
MASTER THESIS

Karel Král

Data structure behavior with variable
cache size

Computer Science Institute of Charles University

Supervisor of the master thesis: doc. Mgr. Michal Koucký, Ph.D
Study programme: Computer Science

Study branch: Discrete Models and Algorithms

Prague 2017

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Data structure behavior with variable cache size

Author: Karel Král

Institute: Computer Science Institute of Charles University

Supervisor: doc. Mgr. Michal Koucký, Ph.D, Computer Science Institute of
Charles University

Abstract: Cache-oblivious algorithms are well understood when the cache size
remains constant. Recently variable cache sizes have been considered. We are
motivated by programs running in pseudo-parallel and competing for a single
cache. This thesis studies the underlying cache model and gives a generalization
of two models considered in the literature. We give a new cache model called the
“depth model” where pages are accessed by page depths in an LRU cache instead
of their addresses. This model allows us to construct cache-oblivious algorithms
that cause a certain number of cache misses prescribed by an arbitrary function
computable without causing a cache miss. Finally we prove that two algorithms
satisfying the regularity property running in pseudo-parallel cause asymptotically
the same number of cache misses as their serial computations provided that the
cache is satisfying the tall-cache assumption.

Keywords: cache-oblivious data structures

ii

I would like to thank my supervisor for his patience, valuable advice, all the time
spent with me thinking about different mathematical problems, and questions
that always turned out to be helpful and interesting. I am also grateful for all the
support of my family and all of the people close to me. I thank Veronika Sĺıvová
for proofreading this thesis and her valuable comments.

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 616787.

The research was also partially supported by a grant from Neuron Fund for
Support of Science.

iii

Contents

Introduction 2

1 Previous Models 3
1.1 History . 3
1.2 Architecture of Computer Caches 4

2 Previous Results 5
2.1 Synchronized Caching Algorithms 5
2.2 Cache-Adaptive Model . 5
2.3 Parallel Algorithms . 6

3 Cache Models 7
3.1 Sync Model . 8

3.1.1 Belady is Still Optimal in the Sync Model 8
3.1.2 LRU Stays Competitive in the Sync Model 8

3.2 Exact Time Model . 11
3.2.1 LRU is competitive in the Exact Time Model 12

3.3 Algorithms with Linearly Ordered Pages 17
3.4 Depth Model . 17

3.4.1 Definition of the Depth Model 18
3.4.2 Simulation of the Depth Model in the Page Address Model 19
3.4.3 Simulation of the Address Model in the Depth Model . . . 20
3.4.4 Programs of a Given Cache Behaviour 23
3.4.5 Equivalence of Depth and Address Models 24
3.4.6 Changing Cache Size . 24

4 Competing Algorithms 28
4.1 Two Competing Algorithms . 28
4.2 Tall Cache Assumption . 29
4.3 Regularity . 31

Conclusion 32

Bibliography 33

List of Figures 35

List of Abbreviations 36

1

Introduction
Modern computer architectures use several layers of cache. Perhaps the most
widely used model for modelling this is the two level memory consisting of a large
memory and a smaller cache. If the requested page is in the cache the processor
gets it almost immediately otherwise it has to wait for a constant amount of time.
Usually we consider operations of the CPU and cache as short enough to omit
and we only care about the number of accesses to the main memory.

Traditionally cache models deal just with a cache that does not change during
the run of a program. With parallel computing and cloud computing there are
more processes sharing resources at one time. This leads to a model where the
cache size may fluctuate. An example may be a RAM memory viewed as a hard-
disk cache where there are other programs competing for the RAM. Even cloud
computing provides us with an example of such problem as the amount of memory
available to an individual virtual machine may change over time due to the load
of other virtual machines.

In the first two chapters we give a brief overview of relevant results. In Chap-
ter 3 we give a detailed discussion of cache models for fluctuating sizes. We prove
that the least recently used (LRU) caching algorithm is competitive with the op-
timal one in two different models. One of them is similar to the model introduced
independently by Peserico [2013]. The second model is a common generalization
of the previous one and the model studied by Bender et al. [2014]. This gener-
alized model is important because it faithfully models cache size changes caused
by other programs.

We also provide a novel view at the problem of caching where we assume
that the program makes page accesses by depth of the page in an infinite cache
instead of page numbers. We give a justification of this model and prove that this
model and the classical model have the same power. Moreover we also prove that
if the accessed page address can be computed using constantly many variables
we can simulate one model in the other with no additional cache misses. Using
this framework we are also able to create cache-oblivious programs with almost
arbitrary cache behaviours. We are thus able to say something about cache
constructible functions as a parallel to time or size constructible functions studied
in complexity theory.

Chapter 4 contains a discussion of the most practical model – two algorithms
competing for one cache. We note that this depends heavily on the properties
of the competing algorithms. Namely we consider two basic properties – the tall
cache assumption and regularity. We give a proof that when two cache-oblivious
algorithms compete, their tall cache assumptions are satisfied, and they satisfy
the regularity condition the number of cache misses is asymptotically the same
as the number of cache misses caused when one runs after the other finishes.

2

1. Previous Models
We give a brief introduction to the variety of problems connected to caching
that have been considered. It is not our goal to give a comprehensive list of
all the directions of research done. But we at least mention some of the most
basic directions and historical development. We point the interested reader to
the survey on cache-oblivious algorithms by Demaine [2002].

1.1 History
There has not yet been a data storage that would be both fast enough and large
enough at the same time, no matter if we are considering registers on a processor,
CPU caches, RAM (random-access memory), hard drives or disc arrays. There
is always demand for faster and larger ones. One way to mitigate this problem is
to introduce an intermediate smaller but faster memory to cache chunks (pages)
of the accessed data and hope that the program will request them repeatedly or
will access their immediate neighbours located on the same page.

These considerations lead to the model where the memory consists of two
parts one that is close to the processor, cheap to access but limited in space and
second one that is much more far away from the processor but virtually with no
limit on space.

One of the earliest works was done by Aggarwal et al. [1988] in the external-
memory model. They started with algorithms for sorting, fast Fourier transform
(FFT), permutation networks, permuting and matrix transposition. Several of
these algorithms, namely sorting, FFT and matrix transposition, have been con-
sidered many times since then.

Not that long after them Frigo et al. [1999] consider their cache-oblivious
model where algorithms do not depend on the cache parameters like the size and
page length but one can still prove that they perform very well with respect to the
cache and page size. Not knowing the cache parameters goes hand in hand with
deferring page evictions to the cache itself. One of the most basic observations
there is that there is an implementable eviction policy that behaves well enough.
We discuss this problem in our model in Chapter 3.

One important characteristic of a cache is the tall cache assumption which is
mostly satisfied in practice. It is used by many cache-oblivious algorithms.

Definition 1. We say that a cache of size M with pages of size B satisfies the
tall cache assumption if M ∈ Ω(B2).

The motivation for the tall cache assumption is that we can utilize the cache
better when there is enough room for enough pages. The most basic example is
transposition of a matrix in row-major order where we heavily use that a square
submatrix can fit in the cache at one time. The tall cache assumption is usually
true in practice. We assume the tall cache assumption unless stated otherwise.
For many algorithms the tall cache assumption can be weakened to M ∈ Ω(B1+ε)
for some ε > 0 (for more see Demaine [2002]). Nevertheless we use the term tall
cache assumption as defined above.

3

1.2 Architecture of Computer Caches
We give a brief overview of caching architectures and the idealized cache model.
We are not as much interested in specific values as in the ratios between them.
The main trend is that the closer to the processor the cache is the faster but
smaller it gets. We present only the bare minimum of cache types present in
almost all common computers. The numbers and memory hierarchy is taken
mainly from the book of Bryant et al. [2003] and specifications of main CPU and
hardware producers.

The cache closest to the central processing unit is called CPU cache and most
of the modern CPUs have multiple levels. Mostly we are talking about L1 and
L2 caches. The size of L1 cache tends to be between 8kB to 128kB. The size of
the L2 cache is larger than the size of the L1 cache. Sometimes even L3 cache is
present and its size in modern computers is roughly 8MB but the sizes vary up
to 128MB. The L1 and L2 caches tend to not be shared on multi-core CPUs but
L3 cache tends to be shared between the cores.

The RAM can also be viewed as a form of disk cache. Modern hard disks
come with cache included, so called disk buffers. This is another cache present in
the computer. It is a common scenario that several computers are connected to
a network and they use a distributed file system. One could then view a single
hard drive as a cache of this file system.

The access times vary and generally are between 1 to 30 processor cycles when
the page is present in the CPU cache, 50 to 200 cycles when it is present in the
RAM and tens of millions cycles if the page is swapped on the hard drive.

We are using an idealized model where all caches are fully associative – that
means that each page can be cached to any place in the cache. This is usually not
true for real computer caches but there has been work to make the theoretical
results applicable even in this situation.

