
Approximating Edit Distance Within Constant Factor in Truly
Sub-Quadratic Time∗

Diptarka Chakraborty†1, Debarati Das‡2, Elazar Goldenberg§3, Michal Koucký¶4, and
Michael Saks‖5

1,2,4Computer Science Institute of Charles University, Malostranské náměstí 25, 118 00
Praha 1, Czech Republic

3The Academic College Of Tel Aviv-Yaffo, School of Computer Science, Tel Aviv-Yaffo,
Israel

5Department of Mathematics, Rutgers University, Piscataway, NJ, USA

Abstract

Edit distance is a measure of similarity of two strings based on the minimum number of
character insertions, deletions, and substitutions required to transform one string into the other.
The edit distance can be computed exactly using a dynamic programming algorithm that runs
in quadratic time. Andoni, Krauthgamer and Onak (2010) gave a nearly linear time algorithm
that approximates edit distance within approximation factor poly(log n).

In this paper, we provide an algorithm with running time Õ(n2−2/7) that approximates the
edit distance within a constant factor.

∗The research leading to these results has received funding from the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 616787.
†diptarka@iuuk.mff.cuni.cz
‡debaratix710@gmail.com
§elazargo@mta.ac.il
¶koucky@iuuk.mff.cuni.cz
‖msaks30@gmail.com

1 Introduction

Exact computation of edit distance. The edit distance (aka Levenshtein distance) [16] between
strings x, y, denoted by dedit(x, y), is the minimum number of character insertions, deletions, and
substitutions needed to convert x into y. It is a widely used distance measure between strings
that finds applications in fields such as computational biology, pattern recognition, text processing,
and information retrieval. The problems of efficiently computing dedit(x, y), and of constructing an
optimal alignment (sequence of operations that converts x to y), are of significant interest.

Edit distance can be evaluated exactly in quadratic time via dynamic programming (Wagner
and Fischer [20]). Landau et al. [15] gave an algorithm that finds an optimal alignment in time
O(n+dedit(x, y)2), improving on a previous O(n ·dedit(x, y)) algorithm of Ukkonen [19]. Masek and
Paterson [17] obtained the first (slightly) sub-quadratic O(n2/ log n) time algorithm, and the current
asymptotically fastest algorithm (Grabowski [14]) runs in time O(n2 log logn/ log2 n). Backurs and
Indyk [7] showed that a truly sub-quadratic algorithm (O(n2−δ) for some δ > 0) would imply a
2(1−γ)n time algorithm for CNF-satisfiabilty, contradicting the Strong Exponential Time Hypothesis
(SETH). Abboud et al. [3] showed that even shaving an arbitrarily large polylog factor from n2

would have the plausible, but apparently hard-to-prove, consequence that NEXP does not have
non-uniform NC1 circuits. For further “barrier” results, see [2, 13].
Approximation algorithms. There is a long line of work on approximating edit distance. The
exact O(n+k2) time algorithm (where k is the edit distance of the input) of Landau et al. [15] yields
a linear time

√
n-factor approximation. This approximation factor was improved, first to n3/7 [8],

then to n1/3+o(1) [10] and later to 2Õ(
√
logn) [6], all with slightly superlinear runtime. Batu et al. [9]

provided an O(n1−α)-approximation algorithm with runtime O(nmax{α
2
,2α−1}). The strongest result

of this type is the (log n)O(1/ε) factor approximation (for every ε > 0) with running time n1+ε of
Andoni et al. [4]. Abboud and Backurs [1] showed that a truly sub-quadratic deterministic time
1 + o(1)-factor approximation algorithm for edit distance would imply new circuit lower bounds.

Independent of our work, Boroujeni et al. [11] obtained a truly sub-quadratic quantum algorithm
that provides a constant factor approximation. Their latest results [12] are a (3 + ε) factor with
runtime Õ(n2−4/21/εO(1)) and a faster Õ(n1.708)-time with a larger constant factor approximation.

Andoni and Nguyen [5] found a randomized algorithm that approximates Ulam distance of
two permutations of {1, . . . , n} (edit distance with only insertions and deletions) within a (large)
constant factor in time Õ(

√
n+n/k), where k is the Ulam distance of the input; this was improved

by Naumovitz et al. [18] to a (1 + ε)-factor approximation (for any ε > 0) with similar runtime.
Our results. We present the first truly sub-quadratic time classical algorithm that approximates
edit distance within a constant factor.

Theorem 1.1. There is a randomized algorithm ED-UB that on input strings x, y of length n over
any alphabet Σ outputs an upper bound on dedit(x, y) in time Õ(n12/7) that, with probability at least
1− n−5, is at most a fixed constant multiple of dedit(x, y).

If the output is U , then the algorithm has implicitly found an alignment of cost at most U . The
algorithm can be modified to explicitly output such an alignment.

The approximation factor proved in this preliminary version is 1680, can be greatly improved
by tweaking parameters. We believe, but have not proved, that with sufficient care the algorithm
can be modified (with no significant increase in runtime) to get (3 + ε) approximation.

Theorem 1.1 follows from:

1

Theorem 1.2. For every θ ∈ [n−1/5, 1], there is a randomized algorithm GAP-UBθ that on input
strings x, y of length n outputs u = GAP-UBθ(x, y) such that: (1) dedit(x, y) ≤ u and (2) on any
input with dedit(x, y) ≤ θn, u ≤ 840θn with probability at least 1−n−7. The runtime of GAP-UBθ

is Õ(n2−2/7θ4/7).

The name GAP-UBθ reflects that this is a "gap algorithm", which distinguishes inputs with
dedit(x, y) ≤ θn (where the output is at most 840θn), and those with dedit(x, y) > 840θn (where the
output is greater than 840θn).

Theorem 1.1 follows via a routine construction of ED-UB from GAP-UBθ, presented in Sec-
tion 5. The rest of the paper is devoted to proving Theorem 1.2.
The framework of the algorithm. We use a standard two-dimensional representation of edit
distance. Visualize x as lying on a horizontal axis and y as lying on a vertical axis, with horizontal
coordinate i ∈ {1, . . . , n} corresponding to xi and vertical component j corresponding to yj . The
width µ(I) of interval I ⊆ {0, 1, . . . , n} is max(I)−min(I) = |I|−1. Also, xI denotes the substring
of x indexed by I \ {min(I)}. (Note: xmin(I) is not part of xI , e.g., x = x{0,...,n}. This convention is
motivated by Proposition 1.3.) We refer to I as an x-interval to indicate that it indexes a substring
of x, and J as a y-interval to indicate that it indexes a substring of y. A box is a set I × J where
I is a x-interval and J is a y-interval; I × J corresponds to the substring pair (xI , yJ). I × J is a
w-box if µ(I) = µ(J) = w. We often abbreviate dedit(xI , yJ) by dedit(I, J). A decomposition of an
x-interval I is a sequence I1, . . . , I` of subintervals with min(I1) = min(I), max(I`) = max(I) and
for j ∈ [`− 1], max(Ij) = min(Ij+1).

Associated to x, y is a directed graph Gx,y with edge costs called a grid graph with vertex set
{0, . . . , n} × {0, . . . , n} and all edges of the form (i − 1, j) → (i, j) (H-steps), (i, j − 1) → (i, j)
(V -steps) and (i− 1, j− 1)→ (i, j) (D-steps). Every H-step or V-step costs 1, and D-steps cost 1 if
xi 6= yj and 0 otherwise. There is a 1-1 correspondence that maps a path from (0, 0) to (n, n) to an
alignment from x to y, i.e. a set of character deletions, insertions and substitutions that changes x
to y, where an H-step (i− 1, j)→ (i, j) means "delete xi", a V-step (i, j− 1)→ (i, j) means "insert
yj between xi and xi+1" and a D-step (i− 1, j − 1)→ (i, j) means replace xi by yj , unless they are
already equal. We have:

Proposition 1.3. The cost of an alignment, cost(τ), is the sum of edge costs of its associated path
τ , and dedit(x, y) is equal to cost(Gx,y), the min cost of an alignment path from (0, 0) to (n, n).

For I, J ⊆ {0, . . . , n}, Gx,y(I×J) ∼= GxI ,yJ is the grid graph induced on I×J , and dedit(I, J) =
cost(Gx,y(I × J)). The natural high-level idea of GAP-UBθ appears (explicitly or implicitly) in
previous work. The algorithm has two phases. First, the covering phase identifies a set R of
certified boxes which are pairs (I ×J, κ), where κ is an upper bound on the normalized edit distance
∆edit(xI , yJ) = dedit(xI , yJ)/µ(I). (∆edit(I, J) is more convenient than dedit(I, J) for the covering
phase.) Second, the min-cost path phase, takes input R and uses a straightforward customized
variant of dynamic programming to find an upper bound U(R) on dedit(x, y) in time quasilinear in
|R|. The central issue is to ensure that the covering phase outputs R that is sufficiently informative
so that U(R) ≤ c · dedit(x, y) for constant c, while running in sub-quadratic time.
Simplifying assumptions. The input strings x, y have equal length n. (It is easy to reduce to this
case: pad the shorter string to the length of the longer using a new symbol. The edit distance of
the new pair is between the original edit distance and twice the original edit distance. This factor 2
increase in approximation factor can be avoided by generalizing our algorithm to the case |x| 6= |y|,
but we won’t do this here.) We assume n is a power of 2 (by padding both strings with a new

2

symbol, which leaves edit distance unchanged). We assume that θ is a (negative) integral power of
2. The algorithm involves integer parameters w1, w2, d, all of which are chosen to be powers of 2.
Organization of the paper. Section 2 is a detailed overview of the covering phase algorithm
and its analysis. Section 3 presents the pseudo-code and analysis for the covering phase. Section 4
presents the min-cost path phase algorithm. Section 5 summarizes the full algorithm and discusses
improvements in runtime via recursion.

