest path between
the vertex (0, 0) (source) and the vertex (n, n) (sink) equals the edit distance between x and y. So
our goal is to estimate its cost from above.

A naïve way to estimate the shortest source to sink path in Gx,y would be to break the graph
into pieces of size w×w (w-boxes), compute the shortest paths between the corners of each box, and
then reduce the graph to the corner vertices connected by edges weighted by their shortest paths.
The new graph will have size O(n2/w2) and we will be able to compute the shortest path from its
source to sink in quasi-linear time in its size thanks to its specific structure.

So if we were able to quickly estimate the shortest paths in all the boxes we would get a fast
1Throughout the paper we assume that both x and y are of the same length n. This assumption can be easily

removed.

3

algorithm. However, to estimate all these costs by the usual quadratic algorithm, we would need to
spend time O(n2) overall. Moreover, to obtain a good approximation we will need to consider also
overlapping boxes. If the normalized cost of the path we are looking for is θ, for θ ∈ [0, 1], then
we need two consecutive w × w boxes to overlap by at least (1 − θ)w in order to have an overall
additive error of the approximation O(θ). So we need to cover the graph by overlapping boxes as
seen in Fig. 3.

Covering in Fig. 3 would give O(n2/w2θ) boxes but we can decrease their number to O(n2/w2)
using the idea of Ukkonen [22] as we need to focus only on boxes that lie within a strip of width
O(θn) along the main diagonal of Gx,y. Hence, we only need to focus on O(n2/w2) boxes in total
that are horizontally aligned into strips of width w and vertically aligned to multiples of θw. This
still does not achieve even the running time O(kn) = O(θn2) of Ukkonen’s algorithm.
Covering the path. To reduce the total running time, we will need to reduce the number of boxes
for which we compute the edit distance. We will break Gx,y into strips of width w1 (w1-strips) and
group adjacent strips into strips of width w2 (w2-strips), w1 � w2. Our goal is to find a set of boxes
with an estimate on their cost that would cover a given shortest path τ under the assumption that
the path is of cost at most θ and without knowing τ . We call a box with an estimate on its cost a
certified box.

By τ -cost of a strip we understand the cost of τ restricted to that strip normalized relative to
the width of the strip. It is easy to see that the average τ -cost of w1-strips is at most θ as all the
strips are of the same width. By Markov inequality, in a randomly chosen w1-strip the cost of τ is
at most kθ with probability at least 1 − 1/k. In a w1-strip of τ -cost ≤ kθ there will be a w1 × w1

box aligned vertically to the multiples of θw1 that tightly covers τ and is of source to sink cost of
at most O(kθ). By tightly covering τ we mean that τ enters the box close to its source and leaves
close to its sink. (Assuming θ is small, the path must use mostly diagonal edges of cost zero.)

Hence, for each εi = θ2i, we will try to identify vertically aligned boxes in w1-strips of cost at
most εi. If we do this for each i = 0, . . . , log 1/θ and every w1-strip we will find a good approximation
of τ by w1 × w1 boxes (see Fig. 1). Still this will not provide us with any time savings.
Sparse case. To save time we will pick a w1-strip at random in each w2-strip, and we will find all
vertically aligned boxes of cost at most εi in that strip. If the number of these low-cost w1-boxes in
a particular w1-strip will be less than a certain chosen threshold d, we will diagonally extend each
of the low-cost w1-boxes into a box of size w2 × w2 that spans the containing w2-strip. For this
w2 × w2 box (diagonal extension) we will compute its cost.

If the original w1-box tightly covers τ then its diagonal extension will also tightly cover τ and
its cost will correspond to the τ -cost of the containing w2-strip. (The tighter the τ is covered by
the extension, the better its cost approximates the τ -cost of the w2-strip. As we do not know the
tightness of the cover, we do not know how relevant is the cost of the extension. However, we can
make O(log θ) deterministic guesses of the tightness and one of them will be a good one. The reader
might want to come back to this point later.)

If we were lucky and each w1-strip that we sampled were sparse (contained at most d boxes of
edit distance ≤ εi) we would spend the total time O(d(w2)

2n/w2) = O(dnw2) on computing the
certified w2-boxes. Here, (w2)

2 is the trivial upper bound on computing the cost of the w2-box.
Hence, we would achieve savings if d · w2 � n.
Dense case. However, what if all the sampled w1-strips are dense, i.e., contain more that d w1-
boxes of cost at most εi? If that happens, we are also in a good shape. Let xI be the substring
of x corresponding to a dense w1-strip. We identify all the (relevant overlapping) substrings of

4

y, yJ1 , yJ2 , . . . , yJ` , such that their edit distance from xI is at most 3εi. We also identify all the
(relevant non-overlapping) substrings of x, xI1 , xI2 , . . . , xIk , such that their edit distance from xI
is at most 2εi. By the triangle inequality we know that all pairs of yJj ’s with xIj ’s are of edit
distance at most 5εi. Hence, we identify ` · k w1-boxes of small edit distance while spending only
O((w1)

2n/w1) = O(nw1) time. The closeness thresholds 3εi and 2εi guarantee that for each xIj we
identify all the relevant substrings of y that are at distance at most εi from it. They must be among
yJj ’s. Hence, neither of the strings xI1 , xI2 , . . . , xIk , needs to be processed anymore so we remove
the corresponding w1-strips from further consideration (for this εi). We found all the certified boxes
we needed in those strips.

The choice of the closeness parameters also guarantees that the next dense w1-strip that will be
sampled will correspond to xI whose substrings of y at distance at most εi are disjoint from those
of the previous xI ’s (see Fig. 2). So we can encounter at most n/(w1 · d) dense w1-strips in total as
the number of relevant substrings of y is at most O(n/w1). So the total time spent in processing
dense strips is bounded by O((n/w1d) · nw1) = O(n2/d). For suitably chosen parameters w1, w2, d
we save in both the dense and sparse cases.
Sampling. There are still several obstacles one needs to deal with. The main obstacle is that
when we sample a sparse w1-strip for given εi we do not know if the actual τ -cost of the strip is
below this threshold. If the τ -cost is above the threshold then the boxes found and their diagonal
extensions are most likely completely irrelevant for the path τ . There are two possible remedies to
this we know of. One could sample 1/θ sparse w1-strips in each w2-strip to make sure that we find
a relevant w1-strip if there is one. This would solve the correctness problem but it would blow-up
time for small θ. The other solution that we actually use in our algorithm is based on a magic
combinatorial lemma which implies that we need to sample only O(log2 n) sparse w1-strips for each
w2-strip and each εi.

As εi ranges over all its possibilities, this guarantees that one of two cases will happen. Either
all relevant w1-boxes that tightly cover τ will be eventually enumerated in some dense strip as εi
increases to a level beyond the τ -cost of the strip and as that strip becomes dense. Or we will
sample a sparse w1-strip with a w1-box of cost at most εi that tightly covers τ so its diagonal
extension will also tightly cover τ . In the former case, as the strip might become dense only for
an εi far larger than the actual τ -cost of the strip one needs to provide a careful analysis of the
overall over-approximation given by the certified w1-boxes found this way. This is encapsulated in
Lemma 4.4.
Implementation. Our actual algorithm implements the above described strategy. In Phase I it
identifies all relevant certified boxes with an (over-)estimate on their cost and in Phase II it runs a
shortest paths algorithm on those boxes. A proper choice of the parameters gives a sub-quadratic
algorithm.

Our algorithm for Phase I processes Gx,y in blocks of size roughly 2θn × 2θn along the main
diagonal of Gx,y. These blocks contain all relevant boxes we need to look at. For each block and each
εi it first identifies and processes all the dense w1-strips in that block. This happens in procedure
DenseStripRemoval(). For each strip in turn, we estimate its density by sampling random boxes
in it. For strips that seem dense we remove them and all their siblings while producing a list of
certified boxes with estimate 5εi on their cost. (The running time spent on estimating density of
all the strips in DenseStripRemoval() is of the same order as the upper bound on the time needed
to process all the dense strips.) We are left with a set of sparse w1-strips that are processed by
SparseStripExtensionSampling(). This procedure samples for each w2-strip O(log2 n) w1-strips,

5

calculates the diagonal extensions of the low cost w1-boxes contained in them and outputs the
certified diagonal extensions. (For each diagonal extension we output the extension with its true
cost increased by 2−i, for i = 0, . . . , log 1/θ, to account for the possible tightness/looseness of their
cover.)

The Phase II shortest path algorithm runs in quasi-linear time using the particular structure of
the graph and the fact that the graph contains linear number of edges in terms of the number of its
vertices.

J

I
w2 w1

Figure 1: Illustration of the Covering Algorithm: Green boxes are low cost boxes in dense w1-strips,
while the pink ones are in sparse w1-strips. The blue line corresponds to the path τ that we are
trying to cover. In each w2-strip, τ is covered by either a collection of many w1-boxes or it is covered
by a diagonal extension of a low cost w1-box. The various boxes might overlap vertically which is
not shown in the picture.

2 Main results

Our main algorithm focuses on deciding whether the normalized edit distance ∆edit(x, y) of two
input strings x and y is above or below a given threshold θ. If it is below the threshold we want

6

x1

y1

y2
y3

x2 y4

y5

y6

x3

y7

y8

ε′ ≤ 2ε

> 2ε

≤ 3ε

ε

Figure 2: x1 and x3 have disjoint y-neighborhoods.

to find a witness (path/alignment) of cost at most O(θ). So our main focus is on solving the gap
version of edit distance and we will show how to solve it in sub-quadratic time. We define the
Gap-Edit Distance problem as follows.

Gap-Edit Distance(x, y, θ, c): Given two strings x and y each of length n, θ ∈ (0, 1), and c ∈
[1,∞), the problem is to decide whether ∆edit(x, y) ≤ θ or ∆edit(x, y) > cθ. More specifically, if
∆edit(x, y) ≤ θ one should output 1, and if ∆edit(x, y) > cθ one should output 0, otherwise one may
output an arbitrary answer.

Note, for any length n, θ ∈ (0, 1] and c ∈ [1,∞), the above definition of Gap-Edit Dis-
tance(·, ·, θ, c) actually provides a family F of functions. We say that an algorithm computes
Gap-Edit Distance(·, ·, θ, c) if the algorithm computes some function f ∈ F . For a randomized
algorithm we allow the algorithm to provide inconsistent answers on inputs that do not satisfy the
promise. Our main result is the following theorem.

Theorem 2.1. There is a randomized algorithm that given any two strings x and y each of length
n, and a real number θ such that 1/n ≤ θ ≤ 1, computes Gap-Edit Distance(x, y, θ, 251) in time
Õ(n2−2/7θ4/7) with probability of error at most 1/n6.

Most of our paper is devoted to the presentation of the algorithm for solving Gap-Edit Dis-
tance(x, y, θ, 251). As a corollary of the above theorem we get an algorithm that approximates
the edit distance between any two strings within O(1)-factor and runs in sub-quadratic time.

Corollary 2.2 (Restatement of Theorem 1.1). There is a randomized algorithm that given any two
strings x and y each of length n, outputs a value κ ∈ (0, 1] such that ∆edit(x, y) ≤ κ ≤ 252∆edit(x, y)
with probability at least 1 − 1/n5. Furthermore, if ∆edit(x, y) = θ, then the algorithm runs in time
Õ(n2−2/7θ4/7).

Proof sketch. Fix γ = 1/251 and define a sequence of parameters θ0, θ1, . . . as follows: for i =
0, . . . , dlog1+γ ne, set θi = (1 + γ)i/n. Find the smallest i such that Gap-Edit Distance(x, y, θi,

7

251) = 1 using the algorithm from Theorem 2.1. Output κ = θj . It follows from the definition of
Gap-Edit Distance that ∆edit(x, y) ≤ κ ≤ 252∆edit(x, y). This completes the proof.