4

2. Previous Results
In this work we are interested in models where the cache size fluctuates during
the computation. This has been considered before. Here we name just few papers
that have been most influential and related to our work. Another interesting area
of research are parallel algorithms and studying their cache performance.

All of these papers consider caches that are not maintained by the algorithm
itself but use some caching algorithm to decide which pages to keep in the cache
and which pages to evict. Perhaps the most well known caching algorithm is the
least recently used (LRU) algorithm. LRU also shows to be competitive when
the cache size fluctuates.

There are two approaches that differ by how they measure time. Peserico
[2013] uses page requests to measure time and cache size changes happen between
two consecutive page requests. The time used by the Cache-Adaptive model of
Bender et al. [2014] is measured solely by cache misses. Both of these models
have their downsides. On the modelled computer cache size changes are caused
by another algorithm or algorithms that also use the same cache. Thus the first
model is considering size changes that happen each page request and thus it does
not entirely faithfully model the influence of other running programs. The model
considering that everything that happens between two cache misses takes no time
at all which is also a bit idealized model. We establish LRU competitiveness on
a common generalization of these models and thus provide a bit more realistic
model.

2.1 Synchronized Caching Algorithms
Peserico [2013] studies a lot of different caching algorithms in the model where
time is determined by page requests (regardless whether they cause a cache miss
or not). Peserico [2013] shows there is a caching algorithm that has a good
competitive ratio in the classical setting with constant size caches and arbitrarily
un-optimal competitive ratio when the cache sizes change. On the other hand the
paper also contains a result similar to ours in Section 3.1 that LRU is competitive.

Menache and Singh [2015] consider an interesting case of the previous model.
They investigate algorithms running in a cloud setting with convex cost function
associated with each program. The goal is to decide in real-time how to allocate
the memory resources.

2.2 Cache-Adaptive Model
This section reviews results of Bender et al. [2014], Bender et al. [2016], Lincoln
[2014], and Soorchaei [2015]. The time in their model changes only after a cache
miss (this is equivalent to unit time cache misses and zero time cache hits).
They provide proofs of several results about optimality in their model. These
papers use the term memory profile to describe cache sizes over time. Under
a memory profile m the cache has size m(t) at time t ∈ N. We are going to
define and review some of their results. Bender et al. [2016] also give a recipe

5

similar to master theorem for analysing divide and conquer algorithms in their
cache-adaptive model, but we omit their statements here.

We use the following definition later in this text.

Definition 2 (Bender et al. [2014]). We say that a memory profile is a square
profile if there are boundaries 0 = t0 < t1 < . . . such that for all t ∈ [ti, ti+1]
the cache size is m(t) = ti+1 − ti. In other words the memory profile is a step
function with steps that are as tall as they are long.

Bender et al. [2014, 2016], Lincoln [2014], Soorchaei [2015] define optimality
in their Cache-Adaptive model and prove that a non-trivial class of algorithms is
optimal. They also prove the optimality of several other algorithms that do not
belong to this class. Moreover they provide a framework similar to the Master
Theorem method to analyse a wide variety of algorithms in the Cache-Adaptive
model.

2.3 Parallel Algorithms
There has been a lot of work on parallel algorithms and their cache performance.
Although this is a bit different as this area considers the model where there is one
program running several threads and computing one result. The parallel threads
however share caches and thus compete with each other. On the other hand we
already know what is going on in the computer and there are no surprising cache
size fluctuations.

Communication between processors seems to be the critical bottleneck in par-
allel versions of Strassen algorithm on modern systems. Ballard et al. [2012]
study this problem and provide an algorithm that is communication-optimal.
Their result also outperforms other algorithms in practice.

There is an extensive amount of research done on parallel algorithms and their
cache performance. Even several cache architecture layers and layouts have been
considered. A proper overview of this theory would be too long for this chapter
and moreover this area is not that connected to our case.

6

3. Cache Models
In this chapter we address the problem of the underlying model. As well as Frigo
et al. [1999] (and Prokop [1999] in his PhD thesis) we would like to start by
stating that the Least Recent Used (LRU) algorithm behaves almost as good as
the optimal one. But in the situation when the cache size may change its size we
need to specify exactly when do the cache size changes occur. There are basically
three different possibilities:

1. Both cache miss and cache hit take one unit of time but we would like
to bound the number of cache misses made by the LRU algorithm. We
deal with this model in Section 3.1 where we show the optimality of LRU
caching. We obtained our results independently of Peserico [2013] who has
similar results. Peserico also studies more caching algorithms under the
same model. We have decided to keep this section as our proof is slightly
different and we build on it in the next section.

2. Each cache miss lasts one unit of time and each cache hit lasts zero units
of time. The optimality of LRU caching is studied by Bender et al. [2014]
and in even more depth by Soorchaei [2015].

3. There is a common generalization of the previous two models where a cache
hit lasts one unit of time and a cache miss lasts M units of time. The cache
size changes happen in integer times in these time units. We consider this
model in Section 3.2 and we also establish that LRU is competitive.

In Section 3.3 we continue by an observation about a general class of caching
algorithms which behave nicely provided that the cache size is always at least
some constant.

We conclude this chapter by providing the Depth Cache model which gives
another view at the problem of page accesses and provides an easy way to con-
struct programs with given cache behaviour. Several simulation algorithms are
given in this section. We also investigate what happens with the depth cache
under different permutations of cache sizes.

Definition 3. The least recently used (LRU) caching algorithm keeps as many
pages in the cache as possible and if a page has to be evicted it evicts the page
that has been accessed least recently.

It is common in the previous papers to first prove that we can use LRU instead
of the optimal caching interchangeably and the number of cache misses will be
asymptotically the same (when we give LRU more space and/or time). There
is one slight assumption that is often omitted and that is the regularity of the
algorithm.

Definition 4 (Prokop [1999]). Let A be an algorithm and we denote A(n; M, B)
the number of misses caused on a problem of size n with an optimal cache of size
M with pages of size B. Then A satisfies the regularity condition if

A(n; M, B) = O(A(n; 2M, B)) for each n, M, B ∈ N.

7

The inequality in the definition is natural as when we increase the cache
size the algorithm will cause less cache misses. The regularity condition simply
states that the decrease will not be enormous. Prokop [1999] originally used this
assumption to state the fact that an algorithm causes asymptotically the same
number of cache misses on an optimal cache and on a (twice as large) LRU cache.
We use this assumption again in Chapter 4. All natural and studied algorithms
satisfy this regularity property. On the other hand in Section 4.3 we use the
depth cache model of Section 3.4 to create algorithms with an almost arbitrary
decrease of the number of cache misses.

The basic trick is to prove competitiveness of LRU and then combine it with
the definition of regularity to get that the number of cache misses caused by a
program satisfying the regularity condition will be asymptotically the same on
an optimal cache as on an LRU cache with some space and/or time advantage.

3.1 Sync Model
We assume a two level memory model where the cache size may vary over time.
Let us number pages of the main memory (e.g. hard-disk pages) by numbers
[N] = {1, 2, . . . , N}, so the sequence of requests is a sequence a1, a2, . . . , an of
numbers in [N].

The caching is done not by our program, but automatically. We show that we
can think of the page evictions as done optimally or almost optimally, similarly
to the constant cache model.

We allow the cache size to change, even many times, between two consecutive
page requests. Therefore we need to know the minimal cache size between the
two requests. We denote mi the minimal cache size after the ith request and
before the (i + 1)-st request.

Under these assumptions both the optimal cache algorithm and LRU have
synchronized cache sizes – it cannot happen that one sequence lasts longer on an
LRU cache than on the optimal one and thus the LRU cache would have much
smaller cache size. Therefore we call this model the Sync Model.

3.1.1 Belady is Still Optimal in the Sync Model
The optimal off-line algorithm proposed by Belady [1966] remains optimal even
in our general model. Peserico [2013] and Bender et al. [2014] also prove this
result in their models.

It is a useful convention that the optimal algorithm uses all available space
even if it could delete some page that will not be seen in the near future. Leaving
a page in a cache longer instead of keeping an unused empty space obviously does
not increase the number of misses.

3.1.2 LRU Stays Competitive in the Sync Model
The least recently used (LRU) algorithm is a well known paging algorithm, that is
on-line, i.e., it gets pages one by one without knowing anything about the future.
LRU keeps as much pages in its cache as possible. When there is no more free
memory left it deletes the least recently used page.

8

It is convenient for us to number cache sizes by the same indices as the re-
quests. The cache size could change slower, or even faster than every request. Our
only assumption is that the cache size does not change during a page request.
If the cache size increases or decreases many times between two page requests
ai, ai+1 we are interested only in the minimal cache size mi.

a1
m1

a2
m2

a3
m3

a4
m4

a5

Figure 3.1: Sequence of requests with cache sizes.

For our purposes we would like to be able to use the least recently used
algorithm and the optimal algorithm interchangeably. To be able to do this we
need to know that LRU is about the same competitive even when the cache sizes
change.