2 Covering algorithm: Detailed overview

We give a detailed overview of the covering phase and its time analysis and proof of correctness,
ignoring minor technical details. The pseudo-code in Section 3 corresponds to the overview, with
technical differences mainly to improve runtime. We will illustrate the sub-quadratic time analysis
with the sample input parameter θ = n−1/50 and algorithm parameters w1 = n1/10, w2 = n3/10 and
d = n1/5.

The covering phase outputs a set R of certified boxes. The goal is that R includes an adequate
approximating sequence for some min-cost path τ in Gx,y, which is a sequence σ of certified boxes
(I1 × J1, κ1), . . . , (I` × J`, κ`) that satisfies:

1. I1, . . . , I` is a decomposition of {0, . . . , n}.

2. Ii × Ji is an adequate cover of τi, where τi = τIi denotes the minimal subpath of τ whose
projection to the x-axis is Ii, and adequate cover means that the (vertical) distance from the
start vertex (resp. final vertex) of τi and the lower left (resp. upper right) corner of Ii × Ji,
is at most a constant multiple of cost(τi) + θ.

3. The sequence σ is adequately bounded, i.e.,
∑

i µ(Ii)κi ≤ c(cost(τ) + θn), for a constant c.

This is a slight oversimplification of Definition 3 of (k, ζ)-approximation of τ by a sequence of
certified boxes.

The intuition for the second condition is that τi is "almost" a path between the lower left and
upper right corners of Ii × Ji. Now τi might have a vertical extent J ′ that is much larger than its
horizontal extent Ii, in which case it is impossible to place a square Ii × Ji with corners close to
both endpoints of τi. But in that case, τi has a very high cost (at least |µ(J ′)−µ(Ii)|. The closeness
required is adjusted based on cost(τi), with relaxed requirements if cost(τi) is large.

The output of the min-cost path phase should satisfy the requirements of GAP-UBθ. Lemma
4.1 shows that if the min-cost path phase receivesR that contains a (k, θ)-approximating sequence to
some min-cost path τ , then it will output an upper bound to dedit(x, y) that is at most k′(dedit(x, y)+
θn) for some k′. So that on input x, y with dedit(x, y) ≤ θn, the output is at most 2k′θn, satisfying
the requirements of GAP-UBθ. This formalizes the intuition that an adequate approximating
sequence captures enough information to deduce a good bound on cost(τ).

Once and for all, we fix a min-cost path τ . Our task for the covering phase is that, with high
probability, R includes an adequate approximating sequence for τ .

A τ -match for an x-interval I is a y-interval J such that I × J is an adequate cover of τI . It
is easy to show (Proposition 3.3) that this implies dedit(I, J) ≤ (cost(τI) + θµ(I)). A box I × J is
said to be τ -compatible if J is a τ -match for I and a box sequence is τ -compatible if every box is
τ -compatible. A τ -compatible certified box sequence whose distance upper bounds are (on average)

3

within a constant factor of the actual cost, satisfies the requirements for an adequate approximating
sequence. Our cover algorithm will ensure that R contains such a sequence.

A natural decomposition is Iw1 , with all parts of width w1 (think of w1 as a power of 2 that is
roughly n1/10) so ` = n/w1 and Ij = {(j − 1)w1, · · · , (j)w1}. The naïve approach to building R is
to include certified boxes for enough choices of J to guarantee a τ -match for each Ij . An interval of
width w1 is δ-aligned if its upper and lower endpoints are both multiples of δw1 (which we require
to be an integral power of 2). We restrict attention to x-intervals in Iw1 , called x-candidates and
θ-aligned y-intervals of width w1 called y-candidates. It can be shown (see Proposition 3.4) that an
x-interval I always has a τ -match J that is θ-aligned. (In this overview we will fix δ to θ; the actual
algorithm has O(log n) iterations during which the value of δ varies, giving improvements in runtime
that are unimportant in this overview.) For each x-candidate I, designate one such τ -match as the
canonical τ -match, Jτ (I) for I, and I × Jτ (I) is the canonical τ -compatible box for I.

In the exhaustive approach, for each (x-candidate, y-candidate)-pair (I, J), its edit distance is
computed in time O(w2

1), and the certified box (I × J,∆edit(I, J)) is included. There are n
w1

n
θw1

boxes, so the time for all edit distance computations is O(n
2

θ), which is worse than quadratic. (The
factor 1

θ can be avoided by standard techniques, but this is not significant to the quest for a sub-
quadratic algorithm, so we defer this until the next section.) Note that |R| is n2

θ(w1)2
(which is n1.82

for our sample parameters) so at least the min-cost path phase (which runs in time quasi-linear in
R) is truly sub-quadratic.

Two natural goals that will improve the runtime are: (1) Reduce the amortized time per box
needed to certify boxes significantly below (w1)

2 and (2) Reduce the total number of certified boxes
created significantly below n2

θ(w1)2
. Neither goal is always achievable, and our covering algorithm

combines them. In independent work [11,12], versions of these two goals are combined, where the
second goal is accomplished via Grover search, thus yielding a constant factor sub-quadratic time
quantum approximation algorithm.

Reducing amortized time for certifying boxes: the dense case algorithm. We aim
to reduce the amortized time per certified box to be much smaller than (w1)

2. We divide our
search for certified boxes into iterations i ∈ {0, . . . , log n}. For iteration i, with εi = 2−i, our goal
is that for all candidate pairs I, J with ∆edit(I, J) ≤ εi, we include the certified box (I × J, cεi)
for a fixed constant c. If we succeed, then for each Ij and its canonical τ -match Jτ (Ij), and for
the largest index i for which ∆edit(Ij , J

τ (Ij)) ≤ εi, iteration i will certify (Ij × Jτ (Ij), κj) with
κj ≤ cεi ≤ 2c∆edit(Ij , J

τ (Ij)), as needed.
For a string z of size w1, let H(z, ρ) be the set of x-candidates I with ∆edit(z, xI) ≤ ρ and

V(z, ρ) be the set of y-candidates J with ∆edit(z, yJ) ≤ ρ. In iteration i, for each x-candidate I, we
will specify a set Qi(I) of y-candidates that includes V(xI , εi) and is contained in V(xI , 5εi). The
set of certified boxes (I×J, 5εi) for all x-candidates I and J ∈ Qi(I) satisfies the goal of iteration i.

Iteration i proceeds in rounds. In each round we select an x-candidate I, called the pivot,
for which Qi(I) has not yet been specified. Compute ∆edit(xI , yJ) for all y-candidates J and
∆edit(xI , xI′) for all x-candidates I ′; these determine H(xI , ρ) and V(xI , ρ) for any ρ. For all
I ′ ∈ H(xI , 2εi), set Qi(I ′) = V(xI , 3εi). By the triangle inequality, for each I ′ ∈ H(xI , 2εi),
V(xI , 3εi) includes V(xI′ , εi) and is contained in V(xI′ , 5εi) so we can certify all the boxes with
upper bound 5εi. Mark intervals in H(xI , 2εi) as fulfilled and proceed to the next round, choosing
a new pivot from among the unfulfilled x-candidates.

The number of certified boxes produced in a round is |H(xI , 2εi)| × |V(xI , 3εi)|. If this is much
larger than O(n

θw1
), the number of edit distance computations, then we have significantly reduced

4

amortized time per certified box. (For example, in the trivial case i = 0, every candidate box will
be certified in a single round.) But in worst case, there are n

w1
rounds each requiring Ω(nw1

θ) time,
for an unacceptable total time Θ(n2/θ).

Here is a situation where the number of rounds is much less than n
w1

. Since any two pivots are
necessarily greater than 2εi apart, the sets V(xI , εi) for distinct pivots are disjoint. Now for some
parameter d (think of d = n1/5) an x-candidate is d-dense for εi if |V(xI , εi)| ≥ d, i.e., xI is εi-close
in edit distance to at least d y-candidates; it is d-sparse otherwise. If we manage to select a d-dense
pivot I in each round, then the number of rounds is O(n

w1dθ
) and the overall time will be Θ(n

2

dθ2
).

For the sample parameters this is Θ(n1.84). But there’s no reason to expect that we’ll only choose
dense pivots; indeed there need not be any dense pivot.

Let’s modify the process a bit. When choosing potential pivot I, first test whether or not it is
(approximately) d-dense. This can be done with high probability, by randomly sampling Θ̃(n

θw1d
)

y-candidates and finding the fraction of the sample that are within εi of xI . If this fraction is less
than θw1d

2n then I is declared sparse and abandoned as a pivot; otherwise I is declared dense, and
used as a pivot. With high probability, all d-dense intervals that are tested are declared dense, and
all tested intervals that are not d/4-dense are declared sparse, so we assume this is the case. Then
all pivots are processed (as above) in time O(n

2

dθ2
) (under sample parameters: O(n1.84)). We pay

Õ(n
w1dθ

)(w1)
2 to test each potential pivot (at most n

w1
of them) so the overall time to test potential

pivots is Õ(n
2

dθ) (with sample parameters: Õ(n1.82)).
Each iteration i (with different εi) splits x-candidates into two sets, Si of intervals that are

declared sparse, and all of the rest for which we have found the desired set Qi(I). With high
probability every interval in Si is indeed d-sparse, but a sparse interval need not belong to Si, since
it may belong to H(xI , 2εi) for some selected pivot I.