Further improvements.

Approximation factor. For the sake of simplicity of the presentation we did not optimize the
approximation factor in our algorithms. Our algorithms can be easily adjusted to guarantee an
approximation factor 5+ε, for any fixed ε > 0, while increasing the running time only by a constant
factor. To do that one needs to chose various estimates (such as θ, εi, . . .) in smaller increments,
align boxes with finer granularity and use boxes which are not only squares but also rectangles of
few prescribed ratios between their width and height (constant number of their shapes). That leads
to finding a finer approximation to the shortest path in our covering algorithm. The factor 5 comes
from the triangle inequality used in the dense case. It is plausible that one can improve also on that
factor.
Running time. The algorithm from Theorem 2.1 involves estimating edit distance of strings of
length nδ for some δ < 1. The bulk of its running time comes from this estimation. To compute
those estimates we use Ukkonen’s algorithm with running time O(kn). Once we have our algorithm
from Theorem 2.1 we can use it instead of Ukkonen’s algorithm to compute the estimates. This
will worsen the approximation factor (in essence multiply it by the approximation factor of the
estimation algorithm) but it will reduce the overall running time. This can be done almost in
a black-box fashion but one needs to change setting of the internal parameters (w1, w2, d) of the
algorithm from Theorem 2.1 to maximize the savings. One can iterate this process several (constant
number of) times to get faster and faster algorithms with somewhat worse and worse approximation
factor. Because of the way our analysis of our algorithm depends on θ, by the iterations we do not
get a faster edit distance algorithm for the full range of θ ∈ [0, 1] but rather only for θ close to 1.
(This is perhaps an artifact of our current simple analysis rather than an inherent limitation. We
defer details to the full version of our paper.) We can state it as the following theorem.

Theorem 2.3. For any ε > 0 there are constants c > 1 and β ∈ (0, 1) such that there is a
randomized algorithm running in time O(n

1+
√

5
2

+ε) that given two strings x and y each of length n,
outputs a value κ ∈ (0, 1] such that ∆edit(x, y) ≤ κ ≤ c∆edit(x, y) + n1−β with probability at least
1− 1/n.

In particular, we will be able to solve the Gap-Edit Distance in that time for θ > n−β . The
conditional hardness results for edit distance [7] map instances of SAT to instances of edit distance
with θ very close to 1. Hence, solving Gap-Edit Distance is interesting in particular in the range
where we do get faster algorithms.

In the special case of one level of the recursion we obtain an algorithm for the full range of
θ ∈ [0, 1] that runs in time Õ(n2−98/277θ54/277) = Õ(n1.647θ0.195). Notice, 1+

√
5

2 = 1.618
We can improve the running time even further, close to O(n3/2) using additional techniques.

Unwinding the recursion one step one notices that the algorithm performs certain closely related edit
distance estimations multiple times. One could design a data structure to speed-up these estimates
using what was previously calculated. This will improve the running time. We leave details of this
improvement to the full version of the paper.

8

2.1 Organization of the Paper

In Section 3 we present necessary definitions and prove some simple preliminary claims that are
used later. In Section 4 we present the Phase I covering algorithm used to find a cover of a path by
low-cost certified boxes. In Section 5 we present the Phase II algorithm used to find a shortest path
in the graph obtained from Phase I. Section 6 presents the actual reduction between the output
of Phase I and input to Phase II. Finally, in Section 7 we combine the parts obtained in the three
previous sections into our main algorithm.

3 Preliminaries

Notations. We use N to denote the set of natural numbers including zero, and for k ∈ N, we let
[k] = {1, 2, 3, . . . , k}. All the logarithms we consider throughout this paper are based 2. For any
directed graph G we let V (G) denote the set of vertices of G and E(G) denote the set of edges of
G.

Grid graph. For intervals I, J ⊆ N, a grid graph G on I × J is a directed weighted graph with
vertices V = I × J , where for each (i, j) ∈ V there is a horizontal edge (i, j) → (i + 1, j) of cost
one if i + 1 ∈ I, there is a vertical edge (i, j) → (i, j + 1) of cost one if j + 1 ∈ J , and there is a
diagonal edge (i, j)→ (i+ 1, j+ 1) of cost zero or one if (i+ 1, j+ 1) ∈ V . The source of G, denoted
by source(G), is (min I,min J), and the sink, denoted by sink(G), is (max I,max J). The border
vertices of G are all its vertices of in-degree or out-degree less than three. For an integer d ∈ Z, a
diagonal d of G is the set of vertices {(i+min I, i+d+min J) ∈ I×J ; i ∈ N}. We refer to diagonal
0 as the main diagonal of G. For a grid graph G on A × B we may refer to A by IG and to B by
JG. For an interval I ⊆ N we let µ(I) = |I| − 1. We will be mostly concerned with the horizontal
size of G so we let µ(G) = µ(IG).

Cost of a path. For a path τ in G, starting at some vertex (i, j) and ending in a vertex (i′, j′), we
let µ(τ) = i′ − i denote the horizontal distance traveled by τ . The cost of path τ is the sum of the
costs of its edges divided by µ(τ) and we denote it by costG(τ). (The cost is infinite if µ(τ) = 0.)
When G is clear from the context, we will omit the subscript G from the notation and write cost(τ).
The cost of the grid graph G is the cost of the cheapest path from its source to its sink. Hence, we
measure the cost of paths and graphs relative to their horizontal size. We denote the cost of the
grid graph G by cost(G).

Edit distance measure and the edit distance graph. The edit distance between two strings
x and y of length n and m resp., is defined as the minimum number of character insertion, deletion
and substitution operations required to convert x into y. For the sake of simplicity throughout this
paper we assume thatm = n, i.e., x and y are of the same length. Our arguments can be generalized
for the case of m 6= n in a straightforward way. Throughout this paper we consider the normalized
edit distance that is we divide the value of the edit distance by n. We denote the normalized edit
distance of x and y by ∆edit(x, y).

For strings x and y of length n, their edit distance graph Gx,y is a grid graph on {0, 1, . . . , n} ×
{0, 1, . . . , n} where each edge (i, j) → (i + 1, j + 1) has cost zero if and only if xi+1 = yj+1. For
I = {i, i + 1, . . . , i + k}, we let xI denote the substring xi+1xi+2 . . . xi+k. Notice that for any two

9

intervals I, J ⊆ {0, . . . , n}, GxI ,yJ is isomorphic to the subgraph of Gx,y induced on I×J . It is now
easy to observe the following.

Proposition 3.1. Consider any two strings x and y of length n, and let G = Gx,y. Then for any
two non-empty intervals I, J ⊆ {0, . . . , n} of the same size

∆edit(xI , yI) = cost(G(I, J)),

where G(I, J) is the subgraph of G induced on I × J .

W -box and strip. Let I ′ ⊆ I ⊆ N and J ′ ⊆ J ⊆ N be intervals, and w be an integer. Let G be a
grid graph on I×J . The induced subgraph of G on I ′×J ′ is denoted by G(I ′, J ′). If µ(I ′) = w and
min I ′ −min I is divisible by w then we say that the subgraph G′ = G(I ′, J) is a w-strip. (Notice,
w-strips do not share horizontal or diagonal edges as they are always horizontally aligned within
their graphs.)

We also say that the subgraph G′ = G(I ′, J ′) is a w-box if µ(I ′) = µ(J ′) = w. For δ ∈ [0, 1],
G′ is δ-grid-aligned if min J ′ is divisible by max(bδwc, 1). The δ-grid-alignment of G′ in G is the
w-box G′′ = G(I ′, J ′′) where J ′′ ⊆ J , and min J ′′ is the multiple of max(bδwc, 1) closest to min J ′.
(To break ties, pick J ′′ with the smaller minimum.) Note that G′′ is δ-grid-aligned. Hence, we align
strips horizontally and boxes vertically, and for our applications we will be interested in w-boxes
contained in some w-strip (see Fig. 3).

J J ′ J ′′

δw

I ′

I

Figure 3: An illustration of δ-grid-alignment and w-strips. The δ-grid-alignment of G(I ′, J ′) (dashed
rectangle) is G(I ′, J ′′) (thick rectangle). Note, since bδwc is not necessarily a divisor of w, the upper
border of δ-grid-aligned rectangles are not necessarily multiples of bδwc. This is not shown in the
picture.

Proposition 3.2. Let G′ be a w-box in a grid graph G, and G′′ be a δ-grid-alignment of G′. If G′

has cost ε then G′′ has cost at most ε+ 2δ.

10

Proof. Let G′′ = G(I ′, J ′′) be a δ-grid-alignment of G′ = G(I ′, J ′). Without loss of generality we
can assume that max(bδwc, 1) = bδwc, as otherwise G′′ = G′, and the claim follows trivially. Let
` = |min J ′ −min J ′′|. Clearly ` ≤ δw. (Except for G′ near the border of G, ` ≤ δw/2.)

Let s′ be the source of G′ and r′ be its sink. Similarly, let s′′ and r′′ be the source and sink of G′′.
As G′ has cost ε there is a path τ ′ from s′ to r′ of cost ε. Consider the case when min J ′′ < min J ′.
Let v be the last vertex of τ ′ that belongs to G′′. We construct a path τ ′′ from s′′ to r′′ by
concatenating the following three subpaths: the path from s′′ to s′ consisting of ` vertical edges,
the subpath of τ ′ from s′ to v, and the path from v to r′′ consisting of only horizontal edges. Let k
be the number of cost one edges in the subpath of τ ′ from s′ to v. The path from v to r′ contains
at most εw − k horizontal edges (of cost one) so the distance from v to r′′ is at most εw − k + `.
Thus the total number of cost one edges in τ ′′ is at most `+ k + εw − k + ` = εw + 2`. Hence, the
cost of G′′ is at most ε+ 2δ. The case of min J ′′ > min J ′ is symmetric.

τ-cost of a graph. A path τ crosses a grid graph G on I × J if it starts in some vertex (min I, j)
and ends in some vertex (max I, j′) where j, j′ ∈ J . Let G′ be a w-strip in G and τ be a path
that crosses G. Then the τ -cost of the strip G′, denoted by τ -cost(G′), is the cost of the shortest
subpath of τ that crosses G′. So the τ -cost(G′) does not account for vertical edges of τ between
border vertices of G′. Observe, that τ -cost(G) might be strictly less than cost(τ).

G
G′

Figure 4: Illustration of a path that crosses a grid: Solid blue edges are the edges of a given path
τ . Dotted blue edges are the edges crossing the dashed strip G′.

Proposition 3.3. Let τ be a path that crosses a grid graph G on I × J . Let w be a divisor of µ(I).
Then the τ -cost of G is at least the average of the τ -costs of distinct w-strips of G.

Proof. Let k = µ(I)/w, let G1, . . . , Gk be the w-strips of G, and for each i ∈ [k], let τi be the
shortest subpath of τ that crosses Gi. Notice, that the edges between border vertices shared by
Gi and Gi+1 are part of neither τi nor τi+1. Hence τi’s do not share any edge. So cost(τ)µ(τ) ≥∑

i∈[k] cost(τi)µ(τi). Since each µ(τi) = w and µ(τ) = kw,

τ -cost(G) ≥ 1

k

∑
i∈[k]

τ -cost(Gi) = Ei∈[k]τ -cost(Gi).

11

Definition 1 ((1− δ)-cover). Let τ be a path that crosses a grid graph G on I × J where I, J ⊆ N.
Let I ′ ⊆ I, J ′ ⊆ J and w be an integer. Suppose G′ = G(I ′ × J ′) is a w-box in G. For δ ∈ [0, 1]
we say that G′ (1 − δ)-covers the path τ if τ passes through a border vertex of G′ at horizontal or
vertical distance of at most δw from the source of G′, and it also passes through a border vertex of
G′ at horizontal or vertical distance of at most δw from the sink of G′.