Let us denote by a superscript L the size of the LRU cache, and by superscript
O the size of the optimal cache. The upcoming theorem states the competitive
ratio is around mL

mL−mO , thus we want to keep

mL
1

mL
1 −mO

1
= mL

2
mL

2 −mO
2

mL
1 (mL

2 −mO
2) = mL

2 (mL
1 −mO

1)
mL

1 mL
2 −mL

1 mO
2 = mL

2 mL
1 −mL

2 mO
1

−mL
1 mO

2 = −mL
2 mO

1

mL
1

mL
2

= m0
1

m0
2

We assume we are changing the cache size of LRU and of the optimal algorithm
simultaneously by the same ratio. Another way to state this is that the optimal
cache has size mO

i = ⌊mL
i /c⌋ for some constant c at least two.

Theorem 1. Let mL
1 , mL

2 , . . . , mL
n−1 be minimal sizes of the LRU cache. Let

mO
1 , mO

2 , . . . , mO
n−1 be minimal cache sizes of the optimal algorithm. We assume

that mL
i /mO

i remains constant for all i. The LRU algorithm makes no more than

v
mL

1
mL

1 −mO
1

misses where v is the number of misses of the optimal algorithm. We assume that
both caches are empty at the beginning.

The idea of the proof is the same as in the classical proof used when the cache
size is constant. We divide the requests to phases in such a way that during a
phase LRU never evicts a page that has appeared in this phase. We then show
that the number of cache misses caused by LRU can be upper-bounded by the
number of different pages appearing in this phase. On the other hand the optimal
cache is smaller and thus even if it would keep some pages cached from the last
phase it would still make at least some cache misses (if the LRU cache is twice
as large then the optimal cache causes at least half the number of cache misses
of LRU).

9

Proof. We follow the idea of the proof described by Trevisan [2011]. To simplify
reading we divide the proof into several lemmas.

We divide the sequence of page requests a1, a2, · · · , an into phases. Intuitively
we may imagine that the LRU cache is empty at the start of each phase and the
phase ends one request before the first deletion of a page by the LRU algorithm.
The phases are a pure artificial construct which helps us to analyse the number
of misses and the LRU does not know about phases and it does not delete all
pages from cache at any moment.

More formally let a1, a2, . . . , an be the sequence of requests. First phase starts
at 1 and ends at t for the smallest t such that mL

t < | {ai | i = 1, . . . , t + 1} |,
or at n if no such t exists. The second phase is the first phase of the sequence
at+1, at+2, . . . , an and we define following phases recursively.
Lemma 2. Let 1 ≤ t = T1 < . . . < Tp = n be the ends of phases and let ki be the
number of different pages in the i-th phase. LRU causes no more than ki misses
during the phase i. Moreover ki − 1 ≤ mL

Ti−1 and ki > mL
Ti

.
The optimal algorithm causes at least max(0, ki −mO

Ti−1
− 1) misses.

Proof. By the definition of a phase no page causes more than one miss to the
LRU algorithm thus LRU makes at most ki cache misses during the phase i. The
inequality ki − 1 ≤ mL

Ti−1 holds because there can be only one additional page
requested and the phase did not ended earlier. The inequality ki > mL

Ti
again

follows from the definition of a phase.
On the other hand the optimal algorithm sees at least ki pages during the

phase i and it had at most mO
Ti−1

+1 pages cached from the previous phase (it has
at most mO

Ti−1
pages in the cache before the last page request of the i−1-st phase).

Thus the optimal algorithm causes at least max(0, ki −mO
Ti−1
− 1) misses.

It is convenient for us to bound the number of misses of the optimal algorithm
by ki −mO

Ti
− 1 instead of max(0, ki −mO

Ti−1
− 1).

Lemma 3. Let Ti and ki be as in Lemma 2. The optimal caching algorithm
incurs at least ∑

i

max(0, ki −mO
Ti−1
− 1) ≥

∑
i

ki −mO
Ti
− 1

cache misses.

Proof. We can see that at the beginning even the optimal algorithm makes k1
misses instead of k1−mO

T1−1 we are hoping for and thus we get mO
T1 extra misses.

During the second phase the optimal algorithm causes at least max(0, k2 −
mO

T1 − 1) misses by the previous lemma. We take our mO
T1 extra misses from the

first phase, and add those to the misses from the second phase. If 0 ≥ k2 −mO
T1

we have mO
T1 ≥ k2, and thus we can count that the optimal algorithm did at least

k2 misses. If k2 > mT O
1

we have at least k2 − mO
T1 + mO

T1 − 1 = k2 − 1 misses.
Again we analyse that the optimal algorithm did at least k2 −mO

T2 − 1 and mO
T2

extra ones are kept for the next phase.
We continue in this fashion and at each phase the optimal algorithm does at

least ki−mO
Ti
− 1 misses with mO

Ti
extra ones for the next phase. The claim thus

follows.

10

On the other hand LRU causes at most ki misses during each phase. Thus for
each ki misses of LRU the optimal algorithm causes at least ki −mT O

i
− 1 cache

misses. But we already know that ki > mL
Ti
≥ mO

Ti
. Thus for each ki misses of

LRU the optimal caching algorithm causes at least mL
Ti
−mO

Ti
cache misses.

3.2 Exact Time Model
In this section we give a common generalization of models of Bender et al. [2014]
and Peserico [2013]. We consider a model where the cache size changes at exact
times but cache misses and cache hits take different positive times.

A memory profile m is a function denoting the size of a cache in a given
time. This notation is more common in papers of Bender et al. [2014] and Soor-
chaei [2015]. We are also using similar techniques and proving analogues to their
theorems concerning LRU competitiveness.

Definition 5 (Exact Time Model). In the Exact Time Model we assume that
the memory size changes occur at given times denoted by natural numbers. Each
cache hit lasts for exactly one unit of time and each cache miss lasts for M units
of time.

This is a generalization as by setting M = 1 we get the model of Peserico [2013]
and in the limit M →∞ we get the model of Bender et al. [2014]. Our proof gives
slightly worse constants then the previous ones. We use time augmentation this
means that we consider the LRU cache misses to last a shorter amount of time
than the OPT cache misses. We also assume that the cache is always large enough
to contain at least M different pages. So our result is not directly comparable
to the result of Peserico [2013] or Bender et al. [2014]. Soorchaei [2015] shows
that this time augmentation is necessary up to a constant multiplicative factor in
their model (this result is already observed in the paper by Bender et al. [2014]).

Definition 6 (Bender et al. [2014]). A memory profile m′ is c-memory augmented
for a constant c ∈ R from a memory profile m if m′(t) = cm(t).

Definition 7 (Bender et al. [2014]). A memory profile m′ is c-time augmented
for a constant c ∈ R from a memory profile m if m′(t) = m(⌊t/c⌋).

There is no way for a paging algorithm to utilize a large and fast cache size
increase as it can load at most one page each M time units. On the other hand
it is common for a program to wait for user input, network connection or to be
rescheduled by the operating system. All these could cause the program to be
inactive for a very long time thus giving another running programs enough time
to utilize the cache and thus decrease our program’s cache size. We summarize
this paragraph in the observation below.

Observation 4. We may assume without loss of generality that the cache in-
creases its size by at most one each M time units. But arbitrarily large size
decreases are still possible.

11

3.2.1 LRU is competitive in the Exact Time Model
The main result of this section is Theorem 7. Its proof will combine approaches
both from Theorem 1 and its counterpart given by Bender et al. [2014]. Moreover
we begin by the definition of inner square profiles used by the latter. Recall that
a square profile (Definition 2) is a memory profile that is piecewise constant and
the time can be cut to form squares – the cache size is constant and its size is
the length of the time interval. This definition is not crucial for the proof but
provides a handy tool to make the presentation more clear.

Definition 8 (Bender et al. [2014]). Let m be a memory profile. We define an
inner square profile of m denoted by m′ to be the square profile (see Definition 2)
with inner square boundaries t0 = 0 and ti+1 is defined inductively as the largest
natural number such that ti+1 − ti ≤ m(t) for each time t ∈ [ti, ti+1). Recall that
then m′(t) = ti+1 − ti for each t ∈ [ti, ti+1). See Figure 3.2.

Cache size

Timet0 = 0 t1 t2 t3 t4 t5 t6 t7

m(t)

m′(t)

Figure 3.2: A memory profile m with inner squares and the inner square memory
profile m′ which is the upper envelope of the dotted squares.

We restate a variant of Lemma 3.1 by Bender et al. [2014]. This seems similar
but the setting of the Exact Time Model is different. The proof of both the
following lemma and theorem is also inspired by the aforementioned paper.

Lemma 5. Let m denote a memory profile that does not increase its size too
quickly, that is ∀i < j ∈ N, j − i ≤M we know that m(j) ≤ m(i) + 1 holds where
M is the time duration of a cache miss. Let t0 < t1 < . . . be the inner square
boundaries of the square memory profile m′ which is the inner square profile of m.
Under these assumptions the following inequalities hold:

1. ∀t ∈ N : m′(t) ≤ m(t),

2. ∀i ∈ N : ti+2 − ti+1 ≤ ⌈(1 + 1
M

)(ti+1 − ti)⌉ ≤ 2(ti+1 − ti),

3. ∀i, ∀t ∈ [ti+1, ti+2) : m(t) ≤ (ti+1 − ti) + ⌈(3(ti+1 − ti))/M⌉ ≤ 4(ti+1 − ti).