For every x-candidate I 6∈ Si we have met the goal for the iteration. If Si is very small for all
iterations, then the set of certified boxes will suffice for the min-cost path algorithm to output a
good approximation. But if Si is not small, another approach is needed.
Reducing the number of candidates explored: the diagonal extension algorithm. For
each x-candidate I, although it suffices to certify the single box (I, Jτ (I)) with a good upper bound,
since τ is unknown, the exhaustive and dense case approaches both include certified boxes for all
y-candidates J . The potential savings in the dense case approach comes from certifying many boxes
simultaneously using a relatively small number of edit distance computations.

Here’s another approach: for each x-candidate I try to quickly identify a relatively small subset
Y(I) of y-candidates that is guaranteed to include Jτ (I). If we succeed, then the number of boxes
we certify is significantly reduced, and even paying quadratic time per certified box, we will have a
sub-quadratic algorithm.

We need the notion of diagonal extension of a box. Themain diagonal of box I×J , is the segment
joining the lower left and upper right corners. The square box I ′ × J ′ is a diagonal extension of a
square subbox I × J if the main diagonal of I × J is a subsegment of the main diagonal of I ′ × J ′.
(see Definition 2.) Given square box I×J and I ′ ⊂ I the diagonal extension of I×J with respect to
I ′ is the unique diagonal extension of I × J having x-interval I ′. The key observation (Proposition
3.5) is: if I × J is an adequate cover of τI then any diagonal extension I ′ × J ′ is an adequate cover
of τI′ .

Now let w1, w2 be two numbers with w1|w2 and w2|n. (Think of w1 = n1/10 and w2 = n3/10.) We
use the decomposition Iw2 of {0, . . . , n} into intervals of width w2. The set of y-candidates consists
θ-aligned vertical intervals of width w2 and has size n

θw2
. To identify a small set of potential matches

5

for I ′ ∈ Iw2 , we will identify a set (of size much smaller than n
w2

) of w1-boxes B(I ′) having x-interval
in Iw1(I ′) (the decomposition of I ′ into width w1 intervals). For each box in B(I ′) we determine the
diagonal extension I ′× J ′ with respect to I ′, compute κ = ∆edit(I

′, J ′) and certify (I ′× J ′, κ). Our
hope is that B(I ′) includes a τ -compatible w1-box I ′′ × Jτ (I ′′), then the observation above implies
that its diagonal extension provides an adequate cover for τI′ .

Here’s how to build B(I ′): Randomly select a polylog(n) size set H(I ′) of w1-intervals from
Iw1(I ′). For each I ′′ ∈ H(I ′) compute ∆edit(I

′′, J ′′) for each y-candidate J ′′, and let J (I ′′) consist
of the d candidates J ′′ with smallest edit distance to I ′′. Here d is a parameter; think of d = n1/5

as before. B(I ′) consists of all I ′′ × J ′′ where I ′′ ∈ H(I ′) and J ′′ ∈ J (I ′′).
To bound runtime: Each I ′ ∈ Iw2 requires Õ(n

θw1
) width-w1 ∆edit() computations, taking time

Õ(nw1
θ). Diagonal extension step requires Õ(d) width-w2 ∆edit() computations, for time Õ(dw2

2).
Summing over n

w2
choices for I ′ gives time Õ(n2 w1

θw2
+ ndw2) (with sample parameters: Õ(n1.82)).

Why should B(I ′) include a box that is an adequate approximation to τI′? The intuition behind
the choice of B(I ′) is that an adequate cover for τI′ should typically be among the cheapest boxes
of the form I ′ × J ′, and if I ′ × J ′ is cheap then for a randomly chosen w1-subinterval I ′′, we should
also have I ′′ × Jτ (I ′′) is among the cheapest boxes for I ′′.

Clearly this intuition is faulty: I ′ may have many inexpensive matches J ′ such that I ′×J ′ is far
from τI′ , which may all be much cheaper than the match we are looking for. In this bad situation,
there are many y-intervals J ′ such that ∆edit(I

′, J ′) is smaller than the match we are looking, and
this is reminiscent of the good situation for the dense case algorithm, where we hope that I ′ has
lots of close matches. This suggests combining the two approaches, and leads to our full covering
algorithm.
The full covering algorithm. Given the dense case and diagonal extension algorithms, the full
covering algorithm is easy to describe. The parameters w1, w2, d are as above. We iterate over
i ∈ {0, . . . , log n} with εi = 2−i. In iteration i, we first run the dense case algorithm, and let Si
be the set of intervals declared sparse. Then run the diagonal extension algorithm described earlier
(with small modifications): For each w2-interval I ′, select H(I ′) = Hi(I ′) to consist of θ(log2 n)
independent random selections from Si. For each I ′′ ∈ Hi(I ′), find the set of vertical candidates J ′′

for which ∆edit(I
′′, J ′′) ≤ εi. Since I ′′ is (almost certainly) d-sparse, the number of such J ′′ is at

most d. Proceeding as in the diagonal extension algorithm, we produce a set Pi(I ′) of Õ(d) certified
w2-boxes with x-interval I ′. Let RD (resp. RE) be the set of all certified boxes produced by the
dense case iterations, resp. diagonal extension iterations. The output is R = RD∪RE . (See Figure
1 for an illustration of the output R.)

The runtime is the sum of the runtimes of the dense case and diagonal extension algorithms, as
analyzed above. Later, we will give a more precise runtime analysis for the pseudo-code.

To finish this extended overview, we sketch the argument that R satisfies the covering phase
requirements.

Claim 2.1. Let I ′ be an interval in the w2-decomposition. Either (1) the output of the dense case
algorithm includes a sequence of certified w1-boxes that adequately approximates the subpath τI′ ,
or (2) with high probability the output of the sparse case algorithm includes a single w2-box that
adequately approximates τI′.

(This claim is formalized in Claim 3.12.) Stitching together the subpaths for all I ′ implies that
R will contain a sequence of certified boxes that adequately approximates τ .

6

To prove the claim, we establish a sufficient condition for each of the two conclusion and show
that if the sufficient condition for the second conclusion fails, then the sufficient condition for the
first holds.

J

I w2 w1

Figure 1: Illustration of the Covering Algorithm: Blue boxes are low cost boxes in dense w1-strips,
while the yellow ones are in sparse w1-strips. The red line corresponds to the path τ that we are
trying to cover. In each w2-strip, τ is covered by either a collection of many w1-boxes or it is covered
by a diagonal extension of a low cost w1-box. The various boxes might overlap vertically which is
not shown in the picture.

Let I ′ denote the w1-decomposition Iw1(I ′) of I ′. Every interval I ′′ ∈ I ′ has a θ-aligned τ -match
Jτ (I ′′). It will be shown (see Proposition 3.4), that ∆edit(I

′′, Jτ (I ′′)) ≤ 2
cost(τI′′)
µ(I′′) + θ. Let u(I ′′)

denote this upper bound. Consider the first alternative in the claim. During the dense case iteration
i = 0, every interval is declared dense, and (I ′′ × Jτ (I ′′), 5) is in RD for all I ′′. To get an adequate
approximation, we try to show that later iterations provide much better upper bounds on these
boxes, i.e., (I ′′ × Jτ (I ′′), γ(I ′′)) ∈ RD for a small enough value of γ(I ′′). By definition of adequate
approximation, it is enough that

∑
I′′∈I′ γ(I ′′) ≤ c

∑
I′′∈I′ u(I ′′), for some c. Let t(I ′′) be the last

(largest) iteration for which εt(I′′) ≥ u(I ′′) and I ′′ 6∈ St(I′′) (which is well defined since S0 = ∅). Let
b(I ′′) = εt(I′′). Since b(I ′′) ≥ u(I ′′) ≥ ∆edit(I

′′, Jτ (I ′′)), the box (I ′′ × Jτ (I ′′), 5b(I ′′)) is certified.
The collection {(I ′′ × Jτ (I ′′), 5b(I ′′))} is a sequence of certified boxes that satisfies the first two
conditions for an adequate approximation of τ . The third condition will follow if:∑

I′′∈I′
5b(I ′′) ≤ c

∑
I′′∈I′

u(I ′′) (1)

so this is sufficient to imply the first condition of the claim.
Next consider what we need for the second alternative to hold. Let Si(I ′) be the set of in-

tervals declared sparse in iteration i. An interval I ′′ ∈ Si(I ′) is a winner (for iteration i) if

7

∆edit(I
′′, Jτ (I ′′)) ≤ εi, and Wi(I

′) is the set of winners. In iteration i of the diagonal extension
algorithm, we sample θ(log2 n) elements of Si(I ′). If for at least one iteration i our sample includes
a winner I ′′ then the second condition of the claim will hold: I ′′× Jτ (I ′′) is extended diagonally to
a w2-box, and by the diagonal extension property, the extension is an adequate cover of τI′ , which
we will certify with its exact edit distance.

Thus for the second alternative to fail with nonnegligible probability:

For all i, |Wi(I
′)| < |Si(I ′)−Wi(I

′)|, (2)

We argue that if the failure condition (2) holds, then the success condition (1) holds. Multiply
(2) by εi and sum on i to get:∑

I′′∈I′

∑
i:I′′∈Wi(I′)

εi <
∑
I′′∈I′

∑
i:I′′∈Si(I′)−Wi(I′)

εi. (3)

For a given interval I ′′ ∈ Iw1(I ′), consider the iterations i for which I ′′ ∈ Wi(I
′) and those for

which I ′′ ∈ Si(I ′)−Wi(I
′). First of all if εi ≥ u(I ′′) and I ′′ ∈ Si(I ′) then since ∆edit(I

′′, Jτ (I ′′)) ≤
u(I ′′) ≤ εi we conclude I ′′ ∈ Wi(I

′). So I ′′ ∈ Si(I ′) −Wi(I
′) implies that εi < u(I ′′), so the inner

sum of the right side of (3) is at most 2u(I ′′) (by summing a geometric series).
Furthermore, for i with u(I ′′) ≤ εi < b(I ′′), I ′′ ∈ Si by the choice of t(I ′′). Either b(I ′′)/2 ≤ u(I ′′)

or u(I ′′) < b(I ′′)/2. The latter implies I ′′ ∈ Wt(I′′)+1(I
′), and then b(I ′′)/2 is upper bounded by

the inner sum on the left of (3). Therefore:

∑
I′′

b(I ′′) ≤
∑
I′′

2u(I ′′) +
∑

i:I′′∈Wi(I′)

2εi


<

∑
I′′

2u(I ′′) + 2
∑

i:I′′∈Si(I′)−Wi(I′)

εi


≤ 6

∑
I′′

u(I ′′),

as required for (1).
This completes the overview of the covering algorithm.