Proposition 3.4. Let τ be a path that crosses a grid graph G. Let w < |J |/2 be a positive integer
and δ ∈ [0, 1]. If G′ is w-strip in G of the τ -cost at most ε then there is a δ-grid-aligned w-box in
G′ of cost at most 2(ε+ δ) that (1− ε− δ)-covers τ.

Proof. Let τ ′ be the shortest subpath of τ crossing G′. Let s′ be the starting vertex of τ ′ and r′ be
its end vertex. By the assumption the cost of τ ′ is at most ε. Let G′′ be the w-box whose source
is s′. (Note, if s′ is at vertical distance less than w from the top horizontal border of G′ then such
G′′ will not exist. Then apply a similar argument for a box G′′ with sink(G′′) = r′.) We first show
that G′′ is of cost at most 2ε.

Observe that since the cost of τ ′ is at most ε, then it uses at most εw horizontal or vertical
edges of cost one, and at least (1 − ε)w diagonal edges of cost zero. Let v be the last vertex of τ ′

that belongs to G′′. Clearly, v is a border vertex of G′′ that lies on a diagonal at distance at most
εw from the main diagonal of G′′, i.e, v lies on a diagonal d of G′′ where |d| ≤ εw. Hence, we can
reach the sink of G′′ from v using at most εw horizontal or vertical edges. Thus, the cost of G′′ is
at most 2ε.

Now consider G̃ the δ-grid alignment of G′′ in G′. By Proposition 3.2 we get that the cost of G̃
is at most 2ε + 2δ. By definition, the vertical distance between s′ and the source of G̃ is at most
δw. By an argument similar to the above, τ ′ passes a border vertex of G̃ within distance at most
(δ + ε)w of the sink of G̃. Hence, G̃ (1− ε− δ)-covers τ .

Note, for simplicity we allow only square boxes, if we were to allow also rectangular boxes of
few prescribed dimensions we would get a slightly better approximation factor for the cost of the
path. This would increase the running time of the algorithm only by a constant factor.

Definition 2 ((d, δ, ε)-sparse). Let ε, δ ∈ [0, 1] be reals and d be an integer. Let G be a grid graph on
I × J for I, J ⊆ N. We say that a w-strip G′ in G is (d, δ, ε)-sparse if the number of δ-grid-aligned
w-boxes in G′ of cost at most ε is at most d. If G′ is not (d, δ, ε)-sparse then it is (d, δ, ε)-dense.

Diagonal extension. Let G be a grid graph on I × J for I, J ⊆ N. For a w-box G′ = G(I ′× J ′),
where I ′ ⊆ I and J ′ ⊆ J , the diagonal extension of G′ in G is the µ(I)-box G′′ = G(I × J ′′) for
some J ′′ ⊆ J , whose main diagonal extends the main diagonal of G′ (if possible), i.e.,

min J ′′ =

min J if min J ′ −min J < min I ′ −min I

max J − µ(I) if max J −max J ′ < max I −max I ′

min J ′ − (min I ′ −min I) otherwise

Proposition 3.5. Let τ be a path that crosses a grid graph G and assume that the τ -cost of G is at
most ε. Let w = µ(IG). Let G′ be a w′-box in G that (1− δ)-covers τ . Then the diagonal extension
of G′ is of cost at most 3ε+ 2δw′/w and (1− (ε+ δw′/w))-covers τ .

12

I ′
J ′

J

I

J ′′

Figure 5: Illustration of diagonal extension: Given a w-box G(I ′, J ′) its diagonal extension is the
grey box G(I, J ′′).

Proof. If ε ≥ 1, the claim follows trivially, so we can assume ε < 1. Let G′′ be the diagonal extension
of G′ and τ ′ be the shortest subpath of τ that crosses G. Let first(τ ′) and last(τ ′) be the first and
the last vertex of τ ′ respectively in G. Let h and v be the number of horizontal and vertical edges
taken by τ ′ respectively. As τ -cost of G is at most ε, clearly h+ v ≤ εw. Let k, k′, k′′ ∈ Z be such
that, τ ′ starts on diagonal k of G, source(G′) lies on diagonal k′ of G and source(G′′) lies on diagonal
k′′ of G. Clearly τ ′ is confined to the diagonals {k − h, . . . , k + v} of G. As G′ (1− δ)-covers τ so
we have k−h− δw′ ≤ k′ ≤ k+ v+ δw′. Hence τ ′ is confined to the diagonals {k′−h− v− δw′, . . . ,
k′ + h + v + δw′} of G. We first claim that G′′ (1 − (ε + δw′/w))-covers τ ′ and therefore τ . This
is trivially true if k′ = k′′. Next consider the case when k′ < k′′: in this case min JG′′ = minJG
and therefore k′′ = 0. So τ ′ is confined to the diagonals {k − h, . . . , k′ + h + v + δw′}. Now as
k ≥ 0, k− h ≥ −h and as k′ < 0, k′ + h+ v + δw′ < h+ v + δw′. So τ ′ is confined to the diagonals
{−h, . . . , h + v + δw′} and our claim follows. Otherwise consider the case k′ > k′′: this implies
max JG′′ = maxJG. Thus sink(G′′) is at or above last(τ ′). Since the number of horizontal edges
taken by τ ′ is at most h, observe that τ ′ is confined to the diagonals {k′−h− v− δw′, . . . , k′′+h},
i.e., diagonals {k′′+(k′−k′′)−h−v−δw′, . . . , k′′+h}. As k′ > k′′, k′−k′′−h−v−δw′ > −h−v−δw′
and hence the claim follows.

Next we build a path τ ′′ from the source to the sink of G′′, of cost at most 3ε+2δw/w′ consisting
the following three parts: a path from source(G′′) to first(τ ′), then from first(τ ′) to last(τ ′) along
τ ′, and then from last(τ ′) to sink(G′′). The first and the third part each contributes by at most
ε+ δw/w′ to the cost of τ ′′ and the second part by the cost of τ ′. Hence, the cost of τ ′′ is at most
3ε+ 2δw/w′ and the proposition follows.

Approximation of a path. We conclude the section by introducing the notion of (1 − δ, k, θ)-
approximation of a path. Let us define a certified box of G to be a triple (I ′, J ′, ε) where |I ′| = |J ′|
and the cost of G(I ′, J ′) is at most ε. The first phase of our algorithm will discover a collection of
certified boxes, and the second phase will combine the information given by this collection to try to
prove that the upper bound on the cost of G is at most kθ. The crucial point will be to show that if
the overall cost of G is at most θ, then the collection of certified boxes discovered in the first phase

13

provides enough information for the second phase to discover that the overall cost is at most kθ.
The following definition defines a condition on a collection of certified boxes relative to a partic-

ular path τ that crosses G. Lemma 6.5 will show that if this condition holds for some path τ of cost
at most ε, then the collection of certified boxes is sufficient for the Phase II algorithm to declare
that the total cost is at most O(kε+ θ + δ).

Let I, J ⊆ N be intervals, and G be a grid graph on I × J . Let θ, ε ∈ [0, 1]. Let τ be
a path of cost ε that crosses G. Let R = {(I1, J1, ε1), (I2, J2, ε2), . . . , (I`, J`, ε`)} where for all
i ∈ [`], interval Ii ⊆ I, interval Ji ⊆ J, εi ∈ [0, 1]. Let δ ∈ [0, 1] and k ∈ N. We say that R
(1− δ, k, θ)-approximates τ if all the following hold:

1. For all i 6= j, |Ii ∩ Ij | ≤ 1.

2.
∑

i∈[`] µ(Ii) ≥ (1− δ)µ(I).

3. For each i ∈ [`], G(Ii, Ji) (1− εi)-covers τ and is of cost at most εi.

4.
∑

i∈[`] εiµ(Ii) ≤ (kε+ θ)µ(I).

4 Covering Algorithm

In this section, we present the first phase of our algorithm which will produce a collection of certified
boxes that will suitably approximate (cover) the optimal path τ . We first provide an informal
description of the algorithm. Then we provide the actual pseudo-code.

The algorithm has several parameters θ ∈ [0, 1], d < n and w1 < w2 < n satisfying w1|w2,
w2|n. Parameters w1, w2 and d will be set to be a small polynomial in n. First, the algorithm
CoveringAlgorithm() calculates m < n such that w2|m and θn

4 ≤ m < θn
2 . Then for k = 0, . . . , b n

m
c,

it enumerates over I = J = km, . . . , (k + 8)m. For each fixed value of I, J the algorithm proceeds
in phases i = 0, ..., dlog 1/θe associated with εi = 2−i. In each phase i, the algorithm first invokes
the procedure DenseStripRemoval(), followed by SparseStripExtensionSampling() with parameter
εi.

The procedure DenseStripRemoval() on input G, divides IG into w1-strips. For each w1-strip
I, it first checks whether the strip is dense or sparse, i.e. whether the number of δ-grid-aligned
w1-boxes of cost at most εi residing in I exceeds some parameter d, where d, δ and εi are provided
as input to DenseStripRemoval()). This verification is done by sampling. If the strip is sparse,
then the algorithm adds the strip into the list S. Otherwise, the algorithm computes two sets: Y
the set of all w1-sized intervals J (in the vertical support of the δ-grid-aligned boxes) such that
∆edit(xI , yJ) ≤ 3εi and X the set of intervals I ′ such that ∆edit(xI , xI′) ≤ 2εi. For each pair in
X × Y insert a certified box with cost 5εi into the list R1.

The procedure SparseStripExtensionSampling() is then invoked and gets the set S produced by
DenseStripRemoval() as an input. The algorithm enumerates over all possible w2-strip I ′. For each
I ′ the algorithm samples sub-intervals I ∈ S ∩ I ′. For each sampled I, the algorithm enumerates
over all possible δ-aligned boxes I×J . For each such box if its cost is at most εi, then the algorithm
checks whether its diagonal extension is of cost at most εi. If it is then the procedure includes a
certified box for the diagonal extension in its final output list R2. (For each diagonal extension the
procedure includes a collection of certified boxes with increasing costs.)

The final output of the algorithm is the set of all certified boxes of R1 and R2 over all possible
phases i which we denote by R. We now give a pseudo-code for the algorithm.

14

The algorithm uses two global constants c0 ≥ 0 and c1 ≥ 120, where the former one is set by
Chernoff bound in Proposition 4.7.

Algorithm: CoveringAlgorithm(x, y, n, w1, w2, d, θ)

Input: Strings x, y of length n, w1, w2, d ∈ [n], w1|w2, w2 < θn/4, and θ ∈ [0, 1]
Output: A set R of certified boxes in G.
Initialization: G = Gx,y, RD = RE = ∅.
Fix an integer m divisible by w2 such that θn

4 ≤ m < θn
2 .

for k = 0, . . . , b nmc do
Let I = J = {km, km+ 1, . . . , (k + 8)m}.
for i = dlog 1/θe, . . . , 0 do

Set εi = 2−i.
Invoke DenseStripRemoval(G(I, J), n, w1, d/εi, εi/8, εi) to obtain S and R1.
Invoke SparseStripExtensionSampling(G(I, J), S, n, w1, w2, d/εi, εi/8, εi, θ) to obtain
R2.
Add items from R1 to RD and from R2 to RE .

end
end
Output R = RD ∪RE .

4.1 Proof of correctness

In this section we prove the correctness of our algorithm. In particular we establish the following
theorem.