Proof. 1. Follows directly from the definition of an inner square profile which
is always at most the size of the original profile m.

12

2. For each square of the inner square profile m′ we have a witness of its size,
in other words ∀i ∈ N ∃t∗

i ∈ [ti, ti+1) : m(t∗
i) = m′(ti) = ti+1 − ti.

Our memory profiles satisfy the property that they are not increasing too
much, thus we conclude that

m(ti+1) ≤ m(t∗
i) + ⌈(ti+1 − t∗

i)/M⌉
= (ti+1 − ti) + ⌈(ti+1 − t∗

i)/M⌉
≤ ⌈(1 + 1/M)(ti+1 − ti)⌉ .

By the very definition of an inner square profile we have ti+2−ti+1 ≤ m(ti+1)
as this is one of the sizes that have to be higher than the cache size in the
given square.
Combining results from the previous two paragraphs we get

ti+2 − ti+1 ≤ m(ti+1) ≤ ⌈(1 + 1/M)(ti+1 − ti)⌉ .

3. Again by the same argument we have a bounding time t∗
i that is equal to

the cache size during the time interval i (that is during [ti, ti+1)). We thus
have ∀t ∈ [ti+1, ti+2) :

m(t) ≤ m(t∗
i) +

⌈
t− t∗

i

M

⌉
≤ (ti+1 − ti) +

⌈
ti+2 − ti

M

⌉
= (ti+1 − ti) +

⌈
(ti+2 − ti+1) + (ti+1 − ti)

M

⌉

≤ (ti+1 − ti) +
⌈
⌈(1 + 1/M)(ti+1 − ti)⌉+ (ti+1 − ti)

M

⌉

≤ (ti+1 − ti) +
⌈

2(ti+1 − ti) + (ti+1 − ti)
M

⌉

= (ti+1 − ti) +
⌈

3(ti+1 − ti)
M

⌉

Lemma 6. Let us denote the time when the LRU cache finishes processing of a
page access sequence σ = p1, p2, p4, . . . , p|σ| on a memory profile m by CLRU(m, σ),
similarly we define COP T (m, σ) to be the time when the optimal caching algorithm
finishes processing of σ. All time is counted in the Exact Time Model where each
cache miss of the OPT algorithm lasts M units of time and a cache hit lasts 1
unit of time. Consider any fixed X ≥ 32. A cache miss of the LRU algorithm
lasts M units of time but each cache hit lasts 8X units of time. Where we assume
that M ≥ X.

Let m′ be the inner square memory profile of m and let m′
X,8X stand for the

X-size and 8X-time augmented inner square profile. We assume that m(t) ≥M
for each time t. Without loss of generality we may assume that m(0) = M . Then

CLRU(m′
X,8X , σ) ≤ 8XCOP T (m, σ) + 3M.

13

The fact that the profile of the LRU cache is 8X-time augmented is compen-
sated by the fact that each cache hit lasts 8X units of time. This way the progress
in the non-augmented time is the same as the one of the OPT algorithm. On the
other hand each cache miss of LRU lasts M/8X time instead of M units of time.
This implies that not only LRU finishes earlier than OPT but moreover it also
makes at most X times more cache misses.

The basic idea of the proof is to inductively prove that LRU finishes a square
earlier than the optimal caching algorithm OPT. We amortize each page access
that causes a cache miss to the LRU cache and not to the OPT cache. We consider
two cases – when the page was evicted by a cache size decrease and when it was
not.

It is clearly not vital to have different time and space augmentation. The
LRU algorithm with a larger cache size causes at most as many cache misses as
with a smaller cache size as discussed in Section 3.3. On the other hand this
discrepancy of augmentations greatly simplifies our arguments.

The additive factor 3M is used in the base case. We may as well assume that
LRU may load first three pages for free. Consider the case when m(0) = M and
m(M) = 2M , thus the first two squares have sizes M and 2M . If the optimal
algorithm would case a single cache miss and then accessed the same page for
2M − 1 times it would finish during the second square. On the other hand LRU
would not finish during the first square.

Observe that the memory profile depicted by Figure 3.2 does not satisfy as-
sumptions of Lemma 6 as either the size m(0) > M or there is a time t such that
m(t) < M . It illustrates a general memory profile.

We do not write floor functions in the proof when we are dividing M/X for
the sake of clarity. We could always make X twice as big and we assume M ≥ X.
This is the reason we have chosen X with a large reserve.

Proof. Let us slightly abuse the notation by using OPTj as the set of pages
present in the OPT cache in time j. In the same way we use LRUj.

We show by induction on the number of squares that for all page access
sequences σ if the optimal completion time COP T (m, σ) ∈ [ti+1, ti+2) then

CLRU(m′
X,8X , σ) ≤ 8Xti+1 + 3M.

This induction assumption is made possible by giving the LRU algorithm
two advantages over the optimal one. One is the memory augmentation and the
second one is the time augmentation. Memory augmentation helps us when there
are no cache size decreases because having a larger cache allows for an argument
similar to the one used in constant size LRU analysis. The other advantage is
the time augmentation which allows us to assume that the LRU algorithm always
finishes with a great enough advantage ahead of the optimal one.

Base case i = 0:
Let us suppose that the optimal cache finishes before time t2. We know that

t2 ≤ 3M by Lemma 5. Then LRU can load all pages that OPT does and finish
earlier.

14

Inductive case:
All we need to do is to amortize the number of page accesses that cause a

cache miss to LRU but not to the optimal cache. Let us consider a page request
to a page address p that has caused a cache miss only to the LRU cache. We
distinguish two cases why the page address p was evicted: because of a page size
decrease and when it was evicted because of another page request.

• Let us consider the case when the page address p was evicted because the
square size dropped. We have already observed that instead of keeping
unused space in the cache the optimal caching algorithm may keep pages
that are not going to be requested in its cache until another cache miss
occurs. Thus if LRU evicts k pages because of a size decrease we may
assume that the optimal algorithm evicts at least ℓ := ⌈k/X⌉ pages.
All of these ℓ pages caused a cache miss to the optimal cache at some
point as we assume both the LRU and the optimal cache are empty at the
beginning. When these ℓ pages caused a cache miss to OPT it took

ℓM = ⌈k/X⌉M

units of time.
On the other hand the LRU cache was able to load all of them in time

ℓM

8X
= ⌈k/X⌉M

8X

and it takes
kM

8X
time to load the k evicted pages to LRU again.
Thus we need that

kM

8X
+ ⌈k/X⌉M

8X
≤ ⌈k/X⌉M

which trivially holds. The argument would go through with time augmenta-
tion 4X but we use the similar argument in the next section thus we double
the time augmentation to be able to use it twice.

• The situation when the page address p was evicted because another page
was loaded into the LRU cache also needs to be analyzed in two cases. One
of these cases – when the size of LRU did not decreased too much since the
last access to p will use an argument similar to the one used in the classical
proof of LRU competitiveness. Other case will be similar to the previous
one and will use the observation that if enough pages were evicted because
of a cache size decrease then we may load them again.
First of all we need to lower bound the number of pages present in the LRU
cache. We know that the page address p was already accessed due to our
assumption that it is already present in the optimal cache. Let j denote
the number of the page request when the page address p was accessed for
the last time (that means σj = p). If it would be the case that

COP T (m, σ1, σ2, . . . , σj) ∈ [ti+1, ti+2)

15

and
CLRU(m, σ1, σ2, . . . , σj) ∈ [ti, ti+1)

we have that the size of the LRU cache is at least X(ti+2 − ti+1)/2 by
Lemma 5. If this would not be the case we know that LRU processed the
prefix of length j of the access sequence earlier and it has a time advantage.
We could use this time advantage to load the page address p and finish on
time. Thus let us in the following suppose that the size of the LRU cache
during the request j was at least X(ti+2 − ti+1)/2.
We distinguish two cases – if the LRU cache decreases its size by at least
(ti+2− ti+1)/4 in total between the time it processes the request σj and now
or not.

– The LRU cache does not evict more than X(ti+2−ti+1)/4 pages because
of cache size decreases. This means that it had size at least

X(ti+2 − ti+1)/4

all this time. The page address p was on top of the LRU stack when
it caused a cache miss to it the last time. Since the time the sequence
had to access at least X(ti+2−ti+1)/4 different pages to move the page
address p down enough in the stack.
Let us consider the last X(ti+2−ti+1)/4 different page addresses. LRU
could keep them all in its cache so it caused at most X(ti+2 − ti+1)/4
cache misses and it took it at most

MX(ti+2 − ti+1)/(4 · 8X) = (ti+2 − ti+1)M/32

time units. On the other hand the OPT cache had at most (ti+2−ti+1)
pages cached at the beginning of this address sequence so it took it at
least

(X/4− 1)(ti+2 − ti+1)M
time units.
LRU has therefore enough time to even load all the X(ti+2 − ti+1)/4
page addresses again.