3 Covering Algorithm:pseudo-code and analysis

The pseudo-code consists of CoveringAlgorithm which calls procedures DenseStripRemoval (the
dense case algorithm) and SparseStripExtensionSampling (the diagonal extension algorithm). These
are abbreviated, respectively by CA, DSR and SSES. The technical differences between the pseudo-
code and the informal description, are mainly to improve runtime analysis.

3.1 Pseudo-code

The parameters of CA are as described in the overview: x, y are input strings of length n, θ comes
from GAP-UBθ, w1 < w2 < n and d < n are integral powers of 2, as are the auxiliary input

8

parameters. The output is a set R of certified boxes. The algorithm uses global constants c0 ≥ 0
and c1 ≥ 120, where the former one is needed for Proposition 3.8.

We use a subroutine SMALL-ED which takes strings z1, z2 of length w and parameter κ and
outputs∞ if ∆edit(z1, z2) > κ and otherwise outputs ∆edit(z1, z2). The algorithm of [19] implements
SMALL-ED in time O(κw2).

One technical difference from the overview, is that the pseudo-code saves time by restricting the
search for certified boxes to a portion of the grid close to the main diagonal. Recall that GAP-UBθ

has two requirements, that the output upper bounds dedit(x, y) (which will be guaranteed by the
requirement that R contains no falsely certified boxes), and that if dedit(x, y) ≤ θn, the output is
at most cθn for some constant c. We therefore design our algorithm assuming dedit(x, y) ≤ θn, in
which case every min-cost Gx,y-path τ consists entirely of points within θ

2n steps from the main
diagonal, i.e. |i− j| ≤ θ

2n. So we restrict our search for certified boxes as follows: set m = 1
4θn, and

consider the n
m overlapping equally spaced boxes of width 8m = 2θn lying along the main diagonal.

Together these boxes cover all points within θn of the main diagonal.
The algorithm of the overview is executed separately on each of these n/m boxes. Within each

of these executions, we iterate over i ∈ {0, . . . , log 1
θ} (rather than {0, . . . , log n} as in the overview).

In each iteration we apply the dense case algorithm and the diagonal extension algorithm as in the
overview. The output is the union over all n/m boxes and all iterations, of the boxes produced.

In the procedures DSR and SSES, the input G is an induced grid graph corresponding to a box
IG×JG, as described in the "framework" part of Section 1. The procedure DSR on input G, sets T
to be the w1-decomposition of IG (the x-candidates) and B to be the set of εi8 -aligned y-candidates.
As in the overview, the dense case algorithm produces a set of certified boxes (called R1 in the
pseudo-code) and a set S of intervals declared sparse. SSES is invoked if S 6= ∅ and iterates over
all x-intervals I ′ in the decomposition Iw2(IG). The algorithm skips I ′ if S contains no subset of
I ′, and otherwise selects a sample H of θ(log2 n) subintervals of I ′ from S. For each sample interval
I ′′ it finds the vertical candidates J ′′ for which ∆edit(I

′′, J ′′) ≤ εi, does a diagonal extension to I ′

and certifies each box with an exact edit distance computation.
There are a few parameter changes from the overview that provide some improvement in the

time analysis: During each iteration i, rather than take our vertical candidates to be from a θ-
aligned grid, we can afford a coarser grid that is εi/8-aligned. Also, the local parameter d in DSR
and SSES is set to d/εi during iteration i.

There is one counterintuitive quirk in SSES: each certified box is replicated O(log n) times
with higher distance bounds. This is permissible (increasing the distance bound cannot decertify
a box), but seems silly (why add the same box with a higher distance bound?). This is just a
convenient technical device to ensure that the second phase min-cost path algorithm gives a good
approximation.

For the analysis we must prove that R contains an "adequate approximation" of some min-cost
alignment path τ . To state this precisely, we start with definitions and observations that formalize
intuitive notions from the overview.
Cost and normalized cost. The cost of a path τ , cost(τ), from (u1, u2) to (v1, v2) in a grid-
graph (see Section 1), is the sum of the edge costs, and the normalized cost is ncost(τ) = cost(τ)

v1−u1 .
cost(G(I×J)) (or simply cost(I×J)), the cost of subgraph G(I×J), is the min-cost of a path from
the lower left to the upper right corner. The normalized cost is ncost(I × J) = 1

µ(I)cost(I × J).
We note the following simple fact without proof:

9

Algorithm 1 CA(x, y, n, w1, w2, d, θ)
CoveringAlgorithm
Input: Strings x, y of length n, w1, w2, d ∈ [n], w1 < w2 < θn/4, and θ ∈ [0, 1]. n,w1, w2, θ are

powers of 2.
Output: A set R of certified boxes in G.
1: Initialization: G = Gx,y, RD = RE = ∅.
2: Let m = θn

4
3: for k = 0, . . . , 4θ do
4: Let I = J = {km, km+ 1, . . . , (k + 8)m}.
5: for i = dlog 1/θe, . . . , 0 do
6: Set εi = 2−i.
7: Invoke DSR(G(I × J), n, w1,

d
εi
, εi8 , εi) to get S and R1.

8: if S 6= ∅ then
9: Invoke SSES(G(I × J),S, n, w1, w2,

d
εi
, εi8 , εi, θ) to get R2.

10: else
11: R2 = ∅.
12: end if
13: Add items from R1 to RD and from R2 to RE .
14: end for
15: end for
16: Output R = RD ∪RE .

Proposition 3.1. For I, J, J ′ ⊆ {0, . . . , n}, |dedit(xI , yJ)−dedit(xI , yJ ′)| ≤ |J∆J ′|, where ∆ denotes
symmetric difference.

Projections and subpaths. The horizontal projection of a path τ = (i1, j1), . . . , (i`, j`) is the
set of {i1, . . . , i`}. We say that τ crosses box I × J if the vertices of τ belong to I × J and its
horizontal projection is I. If the horizontal projection of τ contains I ′, τI′ denotes the (unique)
minimal subpath of τ whose projection is I ′.

Proposition 3.2. Let τ be a path with horizontal projection I, and let I1, . . . , I` be a decomposition
of I. Then the τIj are edge-disjoint and so:

cost(τ) ≥
∑̀
i=1

cost(τIi)

ncost(τ) ≥
∑̀
i=1

µ(Ii)

µ(I)
ncost(τIi).

Definition 1. (1 − δ)-cover. Let τ be a path with horizontal projection I and let I ′ × J ′ be a
(not necessarily square) box with I ′ ⊆ I. For δ ∈ [0, 1] the box I ′ × J ′ (1 − δ)-covers τ if the
initial, resp. final, vertex of the subpath τI′ is within δµ(I ′) vertical units of (min(I ′),min(J ′)),
resp. (max(I ′),max(J ′)).

Proposition 3.3. Let I ′ × J ′ be a (not necessarily square) box that (1− δ)-covers path τ .

10

Algorithm 2 DSR(G,n,w, d, δ, ε)
DenseStripRemoval
Input: G = Gx,y(IG × JG) for some IG, JG ⊆ {0, 1, . . . , n}, w, d ∈ [n], the endpoints of IG and JG

are multiples of w and δ, ε ∈ [0, 1].
Output: Set S which is a subset of the w-decomposition of IG and a set R of δ-aligned certified

w-boxes all with distance bound 5εi.

1: Initialization: S = R = ∅. T = Iw(IG).
2: B, the set of y-candidates, is the set of width w δ-aligned subintervals of JG (having endpoints

a multiple of δw.)
3: while T is non-empty do
4: Pick I ∈ T
5: Sample c0|B|1d log n intervals J ∈ B uniformly at random and for each test if ∆edit(xI , yJ) ≤ ε.
6: if for at most c0

2 log n sampled J ’s, SMALL-ED(xI , yJ , ε) <∞ then
7: S = S ∪ {I}; T = T − {I}. (I is declared sparse)
8: else
9: (I is declared dense and used as a pivot)

10: Compute:
11: Y = {J ∈ B; SMALL-ED(xI , yJ , 3ε) <∞}.
12: X = {I ′ ∈ T ; SMALL-ED(xI , xI′ , 2ε) <∞}.
13: Add (I ′ × J ′, 5ε) to R for all pairs (I ′, J ′) ∈ X × Y.
14: T = T − X .
15: end if
16: end while
17: Output S and R.

11

Algorithm 3 SSES(G,S, n, w1, w2, d, δ, ε, θ)
SparseStripExtensionSampling
Input: G = Gx,y(IG, JG) with IG, JG ⊆ {0, 1, . . . , n}, w1, w2, d, n are powers of 2, with w1, w2, d < n

and w1 < w2. Endpoints of IG and JG are multiples of w2, S is a subset of the w1-decomposition
of IG and δ, ε, θ are non-positive integral powers of 2.