Theorem 4.1. Let x, y be strings of length n, 1/n ≤ θ ≤ 1 be a real. Let w1 ≤ w2 ≤ θn/4,
1 ≤ d ≤ n be integers, where w1|w2, w2|n, and w1 ≤ θw2. Let R be the set of certified boxes
obtained by running CoveringAlgorithm(x, y, n, w1, w2, d, θ) with c1 > 120. The following hold:

1. For every certified box (I, J, ε) ∈ R, ∆edit(xI , yJ) ≤ ε.

2. For every path τ from the source to the sink in G = Gx,y of cost η ≤ θ, with probability at
least 1− 1/n9, there is a subset of R that (1, 35, 15θ)-approximates τ .

The first part of the theorem is straightforward given the logic of the algorithm. The main part
of the theorem is the second part. We first give a brief overview of the proof of that part.

We prove that for any path τ from the source to sink in G, with high probability, there exist a
subset of R that approximates the cost of τ upto a constant factor. Using averaging argument, the
claim holds if it is true restricted to every w2-strip of G. So let us consider a single w2-strip and let
T be the set of all its w1-strips. We know that for every w1-strip there exists a δ-aligned w1-box
of cost three times the τ -cost of the w1-strip that tightly covers τ . Our goal is to show that the
CoveringAlgorithm either finds all such δ-aligned certified w1-boxes corresponding to each w1-strip
(with the right cost) or finds at least one such δ-aligned w1-box such that its corresponding w1-strip
is in list S. In the latter case the diagonal extension of this w1-box indeed tightly covers τ over the
entire w2-strip and has cost roughly three times the τ -cost of the w2-strip, so our algorithm indeed
identifies this certified w2-box.

15

Procedure: DenseStripRemoval(G,n,w, d, δ, ε)
Input: G = Gx,y(IG, JG) for some IG, JG ⊆ {0, 1, . . . , n}, w, d ∈ [n], w|min IG, and
δ, ε ∈ [0, 1]
Output: A set S of (d, δ, ε)-sparse w-strips in G, and a set R of δ-grid-aligned certified
w-boxes of cost at most 5ε contained in w-strips of G that are not in S so that all such
certified boxes of cost at most ε are in R.
Initialization: S = R = ∅.
Define horizontal support of w-strips: T = {I ⊆ IG; I = {iw, iw + 1, . . . , (i+ 1)w} for some
i ∈ N}.
Define vertical support of δ-grid-aligned boxes: B = {J ⊆ JG; J = {j, j + 1, . . . , j + w} for
some j ∈ JG divisible by max(bδwc, 1)}.
while T is non-empty do

Pick I ∈ T
Sample c0|B|1d log n intervals J ∈ B uniformly at random and compute ∆edit(xI , yJ).
if for at most c0

2 log n sampled J ’s, ∆edit(xI , yJ) ≤ ε then
Add I to S, and remove I from T .

end
else

Compute:
Y = {J ∈ B; ∆edit(xI , yJ) ≤ 3ε}.
X = {I ′ ∈ T ; ∆edit(xI , xI′) ≤ 2ε}.
Add (I ′, J ′, 5ε) to R for all pairs (I ′, J ′) ∈ X × Y .
Set: T = T \X.

end
end
Output S and R.

16

Procedure: SparseStripExtensionSampling(G,S, n, w1, w2, d, δ, ε, θ)

Input: G = Gx,y(IG, JG) for some IG, JG ⊆ {0, 1, . . . , n}, w1, w2, d ∈ [n], w1|w2 and
w2|min IG, S is a set of sparse w1-strips of G and δ, ε, θ ∈ [0, 1]
Output: A set R of certified w2-boxes in G.
Initialization: R = ∅.
Define vertical support of δ-grid-aligned boxes: B = {J ⊆ JG; J = {j, j + 1, . . . , j + w1} for
some j ∈ JG divisible by max(bδw1c, 1)}.
for i = 0, . . . , bµ(IG)w2

c − 1 do
Define a w2-strip: I ′ = {min IG + iw2, . . . ,min IG + (i+ 1)w2}.
Sample c1 log2 n intervals I ∈ S uniformly at random subject to I ⊆ I ′.
for each sampled I and each J ∈ B do

if ∆edit(xI , yJ) ≤ ε then
Let J ′ be such that G(I ′, J ′) is the diagonal extension of G(I, J) in G(I ′, JG).
if ∆edit(xI′ , yJ ′) ≤ ε then

For k = 0, . . . , dlog ne, add (I ′, J ′,∆edit(xI′ , yJ ′) + θ + 2−k) to R.
end

end
end

end
Output R.

The algorithm proceeds in t+ 1 phases, t = dlog 1/θe. For each phase i = t, . . . , 0 and εi = 2−i,
it calculates a set Si of sparse w1-strips in DenseStripRemoval(). We show that the latter case
occurs if there exists at least one phase i such that at least (1/12t)-fraction of w1-strips from Si
have τ -cost at most εi. These are the good strips in Si that SparseStripExtensionSampling() tries
to find by sampling and expand their w1-boxes into w2-boxes that tightly cover τ . If there are
only few good strips in Si then our algorithm detects their w1-boxes that tightly cover τ only at
some later phase k when their corresponding w1-strips are not present in Sk. (At that point those
strips are either dense or similar to dense strips, and their w1-boxes of small cost are reported by
DenseStripRemoval().)

For a w1-strip let εj be the smallest value such that the τ -cost of the strip is at most εj and
εk ≥ εj be the smallest such that the strip is not in Sk. So instead of finding the w1-box that tightly
covers τ in the strip during phase j we will find it only during phase k. So although the right cost
of the box is εj we associate it with a lager cost of εk. As we assume that for each phase i, the
number of good strips is small so is the number of w1-boxes that are associated with excessively
large cost. Therefore the sum of the detected costs of such certified w1-boxes is bounded by a small
multiple of their true cost (using Lemma 4.4), and the claim follows.

We now proceed with the actual proof of correctness of the algorithm.

Proof of Theorem 4.1. Let RE and RD be the sets obtained during the main loop of CoveringAl-
gorithm, i.e., R = RE ∪ RD. Each certified box in RE satisfies the first part of the claim trivially
as can be easily seen from the algorithm for SparseStripExtensionSampling(). So we need to ar-
gue only about certified boxes from RD. As can be seen from the code of DenseStripRemoval(),
for each certified box (I, J, ε) ∈ RD, there is some interval I ′ such that ∆edit(xI′ , yJ) ≤ 3

5 · ε and

17

∆edit(xI′ , xI) ≤ 2
5 · ε. So by the triangle inequality, ∆edit(xI , yJ) ≤ ε, which we wanted to prove.

So we only need to establish the second part. Fix a path τ from source to sink in G = Gx,y
of cost θ. For a w2-strip G′ of G let τIG′ be the shortest subpath of τ that crosses G′ and εIG′ be
its cost. By Proposition 3.3,

∑
(15θ + 35εIG′)µ(IG′) ≤ (15θ + 35η)µ(IG), where the sum is over all

w2-strip G′ of G. So it suffices to show that for each w2-strip G′ of G there is a subset of R that
(1, 35, 15θ)-approximates τIG′ .

The main loop of CoveringAlgorithm() processes G in overlapping pieces which cover the relevant
parts of G. In particular, each τIG′ is entirely covered by one of the pieces.

Claim 4.2. Let G′ be a w2-strip of G, and let I ′ = IG′. There exist intervals I, J ⊆ N, I = J which
are enumerated in the main loop of CoveringAlgorithm() such that I ′ ⊆ I and τ crosses G(I ′, J).

Proof. Since τ is of cost at most θ, it cannot use more than θn/2 horizontal edges as for each
horizontal edge of cost 1, it must use one vertical edge of cost 1. Similarly for vertical edges. So τ
is confined to diagonals {−θn/2, . . . , 0, . . . , θn/2} of G. By the choice of m in CoveringAlgorithm,
there will be I and J considered in the main loop of the algorithm such that I ′ ⊆ I and τ crosses
G(I, J). In particular, I = J = {km, km+1, . . . , (k+8)m}, where k is the largest integer such that
km ≤ min I ′ − θn

2 has the desired property. See Fig. 6.

J

I

I ′

θn
2

θn
2

≤ θn
4

≤ 5θn
4

km

km+ 8m

≥ 2θn

≤ m ≤ θn
2

Figure 6: For a path τ from the source to sink of G and w2-strip G′ on I ′ × JG there are suitable I
and J such that τ restricted to G′ is contained in G(I, J).

Let us fix a w2-strip G′ of G, let I ′ = IG′ , τ ′ = τIG′ , and let I, J be as provided by the
claim. Let t = dlog 1/θe. For i = 0, . . . , t, let εi = 2i−t and let Si be the set S obtained by

18

calling DenseStripRemoval(G(I, J), n, w1, d/εi, εi/8, εi). (Si’s depend on the random choices made
by DenseStripRemoval() but for the rest of the proof we fix this randomness arbitrarily.) We need
the following claim about low-cost certified w1-boxes that reside in w1-strips not in Si.

Claim 4.3. Let i ∈ {0, . . . , t}. Let I ′′ ⊆ I and J ′′ ⊆ J be intervals such that G′′ = G(I ′′, J ′′) is an
εi/8-grid-aligned w1-box of cost at most εi that resides in some w1-strip of G(I, J). If I ′′ 6∈ Si then
(I ′′, J ′′, 5εi) ∈ RD.

Proof. If I ′′ 6∈ Si then there is an interval Ĩ picked from T during some iteration of the main loop of
DenseStripRemoval(G(I, J), n, w1, d/εi, εi/8, εi) such that ∆edit(xĨ , xI′′) ≤ 2εi. Since ∆edit(xI′′ , yJ ′′)
≤ εi, ∆edit(xĨ , yJ ′′) ≤ 3εi. Hence, I ′′ 6∈ Si implies, that I ′′ ∈ X and J ′′ ∈ Y during the iteration
for Ĩ of the main loop of DenseStripRemoval(). Thus, DenseStripRemoval() adds the certified box
(I ′′, J ′′, 5εi) into R that becomes part of RD.

We need the following lemma about pairs of reals.

Lemma 4.4. Let t ≥ 2 be an integer, c > 1 and γ, ε1, . . . , εt ∈ (0, 1] be real numbers, where
εt = 1 and for all i < t, εi = εi+1/(1 + γ). Let (a1, b1),..., (al, bl) ∈ {ε1, . . . , εt}2 be ` pairs such
that, for all j ∈ [`], aj ≤ bj. For every i ∈ [t], define sets Si = {j ∈ [`]; aj ≤ εi < bj}, and
Bi = {j ∈ [`]; εi < aj}. If for all i ∈ [t], |Si| ≤ |Bi|

c(t−1) , then∑
j∈[`]

bj ≤
(

1 +
1 + γ

c

)∑
j∈[`]

aj .

Proof. First we argue that for all i ∈ [t], |Bi| ≤
∑
j∈[`] aj
εi

. Consider any i ∈ [t].
∑

j∈[`] aj ≥∑
j∈Bi aj > εi · |Bi|. But this implies |Bi| ≤

∑
j∈[`] aj
εi

.
For each i ∈ [t], define a set Mi = {j ∈ [`]; aj < εi = bj}. Notice that M1 = ∅ and also

observe that for i > 1, Mi ⊆ Si−1. This is because, if j ∈ Mi then aj < εi = bj , which implies
aj ≤ εi−1 < bj . Hence j ∈ Si−1. So, |Mi| ≤ |Si−1|. We can write,

∑
j∈[`]

bj =
∑
j∈[`]
bj=aj

bj +
∑
j∈[`]
bj>aj

bj ≤
∑
j∈[`]

aj +
∑
i∈[t]

∑
j∈[`]
bj=εi
bj>aj

bj

=
∑
j∈[`]

aj +
∑
i∈[t]

∑
j∈Mi

εi =
∑
j∈[`]

aj +
∑
i∈[t]
|Mi| · εi

≤
∑
j∈[`]

aj +
∑

i∈[t−1]
|Si| · εi+1 ≤

∑
j∈[`]

aj +
∑

i∈[t−1]

|Bi|
c(t− 1)

· εi+1

≤
∑
j∈[`]

aj +
∑

i∈[t−1]

εi+1

c(t− 1)
·
∑

j∈[`] aj
εi

=
∑
j∈[`]

aj +
(1 + γ)

c(t− 1)
·
∑

i∈[t−1]

∑
j∈[`]

aj ≤
(

1 +
1 + γ

c

)∑
j∈[`]

aj

19

The theorem now follows from the following claim by applying a union bound on the event that
for some w2-strip I ′, the algorithm does not approximates τ ′.

Claim 4.5. With probability at least 1 − 1/n10 over the choices made by invocations of SparseS-
tripExtensionSampling(), at least one of the sets RE and RD contains (1, 35, 15θ)-approximation of
τ ′.

Proof. Let ε be the cost of τ ′. Let T = {I ′′ ⊆ I ′; I ′′ = {iw1, iw1 + 1, . . . , (i + 1)w1} for some
i ∈ N} corresponds to all the w1-strips of G(I ′, J). For I ′′ ∈ T , let εI′′ be the τ -cost of G(I ′′, J). By
Proposition 3.4, for all a ≥ εI′′ and all δ ≤ a/2, there is a δ-grid-aligned w1-box in G(I ′′, J) of cost
at most 3a that (1 − 2a)-covers τ . Let sI′′ be the smallest integer such that εsI′′ ≥ max{3εI′′ , θ}.
Let tI′′ ≥ sI′′ be the smallest integer such that I ′′ 6∈ StI′′ . Define aI′′ = εsI′′ and bI′′ = εtI′′ .

Hence, for all a ∈ [aI′′ , bI′′], there is a a/8-grid-aligned w1-box in G(I ′′, J) of cost at most a that
(1− a)-covers τ . By the definition of bI′′ and Claim 4.3, RD contains a certified box (I ′′, JI′′ , 5bI′′),
for some JI′′ , where G(I ′′, JI′′) is of cost at most 5bI′′ and (1− 5bI′′)-covers τ .

For each i, let S′i = {I ′′ ∈ T ; aI′′ ≤ εi < bI′′} and Bi = {I ′′ ∈ T ; εi < aI′′}. Clearly,
S′i ⊆ Si ∩ T ⊆ S′i ∪Bi. There are two cases.
Case I. For all i ∈ {0, . . . , t}, |S′i| ≤ |Bi|/12t:

By Lemma 4.4: ∑
I′′∈T

bI′′ ≤ (1 +
2

12
)
∑
I′′∈T

aI′′

≤ 2(1 +
1

6
)
∑
I′′∈T

(3εI′′ + θ)

≤ (7ε+ 3θ)|T |.

The second inequality comes from aI′′ = εsI′′ ≤ 2(3εI′′ + θ) by the choice of sI′′ , and the last
inequality uses

∑
I′′∈T εI′′ ≤ ε|T | by Proposition 3.3. So {(I ′′, JI′′ , 5bI′′); I ′′ ∈ T} (1, 35, 15θ)-

approximates τ ′ on G′ which is part of RD by Claim 4.3.
Case II. There exists i ∈ {0, . . . , t} satisfying |S′i| > |Bi|/12t:

We show that with probability at least (1 − 1/n10) some of the diagonal extensions found
by SparseStripExtensionSampling(G(I, J), Si, n, w1, w2, d/εi, εi/8, εi, θ) (1, 8, 4θ)-approximates τ ′.
Indeed, if the procedure samples I ∈ S′i while sampling from Si ∩ T then it will find an εi/8-
grid-aligned w1-box of cost at most εi that (1 − εi)-covers τ . By Proposition 3.5, its diagonal
extension G′′ = G(Ĩ , J̃) is of cost at most 3ε + 2εiw1/w2 ≤ 3ε + 2θ and (1 − (ε + θ))-covers τ ′.
If ε = 0 then the singleton set {(Ĩ , J̃ , cost(G′′) + θ + 2−dlogne)} is a subset of RE by the behavior
of SparseStripExtensionSampling() and it (1, 8, 4θ)-approximates τ ′. Otherwise ε ≥ 1/n so set
k = blog 1/εc. Thus, k ≤ log n and 2−k ∈ [ε, 2ε). Then {(Ĩ , J̃ , cost(G′′) + θ + 2−k)} ⊆ RE and
it (1, 8, 4θ)-approximates τ ′. Since t ≤ dlog ne, the probability of not sampling I ∈ S′i is at most
(1− 1/(12dlog ne))c1 log2 n ≤ 1/n10, for n large enough.

4.2 Time complexity of Covering Algorithm

Let t(n, ε) denote the running time of an algorithm that decides whether two strings of length n
have edit distance at most ε and if they do it computes their edit distance. For simplicity we assume

20

that t is Lipschitz in ε so that for each k ≥ 1, there is a constant c such that for all ε ∈ [0, 1] and
all n > 1, t(n, kε) ≤ c · t(n, ε) + c. Let us also assume that t(n, ε) ≥ n.

Theorem 4.6. Let c0 by a constant from Proposition 4.7 below. Let n be a large enough integer.
Let x, y be strings of length n, 1/n ≤ θ ≤ 1 be a real. Let log n ≤ w1 ≤ w2 ≤ θn/4, 1 ≤
d ≤ n be integers, where w1|w2 and w2|n, and w1/w2 ≤ θ. With probability at least 1 − n−7 the
CoveringAlgorithm(x, y, n, w1, w2, d, θ) runs in time at most

O

 ∑
k=dlog 1/θe,...,0

ε=2−k

θn2 log n

dεw2
1

· t(w1, ε) +
θn2 log2 n

w1w2ε
· t(w1, ε) +

nd log2 n

w2ε
· t(w2, ε)

and outputs the set R of size at most O((n

w1
)2 log2 n).

We will need the following variant of Chernoff bound to define the constant c0.

Proposition 4.7 (Chernoff bound). There is a constant c0 such that the following is true. Let
1 ≤ d ≤ n be integers, B be a set and E ⊆ B. Let us sample c0

|B|
d log n samples from B independently

at random with replacement.

1. If |E| ≥ d then the probability that less than c0
2 log n samples are from E is at most 1/n10.

2. If |E| ≤ d/4 then the probability that at least c0
2 log n samples are from E is at most 1/n10.

We are ready to establish the running time of the CoveringAlgorithm.

Proof of Theorem 4.6. The outer loop of the CoveringAlgorithm makes at most d4θ e + 1 iterations
for different k’s. The inner loop invokes DenseStripRemoval() and SparseStripExtensionSampling()
on graphs G(I, J) of horizontal and vertical size at most 4θn. For each of the graphs it invokes the
DenseStripRemoval() and SparseStripExtensionSampling() for d1 + log 1/θe different values of ε.

Consider a call to DenseStripRemoval(G,n,w1, d/ε, ε/8, ε) made by the inner loop of the algo-
rithm, and let S and R be its output. Let T be the set maintained by the DenseStripRemoval()
procedure. We say that a bad event happens if either some I ∈ S is (d/ε, ε/8, ε)-dense or if for some
I ∈ T such that G(I, JG) is (d/4ε, ε/8, ε)-sparse, the else-branch of the if-statement of the main loop
of the DenseStripRemoval() procedure is executed. By Proposition 4.7, the probability that the bad
event happens during a particular call to DenseStripRemoval() is at most n · n−10 = n−9. There
are at most d4θ + 1e · d1 + log 1

θ e ∈ O(n log n) calls to the DenseStripRemoval() procedure executed
by the inner loop of the algorithm. Hence, the probability that a bad event happens during the
execution of the algorithm is at most O(n log n) · n−9 ≤ n−7, for n large enough.

From now on we will analyze the running time of the algorithm assuming no bad event happened.
Consider a call to DenseStripRemoval(G,n,w1, d/ε, ε/8, ε) made by the algorithm. Let B and

T be as defined in the procedure. Since |IG| = |JG| ≤ 4θn, |B| ≤ 4θn
εw1/8

= 32θn
εw1

during the call.
We claim that the else-branch of the if-statement of the main loop of the DenseStripRemoval()
procedure is executed at most 128θn

dw1
times during the call. Let I1, I2, . . . , I` be the I’s for which the

else-branch is executed. For i = 1, . . . , `, let Bi = {J ∈ B; ∆edit(xIi , yJ) ≤ ε}.
Since no bad event happened, |Bi| ≥ d/4ε. Moreover, for i 6= j, Bi ∩ Bj = ∅. If there were

i < j and J ∈ Bi ∩ Bj then by the triangle inequality ∆edit(xIi , xIj) ≤ 2ε so Ij would be added to

21

X when executing the else-branch for Ii, and Ij would be removed from T at that time so it would
never be considered by the while-loop. Hence, the number of executions of the else-branch is at
most 32θn

εw1
/ d4ε = 128θn

dw1
.

Hence, DenseStripRemoval(G,n,w1, d/ε, ε/8, ε) makes at most |IG|w1
· c0 |B|d log n ≤ 4θn

w1
· 32θnεw1

·
εc0
d log n ≤ 128c0θ2n2

w2
1d

log n checks for ∆edit(xI , yJ) ≤ ε, at most 128θn
dw1

· 32θnεw1
= 4096θ2n2

dεw2
1

checks for

∆edit(xI , yJ) ≤ 3ε, and at most 128θn
dw1

· 4θnw1
= 512θ2n2

dw2
1

checks for ∆edit(xI , xI′) ≤ 2ε.

Thus the running time of DenseStripRemoval(G,n,w1, d/ε, ε/8, ε) is bounded by O(θ
2n2 logn
dεw2

1
·

t(w1, ε)).
Consider a call to SparseStripExtensionSampling(G,S, n, w1, w2, d/ε, ε/8, ε, θ) made by the algo-

rithm. Assuming that no bad event happened in DenseStripRemoval(), S contains only (d/ε, ε/8, ε)-
sparse intervals. Hence, the procedure executes at most c1 log2 n · 4θnw2

· 32θnεw1
checks ∆edit(xI , yJ) ≤ ε,

where µ(I) = µ(J) = w1, and c1 log2 n · 4θnw2
· dε checks ∆edit(xI′ , yJ ′) ≤ ε, where |I ′| = |J ′| = w2.

For each execution of ∆edit(xI′ , yJ ′) ≤ ε, the procedure outputs log n estimates on the cost of the
w2-box. Notice, log n ≤ w2 ≤ t(w2, ε). Thus the total cost of the call is O(θ

2n2 log2 n
w1w2ε

· t(w1, ε) +
θnd log2 n

w2ε
· t(w2, ε)).

For a given value of ε, DenseStripRemoval() and SparseStripExtensionSampling() are executed
for d4θ + 1e different graphs of size at most 4θn. Summing over all those invocations we obtain the
overall time bound.

The number of certified w2-boxes output by the algorithm is bounded by (log n)-times the
number of possible certified w1-boxes the algorithm could output. The number of possible certified
w1-boxes output by a single invocation of DenseStripRemoval(G,n,w1, d/ε, ε/8, ε) is at most 32θn

εw1
·

4θn
w1

by the above bound on |B| and the size of G. By the bounds on ε, this is O(θn
2

w2
1

). Summing
over all possible G and ε we get the desired bound.

5 Shortest Path in a Semi-Grid Graph with Shortcuts

In this section we consider a special "grid-type" graph and compute the shortest distance in that
graph. For intervals I, J ⊆ N, a semi-grid graph G on I × J is a directed weighted graph with the
set of vertices V = I × J , where for each (i, j) ∈ V there is a horizontal edge (i, j) → (i + 1, j) of
cost 2 if i+ 1 ∈ I, and there is a vertical edge (i, j)→ (i, j + 1) of cost zero if j + 1 ∈ J . Note that
as opposed to the grid graphs, there are no diagonal edges in our semi-grid graph. The source of G,
denoted by source(G), is (min I,min J), and the sink of G, denoted by sink(G), is (max I,max J).
We use the notation V (G) and E(G) to denote the set of vertices and the set of edges of graph G
respectively. For any vertex p ∈ V , x(p) and y(p) denote the x-coordinate and the y-coordinate
value of p respectively. We also define a partial ordering among the vertices as follows: for any two
p, q ∈ V we say that p � q if and only if x(p) ≤ x(q) and y(p) ≤ y(q).

Suppose we are given the semi-grid graph G on {0, . . . , n} × {0, . . . , n} and a set of m extra
weighted edges F = {e1, . . . , em} where ei is an edge pi → qi for pi, qi ∈ V (G) and pi � qi. Each
edge in the set F acts as a shortcut in the semi-grid graph G. The weight or cost of edges in F is
defined by a function wt : F → R. Next consider the graph G′ = (V (G), E(G) ∪ F). We call G′

a semi-grid graph with shortcuts. In this section our objective is to compute the shortest distance
(defined next) from the source to the sink in the graph G′.

22

As opposed to the previous sections, throughout this section we focus on the absolute cost of
paths. The absolute cost of a path τ in the graph G′, denoted by costabsG′ (τ), is the sum of the costs
of its edges. Note that in terms of relative cost, costabsG′ (τ) = costG′(τ)µ(τ). We use the notation
distG′(u, v) to denote the absolute cost of the cheapest path2 from a vertex u to v in the graph G′,
i.e.,

distG′(u, v) = min
u to v path τ in G′

costabsG′ (τ).

We also refer this by distance between u and v in G′. When u is the source of G′ we omit u
from the notation and simply use distG′(v) to denote the distance from source(G′) to v. Clearly,
distG′(sink(G′)) = cost(G′)µ(G′).

0

2

e1

e2

Figure 7: An example of a semi-grid graph with shortcuts given by F = {e1, e2}.

Theorem 5.1. There is an algorithm that given the semi-grid graph G on {0, . . . , n} × {0, . . . , n},
an edge set F = {e1, . . . , em} where each ei is an edge pi → qi for pi, qi ∈ V (G) and pi � qi,
and a cost function wt : F → R, outputs the distance from the source to the sink in the graph
G′ = (V (G), E(G) ∪ F). Moreover the algorithm runs in time O((m+ n) log(m+ n)).

Data structure. Throughout its run, the algorithm maintains a binary tree data structure such
that at the end of each iteration t = 0, 1, . . . , n the operation Query(t, k) outputs the shortest
distance from the source of G′ to the vertex (t, k). The data structure consists of a rooted binary
tree T with n+ 1 leaves denoted by `0, `1, . . . , `n and numbered by 0, 1, . . . , n from the left to right.
At any point of time, every node v of T stores a pair of values (tv, dv) where tv ∈ {0, 1, . . . , n} and
dv ∈ R. For a leaf `i, its value (t`i , d`i) at iteration t ≥ t`i means that the node (t, i) is at distance
d`i + 2(t − t`i) from the source of G′. (The value t`i corresponds to the time when the leaf value
was updated last time.) For an internal node v with leaves `i, `i+1, . . . , `j in its subtree, the values
(tv, dv) means that at time t ≥ tv, dv + 2(t− tv) is the minimum of the distances from source to the
vertices (t, i), (t, i + 1), . . . , (t, j). For any node v in T , left-child(v) and right-child(v) denote the
left and right child of v respectively.

The data structure implements the following two operations:
2Note, any cheapest path with respect to the absolute cost function costabsG′ () is also a cheapest path with respect

to the relative cost function costG′().

23

• Update(i, (t, d)): Given any i ∈ {0, . . . , n} and a pair (t, d) ∈ {0, · · · , n} ×R, it first finds the
path P from the root to the leaf `i in T . Then it updates the value stored in every v ∈ P to
(t, d) whenever d < dv + 2(t− tv).

• Query((t, i)): Given a point (t, i) ∈ {0, . . . , n} × {0, . . . , n}, it first finds the path P from the
root to the leaf `i in T . Let R = {left-child(v), v ∈ P and left-child(v) 6∈ P} ∪ {`i}. Then it
outputs the value minv∈R(dv + 2(t− tv)).

We would like to emphasize that the operation Query(p) stands for finding the value of distG′(p),
i.e., the distance of the point p from the source in G′.

Description of the algorithm. The algorithm maintains the data structure described above.
Along with the data structure T we also maintain lists L0, . . . , Ln which are initially empty. Each
list Lt for t ∈ {0, . . . , n}, contains entries that are used to update the data structure T during the
time step t. Each entry (c, d) in a list Lt represents the fact that there is a path from the source to
the vertex (t, c) in G′ with absolute cost d.

We start the algorithm by initializing the content of each node of the binary tree data structure
T to the value (0, 0). Our algorithm (ApproxShortestPath()) runs in n + 1 steps. The algorithm
first sorts the edges ei = (pi → qi) ∈ F in the increasing order of the value of x(pi). This sorted list
will help us to efficiently access the edges of F in the increasing order of the x-coordinate values of
their starting vertices. At any time step t, the algorithm first performs Update() operations on T
using the entries of the list Lt. Then the algorithm processes all the edges e = (p → q) ∈ F such
that x(p) = t. For each such edge, the algorithm first uses the procedure Query(p) to determine the
distance of the vertex p from the source. Then the algorithm adds an entry (y(q),Query(p)+wt(e))
to the list Lx(q). Note that we can reach the point q from the point p while paying wt(e) extra cost
and this justifies the value of the second coordinate.

Time complexity. First observe that since the depth of T is dlog ne, each of the operations
Update() and Query() takes only O(log n) time. Since |F | = m, sorting the set F takes O(m logm)
time. Next we claim that at the end of the algorithm,

∑
i∈[n] |Li| ≤ m. Note that throughout the

run of the algorithm we never delete any element from any Li. Observe that for each e ∈ F there
is exactly one entry in

⋃
i∈[n] Li. The claim now follows.

At any time instance t ∈ {0, 1, . . . , n}, we first call the Update() procedure for each element in
the list Lt. So this step takes O(|Lt| log n) time. Before adding any particular element in the list
Li for some i ∈ [n], we call the procedure Query(). Hence the total time taken by the algorithm is
bounded by

O(m logm) +
n∑
i=0

O(|Li| log n) ≤ O((m+ n) log(m+ n)).

Correctness of the algorithm. For any vertex v ∈ V (G) we use the notation distG′(v) to denote
the shortest distance of the vertex v from the source in the graph G′.

Lemma 5.2. At the end of any time step t ∈ {0, . . . , n}, for any k ∈ {0, . . . , n}

Query((t, k)) = distG′((t, k)).

24

Algorithm: ApproxShortestPath(G,F,wt)
Input: A semi-grid graph G on {0, . . . , n} × {0, . . . , n}, an edge set F = {e1, . . . , em} where
ei is an edge pi → qi for pi, qi ∈ V (G) and pi � qi, and a cost function wt : F → R
Output: The shortest distance from the source to the sink in the graph
G′ = (V (G), E(G) ∪ F).
Initialization: Build a complete binary tree T having n+ 1 leaves numbered 0, . . . , n, and
store (0, 0) to all the nodes of T .
Set L0 = L1 = L2 = · · · = Ln = ∅.
Sort the elements of the set F in the increasing order of the value of x(pi) and denote the
sorted list as S;
for t = 0, 1, . . . , n do

forall the (j, d) ∈ Lt do
Update(j, (t, d));

end
forall the e ∈ S such that e = p→ q and x(p) = t do

Add (y(q),Query(p) + wt(e)) to the list Lx(q);
Remove e from S;

end
end
Output Query((n, n));

The correctness of the algorithm now follows from the above lemma. Before proving the lemma
let us make the following simple observation.

Proposition 5.3. At the end of any time step t ∈ {0, 1, . . . , n}, for any internal node v in T , suppose
(t1, d1) and (t2, d2) are the tuples stored in its two children. Then if d1 + 2(t− t1) ≤ d2 + 2(t− t2),
v stores the pair (t1, d1); else v stores the pair (t2, d2).

Proof. We prove the proposition using induction on t. As a base case, when t = 0 by the initialization
step of the algorithm all the nodes store (0, 0) and thus the proposition is trivially true. For the
induction step, suppose the proposition is true for the time step 0, . . . , t−1. Then we want to prove
it for the time step t.

Note that for some internal node v if the value of it and its children have not been updated
during the time step t, then clearly the claim is still true for that node v at the time step t. Suppose
for an internal node v, the value stored at left-child(v) has been updated at t. Since the update
is only possible because of the invocation of the procedure Update(), the value at v has also been
updated. The proposition now follows from the definition of the Update() operation. The case
when the values at right-child(v) or both at left-child(v) and right-child(v) have been updated are
analogous.

Proof of Lemma 5.2. We prove the lemma by using induction on t and k.
(Outer) Base case t = 0: due to the initialization step the lemma is trivially true.
(Outer) Induction step: Assume that the lemma is true for the time step 0, . . . , t − 1 and we

want to prove it for the time step t. Now to prove the lemma for the time step t, we use induction on

25

k ∈ {0, 1, . . . , n}. Note that here we are using induction argument twice, where the outer induction
is on t and the inner induction is on k.

(Inner) Base case k = 0: We want to show that Query((t, 0)) = distG′((t, 0)). Let τ be a path
with the cheapest absolute cost, from the source to the vertex (t, 0). Suppose the last vertex that
appears in τ just before (t, 0) is (t′, 0). By the definition of the graph G and the edge set F , t′ < t.
Assume that the edge e = (t′, 0)→ (t, 0) is in the set F ; otherwise the statement is clearly true. By
the description of the algorithm during step t′ while processing the edge e, we add an entry in the list
Lt. By the (outer) induction hypothesis we know that at time step t′, Query((t′, 0)) = distG′((t′, 0)).
Hence the entry added in Lt is (0, distG′((t′, 0)) + wt(e)). Now by the definition of the procedure
Update() and Query(), at the end of time step t,

Query((t, 0)) = distG′((t′, 0)) + wt(e)
= distG′((t, 0)).

(Inner) Induction step: Let us now assume that the hypothesis is true for 0, 1, . . . , k − 1 and
we want to prove it for k. So we want to show that Query((t, k)) = distG′((t, k)). Let τ be a path
with the cheapest absolute cost, from the source to the vertex (t, k). We analyze the following two
possibilities.

Case 1. The path τ passes through the vertex (t, k− 1). So, distG′((t, k)) = distG′((t, k− 1)).
By the (inner) induction hypothesis, Query((t, k− 1)) = distG′((t, k− 1)). Let Pk be the path from
the root to the leaf `k and Pk−1 be the path from the root to the leaf `k−1 in T . Further let v be the
lowest common ancestor of the leaves `k−1 and `k. Let u = left-child(v) and note that u ∈ Pk−1.
Let us denote the set R in the definition of Query() by Rk−1 and Rk for the queries Query((t, k−1))
and Query((t, k)) respectively. Let Tu be the subtree rooted at u. By the repeated application of
Proposition 5.3,

du + 2(t− tu) = min
s∈Tu

(ds + 2(t− ts)).

Hence from the definition of the procedure Query() it follows that

Query((t, k − 1)) = min{du + 2(t− tu), min
r∈Rk∩Rk−1

(dr + 2(t− tr))}.

Now by the definition of a binary tree observe that either u = `k−1 or Rk \Rk−1 = {u, `k}. So from
the definition of the procedure Query() we can write that

Query((t, k)) = min{Query((t, k − 1)), d`k + 2(t− t`k)}
≤ Query((t, k − 1))

= distG′((t, k − 1))

= distG′((t, k)).

Next we will show that Query((t, k− 1)) ≤ d`k + 2(t− t`k), which together with the above equation
implies that Query((t, k)) = distG′((t, k)). For the sake of contradiction let Query((t, k − 1)) >
d`k + 2(t − t`k). By the definition of Update() operation, the content of the node `k was last
updated at the time step t`k . Now by the (outer) induction hypothesis at the end of the time step
t`k

distG′((t`k , k)) = Query((t`k , k))

≤ d`k

26

where the last inequality follows from the definition of the procedure Query(). Now consider a
path that follows any cheapest path from the source to the vertex (t`k , k) and then takes the
horizontal edges till the vertex (t, k). Thus distG′((t, k)) ≤ d`k + 2(t − t`k). Since distG′((t, k)) =
distG′((t, k−1)), we get a contradiction on our assumption that Query((t, k−1)) > d`k + 2(t− t`k).

Case 2. Suppose τ takes a path from the source to a vertex p with x(p) < t and then takes an
edge e to a vertex (t, k). Note that the path τ till the vertex p must be a cheapest path from the
source to the vertex p.

1. If e is an horizontal edge, i.e., x(p) = t− 1 then distG′((t, k)) = distG′((t− 1, k)) + 2. By the
(outer) induction hypothesis we know that at the end of time step t− 1, Query((t− 1, k)) =
distG′((t−1, k)). Now at the end of time step t, by the definition of Query() operation clearly
Query((t, k)) ≤ distG′((t − 1, k)) + 2. By an argument similar to that used in case 1 we can
also show that Query((t, k)) ≥ distG′((t− 1, k)) + 2, which establishes the hypothesis.

2. The only other option is that e ∈ F . While processing the edge e during the time step x(p),
by the (outer) induction hypothesis Query(p) = distG′(p). So the corresponding entry added
in the list Lt is (k, distG′(p) + wt(e)). Further note that distG′((t, k)) = distG′(p) + wt(e).
Now the hypothesis follows from an argument similar to that used in case 1.

6 Reduction from the Cost of a Gird Graph to that of a Semi-Grid
Graph with Shortcuts

In this section we present a reduction that takes the output of the CoveringAlgorithm and transforms
it into an instance of determining the shortest path in a semi-grid graph with shortcuts.

Theorem 6.1. There is an algorithm that given a set R = {(I1, J1, ε1), . . . , (Im, Jm, εm)} where all
Ii, Ji are intervals from {0, . . . , n}, µ(Ii) = µ(Ji), and εi ∈ [0, 1], outputs a set of shortcut edges F
on the vertex set V = {0, . . . , n}× {0, . . . , n}, of size 4m and a cost function wt : F → R such that:

• If G is a grid graph on V so that for each i ∈ [m], (Ii, Ji, εi) is a certified box (i.e., cost(G(Ii, Ji)) ≤
εi), and H ′ is the semi-grid graph on vertices V with shortcuts given by F and wt,

• Then for any path τ in G with cost at most ε ∈ [0, 1] for which there is a subset S ⊆ R that
(1− δ, k, θ)-approximates τ :

cost(G) ≤ cost(H ′) ≤ 5(kε+ θ) + 2δ.

Furthermore, the algorithm runs in time O(m).

We devote rest of the section to prove the above theorem. Throughout this proof we ignore
rounding issues. If for some i ∈ [m] εiwi is not an integer then we will just replace the term εiwi by
bεiwic in the proof, and proceed with the argument.

Proof. The set F and the cost function wt : F → R is defined as follows: for each i ∈ [m] we set
wi = µ(Ii) and define four edges

• ei,1 = ((min Ii + εiwi,min Ji)→ (max Ii,max Ji − εiwi)), and set wt(ei,1) = 3εiwi,

27

• ei,2 = ((min Ii + εiwi,min Ji)→ (max Ii − εiwi,max Ji)), and set wt(ei,2) = εiwi,

• ei,3 = ((min Ii,min Ji + εiwi)→ (max Ii,max Ji − εiwi)), and set wt(ei,3) = 5εiwi,

• ei,4 = ((min Ii,min Ji + εiwi)→ (max Ii − εiwi,max Ji)), and set wt(ei,4) = 3εiwi.

See Fig. 8 for a pictorial view of the four edges.

ei,1

ei,3

ei,2

ei,4

εiwi

εiwi

εiwi

εiwi

Ii

Ji

q′i−1
qi−1

p′i

pi

q′i

qi = pi+1

p′i+1

ei,1

si

(a) (b)

Figure 8: (a) The four edges added in F for each block Gi. (b) An example of a path τ (in solid)
passing through a block Gi. The dashed path is an approximation τ ′ of τ in H ′. Weight of the
subpath of τ ′ from si to p′i is 2εiwi, wt(ei,1) = 3εiwi, and weight of the subpath of τ ′ from q′i to p

′
i+1

is 0. So the total weight of the subpath of τ ′ from si to p′i+1 is 5εiwi.

We let F = {ei,j , i ∈ [m], j ∈ [4]}. Now take the semi-grid graph H on {0, . . . , n} × {0, . . . , n}
and consider the graph H ′ = (V (H), E(H) ∪ F) where V (H) and E(H) are the set of vertices and
the set of edges of H respectively. Soon we will justify the cost function.

Recall that we are given a grid graph G on {0, . . . , n} × {0, . . . , n}. τ is a path from the source
to the sink in G with cost(τ) ≤ ε. R = {(I1, J1, ε1), . . . , (Im, Jm, εm)} is a set of certified boxes of

28

G, where for each i ∈ [m], Gi = G(Ii, Ji) is a wi-box. Let us now consider the subset S ⊆ R that
(1− δ, k, θ)-approximates τ . For the sake of simplicity assume that S = {(I1, J1, ε1), . . . , (Is, Js, εs)}
for some s ∈ [m]. We further assume that max I1 ≤ max I2 ≤ · · · ≤ max Is. Recall from the
definition of (1− δ, k, θ)-approximation that S satisfies the following properties:

1. For all i, j ∈ [s], |Ii ∩ Ij | ≤ 1.

2.
∑

i∈[s] µ(Ii) ≥ (1− δ)n.

3. For each i ∈ [s], Gi = G(Ii, Ji) (1− εi)-covers τ and is of cost at most εi.

4.
∑

i∈[s] εiµ(Ii) ≤ (kε+ θ)n

For the sake of the analysis we build an auxiliary (weighted directed) graph K with V (G) and
E(G) as the set of vertices and the set of edges respectively. The only difference between G and K
will be the cost assigned to their edges. In K, for all the horizontal edges we assign the cost 2 and
for all the vertical edges we assign the cost zero (this graph K was previously considered in [21]).
For all the remaining edges, i.e., diagonal edges, we assign the cost to be as in G.

Proposition 6.2. For any interval I, J ⊆ {0, . . . , n} such that µ(I) = µ(J), let σ be any source to
sink path in the subgraph G(I, J). Then costG(σ) = costK(σ).

In the above statement we use the notations costG(σ) and costK(σ) to denote the cost of the
path σ in the graph G and K respectively. Note that since both the graphs G and K are defined
on the same set of vertices and edges, the path σ belongs to both of them.

Proof. It must be the case that the number of horizontal edges taken by σ equals the number of
vertical edges in σ otherwise σ would not have reached the sink from source. The claim follows as
the cost of a single vertical edge plus a single horizontal edge is the same in both graphs.

As a corollary of the above we derive the following.

Corollary 6.3. For any interval I, J ⊆ {0, . . . , n} with µ(I) = µ(J), cost(G(I, J)) = cost(K(I, J)).

The following proposition justifies the cost function wt defined on the edge set F . We need this
proposition to prove Claim 6.6.

Proposition 6.4. Suppose G̃ = G(I, J) is a w-box. Then for any h ∈ [w],

1. There is a path σ′ from the vertex (min I + h,min J) to the vertex (max I,max J − h) such
that costK(σ′) ≤ cost(G̃) + 2h/w;

2. There is a path σ′ from the vertex (min I + h,min J) to the vertex (max I − h,max J) such
that costK(σ′) ≤ cost(G̃);

3. There is a path σ′ from the vertex (min I,min J + h) to the vertex (max I,max J − h) such
that costK(σ′) ≤ cost(G̃) + 4h/w;

4. There is a path σ′ from the vertex (min I,min J + h) to the vertex (max I − h,max J) such
that costK(σ′) ≤ cost(G̃) + 2h/w.

29

Proof. Here we provide the proof for the first item. The proofs for the remaining items are similar.
Let K̃ = K(I, J). Let σ be a cheapest path from the source to the sink in G̃. So costG(σ) =

cost(G̃). Suppose the path σ passes through the vertices (min I + h, j) and (i,max J − h) in the
subgraph G̃. We construct a new path σ′ that first takes vertical edges from (min I + h,min J) to
(min I +h, j) and then follows σ till the vertex (i,max J −h), and finally takes horizontal edges till
the vertex (max I,max J − h). If max I − i ≤ h, then clearly

costK(σ′) ≤ cost(K̃) + 2h/w

= cost(G̃) + 2h/w

where the last equality follows from Corollary 6.3.
If max I − i > h, then observe that after passing through the vertex (i,max J − h) the path σ

must take (max I − i − h) horizontal edges; otherwise it would not have reached the sink. Hence
the cost of the path σ in K̃ between the vertices (min I + h, j) and (i,max J − h) is at most
cost(K̃)− 2(max I − i− h)/w. So

costK(σ′) ≤ ((cost(K̃)w − 2 · (max I − i− h))/w

+ 0 · (j −min J)/w + 2 · (max I − i))/w
≤ cost(K̃) + 2h/w

= cost(G̃) + 2h/w

where the last equality follows from Corollary 6.3.

Claim 6.5. There exists a source to sink path in H ′ of cost at most 5(kε+ θ) + 2δ.

Proof. Recall that τ is a path from the source to the sink in G with cost(τ) ≤ ε. Fix any i ∈ [s].
Then consider the set S and the portion of the path τ that passes through the box Gi. Let the first
and last vertex of τ inGi be pi and qi respectively. SinceGi (1−εi) covers τ , both pi and qi are border
vertices of Gi. Hence either x(pi) = min Ii or y(pi) = min Ji and similarly, either x(qi) = max Ii
or y(qi) = maxJi. Among the two vertices (min Ii + εiwi,min Ji) and (min Ii,min Ji + εiwi), let
p′i be the vertex closer to pi, that is, if x(pi) = min Ii then p′i = (min Ii,min Ji + εiwi), otherwise
p′i = (min Ii + εiwi,min Ji). Similarly, among (max Ii − εiwi,max Ji) and (max Ii,max Ji − εiwi),
let q′i be the vertex closer to qi. Note that for all i ∈ [s], pi � p′i and q

′
i � qi. Now we construct a

path τ ′ in the graph H ′ as follows:
Starting from the source, take only horizontal and vertical edges to reach the vertex p′1. Then

take the edge e1,j for some j ∈ [4] that goes from p′1 to q′1. Next again take only horizontal and
vertical edges till p′2. Then take the edge e2,j for some j ∈ [4] that goes from p′2 to q′2. Proceed till
we reach the sink of H ′ (see Fig. 8).

To show that the above procedure generates a path, we need to prove that for all i ∈ [s − 1]
q′i � p′i+1. This is trivially true because by the definition of the graph G, qi � pi+1 and for all
i ∈ [s], pi � p′i and q′i � qi.

Observe from the definition of the cost function wt() that, for any i ∈ [s] absolute cost of the
portion of the path τ ′ that passes through the subgraph H ′(Ii, {0, · · · , n}), is at most 5εiwi (see
Fig. 8). Now since

∑
i∈[s] µ(Ii) ≥ (1− δ)n, absolute cost of the portion of the path τ ′ that does not

30

belong to H ′(Ii, {0, · · · , n}) for any i ∈ [s], is at most 2δn. So it follows that

costH′(τ ′) ≤
1

n
(
∑
i∈[s]

5εiwi + 2δn)

≤ 5(kε+ θ) + 2δ

where the last inequality follows from the fourth property of the subset S.

Claim 6.6. Let σ be a cheapest path from the source to sink in H ′. Then there exists a source to
sink path in G of cost at most costH′(σ).

Proof. First observe that if the path σ does not contain any edge from the set F , then cost(σ) = 2n
and the claim is clearly true. So from now on we assume that σ contains some edge from F . Note
that for each i ∈ [m] a path in H ′ can contain at most one edge from the set {ei,j |j ∈ [4]}. Now we
construct a path σ′ in the grid graph G as follows:

For each edge e in the path σ, if e = (p → q) is a horizontal or vertical edge then keep it as it
is, i.e., include that edge in the path σ′. Otherwise if e = ei,j ∈ F , we add a cheapest path from p
to q (inside the subgraph Gi).

It is easy to see that the above construction produces a valid path from the source to sink in
G. Note, by the definition of the graph K, σ′ is also a source to sink path in K. Let F ′ = {e; e ∈
F and e belongs to the path σ}. For each edge e ∈ F ′, let us denote the corresponding portion of
the path in σ′ as σ′e. Note that by the definition of the cost function wt() and Proposition 6.4,
for each edge e ∈ F ′ if e = ei,j for some i ∈ [m] and j ∈ [4], then costK(σ′e) ≤ wt(e)/wi. So it is
straightforward to derive that costK(σ′) ≤ costH′(σ). The claim now follows from Corollary 6.3.

This concludes the proof of Theorem 6.1.

7 Proof of Theorem 2.1

In this section we combine the ingredients obtained thus far to solve Gap-Edit Distance(x, y, θ,
251) as required for Theorem 2.1. We design the following algorithm:

On input strings x and y of length n, with the parameter θ ∈ [0, 1] proceed as follows. If
θ ≤ n−1/5, then run the O(n + k2)-time edit distance algorithm of Landau et al. [17] on inputs x
and y. (Here k denotes the edit distance of the strings.) If the algorithm finishes the computation
of ∆edit(x, y) in time O(n + θ2n2) then output 1 iff ∆edit(x, y) ≤ θ, otherwise stop the algorithm
and output 0.

If θ > n−1/5, we use our algorithm. Set w1 and w2 to be powers of two such that:

w1 ∈
[

1

2
· θ−2/7n1/7, θ−2/7n1/7

]
w2 ∈

[
θ1/7n3/7, 2θ1/7n3/7

]
,

and set
d =

⌈
θ3/7n2/7

⌉
.

Furthermore, shrink x and y to the nearest multiple of w2 by cutting-off their last few symbols
to obtain strings x′ and y′. Set n′ to be the length of x′ and y′. Clearly, n′ = n(1−O(θ1/7n−4/7)).
By the choice of our parameters, log n′ ≤ w1 ≤ θw2, w2 ≤ θn′/4, w1|w2 and w2|n′.

Thus we proceed as follows:

31

1. Invoke CoveringAlgorithm(x′, y′, n′, w1, w2, d, (1 + 1/500)θ) to obtain a set R.

2. Apply the algorithm from Theorem 6.1 with the set R as input to construct a set of weighted
edges F along with a cost function wt : F → R.

3. Invoke ApproxShortestPath(H,F,wt) on the semi-grid graph H on {0, . . . , n′} × {0, . . . , n′}
to obtain a value k.

4. If k ≤ 250.5θn′ then output 1 otherwise output 0.

Proof of correctness. To prove the correctness of the above algorithm, we claim that the
following holds with probability at least 1 − n−8: If ∆edit(x, y) ≤ θ, then k ≤ 250.5θn′, and if
∆edit(x, y) > 251θ, then k > 250.5θn′.

First recall that n′ = n(1 − O(θ1/7n−4/7)). By the construction of x′ and y′ observe that
∆edit(x

′, y′)n′ ≤ ∆edit(x, y)n, which eventually implies that ∆edit(x
′, y′) ≤ (1 + 3n−4/7)∆edit(x, y).

Thus if ∆edit(x, y) ≤ θ then ∆edit(x
′, y′) ≤ (1 + 1/500)θ for large enough n. Further notice that

∆edit(x, y)n ≤ ∆edit(x
′, y′)n′ + (n − n′). This implies that when θ > n−1/5 (which is indeed the

case), if ∆edit(x, y) > 251θ then

∆edit(x
′, y′) > 251(1− 4

251
θ−6/7n−4/7)θ

> 251(1− 4

251
n−2/5)θ

> 250.5θ

where the second inequality follows from the fact that θ > n−1/5 and the last inequality is true for
large enough n. So to prove our claim it suffices to show that, if ∆edit(x

′, y′) ≤ (1 + 1/500)θ, then
k ≤ 250.5θn′, and if ∆edit(x

′, y′) > 250.5θ, then k > 250.5θn′.
Take the edit distance graph of the two strings x′ and y′, denoted by G = Gx′,y′ . By Propo-

sition 3.1 there is a source to sink path τ in G of cost ∆edit(x
′, y′). If ∆edit(x

′, y′) ≤ (1 +
1/500)θ, then by Theorem 4.1 the set R output by CoveringAlgorithm() contains a subset that
(1, 35, 15(1 + 1/500)θ)-approximates τ with probability at least 1 − n′−9. Now Theorem 6.1 en-
sures that, for the graph H ′ = (V (H), E(H) ∪ F), ∆edit(x

′, y′) ≤ cost(H ′), and if ∆edit(x
′, y′) ≤

(1+1/500)θ then cost(H ′) ≤ 250.5θ. Finally by Theorem 5.1 cost(H ′) = k/n′ (note, by Theorem 5.1
distH′(sink(H ′)) = k and by the definition of distance function, cost(H ′) = distH′(sink(H ′))/n′).
The claim follows.

Time complexity. Next we bound the running time of our algorithm. Notice that Cov-
eringAlgorithm() involves solving the following query: given two strings z1 (a substring of x′) and
z2 (a substring of y′) each of length w for some w ∈ [n′], and ε ∈ (0, 1], "Is ∆edit(z1, z2) ≤ ε?".
Recall that we use t(w, ε) to denote the running time of an algorithm that solves the above query.
By Theorem 4.6 CoveringAlgorithm(x′, y′, n′, w1, w2, d, (1 + 1/500)θ) runs in time

O

 ∑
k=dlog 250/θe,...,0

ε=2−k

θn2 log n

dεw2
1

· t(w1, ε) +
θn2 log2 n

w1w2ε
· t(w1, ε) +

nd log2 n

w2ε
· t(w2, ε)

with probability at least 1 − n′−7. We use the algorithm by Ukkonen [22] to solve the query
"Is ∆edit(z1, z2) ≤ ε?", and thus we get t(w, ε) = O(εw2). Hence for our choice of parameters

32

w1, w2 and d, the running time of CoveringAlgorithm(x′, y′, n′, w1, w2, d, (1 + 1/500)θ) is bounded
by Õ(n12/7θ4/7) with probability at least 1 − n′−7. Furthermore, it outputs the set R of size at
most Õ(n12/7θ4/7). By the bound on the size of the set R it follows that the algorithm referred in
Theorem 6.1 runs in time Õ(n12/7θ4/7). Moreover, |F | ≤ Õ(n12/7θ4/7). Hence by Theorem 5.1, the
procedure ApproxShortestPath() also runs in time Õ(n12/7θ4/7) and this concludes the proof.

References

[1] Amir Abboud and Arturs Backurs. Towards hardness of approximation for polynomial time
problems. In 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January
9-11, 2017, Berkeley, CA, USA, pages 11:1–11:26, 2017.

[2] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for
LCS and other sequence similarity measures. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 59–78, 2015.
URL: https://doi.org/10.1109/FOCS.2015.14, doi:10.1109/FOCS.2015.14.

[3] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 375–388, 2016. URL:
http://doi.acm.org/10.1145/2897518.2897653, doi:10.1145/2897518.2897653.

[4] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: Or: a polylog shaved is a
lower bound made. In Proceedings of the Forty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’16, pages 375–388, New York, NY, USA, 2016. ACM.

[5] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation
for edit distance and the asymmetric query complexity. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA,
pages 377–386, 2010.

[6] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09,
pages 199–204, New York, NY, USA, 2009. ACM.

[7] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless seth is false). In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC ’15, pages 51–58, New York, NY, USA, 2015. ACM.

[8] Z. Bar-Yossef, T.S. Jayram, R. Krauthgamer, and R. Kumar. Approximating edit distance effi-
ciently. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium
on, pages 550–559, Oct 2004.

[9] Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Rahul Sami. A sublinear algorithm for weakly approximating edit distance. In Proceedings
of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pages 316–
324, New York, NY, USA, 2003. ACM.

33

https://doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1109/FOCS.2015.14
http://doi.acm.org/10.1145/2897518.2897653
http://dx.doi.org/10.1145/2897518.2897653

[10] Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string embeddings and edit distance
approximations. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, pages 792–801, Philadelphia, PA, USA, 2006. Society for Industrial and
Applied Mathematics.

[11] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, and Saeed
Seddighin. Approximating edit distance in truly subquadratic time: Quantum and mapreduce.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1170–1189, 2018.

[12] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string prob-
lems and dynamic time warping. In IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 79–97, 2015. URL:
https://doi.org/10.1109/FOCS.2015.15, doi:10.1109/FOCS.2015.15.

[13] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for com-
puting edit distance without exploiting suffix trees. CoRR, abs/1607.03718, 2016. arXiv:
1607.03718.

[14] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for em-
bedding and computing edit distance in the low distance regime. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 712–725, 2016.

[15] Szymon Grabowski. New tabulation and sparse dynamic programming based techniques for
sequence similarity problems. Discrete Applied Mathematics, 212:96–103, 2016. URL: https:
//doi.org/10.1016/j.dam.2015.10.040, doi:10.1016/j.dam.2015.10.040.

[16] Robert Krauthgamer and Yuval Rabani. Improved lower bounds for embeddings into L1. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2006, Miami, Florida, USA, January 22-26, 2006, pages 1010–1017, 2006.

[17] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM J. Comput., 27(2):557–582, April 1998.

[18] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707, 1966.

[19] William J. Masek and Michael S. Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18 – 31, 1980.

[20] Timothy Naumovitz, Michael E. Saks, and C. Seshadhri. Accurate and nearly optimal sublinear
approximations to ulam distance. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 2012–2031, 2017.

[21] Dimitrios P. Papamichail and Georgios P. Papamichail. Improved algorithms for approximate
string matching (extended abstract). BMC Bioinformatics, 10:S10 – S10, 2009.

34

https://doi.org/10.1109/FOCS.2015.15
http://dx.doi.org/10.1109/FOCS.2015.15
http://arxiv.org/abs/1607.03718
http://arxiv.org/abs/1607.03718
https://doi.org/10.1016/j.dam.2015.10.040
https://doi.org/10.1016/j.dam.2015.10.040
http://dx.doi.org/10.1016/j.dam.2015.10.040

[22] Esko Ukkonen. Algorithms for approximate string matching. Inf. Control, 64(1-3):100–118,
March 1985.

[23] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, January 1974.

35

	Introduction
	Related work
	Our Technique

	Main results
	Organization of the Paper

	Preliminaries
	Covering Algorithm
	Proof of correctness
	Time complexity of Covering Algorithm

	Shortest Path in a Semi-Grid Graph with Shortcuts
	Reduction from the Cost of a Gird Graph to that of a Semi-Grid Graph with Shortcuts
	Proof of Theorem 2.1