– If at least k = X(ti+2 − ti+1)/4 page addresses were evicted from
the LRU cache because of size decreases then we can use a similar
computation as in the case when p when p was evicted because of a
size decrease. We thus get that LRU may even load X(ti+2 − ti+1)/2
page addresses back.

Theorem 7. Under the assumptions of Lemma 6 the LRU algorithm provided
with X-memory and 8X-time augmented cache always completes sooner than the
optimal cache algorithm.

This theorem also gives us that not only the LRU finishes earlier but due
to the prolonged time of cache hit it is also competitive in the number of cache
misses.

16

Proof. By Lemma 5 the augmented inner square profile has size at least as big
as the original one so it also makes no more misses then the original augmented
profile of LRU cache (for clarification see Section 3.3). Together with Lemma 6
the theorem follows.

3.3 Algorithms with Linearly Ordered Pages
The most basic property that we would like our caching algorithm to satisfy is
that the cache behaves at least as good as if it had its minimal size all the time. In
other words this is a class of cache algorithms without a generalization of Belady
anomaly described by Belady et al. [1969].

We present a class of cache algorithms that satisfy this condition. The LRU
algorithm is a special case of such an algorithm and thus it behaves at least as
good as if it had minimal size all the time. On the other hand Peserico [2013]
gives an example of a cache algorithm with an optimal competitive ratio, but
that is not competitive when the cache capacity changes over time.

Observation 8. Let the cache size be never smaller than some constant m and let
us assume there is a total ordering of pages, such that at most one page changes
its place in this total order during a page request. Moreover we assume that the
caching algorithm does not depend on the cache size. If the cache keeps just the
first mi pages of the linear order, then the cache behaves at least as good as if it
had the minimal size m all the time.

The ordering is a very natural notion of saying “this page will be swapped
before another.”

Proof. We can see that one request causes at most one access to main memory.
Let us assume we do the same sequence of requests on a cache C with constant
size m and on a cache D with variable size, at each moment at least m large (its
size s(t) ≥ m for each time t), and that both have the same algorithm and thus
the same linear ordering of pages all the time. The content of the cache with
variable size D is always a superset of the content of cache C. Thus all misses of
the cache D are also misses of the cache C.

3.4 Depth Model
Here we introduce a new cache model, where pages are not indexed and accessed
using their addresses but instead the program indexes using the depth of the page
in an infinite LRU cache. We show that these models are interchangeable when
the indexing function is computable on processor. Let us note that our simulation
uses more processor time than the original programs.

This model also allows us to construct programs with an arbitrary (given by
a function computable on processor) cache behaviour. Moreover this is a useful
tool how to think about the changing cache size setting. We also show that
the models have the same computational power, although the number of cache
misses will differ. Similarly as the complexity theory studies time constructible
functions we thus show that every function computable on processor is LRU cache
constructible.

17

3.4.1 Definition of the Depth Model
In the standard RAM programs we address memory by page numbers (thus when
we need to we call this model the addressing cache model). In the depth model
we have a depth-cache which is a stack of potentially infinite size which is empty
in the beginning. Pages are identified by their depth in this cache (with LRU
strategy). When a page is requested it is taken from its place in the stack and
pushed on the top of the stack. If there are not enough pages in the cache a new
empty page is pushed on the top. The depth of the page that is on the top of the
depth-cache is defined to be 1.

The depth-cache makes a cache miss if the accessed page has depth greater
than the cache size or when we access a page depth greater than the number of
pages present in the cache we also make a cache miss.

Observation 9. Let us consider two caches of the same constant size, one of
them is addressed by depths and the other is addressed by page addresses and
uses the LRU algorithm. When we access the same pages the Depth Model cache
makes a cache miss if and only if the usual addressing model makes a cache miss.

Proof. The observation follows from the definition of depth-cache and the defini-
tion of a cache miss in the depth cache model.

It is convenient for us to distinguish accessing using depth and using address.
We denote fa(i) the i-th address accessed by a program. Similarly we denote fd(i)
the depth in the depth-cache of the i-th address accessed by the same program.
That means although values fa(i) and fd(i) might differ, the page is the same.

In the next three sections we are dealing just with functions that are com-
putable on the processor. That means we are able to compute them using just
constants in the processor cache and registers. Similarly we could deal with func-
tions that are computable using only accesses to a lower level cache and cause no
cache misses on the higher level.

Definition 9. We say that a function f(n1, . . . , narity(f)) is computable on pro-
cessor if it can be enumerated using only constantly many variables.

Remarks

The depth model might also be used to simulate multiple levels of LRU cache
as follows. The cache could have several sizes corresponding to the sizes of the
multiple levels of LRU caches and when the algorithm accesses a page in a depth
d all caches of size at most d− 1 cause a cache miss and especially if the depth d
is greater than the number of present pages all caches cause a cache miss.

The depth model might also be generalized even more to allow arbitrary pe-
nalization for accessing deep pages. We could, for instance, model linked lists
by a very similar model where we cause d misses by accessing a page of depth
d which corresponds to the d steps needed when accessing the d-th element of a
linked list and moving it to the front.

Given that this model is so natural it is surprising that we have not found
any similar one in the literature.

18

3.4.2 Simulation of the Depth Model with Constant Space
Addressing Using the Page Addresses

Theorem 10. Given a function fd : N → N that is computable on the processor
we can compute each fa(i) without making additional cache misses.

The idea is to track the position of a single page in the depth-cache and see
which page is in the right depth.

Proof. For every time i we can compute how many pages are there in the depth-
cache. This is easily done using just processor registers (in constant space) by
going over all times j = 0 to i and counting how many times we access a page
that is deeper than the current number of pages present in the cache (note that
this could be greater than its size, as its size only tells us when the cache will
make a cache miss). Note that this procedure uses only two variables and several
computations of fd(j), thus can be done without causing a cache miss.

Let ni denote the number of pages present in the stack of the depth-cache in
time i. If fd(i) > ni we can set fa(i) = ni + 1. By induction this page was not
used before by the Addressing Cache.

Algorithm 1: ni: Returns the number of pages present in the cache in time
time.

if time = 0 then
return 0

end
presentpages = 0
for 0 ≤ j < time do

if fd(j) > presentpages then
presentpages ← presentpages + 1

end
end
return presentpages
Note that we could even compute ni continuously during the algorithm (in-

stead of computing it over and over again).
If fd(i) ≤ ni the program would like to access a previously accessed page and

we need to find its address. All we need to do is to decide if a page j is in depth
fd(i) in time i for every accessed page. We show that this can also be done just
using constantly many variables and using several computations of fd(i).

For a page of address j (such that 1 ≤ j ≤ ni) we know that the first access
is in time t such that nt = j − 1 and fd(t) > nt. In time t + 1 the page will
be at the top of the depth-cache. Now the only thing we have to maintain is its
depth dj(k). We know that its depth will increase in time k if fd(k) > dj(k) (we
access a page that is deeper than our page of address j), its depth will stay the
same if fd(k) < dj(k) (we access a page that is on a lower position in the cache),
and if fd(k) = dj(k) then dj(k + 1) = 1 (as we accessed the page of address j).
This can be done in constant space. After we find a page such that dj(i) = fd(i)
we simply set fa(i) = j.

dj(k + 1) =

⎧⎪⎪⎨⎪⎪⎩
dj(k) + 1 if fd(k) > dj(k),
dj(k) if fd(k) < dj(k),
1 if fd(k) = dj(k).

19

Algorithm 2: firstAccT ime: Computes the first access time of the page
address page before time time.

presentpages ← 0
for 0 ≤ j ≤ time do

if fd(j) > presentpages then
presentpages ← presentpages + 1

end
if presentpages ≥ page then

return j + 1
end

end
return -1

Algorithm 3: getDepth: Computing the depth of the page address page
at time time.

depth ← 1
fat ← firstAccTime(page, time)
if fat < 0 then

return -1
end
for fat ≤ j < time do

fdj ← fd(j)
if fdj = depth then

depth ← 1
end
else if fdj > depth then

depth ← depth + 1
end

end
return depth

Algorithm 4: fa: Computing fa(i) for given time i.
presentpages ← ni(i)
fdi ← fd(i)
if fdi > presentpages then

return presentpages + 1
end
for 1 ≤ j ≤ presentpages do

if getDepth(j, i) = fdi then
return j

end
end

3.4.3 Simulation of the Address Model with Constant
Space Addressing Using the Depth Model

Theorem 11. Given a function fa : N → N that is computable on the processor
we can compute each fd(i) without making additional cache misses.

20

The idea is to count the number of pages that are accessed after the last access
to the given page. This enables us to compute its depth in the depth-cache.