Output: A set R of certified w2-boxes in G.
1: Initialization: R = ∅.
2: B, the set of y-candidates, is the set of width w δ-aligned subintervals of JG (endpoints are

multiples of δw.)
3: for I ′ ∈ Iw2(IG) do
4: if S includes a subset of I ′ then
5: Select c1 log2 n intervals I ∈ S independently and uniformly at random from Iw1(I ′) ∩ S,

to obtain H.
6: for each I ∈ H and each J ∈ B do
7: if SMALL-ED(xI , yJ , ε) <∞ then
8: Let J ′ be such that I ′ × J ′ is the diagonal extension of I × J in I ′ × JG.
9: Let p = SMALL-ED(xI′ , yJ ′ , 3ε)

10: if p <∞ then
11: For k = 0, . . . , log n, add (I ′ × J ′, p+ θ + 2−k) to R.
12: end if
13: end if
14: end for
15: end if
16: end for
17: Output R.

12

1. ncost(I ′ × J ′) ≤ ncost(τI′) + 2δ.

2. If J ′′ is any vertical interval, then I ′ × J ′′ (1− δ − |J ′∆J ′′|/µ(I ′)) covers τ .

Proof. For the first part, let J0 be the vertical projection of τI′ . Then ncost(I ′ × J0) ≤ ncost(τI′)
since τI′ joins the lower left corner of I ′ × J0 to the upper right corner. Since I ′ × J ′ (1− δ)-covers
τ , |J ′∆J0| ≤ 2δµ(I ′), and by Proposition 3.1, ncost(I ′ × J ′) ≤ ncost(τI′) + 2δ.

For the second part, observe that the vertical distance between the lower (resp. upper) corners
of I ′ × J ′ and I ′ × J ′′ is at most |J ′∆J ′′|.

δ-aligned boxes A y-interval J of width w is δ-aligned for δ ∈ (0, 1) if its endpoints are multiples
of δw (which we require to be an integer).

Proposition 3.4. Let τ be a path that crosses I × J . Suppose that I ′ ⊆ I has width w, and
µ(J) ≥ w.

1. There is an interval J1 with µ(J1) = µ(I ′) so that ncost(I ′ × J1) ≤ 2ncost(τI′) and I ′ × J1

(1− ncost(τI′))-covers τ .

2. There is a δ-aligned interval J ′ ⊆ J of width w so that ncost(I ′ × J ′) ≤ 2ncost(τI′) + δ and
I ′ × J ′ (1− ncost(τI′)− δ)-covers τ.

(J1, J ′ are “τ -matches” for I ′, in the sense of the overview.)

Proof. Let τ ′ = τI′ be the min-cost subpath of τ that projects to I ′. Let J0 be the vertical projection
of τ ′. Note that |µ(J0) − µ(I ′)| ≤ cost(τ ′). Arbitrarily choose an interval J1 of width µ(I ′) that
either contains or is contained in J0. Then |J0∆J1| = |µ(J0)− µ(I ′)| ≤ cost(τ ′), so by Proposition
3.1 ncost(I ′×J1) ≤ 2ncost(τ ′). Furthermore I ′×J1 (1−ncost(τ ′)) covers τ ′. Let J ′ be the closest δ-
aligned interval to J1, so |J ′∆J1| ≤ δµ(I ′) and so ncost(I ′×J ′) ≤ ncost(I ′×J1)+δ ≤ 2ncost(τ ′)+δ.
Finally since I ′ × J ′ is a vertical shift of I ′ × J1 of normalized length at most δ, we have I ′ × J ′
(1− ncost(τ ′)− δ) covers τ ′.

Definition 2. 1. The main diagonal of a box is the segment joining the lower left and upper
right corners.

2. For a square box I ′ × J ′, and I ′ ⊆ I, the true diagonal extension of I ′ × J ′ to I is the square
box I × Ĵ whose main diagonal contains the main diagonal of I ′ × J ′.

3. For a w-box I ′× J ′ contained in strip I × J , the adjusted diagonal extension of I ′× J ′ within
I×J is the box I×J ′′ obtained from the true diagonal extension of I ′×J ′ to I by the minimal
vertical shift so that it is a subset of I × J . (The adjusted diagonal extension is the true
diagonal extension if the true diagonal extension is contained in I × J ; otherwise it’s lower
edge is min(J) or its upper edge is max(J).)

Proposition 3.5. Suppose path τ crosses I × J and ncost(τI) ≤ ε. Let w = µ(I). Let I ′ × J ′ be a
w′-box that (1− δ)-covers τI′ . Then the adjusted diagonal extension I × J ′′ of I ′ × J ′ within I × J
(1− (ε+ δw

′

w))-covers τ and satisfies ncost(I × J ′′) ≤ 3ε+ 2δw
′

w .

13

Proof. It suffices to show that I × J ′′ (1 − (ε + δw′/w))-covers τ , since then Proposition 3.3 gives
us the needed upper bound on ncost(I × J ′′).
Case 1. I × J ′′ is equal to the true diagonal extension. If ε ≥ 1, the claim follows trivially, so we
can assume ε < 1. Let τI , τI′ be the min-cost subpath of τ that projects on I and I ′ respectively.

We will give an upper bound on the vertical distance from the final vertex of τ to the upper
right corner of I × J ′′. Let τu be the subpath of τ that starts at the final vertex of τI′ and ends
at the final vertex of τI . Let Iu and Ju be the horizontal and vertical projections of τu. The start
vertex of τu has vertical distance at most δw′ from the main diagonal of I × J ′′. The final vertex of
τu therefore has vertical distance at most δw′+ |µ(Iu)−µ(Ju)| from the upper corner of I×J ′′, and
this is at most δw′ + εw, since cost(τ) ≥ |µ(Iu)− µ(Ju)|. A similar argument gives the same upper
bound on the vertical distance between the start vertex of τI and the lower left corner of I × J ′′, so
G′′(I × J ′′) (1− (ε+ δw′/w))-covers τ .
Case 2. I × J ′′ is not the true diagonal extension. Extend the set J to J̄ by adding µ(I) elements
before and after. (It is possible that J̄ is not a subset of {0, . . . , n}; in this case we imagine that y is
extended to a sequence y∗ by adding µ(I) new symbols to the beginning and end of y and that we
are in the grid graph Gx,y∗ .) Let I×J ′′′ be the adjusted diagonal extension of I ′×J ′ to I× J̄ . This
is equal to the true diagonal extension, and so by Case 1, I × J ′′′ (1 − (ε + δw′/w))-covers τ . We
claim that I × J ′′ does also. Assume J ′′′ falls below min(J) (the case that J ′′′ is above max(J) is
similar). Then I × J ′′ is obtained by shifting I × J ′′′ up until the lower edge coincides with min(J).
The lower vertex of τI has y-coordinate at least min(J).

If the y-coordinate of the upper vertex of τI is at most max(J ′′), then J ′′ contains vertical
projection of τI , and I × J ′′ (1 − ε)-covers τ . If the y-coordinate of the upper vertex of τI is
greater than max(J ′′), shifting I × J ′′′ up to I × J ′′ can only decrease the vertical distance from
the the lower left corner to the start of τI and from the upper corner to the end of τI , so I × J ′′
(1− (ε+ δw′/w))-covers τ .

(k, ζ)-approximation of a path. This formalizes the notion of adequate approximation of a
path by a certified box sequence.

Definition 3. Let G be a grid graph on I × J . Let ζ, ε ∈ [0, 1]. Let τ be a path that crosses G.
A sequence of certified boxes σ = {(I1 × J1, ε1), (I2 × J2, ε2), . . . , (I` × J`, ε`)} (k, ζ)-approximates τ
provided that:

1. I1, . . . , I` is a decomposition of I.

2. For each i ∈ [`], Ii × Ji (1− εi)-covers τ .

3.
∑

i∈[`] εiµ(Ii) ≤ (k · ncost(τ) + ζ)µ(I).

Proposition 3.6. Suppose path τ crosses I × J and I1, . . . , Im is a decomposition of I, and for i ∈
[m], σi is a certified box sequence that (k, ζ)-approximates τIi . Then σ1, . . . , σm (k, ζ)-approximates
τ .

Proof. It is obvious that σ is a sequence of certified boxes, that the horizontal projections of all
the boxes form a decomposition of I and that each box (Ii, Ji, εi) (1 − εi)-covers τ . The final
condition is verified by splitting the sum on the left into m sums where the jth sum includes terms
for Ii ⊆ Ij , and is bounded above by (k · ncost(τIj + ζ)µ(Ij). Summing the latter sum over j and
using Proposition 3.2 we get that σ (k, ζ)-approximates the path τ .

14

(d, δ, ε)-dense and -sparse. Fix a box I × J . An interval I ′ ⊆ I of width w is (d, δ, ε)-sparse (wrt
I × J) for integer d and ε, δ ∈ (0, 1] if there are at most d δ-aligned w-boxes in I ′ × J of ncost at
most ε, and is (d, δ, ε)-dense otherwise.
The sets Si and Si(I ′). For fixed k in the outer loop of CA, the set S created in iteration i of CA
is denoted by Si. For any interval I ′, Si(I ′) is the set of subintervals of I ′ belonging to Si.
Successful Sampling. The algorithm uses random sampling in two places, in the i loop inside
CA and within the conditional on S containing a set from Iw1(I ′) in SSES. We now specify what
we need from the random sampling.

Definition 4. A run of the algorithm has successful sampling provided that for all k ∈ {0, . . . , 4/θ}
and i ∈ {0, . . . , log 1

θ} in the nested CA loops:

• For every w1 interval I with endpoints a multiple of w1, if I is (dεi ,
εi
8 , εi)-dense interval (in

terms of global parameters), DSR does not assign I to S and if I is (d
4εi
, εi8 , εi)-sparse, DSR

places I in S.

• On all calls to SSES, for every w2 interval I with endpoints a multiple of w2, if |Wi(I)| has size
at least |Si(I) −Wi(I)|/32 then the sample H selected contains an element of Wi(I). (Here
Si(I) and Wi(I) are that defined in the proof of Claim 3.12, whose definitions don’t depend
on the randomness used to select H.)

We will need the following variant of the Chernoff bound.

Proposition 3.7 (Chernoff bound). There is a constant c0 such that the following is true. Let
1 ≤ d ≤ n be integers, B be a set and E ⊆ B. Let us sample c0

|B|
d log n samples from B independently

at random with replacement.

1. If |E| ≥ d then the probability that less than c0
2 log n samples are from E is at most 1/n10.

2. If |E| ≤ d/4 then the probability that at least c0
2 log n samples are from E is at most 1/n10.

Proposition 3.8. For large enough n, a run of CA has successful sampling with probability at least
1− n−7.

Proof. By Proposition 3.7, the probability that the first condition fails for a particular k, i, I is at
most n−10. The number of choices for k, i, I is at most (4θ + 1) · (1 + log 1

θ) n
w1
≤ n2 (for large enough

n) so the overall probability that (1) fails is at most n−8.
The probability that the second condition fails for a particular k, i, I is (1− 1

32)c1 log
2 n ≤ n−10.

The number of k, i, I is less than n2 (for large enough n), so the overall failure probability is at most
n−8 .

We assume that coins are fixed in a way that gives successful sampling.

3.2 Properties of the covering algorithm

The main property of CA to be proved is:

15

Theorem 3.9. Let x, y be strings of length n, 1/n ≤ θ ≤ 1 be a real. Let w1, w2, d satisfy w1 ≤ θw2,
w2 ≤ θn

4 and 1 ≤ d ≤ θn
w1

. Assume n,w1, w2, d, θ are powers of 2. Let R be the set of weighted
boxes obtained by running CA(x, y, n, w1, w2, d, θ) with c1 > 120. Then (1) Every (I × J, ε) ∈ R
is correctly certified, i.e., ∆edit(xI , yJ) ≤ ε, and (2) In a run that satisfies successful sampling, for
every path τ from the source to the sink in G = Gx,y of cost at most θ there is a subset of R that
(45, 15θ)-approximates τ .

Proof. All boxes output are correctly certified: Each box in RE comes from SSES which only
certifies boxes with atleast their exact edit distance. For (I × J, ε) ∈ RD, there must be an I ′ such
that ∆edit(xI′ , yJ) ≤ 3

5 · ε and ∆edit(xI′ , xI) ≤ 2
5 · ε and so by triangle inequality ∆edit(xI , yJ) ≤ ε.

It remains to establish (2). Fix a source-sink path τ of normalized cost κ. By Proposition 3.6
it is enough to show that for each I ′ ∈ Iw2 , R contains a box sequence that (45, 15θ)-approximates
τI′ . So we fix I ′ ∈ Iw2 .

The main loop (on k) of CA processes G in overlapping boxes. Since ncost(τ) ≤ θ, one of these
boxes, which we’ll call I × J , must contain τI′ .

Claim 3.10. Let I ′ ∈ Iw2. There exist intervals I, J ⊆ N, I = J that are enumerated in the main
loop of CA such that I ′ ⊆ I and τI′ crosses G(I ′ × J).

Proof. Since τ is of cost at most θ, it cannot use more than θn/2 horizontal edges as for each
horizontal edge of cost 1, it must use one vertical edge of cost 1. Similarly for vertical edges. So τ is
confined to diagonals {−θn/2, . . . , 0, . . . , θn/2} of G. By the choice ofm in CA, there will be I and J
considered in the main loop of the algorithm such that I ′ ⊆ I and τI′ crosses G(I×J). In particular,
I = J = {km, km + 1, . . . , (k + 8)m}, where k is the largest integer such that km ≤ min(I ′) − θn

2
has the desired property.

Let I, J be as provided by the claim. Let I ′ be the w1-decomposition of I ′. We will show
one of the following must hold: (1) RD contains a sequence of certified w1-boxes that (45, 15θ)-
approximates τI′ , or (2) There is a single certified w2-box in RE that (45, 15θ)-approximates τI′ .

Let t = log 1
θ . For i = t, . . . , 0, let εi = 2−i and let Si be the set S obtained at the iteration i of

CA(x, y, n, w1, w2, d, θ).
We note:

Claim 3.11. Let i ∈ {0, . . . , log 1/θ}. Suppose I ′′ ∈ Iw1(I) and J ′′ ⊆ J is εi/8-aligned. If I ′′ 6∈ Si
and cost(I ′′ × J ′′) ≤ εi then (I ′′ × J ′′, 5εi) ∈ RD.

Proof. If I ′′ 6∈ Si then in the call to DSR(G(I × J), n, w1, d/εi, εi/8, εi) there is an iteration of
the main loop,where the selected interval Ĩ from T is declared dense and ∆edit(xĨ , xI′′) ≤ 2εi.
Since ∆edit(xI′′ , yJ ′′) ≤ εi, ∆edit(xĨ , yJ ′′) ≤ 3εi and so I ′′ ∈ X and J ′′ ∈ Y. Thus, DSR certifies
(I ′′ × J ′′, 5εi), which is added to RD.

The theorem follows from:

Claim 3.12. For an interval I ′ ∈ Iw2 , assuming successful sampling RE or RD contains a (45, 15θ)-
approximation of τI′.

The proof is similar to that of Claim 2.1, with adjustments for some technicalities.

16

Proof. Let τ ′ = τI′ and κ = ncost(τ ′). Let I ′ = Iw1(I ′). For I ′′ ∈ I ′, let κI′′ = ncost(τI′′). By
Proposition 3.4, for all I ′′ ∈ I ′ and εi ≥ κI′′ there is an εi/8-aligned vertical interval Jτi (I ′′), such
that ncost(I ′′ × Jτi (I ′′)) ≤ 2κI′′ + εi/8 and I ′′ × Jτi (I ′′) (1− κI′′ − εi/8)-covers τI′ .

Let s(I ′′) be the largest integer such that εs(I′′) ≥ 3κI′′ + κ+ θ. Let t(I ′′) ≤ s(I ′′) be the largest
integer such that I ′′ 6∈ St(I′′). (Since θn/w1 ≥ d, S0 = ∅, so t(I ′′) is well-defined.) Let a(I ′′) = εs(I′′)
(this plays a similar role to u(I ′′) in Section 2) and b(I ′′) = εt(I′′).

For all εi ∈ [a(I ′′), b(I ′′)], ncost(I ′′ × Jτi (I ′′)) ≤ εi and I ′′ × Jτi (I ′′) (1 − εi)-covers τ ′. By the
definition of b(I ′′) and Claim 3.11, RD contains the certified box (I ′′ × Jτt(I′′)(I

′′), 5bI′′). So RD
contains a (45, 15θ)-approximation of τ ′ provided that:∑

I′′∈I′
5b(I ′′) ≤ 45

8

∑
I′′∈I′

a(I ′′) (4)

since a(I ′′) ≤ 2(3κI′′ + κ+ θ).
Next we determine a sufficient condition that RE contain a box sequence (consisting of a single

box) that (5, 4θ)-approximates τ ′. Let Si(I ′) = Si∩I ′. Interval I ′′ ∈ Si(I ′) is a winner for iteration
i if εi ≥ a(I ′′). This set of winners is denoted by Wi(I

′). It suffices that during iteration i, the
set of c1 log2 n samples taken in SSES includes a winner I ′′; then since ∆edit(I

′′, Jτi (I ′′)) ≤ εi, the
(adjusted) diagonal extension I ′ × J̃ of I ′′ × Jτi (I ′′) will be certified. By Proposition 3.5, I ′ × J̃
has normalized cost at most 3κ + 2εiw1/w2 ≤ 3κ + 2θ ≤ 3εi and it (1 − (κ + θ))-covers τ ′. If
κ = 0 then (I ′ × J̃ , ncost(I ′ × J̃) + θ + 2− logn) is in RE by the behavior of SSES and it (5, 4θ)-
approximates τ ′. Otherwise κ ≥ 1/n; so set k = blog 1/κc. Thus, k ≤ log n and 2−k ∈ [κ, 2κ). Then
(I ′ × J̃ , ncost(I ′ × J̃) + θ + 2−k) is in RE and it (5, 4θ)-approximates τ ′.

Under successful sampling if |Wi(I
′)| ≥ 1

32 |Si(I
′) − Wi(I

′)|, at least one interval from Wi(I
′)

will be included in our c1 log2 n samples during SSES and RE will contain a (5, 4θ)-approximation
of τ ′ as above. So suppose this fails:

For all i, |Wi(I
′)| < 1

32
|Si(I ′)−Wi(I

′)|. (5)

We show that this implies (4). Multiplying (5) by εi and summing on i yields:∑
I′′∈I′

∑
i:I′′∈Wi(I′)

εi <
1

32

∑
I′′∈I′

∑
i:I′′∈Si(I′)−Wi(I′)

εi. (6)

I ′′ ∈ Si(I ′)−Wi(I
′) implies εi < a(I ′′). Summing the geometric series:∑

i:I′′∈Si(I′)−Wi(I′)

εi ≤ 2a(I ′′). (7)

Either a(I ′′) = b(I ′′) or a(I ′′) < b(I ′′). If the latter, then I ′′ ∈ Wi(I
′) for εi = b(I ′′)/2. So:∑

I′′∈I′
b(I ′′) ≤

∑
I′′

(
a(I ′′) +

∑
i:I′′∈Wi(I′)

2εi

)
<
∑
I′′

(
a(I ′′) +

1

16

∑
i:I′′∈Si(I′)−Wi(I′)

εi

)
≤ 9

8

∑
I′′∈I′

a(I ′′)

17

which implies Equation 4. (The second inequality follows from (6) and the last inequality from
(7).)

3.3 Time complexity of CA

We write t(w, ε) for the time of SMALL-ED(z1, z2, ε) on strings of length w. We assume t(w, ε) ≥
w, and that for k ≥ 1, there is a constant c(k) such that for all ε ∈ [0, 1] and all w > 1, t(w, kε) ≤
c(k) · t(w, ε) + c(k). As mentioned earlier, by [19], we can use t(w, ε) = O(w2ε).

Theorem 3.13. Let n be a sufficiently large power of 2 and θ ∈ [1/n, 1] be a power of 2. Let x, y
be strings of length n. Let log n ≤ w1 ≤ w2 ≤ θn/4, 1 ≤ d ≤ n be powers of 2, where w1|w2 and
w2|n, and w1/w2 ≤ θ. The size of the set R output by CA is O((n

w1
)2 log2 n) and in any run that

satisfies successful sampling, CA runs in time:

O

(
|R|+

∑
k=log 1/θ,...,0

ε=2−k

(θn2 log n

dεw2
1

· t(w1, ε)+
θn2 log2 n

w1w2ε
· t(w1, ε) +

nd log2 n

w2ε
· t(w2, ε)

))
.

Proof. To bound |R| note that for each choice of k, i in the outer and inner loops of CA, the set of
candidate boxes of width w1 has size O(θnw1

θn
w1εi

). This upper bounds the number of boxes certified
by DSR. The call to SSES constructs at most one diagonal extension for each such candidate box,
and each diagonal extension gives rise to at most O(log n) certified boxes. Thus, for each (k, i) there
are O(θ

2n2 logn
(w1)2εi

) certified boxes. Summing the geometric series over i, noting that min(εi) = θ, and
summing over O(1/θ) values of k gives the required bound on |R|.

The steps in the algorithm that actually construct certified boxes (13 of DSR, 11 of SSES, 13
of CA) cost O(1) per box giving the first term in the time bound.

We next bound the other contributions to runtime. The outer loop of CA has 4
θ + 1 iterations

on k’s. The inner loop has 1 + log 1
θ iterations on i. Each iteration invokes DSR and SSES on I × J

with I and J of width at most 4θn.
We bound the time of a call to DSR. To distinguish between local variables of DSR and global

variables of CA, we denote local input variables as Ĝ, n̂, ŵ, d̂, δ̂, ε̂. For B and T as in DSR, |B| ≤
µ(IĜ)

δ̂ŵ
. since µ(IĜ) = µ(JĜ). The main while loop of DSR repeatedly picks intervals I ∈ T and

samples c0|B| log n̂d̂ ≤ c0µ(IĜ) log n̂

d̂δ̂ŵ
vertical intervals J and tests whether ∆edit(xI , yJ) ≤ ε̂. Each such

test takes time t(ŵ, ε̂). This is done at most once for each of the µ(IĜ)/ŵ horizontal candidates

for a total time of O(
µ(IĜ)

2 log n̂

ŵ2δ̂d̂
)t(ŵ, ε̂). We next bound the cost of processing a pivot I. This

requires testing ∆edit(xI , yJ) ≤ 3ε̂ for J ∈ B and ∆edit(xI , xI′) ≤ 2ε̂ for I ′ ∈ T . Each test costs
O(t(ŵ, ε̂)) (by our assumption on t(·, ·)), and since |T | ≤ |B| =

µ(IĜ)

ŵδ̂
, I is processed in time

O(
µ(IĜ)

ŵδ̂
t(ŵ, ε̂)). This is multiplied by the number of intervals declared dense, which we now upper

bound. If I is declared dense then at the end of processing I, X is removed from T . This ensures
∆edit(I, I

′) > 2ε for any two intervals I, I ′ declared dense. By the triangle inequality the sets
B(I) = {J ∈ B; ∆edit(xI , yJ) ≤ ε} are disjoint for different pivots. By successful sampling, for each
pivot I, |B(I)| ≥ d̂

4 , and thus at most |B|/(d̂/4) =
4µ(IĜ)

d̂δ̂ŵ
intervals are declared dense, so all intervals

declared dense are processed in time O(
µ(IĜ)

2

ŵ2d̂δ̂2
)t(ŵ, ε̂).

18

The time for dense/sparse classification of intervals and for processing intervals declared dense
is at most O(

µ(IĜ)
2 log n̂

ŵ2d̂δ̂2
)t(ŵ, ε̂). During iteration i of the inner loop of CA, the local variables of

DSR are set as n̂ = n, µ(IĜ) ≤ 4θn, ŵ = w1, d̂ = d/εi, δ̂ = εi/8. Substituting these parameters
yields time O(θ

2n2 logn
(w1)2dεi

)t(w1, εi). Multiplying by the O(1/θ) iterations on k gives the first summand
of the theorem.

Next we turn to SSES. The local input variables n,w1, w2,S, θ are set to their global values so
we denote them without ˆ . The other local input variables are denoted as Ĝ, d̂, δ̂, ε̂. The local
variable B has size µ(IĜ)

δ̂w1
. By successful sampling, we assume that on every call, every interval in S

is (d̂, δ̂, ε̂)- sparse. The outer loop enumerates the µ(IĜ)/w2 intervals I ′ of Iw2(IĜ). We select H to
be c1 log2 n random subsets from subsets of I ′ belonging to S. For each I ∈ H and J ∈ B, we call
SMALL-ED(xI , yJ , ε̂), taking time t(w1, ε̂). The total time of all tests is O(

µ(IĜ)
2 log2 n

δ̂w1w2
)t(w1, ε̂).

Using d̂ = d/εi, δ̂ = εi/8 and ε̂ = εi from the ith call to SSES givesO(θ
2n2 log2 n
εiw1w2

)t(w1, εi). Multiplying
by the O(1/θ) iterations on k gives the second summand in the theorem.

Assuming successful sampling, all intervals in the set S passed from DSR to SSES are (d̂, δ̂, ε̂)-
sparse. Therefore, for each sampled I, at most d̂ intervals J are within ε̂ of I. For each of these
we do a diagonal extension of I × J to a w2-box I ′ × J ′, and call SMALL-ED(xI′ , yJ ′ , 3ε̂) at cost

O(t(w2, ε̂)) for each call. The number of such calls is O(
µ(IĜ)d̂ log

2 n

w2
). Using the parameter d̂ = d/εi

in the ith call of the inner iteration of CA, we get a cost of O(θnd log
2 n

εiw2
)t(w2, εi) and multiplying by

the O(1/θ) gives the third summand in the theorem.

Choosing the parameters to minimize the maximum term in the time bound, subject to the
restrictions of the theorem and using t(w, ε) = O(εw2) we have:

Corollary 3.14. For all sufficient large n, and for θ ≥ n−1/5 (both powers of 2) choosing w1, w2,
and d to be the largest powers of two satisfying: w1 ≤ θ−2/7n1/7, w2 ≤ θ1/7n3/7, and d ≤ θ3/7n2/7,
with probability at least 1− n−1/7, CA runs in time Õ(n12/7θ4/7), and outputs the set R of size at
most Õ(n12/7θ4/7).

Proof. Set w1, w2, and d to be the largest powers of two satisfying: w1 ≤ θ−2/7n1/7, w2 ≤ θ1/7n3/7,
and d ≤ θ3/7n2/7.

Use the algorithm of [19] that gives t(w, ε) = O(εw2). It is routine to check that these choices
satisfy the requirements of Theorem 3.13, and also that all three terms in the time analysis, and
the number of boxes are all bounded by the claimed bound.

4 Min-cost Paths in Shortcut Graphs

We now describe the second phase of our algorithm, which uses the set R output by CA to upper
bound dedit(x, y). A shortcut graph on vertex set {0, . . . , n} × {0, . . . , n} consists of the H and V
edges of cost 1, together with an arbitrary collection of shortcut edges (i, j) → (i′, j′) where i < i′

and j < j′, also denoted by eI,J where I = {i, . . . , i′} and J = {j, . . . , j′}, along with their costs.
A certified graph (for x, y) is a shortcut graph where every shortcut edge eI,J has cost at least
dedit(xI , yJ). The min cost path from (0, 0) to (n, n) in a certified graph upper bounds dedit(x, y).
The second phase algorithm uses R to construct a certified graph, and computes the min cost path
to upper bound on dedit(x, y).

19

A certified box (I × J, κ) corresponds to the eI,J with cost κµ(I). (In the certified graph we use
non-normalized costs.) However, the certified graph built from R in this way may not have a path of
cost O(dedit(x, y)+θn). We need a modified conversion of (I×J, κ). If κ ≥ 1/2 we add no shortcut.
Otherwise (I × J, κ) converts to the edge eI,J ′ with cost 3κµ(I) where J ′ is obtained by shrinking
J : min(J ′) = min(J) + ` and max(J ′) = max(J ′)− ` where ` = bκµ(I)c. By Proposition 3.1, this
is a certified edge. Call the resulting graph G̃. We claim:

Lemma 4.1. Let τ be a path from source to sink in Gx,y. If R contains a sequence σ that (k, θ)-
approximates τ then there is a source-sink path τ ′ in G̃ that consists of the shortcuts corresponding
to σ together with some H and V edges with cost

G̃
(τ ′) ≤ 5(k · costGx,y(τ) + θn).

Proof. We will modify the path τ in Gx,y to a path τ ′ in G̃ of comparable cost. Let {(I1×J1, ε1), (I2×
J2, ε2), . . . , (Im×Jm, εm)} be the set of certified boxes that (k, θ)-approximates τ . Let `i = µ(Ii) ·εi.
Let L be the subset [m] for which εi ≤ 1/2. For i ∈ L, let ei = eIi,J ′i be the shortcut edge with
weight 3εi. We claim (1) there is a source-sink path in G̃ that consists of {ei : i ∈ L} together with
a horizontal path Hi whose projection to the x-axis is Ii for each i ∈ [m] − L, and a collection of
(possibly empty) vertical paths V0, V1, . . . , Vm where the x-coordinate of Vi for i > 0 is max(Ii) and
0 for V0, and (2) its cost satisfies the bound of the Lemma.

For the first claim, define for h ∈ [m] ph = (ih, jh) to be the first point in τIh and define pm+1 =
(n, n). We will define τ ′ to pass through all of the ph. In preparation, observe that for h ∈ L, since
Ih×Jh (1− εh) covers τ , we have min(J ′h) = min(Jh)+ `h ≥ jh and max(J ′h) = max(J)− `h ≤ jh+1.
Define the portion τ ′h between ph and ph+1 by climbing vertically from ph to (ih,min(J ′h)) and if
h ∈ L traversing eIh,J ′h and climbing to ph+1 and if h 6∈ L then move horizontally from (ih,min(J ′h))
to (ih+1,min(J ′h)) and then climb to ph+1.

For the second claim, we upper bound cost(τ ′). For h ∈ L, eIh,Jh costs 3`h, and for h 6∈ L, the
horizontal path that projects to Ih costs µ(Ih) ≤ 2`h; the total is at most

∑
h 3`h. The cost of vertical

edges is n−
∑

h∈L µ(J ′h) =
∑

h∈L(µ(Jh)−µ(J ′h))+
∑

h6∈L µ(Jh) =
∑

h∈L 2`h+
∑

h6∈L µ(Jh) ≤
∑

h 2`h,
since

∑
h µ(Jh) =

∑
h µ(Ih) = n. So cost(τ ′) ≤

∑
h 5`h. Since

∑m
i=1 `i ≤ k · costGx,y(τ) + θ · n by

definition of (k, θ)-approximation, the lemma follows.

Computing the min-cost. We present an O(n+m log(mn)) algorithm to find a min cost source-
sink path in a shortcut graph G̃ with m shortcuts. It’s easier to switch to the max-benefit problem:
Let H̃ be the same graph with cost ce of e = (i, j)→ (i′, j′) replaced by benefit be = (i′ − i) + (j′ −
j) − ce, (so H and V edges have benefit 0). The min-cost path of G̃ is 2n minus the max-benefit
path of H̃. To compute the max-benefit path of H̃, we use a binary tree data structure with leaves
{1, . . . , n}, where each node v stores a number bv, and a collection of lists L1,. . . ,Ln, where Li stores
pairs (e, q(e)) where the head of e has x-coordinate i and q(e) is the max benefit of a path that
ends with e.

We proceed in n−1 rounds. Let the set Ai consist of all the shortcuts whose tail has x-coordinate
i. The preconditions for round i are: (1) for each leaf j, the stored value bj is the max benefit path
to (i, j) that includes a shortcut whose head has y-coordinate j (or 0 if there is no such path),
(2) for each internal node v, bv = max{bj : j is a leaf in the subtree of v}. and (3) for every edge
e = (i′, j′)→ (i′′, j′′) with i′ < i, the value q(e) has been computed and (e, q(e)) is in list Li′′ . During
round i, for each shortcut e = (i, j)→ (i′, j′) in Ai, q(e) equals the max of bv + be over tree leaves
v with v ≤ j. This can be computed in O(log n) time as max bv + be, over {j} union the set of left
children of vertices on the root-to-j path that are not themselves on the path. Add (e, q(e)) to list

20

Li′ . After processing Ai, update the binary tree: for each (e, q(e)) ∈ Li+1, let j be the y-coordinate
of the head of e and for all vertices v on the root-to-j path, replace bv by max(bv, q(e)). The tree
then satisfies the precondition for round i+1. The output of the algorithm is bn at the end of round
n− 1. It takes O(n) time to set up the data structure, O(m logm) time to sort the shortcuts, and
O(log n) processing time per shortcut (computing q(e) and later updating the data structure).

5 Summing up and speeding up

To summarize, the algorithm GAP-UBθ runs CoveringAlgorithm of Section 3, converts the output
into a shortcut graph, and runs the min-cost path algorithm of Section 4. By Corollary 3.14, and
the quasilinear runtime (in the number of shortcuts) of the min-cost path algorithm, the algorithm
GAP-UBθ runs in time Õ(n12/7θ4/7). The construction of the main algorithm ED-UB from
GAP-UB is standard:

Proof of Theorem 1.1 from Theorem 1.2. Given GAP-UBθ, we construct ED-UB: Run the afore-
mentioned exact algorithm of [15] with runtime O(n + k2) time on instances of edit distance k,
for O(n + n2−2/5) time. If it terminates then it outputs the exact edit distance. Otherwise, the
failure to terminate implies dedit(x, y) ≥ n4/5. Now run GAP-UBθj (x, y) for θj = (1/2)j for
j = {0, . . . , logn5 } and output the minimum of all upper bounds obtained. Let j be the largest
index with θjn ≥ dedit(x, y) (such an index exists since j = 0 works). The output is at most
840θjn ≤ 1680dedit(x, y). We run at most O(log n) iterations, each with runtime Õ(n2−2/7).

Speeding up the algorithm. The runtime of ED-UB is dominated by the cost of SMALL-ED(
z1, z2, ε) on pairs of strings of length w ∈ {w1, w2}. We use Ukkonen’s algorithm [19] with t(w, ε) =
O(εw2). In the full paper we describe a revised algorithm ED-UB1, replacing the Ukkonen’s
algorithm with ED-UB. This worsens the approximation factor (roughly multiplying it by the
approximation factor of ED-UB) but improves runtime. The internal parameters w1, w2, d are
adjusted to maximize savings. One can iterate this process any constant number of times to get
faster algorithms with worse (but still constant) approximation factors. Because of the dependence
of the analysis on θ, we do not get a faster edit distance algorithm for all θ ∈ [0, 1] but only for θ
close to 1. (This may be an artifact of our analysis rather than an inherent limitation.)

Theorem 5.1. For ε > 0, there are constants c > 1 and β ∈ (0, 1) and an algorithm with runtime
O(n

1+
√
5

2
+ε) that on input x, y of length n, outputs u such that dedit(x, y) ≤ u ≤ c · dedit(x, y) +n1−β

with probability at least 1− 1/n.

In the special case of one level of the recursion we obtain an algorithm for the full range of
θ ∈ [0, 1] that runs in time Õ(n2−98/277θ54/277) = Õ(n1.647θ0.195) if dedit(x, y) ≤ θn. Notice, 1+

√
5

2 =
1.618
Acknowledgements. We thank the FOCS 2018 committee and especially several anonymous
referees for helpful comments and suggestions. Michael Saks thanks C. Seshadhri for insightful
discussions on the edit distance problem.

21

References

[1] Amir Abboud and Arturs Backurs. Towards hardness of approximation for polynomial time
problems. In 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January
9-11, 2017, Berkeley, CA, USA, pages 11:1–11:26, 2017.

[2] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for
LCS and other sequence similarity measures. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 59–78, 2015.

[3] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 375–388, 2016.

[4] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation
for edit distance and the asymmetric query complexity. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA,
pages 377–386, 2010.

[5] Alexandr Andoni and Huy L. Nguyen. Near-optimal sublinear time algorithms for Ulam
distance. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 76–86, 2010.
doi:10.1137/1.9781611973075.8.

[6] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09,
pages 199–204, New York, NY, USA, 2009. ACM.

[7] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC ’15, pages 51–58, New York, NY, USA, 2015. ACM.

[8] Z. Bar-Yossef, T.S. Jayram, R. Krauthgamer, and R. Kumar. Approximating edit distance effi-
ciently. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium
on, pages 550–559, Oct 2004.

[9] Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Rahul Sami. A sublinear algorithm for weakly approximating edit distance. In Proceedings
of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pages 316–
324, New York, NY, USA, 2003. ACM.

[10] Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string embeddings and edit distance
approximations. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, pages 792–801, Philadelphia, PA, USA, 2006. Society for Industrial and
Applied Mathematics.

[11] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, and Saeed
Seddighin. Approximating edit distance in truly subquadratic time: Quantum and MapReduce.

22

http://dx.doi.org/10.1137/1.9781611973075.8

In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1170–1189, 2018.

[12] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, and Saeed
Seddighin. Approximating edit distance in truly subquadratic time: Quantum and MapReduce
(extended version of [11]). 2018.

[13] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string prob-
lems and dynamic time warping. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 79–97, 2015.

[14] Szymon Grabowski. New tabulation and sparse dynamic programming based techniques for
sequence similarity problems. Discrete Applied Mathematics, 212:96–103, 2016.

[15] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM J. Comput., 27(2):557–582, April 1998.

[16] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707, 1966.

[17] William J. Masek and Michael S. Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18 – 31, 1980.

[18] Timothy Naumovitz, Michael E. Saks, and C. Seshadhri. Accurate and nearly optimal sublinear
approximations to Ulam distance. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 2012–2031, 2017.

[19] Esko Ukkonen. Algorithms for approximate string matching. Inf. Control, 64(1-3):100–118,
March 1985.

[20] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, January 1974.

23

	Introduction
	Covering algorithm: Detailed overview
	Covering Algorithm:pseudo-code and analysis
	Pseudo-code
	Properties of the covering algorithm
	Time complexity of CA

	Min-cost Paths in Shortcut Graphs
	Summing up and speeding up