Proof. We can determine if a page address was accessed at some time before a
given time. Also we can compute the maximal accessed address. All this can be
done on processor by going through all accesses. Using these primitives we can
compute how many pages are there present in the depth-cache in a given time.

Algorithm 5: maxaddr: Returns the maximum of used page addresses
until time.

maxa ← 0
for 0 ≤ i < time do

if fa(i) > maxa then
maxa ← fa(i)

end
end
return maxa

Algorithm 6: addrhasbeenaccessed: Determines if a given address addr
was accessed before time time.

for 1 ≤ k < time do
if fa(k) = addr then

return True
end

end
return False

Algorithm 7: ni: Determines how many pages are there present in time
time.

maxa ← maxaddr(time)
pagespresent ← 0
for 1 ≤ j < maxa do

if addrhasbeenaccessed(j, time) then
pagespresent ← pagespresent + 1

end
end
For a given page address j we can compute the time of first access in constant

space. We just have to find the minimum time t such that fa(t) = j. Thus if the
time i is the first time the page fa(i) is accessed, we set fd(i) = ni + 1 where ni

is the number of pages present in the depth-cache in time i.
If the page fa(i) has already been accessed, we have to compute its depth. For

every two pages we can keep track which one has been accessed the last. Thus
we can compute how many pages has been accessed after the last access of page
fa(i) which gives us the depth of page fa(i).

21

Algorithm 8: accessedlater: Returns True if page2 was accessed after
page1 (before time time) and False if not. If page1 was not visited returns
True if page2 was visited and False otherwise.

p1vis ← False
p2vis ← False
p1 ← True
for 0 ≤ i < time do

if fa(i) = page1 then
p1vis ← True
p1 ← True

end
else if fa(i) = page2 then

p2vis ← True
p1 ← False

end
end
if ¬ p1vis then

return p2vis
end
else

return ¬ p1
end

Algorithm 9: getDepth: Returns the depth of page address page at time
time.

depth ← 1
maxa ← maxaddr(time)
for 1 ≤ i ≤ maxa do

if accessedlater(page, i, time) then
depth ← depth + 1

end
end
return depth

Algorithm 10: fd: Computes fd(i) using fa.
fai ← fa(i)
if addrhasbeenaccessed(fai, i) then

return getdepth(fai, i)
end
else

return ni(i) + 1
end

22

3.4.4 Programs with Cache Behaviour Given by a Con-
stant Space Computable Function

Loosely speaking in this section we prove that every cache behaviour given by
a function computable on processor can be realized by an algorithm that does
not need to consider the cache size. We require just small and clearly necessary
conditions on both functions m and a in the following theorem. The function
a gives the number of page accesses that should be done and the function m
determines the number of cache misses on this many page accesses and a depth
cache of a given size. The only assumption that might be theoretically weakened
is the fact that both m and a are computable on processor. On the other hand
this is a very rich class of functions describing asymptotic behaviours.

Theorem 12. Let us assume a function a : N→ N and a function

m : N× N+ → N+

such that
∀n, s ∈ N : m(n, s) ≤ a(n)

and
∀n, s ∈ N : m(n, s) ≥ m(n, s + 1),

both of them computable on processor. Moreover we assume that

m(n, s) = m(n, n) for each s ≥ m(n, n).

We make a cache-oblivious algorithm A that takes input n and makes exactly
a(n) memory accesses and exactly m(n, s) cache misses on an LRU cache of size s
(without knowing the size s).

Proof. By Theorem 10 it suffices to construct a function fd(i) that is addressing
a depth-cache and is also computable on processor.

We may suppose that m(n, n) is the number of pages ever accessed and
m(n, 1) = a(n) as we want to make a(n) memory accesses and accessing the
page at depth 1 more times gives us nothing.

First of all we access all pages that will ever be accessed in the first for
loop. Then we make sure that at each cache size s we make m(n, s)−m(n, s + 1)
additional cache misses than with cache size s+1. This is done easily by accessing
the page at the depth s + 1.

Algorithm 11: A(n): Makes a(n) memory accesses and m(n, s) misses on
a depth-cache of size s.

for 1 ≤ d ≤ m(n, n) do
Access the page at the depth d

end
for 1 ≤ s < m(n, n) do

smisses ← m(n, s)−m(n, s + 1)
for 0 ≤ i < smisses do

Access the page at the depth s + 1
end

end

23

This approach accesses depths in a mostly increasing order. Theorem 10 gives
us a slightly stronger tool, namely we can make misses according to an arbitrary
function fd that is computable on processor.

3.4.5 Any Computation on the Address Model is Com-
putable on the Depth Model

Here we give only a proof that the models are similarly powerful but the number
of cache misses will be dramatically different.

Observation 13. Anything that can be computed by an algorithm that uses depth
addressing can be also computed by an algorithm that uses the usual addressing
by page addresses.

Proof. We can simulate the depth-cache using a single array and move pages as
they are accessed.

Observation 14. Anything that can be computed by an algorithm that uses ad-
dressing by page addresses can also be computed by an algorithm that uses depth
addressing.

Proof. When the original algorithm accesses the page address fa(i) we just access
the depth fd(i) = fa(i) and then all the depths fa(i) − 1, fa(i) − 2, . . . , 3, 2, 1 in
decreasing order. This leaves the LRU depth-cache in such a state that depths
correspond to page addresses.

It would be interesting to decide if these kinds of simulations can be made in
such a way that they cause the same number of cache misses as their counterparts.

3.4.6 Changing Cache Size
In this section we investigate what happens to the depth model when we permute
the cache sizes in time. This is different than in the classical addressing model
because not all permutations there are valid. In the classical model we may
assume that the cache size grows by at most one page each time, as we cannot
cache more pages anyway. This does not hold for the depth-cache – we may
assume arbitrary size changes because the cache is only interested in the accessed
depth. In other words the depth-cache is not empty when we increase its size.
This is the main advantage of the depth-cache model.

Another interesting feature of depth-caches is that provided that the cache has
constant size we can permute the accessed depths and still get the same number
of cache misses, although we cannot expect to access the same set of pages. This
does not hold at all for an address cache – for instance take a program that reads
each item in an array thousand times and then continues with others versus a
program that thousand times scans the array.

We give a simple observation dealing with the case where no misses are caused
by accessing an empty cache. This models the situation when the program is
already running and all pages have already been accessed. Equivalently we could
access all pages before the start of our program and cause at most twice many
cache misses.

24

We can simulate all permutations of cache sizes either by permuting the actual
sizes or by permuting the depth accesses. In the statement of the next theorem
we choose the latter.

Definition 10 (Oxley [2006]). A pair M = (E, I) is called a matroid iff E is a
finite set (called the ground set) and I (called the set of independent sets) is a
family of subsets of E with the following properties (also known as independent
sets properties):

(I1) The empty set is independent ∅ ∈ I.

(I2) Every subset of an independent set is independent S ∈ I, T ⊆ S ⇒ T ∈ I.

(I3) For any two independent sets A, B ∈ I of different size – without loss of
generality |A| < |B| we have an element e ∈ B \ A such that {e} ∪ A ∈ I.

Definition 11. Let Sn stand for the set of all permutations over n elements

Sn = {π : [n]→ [n] | π is bijective} .

Definition 12. For a fixed depth d ∈ N, cache size function s : N → N and a
finite set of times T ⊂ N we denote SmallerT (s, d) = {i ∈ T | s(i) < d} the set of
times where the cache size is smaller than d.

Theorem 15. Let s : N → N be a function that determines the size of a depth-
cache, that is the size of the depth-cache in time i is s(i). Let fd : [n]→ N be the
sequence of page requests to the depth-cache. We denote m(fd, s) the number of
cache misses caused by the sequence of n requests determined by fd on a depth-
cache of sizes s(i).

Let us suppose that all cache misses are caused by accessing a page with a
depth greater than the cache size. In other words no cache miss is caused because
of there are not enough pages present in the cache.

Let us denote Mw the maximal number of cache misses (worst case) over all
permutations Mw = maxπ∈Sn m(fd, s ◦ π). Let us denote Mb the minimal number
of cache misses (best case) over all permutations Mb = minπ∈Sn m(fd, s ◦ π).
There is an algorithm that computes both Mw and Mb and runs in polynomial
time and polynomially many times calls fd.

Let us denote Ma the average number of cache misses over all permutations
Ma = Eπ∈Sn [m(fd, s ◦ π)] where (s ◦ π)(i) = s(π(i)). Then

Ma =
n∑

i=1

Smaller[n](s, fd(i))
n

holds.

Proof. Let us prove the cases one by one.

(Mw) Let M = (R, I) be a pair where R is the set of times of requests R = [n]
and I denotes the set of subsets of R such that for each I ∈ I all requests
in I cause a cache miss in some permutation. In other words we have a

25

different time for each request such that the request would cause a cache
miss at that time.
Formally when we have I ∈ I such that I =

{
i1, i2, . . . , i|I|

}
then there is a

set CI =
{
c1, c2, . . . , c|I|

}
such that ck ̸= cℓ for k ̸= ℓ and accessing a page

in depth fd(iℓ) at the time cℓ causes a cache miss, that is s(cℓ) < fd(iℓ). We
show that M forms a matroid.
Side note: Another formalization would be to say that there exists a permu-
tation π ∈ Sn such that π(iℓ) = cℓ and we have s(π(iℓ)) < fd(iℓ). But this
permutation would not be uniquely determined usually as the independent
sets I have mostly cardinality smaller than n. We thus believe that the I
and CI formalization given in the previous paragraph and used in the rest
of the proof is easier to read and comprehend.

(I1) As there are no requests in the empty set thus all of those cause a
cache miss.

(I2) If we have a set of requests I ∈ I such that all of those can cause a
cache miss (each in different time) the same holds for each subset of I.

(I3) Let us suppose that the sets A, B ∈ I are sorted by the accessed depth,
in other words A =

{
a1, a2, . . . , a|A|

}
, B =

{
b1, b2, . . . , b|B|

}
then for

each i < j we have fd(ai) ≥ fd(aj) and the same holds for the set
B, thus ∀i < j : fd(bi) ≥ fd(bj). Additionally we may suppose that if
fd(i) = fd(j) and both i, j ∈ A ∩ B the ordering is the same on the
intersection of A and B.
Without loss of generality we may assume that the times for A ∩ B
are the same. Suppose we would have a request r ∈ A ∩ B such that
cr ̸= c′

r, cr ∈ CA, c′
r ∈ CB (let us take the smallest such in B, that is

with the greater fd(r)). Now we may take the time cr if s(cr) > s(c′
r)

or c′
r if s(c′

r) ≥ s(cr) and use it for the same request r in both CA

and CB. Without loss of generality let s(cr) > s(c′
r), if cr is used in

CB elsewhere as some c′
t we can replace it with c′

r and the inequality
fd(t) > s(c′

t) = s(cr) > s(c′
r) would also hold.

We explicitly reason that we cannot cycle in the previous argument.
If it holds that t > r everything is ok, we have reduced the number
of differences on the beginning of the set A ∩ B by one and we may
continue until all times in A∩B are the same. The case when fd(t) >
fd(r) gives us a contradiction either with the choice of r or with the
fact that cr is used twice in CA.
Now we can take the time e ∈ B \ A that is the smallest in the
ordering given by the ordering of B (that is with the greatest fd(e)).
We accompany it with the time ce ∈ [n] \ CA with the smallest cache
size, that is min s(ce). Observe that as the size of B is strictly greater
than the size of A thus the size of CB is also strictly larger than the
size of CA. Moreover the intersection of A∩B uses the same times so
there is a time in CB\A that is not used in CA.
We observe that s(ce) < fd(e) by definition of e and ce.

26

For a given set I ⊆ [n] we can decide in polynomial time if I ∈ I or not.
This can be done greedily by sorting depths of page accesses in I and then
assigning times with the greatest s(i) such that the given page request still
causes a cache miss.
It is a well known fact that we can use a greedy algorithm on matroids in
polynomial time Oxley [2006]. We could get an even easier proof by using
the matroid intersection theorem Oxley [2006] – given any two matroids
M1 = (E, I1), M2 = (E, I2) one can find a maximal set that is independent
in both matroids

max
S∈I1∩I2

|S|.

We define two matroids on the ground set [n] × [n]. One has independent
sets consisting of pairs with different second parts ((a, b), (c, d) ∈ I thus
c ̸= d) and the other matroid has the condition on independent sets that
for each pair (a, b) we have a cache miss fd(a) > s(b).

(Mb) The proof is analogous to (Mw).

(Ma) By linearity of expectation we have

Ma = Eπ∈Sn [m(fd, s ◦ π)]

=
n∑

i=1
Pr

π∈Sn

[fd(i) > s(π(i))]

=
n∑

i=1

Smaller[n](s, fd(i))
n

.

27

4. Competing Algorithms
In this chapter we investigate perhaps the most interesting case when there are
two algorithms competing for one cache. We give a bound on the number of
cache misses of two pseudo-parallel algorithms. Moreover we discuss two basic
assumptions – the tall cache assumption and the regularity assumption used in
our proof. These assumptions tell us whether the results of the first section are
useful and generalizable to algorithms running in pseudo-parallel.

4.1 Two Competing Algorithms
We are not aware of any application of changing cache size other than when there
are two or more programs competing for the same cache. This is even consistent
with the metaphor of cache where a bookshelf represents the cache and there
are two people sharing it. The bookshelf itself also does not change its size, but
the people compete for it. Of course there is one huge difference between this
metaphor and our cache model and that is that the cache is self maintained unlike
the bookshelf.

The following simple observation provides us with a way to bound the number
of cache misses of two algorithms running in pseudo parallel (the CPU switches
back and forth between these two programs) and using the same cache. It is an
easy observation that these results can be immediately generalized to arbitrarily
many pseudo parallel programs.

Observation 16. Let us consider two programs A and B running in pseudo
parallel and sharing the same cache. We can bound the total number of misses of
both these algorithms by the sum of cache misses caused by A on a cache of half
the size and B on a cache of half the size.

Proof. Let us consider the following caching strategy: we divide the cache into
two halves and each page request of the program A is cached using the first half
and each request of B is cached using the second half. Moreover caching in both
halves is done optimally.

This is a valid caching algorithm. We are not able to implement it in practice
as the caches neither know which program is requesting the page (this would not
be such an issue) nor are able to predict which page will be used farthest in the
future. Luckily for us we can use the LRU caching policy instead and get similar
performance results as we have discussed in depth in Chapter 3.

This caching algorithm makes the same number of cache misses as if both A
and B would have been run separately on two different caches of half the size.

There are programs that behave differently regarding different cache sizes.
Only few examples might be:

• A program computing the sum of all elements of an array. This memory
access sequence is sometimes called a scan. This takes Θ(N/B) misses
regardless of the cache size (where N is the number of elements of the array
and B stands for the page size). This bound would be true even for a cache
of unit size (M = 1).

28

The same independence on the cache size appears even for searching in a
van Emde Boas tree (Prokop [1999] proves it takes O(logB N) page requests
to search in such a tree).

• On the other hand sorting an array of elements using funnelsort takes

O(1 + (n/B)(1 + logM n))

cache misses as shown by Frigo et al. [1999] under the tall cache assumption
introduced in Definition 1.
The same case occurs for matrix transposition – under the tall cache as-
sumption Frigo et al. [1999] can transpose an m × n matrix and cause at
most O(1 + mn/B) misses (the matrix is in row-major layout).

The list of algorithms in the above categories is not comprehensive at all
but on the previous examples we have seen algorithms with different demand for
cache sizes. It is thus natural to generalize Observation 16 to other divisions than
halves.

Observation 17. Let us consider two programs A and B running in pseudo
parallel and sharing the same cache. Let M stand for the cache size and let us
consider two natural numbers M1, M2 ∈ N such that M1 + M2 = M . We can
bound the total number of misses of both these algorithms by the sum of cache
misses caused by A on a cache of size M1 and B on a cache of size M2.

Proof. The same argument as in the proof of Observation 16.

We can even optimize over all these cache subdivisions.

Theorem 18. Let us consider two programs A and B running in pseudo parallel
and sharing the same cache. Let us denote A(m) the number of cache misses
caused by the algorithm A on a cache of size m and B(m) the number of cache
misses caused by the algorithm B. We can bound the total number of misses of
both these algorithms running in pseudo parallel on a cache of size M by

min
M1+M2=M

A(M1) + B(M2).

Proof. Immediate consequence of Observation 17.

4.2 Tall Cache Assumption
We have seen that the tall cache assumption is important for some algorithms. It
is quite natural when dealing with matrices in row-major order or column-major
order. We can evade this in some cases by using another matrix representation,
for instance the Z-order (also called Lebesgue curve or Morton order). The Z-
order is given recursively by the Z-pattern over sub matrices, that is we first do
the Z-order of the top left sub matrix, than we continue with Z-orders of the
top right, bottom left and bottom right sub matrices. These representations are
depicted for a matrix A of size 4 × 4 in Figure 4.1, Figure 4.2, and Figure 4.3

29

A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

Figure 4.1: Row-major order: the matrix in a one dimensional array is stored as:
A1,1, A1,2, A1,3, A1,4, A2,1, A2,2, A2,3, A2,4, A3,1, A3,2, A3,3, A3,4, A4,1, A4,2, A4,3, A4,4.

A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

Figure 4.2: Column-major order: the matrix is one dimensionally stored as:
A1,1, A2,1, A3,1, A4,1, A1,2, A2,2, A3,2, A4,2, A1,3, A2,3, A3,3, A4,3, A1,4, A2,4, A3,4, A4,4.

A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

Figure 4.3: Z-order: the matrix in a one dimensional array is stored as:
A1,1, A1,2, A2,1, A2,2, A1,3, A1,4, A2,3, A2,4, A3,1, A3,2, A4,1, A4,2, A3,3, A3,4, A4,3, A4,4.

respectively. The Z-order has been studied by Chatterjee et al. [1999], Chatterjee
et al. [2002], and Frens and Wise [1997].

Many other algorithms use the tall cache assumption. For instance the famous
funnelsort also heavily depends on it. Interestingly we know that by the result
of Brodal and Fagerberg [2003] that the tall cache assumption is necessary for
achieving an optimal comparison based cache-oblivious sorting.

This leads us to the conclusion that the cache size cannot be arbitrarily divided
between arbitrary programs. Moreover when considering a situation of multiple
programs competing with each other over one cache we would very much like to
satisfy all possible tall cache assumptions.

30

4.3 Regularity
Regularity as in Definition 4 is a basic property of algorithms and data structures
described by Prokop [1999] and Frigo et al. [1999]. It is also the basic property
that allows us to use LRU instead of the optimal cache replacement policy. In
this section we investigate the role of regularity to the competition for a single
cache.

Observation 19. For each m ∈ N there is a cache-oblivious algorithm that given
n causes m cache misses if the cache is at least m large and causes n cache misses
if the cache is smaller than m.

Proof. We need to construct an algorithm that does not know the cache size but
nevertheless causes the specified number of misses. We note that fd(i) = m is
a function computable on processor and thus by Theorem 10 there exists the
required algorithm.

This simple observation might also be proven directly as the previous algo-
rithm corresponds to periodic scanning of m different pages. But what is more
important is that such an algorithm is not regular for any cache size M such
that M < m ≤ 2M . This single point of irregularity thus gave us many cache
sizes that do not satisfy the regularity condition. One would like to bound the
number of such “breaking points” or the number of such irregularity sizes but
when we set m := ⌊n/α(n)⌋ we have ⌊n/2α(n)⌋ sizes M which do not satisfy the
regularity condition for an arbitrarily small function α – think of it as the inverse
Ackermann function.

One could construct even wilder cache behaviours easily using Theorem 10 or
directly Theorem 12. On the other hand these are adversarial algorithms that
we do not usually run. Informally the regularity corresponds to the fact that
mostly we consider a sub-problem small enough to fit in the cache and if the
cache doubles the sub-problem that fits to the doubled cache is at most twice as
large. We do not know a natural cache-oblivious algorithm that would disrupt
this pattern and would behave like the previous adversarial algorithm.

31

Conclusion
We have provided a common generalization of two known results that LRU is
competitive. This generalization gives a result for perhaps the most practical
setting where a cache miss is much longer than a cache hit but both take non-zero
amount of time. We have also provided a new view of caches namely the depth
model which allows us to easily construct algorithms with given cache behaviours.
And we have provided an analysis of what happens when two or more programs
share one cache in pseudo parallel. This result also provides practical advice how
to design fast algorithms which can be summed as follows the cache-oblivious
algorithms that satisfy the regularity condition and are not much dependent on
the tall cache assumption behave well.

Open Problems
It would be interesting to investigate what happens in the case when more threads
share a cache, but they also share some of their pages. This resembles the problem
of parallel algorithms and cache behaviour which was already considered in the
literature.

The question of balancing the number of misses and the level of parallelism of
several programs seems to be of a great practical importance. However it seems
to be hard to theoretically grasp both the formalization of the load-balancing and
all details of practical cache implementations in today’s computers.

The depth cache model would be even more interesting if we were able to
decide whether the simulations provided in Section 3.4.5 can be made in such a
way that they cause the same number of cache misses as their counterparts or at
least at most some reasonable function of the cache misses of their counterparts.
Moreover there is the question of whether there can be a precise simulation of one
model in the other one when the access function is not computable on processor.

32

Bibliography
Alok Aggarwal, Jeffrey Vitter, et al. The input/output complexity of sorting and

related problems. Communications of the ACM, 31(9):1116–1127, 1988.

Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded
Schwartz. Communication-optimal parallel algorithm for Strassen’s matrix
multiplication. In Proceedings of the twenty-fourth annual ACM symposium
on Parallelism in algorithms and architectures, pages 193–204. ACM, 2012.

Laszlo A. Belady. A study of replacement algorithms for a virtual-storage com-
puter. IBM Systems journal, 5(2):78–101, 1966.

Laszlo A. Belady, Robert A. Nelson, and Gerald S. Shedler. An anomaly in
space-time characteristics of certain programs running in a paging machine.
Communications of the ACM, 12(6):349–353, 1969.

Michael A. Bender, Roozbeh Ebrahimi, Jeremy T. Fineman, Golnaz Ghasemies-
feh, Rob Johnson, and Samuel McCauley. Cache-adaptive algorithms. In Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 958–971. Society for Industrial and Applied Mathematics, 2014.

Michael A. Bender, Erik D. Demaine, Roozbeh Ebrahimi, Jeremy T. Fineman,
Rob Johnson, Andrea Lincoln, Jayson Lynch, and Samuel McCauley. Cache-
adaptive analysis. In Proceedings of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures, pages 135–144. ACM, 2016.

Gerth Stølting Brodal and Rolf Fagerberg. On the limits of cache-obliviousness. In
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 307–315. ACM, 2003.

Randal Bryant, O’Hallaron David Richard, and O’Hallaron David Richard. Com-
puter systems: a programmer’s perspective, volume 2. Prentice Hall Upper
Saddle River, 2003.

Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra, and
Mithuna Thottethodi. Nonlinear array layouts for hierarchical memory sys-
tems. In Proceedings of the 13th international conference on Supercomputing,
pages 444–453. ACM, 1999.

Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and Mithuna Thot-
tethodi. Recursive array layouts and fast matrix multiplication. IEEE Trans-
actions on Parallel and Distributed Systems, 13(11):1105–1123, 2002.

Erik D. Demaine. Cache-oblivious algorithms and data structures. Lecture Notes
from the EEF Summer School on Massive Data Sets, 8(4):1–249, 2002.

Jeremy D. Frens and David S. Wise. Auto-blocking matrix-multiplication or
tracking BLAS3 performance from source code. In ACM SIGPLAN Notices,
volume 32, pages 206–216. ACM, 1997.

33

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachan-
dran. Cache-oblivious algorithms. In Foundations of Computer Science, 1999.
40th Annual Symposium on, pages 285–297. IEEE, 1999.

Andrea Lincoln. Analysis of Recursive Cache-Adaptive Algorithms. PhD thesis,
Citeseer, 2014.

Ishai Menache and Mohit Singh. Online caching with convex costs. In Proceedings
of the 27th ACM symposium on Parallelism in Algorithms and Architectures,
pages 46–54. ACM, 2015.

James G. Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.

Enoch Peserico. Paging with dynamic memory capacity. arXiv preprint
arXiv:1304.6007, 2013.

Harald Prokop. Cache-oblivious algorithms. PhD thesis, MIT, 1999.

Roozbeh Ebrahimi Soorchaei. Cache-Adaptive Algorithms. PhD thesis, Stony
Brook University, 2015.

Luca Trevisan. Combinatorial optimization: Exact and approximate algorithms.
Standford University, 2011.

34

List of Figures

3.1 Sequence of requests with cache sizes. 9
3.2 An inner memory profile . 12

4.1 Row-major order . 30
4.2 Column-major order . 30
4.3 Z-order . 30

35

List of Abbreviations
{x1, x2, x3, . . .} The set containing elements x1, x2, x3, . . .
N The set of natural numbers {0, 1, 2, 3, . . .}.
N+ The set of positive natural numbers {1, 2, 3, . . .}.
[n] The set of the first n positive natural numbers {1, 2, . . . , n}.
Z The set of integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
⌈x⌉ The smallest integer greater or equal to x.
⌊x⌋ The greatest integer smaller or equal to x.
Pr[A] The probability that an event A occurs.
E[X] The expectation of a random variable X.
CPU A central processing unit.
FFT The discrete fast Fourier transformation algorithm.
I/O An input/output operation.
ISO The International Organization for Standardization.
LRU The least recently used caching algorithm.
OPT An optimal caching algorithm.
RAM A random-access memory.

36

	Introduction
	Previous Models
	History
	Architecture of Computer Caches

	Previous Results
	Synchronized Caching Algorithms
	Cache-Adaptive Model
	Parallel Algorithms

	Cache Models
	Sync Model
	Belady is Still Optimal in the Sync Model
	LRU Stays Competitive in the Sync Model

	Exact Time Model
	LRU is competitive in the Exact Time Model

	Algorithms with Linearly Ordered Pages
	Depth Model
	Definition of the Depth Model
	Simulation of the Depth Model in the Page Address Model
	Simulation of the Address Model in the Depth Model
	Programs of a Given Cache Behaviour
	Equivalence of Depth and Address Models
	Changing Cache Size

	Competing Algorithms
	Two Competing Algorithms
	Tall Cache Assumption
	Regularity

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations

