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Abstract

Integer Linear Programming (ILP) has a broad
range of applications in various areas of artificial in-
telligence. Yet in spite of recent advances, we still
lack a thorough understanding of which structural
restrictions make ILP tractable. Here we study ILP
instances consisting of a small number of “global”
variables and/or constraints such that the remaining
part of the instance consists of small and otherwise
independent components; this is captured in terms
of a structural measure we call fracture backdoors
which generalizes, for instance, the well-studied
class of N -fold ILP instances.

Our main contributions can be divided into three
parts. First, we formally develop fracture back-
doors and obtain exact and approximation algo-
rithms for computing these. Second, we exploit
these backdoors to develop several new parameter-
ized algorithms for ILP; the performance of these
algorithms will naturally scale based on the num-
ber of global variables or constraints in the instance.
Finally, we complement the developed algorithms
with matching lower bounds. Altogether, our re-
sults paint a near-complete complexity landscape
of ILP with respect to fracture backdoors.

1 Introduction

Integer Linear Programming (ILP) is the archetypical repre-
sentative of an NP-complete optimization problem and has
a broad range of applications in various areas of artificial
intelligence. In particular, a wide variety of problems in
artificial intelligence are efficiently solved in practice via a
translation into an ILP, including problems from areas such
as planning [van den Briel et al., 2005; Vossen et al., 1999],
process scheduling [Floudas and Lin, 2005], pack-
ing [Lodi et al., 2002], vehicle routing [Toth and Vigo, 2001],
and network hub location [Alumur and Kara, 2008].

In spite of recent advances [Ganian and Ordyniak, 2016;
Ganian et al., 2017; Jansen and Kratsch, 2015], we still lack
a deep understanding of which structural restrictions make
ILP tractable. The goal of this line of research is to iden-
tify structural properties (formally captured by a numerical

structural parameter k) which allow us to solve ILP effi-
ciently. In particular, one seeks to either solve an ILP in-

stance I in time f(k) · |I|O(1) (a so-called fixed-parame-

ter algorithm), or at least in time |I|f(k) (a so-called XP
algorithm), where f is a computable function. This ap-
proach lies at the core of the now well-established param-
eterized complexity paradigm [Downey and Fellows, 2013;
Cygan et al., 2015] and has yielded deep results capturing the
tractability and intractability of numerous prominent prob-
lems in diverse areas of computer science—such as Con-
straint Satisfaction, SAT, and a plethora of problems on di-
rected and undirected graphs.

In general, structural parameters can be divided into two
groups based on the way they are designed. Decomposi-
tional parameters capture the structure of instances by ab-
stract tools called decompositions; treewidth is undoubtedly
the most prominent example of such a parameter, and previ-
ous work has obtained a detailed complexity map of ILP with
respect to the treewidth of natural graph representations of
instances [Ganian and Ordyniak, 2016; Ganian et al., 2017].
On the other hand, backdoors directly measure the “dis-
tance to triviality” of an instance: the number of sim-
ple operations required to put the instance into a well-
defined, polynomially tractable class. While the backdoor
approach has led to highly interesting results for problems
such as Constraint Satisfaction [Gaspers et al., 2017] and
SAT [Gaspers and Szeider, 2012], it has so far been left
mostly unexplored in the arena of ILP.

1.1 Our Contribution

Here, we initiate the study of backdoors to triviality for
ILP by analyzing backdoors which fracture the instance into
small, easy-to-handle components. Such fracture backdoors
can equivalently be viewed as measuring the number of
global variables or global constraints in an otherwise “com-
pact” instance; in fact, we identify and analyze three separate
cases depending on whether we allow global variables only,
global constraints only, or both. We obtain a near-complete
complexity landscape for the considered parameters: in par-
ticular, we identify the circumstances under which they can
be used to obtain fixed-parameter and XP algorithms for ILP,
and otherwise prove that such algorithms would violate well-
established complexity assumptions. Our results are summa-
rized in the following Table 1 (formal definitions are given in
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Section 3).

Variable Constraint Mixed

param. FPT (Cor. 12) FPT (Cor. 12) XP (Cor. 11)
unary pNP-c XP, W[1]-h pNP-c

(Th 20) (Th 19, 21) (Th 20)
arbitrary pNP-c pNP-c (Th 22) pNP-c

Table 1: Complexity landscape for fracture backdoors.
Columns distinguish whether we consider variable backdoors,
constraint backdoors, or mixed backdoors. Rows correspond
to restrictions placed on coefficients in the ILP instance.

As is evident from the table, backdoor size on its own is
not sufficient to break the NP-hardness of ILP; this is far from
surprising, and the same situation arose in previous work on
treewidth. However, while positive results on treewidth (as
well as other considered decompositional parameters such as
torso-width [Ganian et al., 2017]) required the imposition of
domain restrictions on variables, in the case of backdoors
one can also deal with instances with unrestricted variable
domains—by instead restricting the values of coefficients
which appear in the ILP instance. Here, we distinguish three
separate cases (corresponding to three rows in Table 1): co-
efficients bounded by the parameter value, coefficients which
are encoded in unary, and no restrictions. It is worth noting
that in the case of treewidth, ILP remains NP-hard even when
coefficients are restricted to ±1 and 0.

Our results in row 1 represent a direct generalization
of three extensively studied classes of ILP, specifically
n-fold ILP, two-stage stochastic ILP and 4-block N -fold
ILP [De Loera et al., 2013; Onn, 2010]. The distinction lies
in the fact that while in the case of all three previously
mentioned special cases of ILP the ILP matrix must be
completely uniform outside of its global part, here we im-
pose no such restriction. The only part of our complex-
ity landscape which remains incomplete, the case of mixed
backdoors combined with bounded coefficients, then corre-
sponds to resolving a challenging open problem in the area
of N -folds: the fixed-parameter (in)tractability of 4-block
N -fold ILP [Hemmecke et al., 2010]. A fixed-parameter al-
gorithm for 4-block N -fold would also provide significant al-
gorithmic improvements for problems in areas such as social
choice [Knop et al., 2017].

In the intermediate case of coefficient values encoded in
unary (row 2), we surprisingly show that ILP remains poly-
nomially tractable when the number of global constraints is
bounded by a constant, but becomes NP-hard if we use global
variables instead. To be precise, we obtain an XP algorithm
parameterized by constraint backdoors, rule out the existence
of a fixed-parameter algorithm for this case, and also rule out
XP algorithms for variable and mixed backdoors. These also
represent our most technical results: especially the XP algo-
rithm requires the combination of deep linear-algebraic tech-
niques with tools from the parameterized complexity toolbox.

Last but not least, all our algorithmic results first require
us to compute a fracture backdoor. It turns out that comput-
ing fracture backdoors in ILP is closely related to solving the
VERTEX INTEGRITY problem [Drange et al., 2016] on bipar-

tite graphs; unfortunately, while the problem has been stud-
ied on numerous graph classes including cobipartite graphs,
its complexity remained open on bipartite graphs. Here we
obtain both an exact fixed-parameter algorithm as well as a
polynomial time approximation algorithm for finding fracture
backdoors. As an additional result, we also show that the
problem is NP-complete using a novel reduction.

The paper is structured as follows. After introducing the
necessary notions and notation in the preliminaries, we pro-
ceed to formally define our parameter and develop algorithms
for computing the desired backdoors. We then present our re-
sults separated by the type of restrictions put on the size of
the matrix coefficients in the remaining sections.

2 Preliminaries

We will use standard graph terminology, see for instance the
textbook by Diestel [2012]. In the following let A be a n×m
matrix and let C and R be a subset of columns and rows of
A, respectively. We denote by A(R,C) the submatrix of A
restricted to the columns in C and the rows in R. We also
denote by A(∗,C) and A(R,∗) the submatrix of A restricted
to the columns in C and the submatrix of A restricted to the
rows in R, respectively. We denote by cA the maximum abso-
lute value of any entry of A and by det(A) the determinant
of A. For a vector b of size n, we will use b[i] to denote its
i-th entry and we denote by cb the maximum absolute value
of any entry of b. We will also use the two following well-
known facts [Schrijver, 1998].

Proposition 1. Let A be an integer k × k matrix. Then
det(A) is integer and | det(A)| ≤ k!Π1≤i≤kcA(∗,{i})

.

Proposition 2 (Cramer’s rule). Let A be a k×k non-singular
(i.e., with non-zero determinant) matrix and b a vector. Then
the equation Ax = b has a unique solution such that

x[i] = det(A(i))
det(A) , where A(i) is the matrix formed by replac-

ing the i-th column of A with the vector b.

2.1 Integer Linear Programming

For our purposes, it will be useful to consider ILP instances
which are in equation form. Formally, let an ILP instance I
be a tuple (A,x,b, l,u, η), where:

• A is a n×m matrix of integers (the constraint matrix),

• x is a vector of variables of size m,

• b is an integer vector of size m (the right-hand side),

• l,u are vectors of elements of Z∪{±∞} (the lower and
upper bounds, respectively), and

• η is an integer vector of size m (the optimization func-
tion).

Let A be the i-th row of A; then we will call Ax = b[i] a con-
straint of I. We will use var(I) to denote the set of variables
(i.e., the elements of x), and F(I) (or just F ) to denote the set
of constraints. For a subset U of var(I) ∪ F(I), we denote by
C(U) the columns of A corresponding to variables in U and
by R(U) the rows of A corresponding to constraints in U .

A (partial) assignment α is a mapping from some subset of
var(I), denoted by var(α), to Z. An assignment α is called
feasible if
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1. satisfies every constraint in F , i.e., if Aα(x) = b[i] for
each i-th row A of A, and

2. satisfies all the upper and lower bounds, i.e.,
l[i] ≤ α(x[i]) ≤ u[i].

Furthermore, α is called a solution if the value of ηα(x) is
maximized over all feasible assignments; observe that the ex-
istence of a feasible assignment does not guarantee the exis-
tence of a solution (there may exist an infinite sequence of
feasible assignments α with increasing values of ηα(x); in
this case, we speak of unbounded instances). Given an in-
stance I, the task in the ILP problem is to compute a solution
for I or correctly determine that no solution exists. We remark
that other formulations of ILP exist (e.g., a set of inequali-
ties over variables); it is well-known that these are equiva-
lent and can be transformed into each other in polynomial
time [Schrijver, 1998]. Moreover, such transformations will
only change our parameters (defined in Section 3) by a con-
stant factor.

Aside from general integer linear programming, we will
also be concerned with two subclasses of the problem.

1. ILP-FEASIBILITY is formulated equivalently as ILP,
with the restriction that η must be the 0-vector. All hard-
ness results for ILP-FEASIBILITY immediately carry
over to ILP.

2. UNARY ILP is the class of all ILP instances which are
supplied in a unary bit encoding; in other words, the in-
put size of UNARY ILP upper-bounds not only the num-
ber of variables and constraints, but also the absolute val-
ues of all numbers in the input. UNARY ILP remains
NP-complete in general, but in our setting there will be
cases where its complexity will differ from general ILP.

Combining both restrictions gives rise to UNARY ILP-FEASI-
BILITY.

There are several ways of naturally representing ILP in-
stances as graphs. The representation that will be most useful
for our purposes will be the so-called incidence graph: the
incidence graph GI of an ILP instance I is the graph whose
vertex set is var(I) ∪ F(I) and two vertices s, t are adjacent
iff s ∈ var(I), t ∈ F and s occurs in t with a non-zero co-
efficient. An instance I′ is a connected component of I if it
is the subinstance of I corresponding to a connected compo-
nent of GI; formally, F(I′) ⊆ F(I) is the set of constraints
that occur in a connected component of GI and η(I′) is the
restriction of η(I) to var(F(I′)). For a set Z ⊆ F(I)∪var(I),
we will also use I \ Z to denote the ILP instance obtained
by removing all constraints in Z from F(I) and removing all
variables in Z from all constraints in F(I) \ Z and from η.

2.2 Parameterized Complexity

In parameterized algorithmics [Flum and Grohe, 2006;
Niedermeier, 2006; Downey and Fellows, 2013] the runtime
of an algorithm is studied with respect to a parameter k ∈ N
and input size n. The basic idea is to find a parameter
that describes the structure of the instance such that the
combinatorial explosion can be confined to this parameter.
In this respect, the most favorable complexity class is FPT
(fixed-parameter tractable) which contains all problems that

can be decided by an algorithm running in time f(k) · nO(1),
where f is a computable function. Problems that can be
solved in this time are called fixed-parameter tractable
(fpt).

To obtain our lower bounds, we will need the notion of a
parameterized reduction. Formally, a parameterized problem
is a subset of Σ∗ × N, where Σ is the input alphabet. Let
L1 ⊆ Σ∗

1 × N and L2 ⊆ Σ∗
2 × N be parameterized problems.

A parameterized reduction (or fpt-reduction) from L1 to L2

is a mapping P : Σ∗
1 ×N → Σ∗

2 ×N such that (i) (x, k) ∈ L1

iff P (x, k) ∈ L2, (ii) the mapping can be computed by an fpt-
algorithm w.r.t. parameter k, and (iii) there is a computable
function g such that k′ ≤ g(k), where (x′, k′) = P (x, k).

Next, we will define the complexity classes needed to de-
scribe our lower bounds. The class W[1] captures parame-
terized intractability and contains all problems that are fpt-
reducible to INDEPENDENT SET when parameterized by the
size of the solution. The following relations between the
parameterized complexity classes hold: FPT ⊆ W[1] ⊆ XP,
where the class XP contains all problems solvable in time

O(nf(k)) for a computable function f . Showing W[1]-hard-
ness for a problem rules out the existence of an fpt-algorithm
under standard complexity assumptions.

The class pNP is defined as the class of problems that are
solvable by a non-deterministic Turing machine in fpt time.
In our pNP-hardness proofs, we will make use of the fol-
lowing characterization of pNP-hardness given in the book
by Flum and Grohe [2006], Theorem 2.14: any parameter-
ized problem that remains NP-hard when the parameter is
set to some constant is pNP-hard. For problems in NP, we
have W[1] ⊆ pNP and in particular showing pNP-hardness
rules out the existence of algorithms with a running time of

O(nf(k)). For our algorithms, we will use the following re-
sult as a subroutine. Note that this is a streamlined version of
the original statement of the theorem, as used in the area of
parameterized algorithms [Fellows et al., 2008].

Proposition 3 (Lenstra, Jr.; Kannan; Frank and Tardos [1983;
1987; 1987]). There is an algorithm that solves an input ILP
instance I = (F , η) in time pO(p) · |I|, where p = |var(I)|.

2.3 ILP with Structured Matrices

Our results build on and extend the classical variable-
dimension ILP techniques detailed for instance in the work
of De Loera et al.; Onn; Hemmecke et al.. Below, we pro-
vide a basic introduction to these techniques and related re-

sults. Let A =

(

A1 A2

A3 A4

)

be a 2 × 2 block integer matrix.

The N -fold 4-block product of A (denoted by A(N)) is the
following integer matrix

A(N) =













A1 A2 A2 · · · A2

A3 A4 0 · · · 0
A3 0 A4 · · · 0

...
...

...
. . .

...
A3 0 0 · · · A4













.

Here A1 is an r × s matrix, A2 is an r × t matrix, A3 is an
u× s matrix, and A4 is an u× t matrix; for convenience, we
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let bA = max(r, s, t, u). We call an instance (A,x,b, l,u, η)
of ILP an N -fold 4-block if A is an N -fold 4-block product
of some 2 × 2 block integer matrix. Observe that in such
instances the vector x is naturally partitioned into a global
part (consisting of s variables) and a local part.

Theorem 4 (Hemmecke et al. 2010). Let a and z be con-
stants and let I be an N -fold 4-block ILP instance with
cA ≤ a, bA ≤ z, then I can be solved in polynomial time.

In the parameterized complexity setting, the above the-
orem yields an XP algorithm solving ILP parameterized
by max(bA, cA) if the matrix is a N -fold 4-block prod-
uct. We note that the existence of a fixed-parameter al-
gorithm for this problem remains a challenging open prob-
lem [Hemmecke et al., 2010]. However, the problem is
known to be fixed-parameter tractable when either A1 and
A3 or A1 and A2 are omitted; these variants are called the
N -fold ILP problem and the 2-stage stochastic ILP problem,
respectively.

Theorem 5 (Hemmecke et al. 2013, De Loera et al. 2013).
N -fold ILP and 2-stage stochastic ILP are fpt parameterized
by cA and bA.

3 The Fracture Number

We are now ready to formally introduce the studied parameter
and related notions. An ILP instance I is called ℓ-compact if
each connected component of I contains at most ℓ variables
and constraints; equivalently, each connected component of
GI contains at most ℓ vertices. It is not difficult to observe
that any ℓ-compact ILP instance can be solved in time at most

ℓO(ℓ) · |I| due to Proposition 3; indeed, we can compute a so-
lution for I by combining solutions for each connected com-
ponent of I, and hence it suffices to apply Proposition 3 inde-
pendently on each component.

A set Z ⊆ F ∪ var(I) is called a backdoor to ℓ-com-
pactness if I \ Z is ℓ-compact; moreover, if Z ∩ F = ∅
then Z is called a variable-backdoor to ℓ-compactness, and if
Z ∩var(I) = ∅ then Z is a constraint-backdoor to ℓ-compact-
ness. We use bℓ(I) to denote the cardinality of a minimum
backdoor to ℓ-compactness, and similarly bVℓ (I) and bCℓ (I)
for variable-backdoors and constraint-backdoors to ℓ-com-
pactness, respectively. It is easy to see that, depending on
the instance, bVℓ (I) can be arbitrarily larger or smaller than

bCℓ (I). On the other hand, bℓ(I) ≤ min(bVℓ (I), b
C
ℓ (I)).

Clearly, the choice of ℓ has a major impact on the size
of backdoors to ℓ-compactness; in particular, bℓ(I) could be
arbitrarily larger than bℓ+1(I), and the same of course also
holds for variable- and constraint-backdoors. Since we will
be interested in dealing with cases where both ℓ and bℓ(I) are
small, we will introduce the fracture number p which pro-
vides bounds on both ℓ and bℓ; in particular, we let p(I) =
minℓ∈N(max(ℓ, bℓ(I))). Furthermore, we say that a backdoor
witnesses p(I) if |Z| ≤ p(I) and I\Z is p(I)-compact. We de-
fine pC(I) and pV (I) similarly, with bℓ(I) replaced by bCℓ (I)
and bVℓ (I), respectively. If the instance I is clear from the con-
text, we omit the reference to I; see Figure 1 for an example.

We remark that the fracture number represents a strict gen-
eralization of the parameter bA used in Theorems 4 and 5; in

maximize
∑

7

i=1
i · xi, where

∑

7

i=1
xi = 32,

1x1 + y = 6, 2x2 + y = 9,
3x3 + y = 14, 4x4 + y = 21,
5x5 + y = 30, 6x6 + y = 41.

Figure 1: The constraints and optimization function of a sim-
ple ILP instance with p = 2, witnessed by a backdoor con-
taining y and the first constraint.

particular, p ≤ 2bA (and similarly for pV and pC for the latter
two theorems). Moreover, the fracture number is well-defined
for all ILP instances, not only for N -fold 4-block products. In
this respect, N -fold 4-block products with bounded bA form
the subclass of instances with bounded p such that each com-
ponent must contain precisely the same submatrix. It is not
difficult to see that this is indeed a very strong restriction.

4 Computing the Fracture Number

Our evaluation algorithms for ILP require a backdoor set as
a part of their input. In this section we show how to efficiently
compute small backdoor sets, i.e., we show how to solve the
following problem.

FRACTURE BACKDOOR DETECTION (BD)

Instance: An ILP instance I and a natural number k.
Parameter: k

Question: Determine whether p(I) ≤ k and if so out-
put a backdoor set witnessing this.

We also define the variants V-BD and C-BD that are con-
cerned with finding a variable or a constraint backdoor, re-
spectively, in the natural way. Observe that at its core the
above problem and its variants are really a problem on the in-
cidence graph of the ILP instance. Namely, the problems can
be equivalently stated as the following graph problem.

FRACTURE VERTEX DELETION (FVD)

Instance: An undirected bipartite graphG with bipar-
tition {U,W}, a set D ∈ {U, V (G)}, and
an integer k.

Parameter: k
Question: Is there a set B ⊆ D of at most k ver-

tices such that every connected component
of G \B has size at most k?

It is worth noting that this graph problem is closely related to
the so-called VERTEX INTEGRITY problem, which has been
studied on a variety of graph classes, including co-bipartite
graphs [Drange et al., 2016]. Unfortunately, to the best of our
knowledge nothing is known about its complexity on bipartite
graphs.

To see that each variant of BD is equivalent to a specific
subcase of the FVD problem (in particular depending on the
choice of D in the instance), consider the following polyno-
mial time reductions in both directions. Given an instance
(I, k) of BD, then the instance (GI, V (GI), k) of FVD is eas-
ily seen to be equivalent. Similarly, if (I, k) is an instance of
V-BD or C-BD, then (GI, var(I), k) and (GI,F(I), k) are
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equivalent instances of FVD. Moreover, if I = (G, V (G), k)
is an instance of FVD, then (I, k), where I is any ILP instance
such that GI is isomorphic with G is an equivalent instance of
BD. Similarly, if I = (G,U, k) is an instance of FVD, then
(I, k), where I is any ILP instance such that GI is isomorphic
with G and var(I) = U , is an equivalent instance of V-BD.
Note that such an instance I can for instance be obtained as
follows:

• for every vertex v ∈ U , I has one variable v with arbi-
trary domain,

• for every vertex v ∈ W , I has one constraint with arbi-
trary non-zero coefficients on the variables in NG(v),

To justify a parameterized complexity analysis of our de-
tection problems, we first show NP-completeness of our
problems. It is worth noting that the NP-completeness of
FRACTURE VERTEX DELETION was far from obvious at first
glance due to the restriction to bipartite graphs; indeed, for
instance the related problem of deleting at most k vertices
such that the remaining graph only contains isolated vertices
(VERTEX COVER) is well-known to be polynomial on bipar-
tite graphs.

Theorem 6. BD, V-BD, and C-BD are NP-complete.

The proof follows from a reduction from 3-SAT where ev-
ery literal occurs in exactly two clauses; this variant is well-
known to be NP-complete [Garey and Johnson, 1979]). At its
core, the reduction utilizes variable gadgets as well as clause
gadgets, and the main difficulty lies in designing these in or-
der to ensure that the graph remains bipartite.

Proof of Theorem 6. Because of the equivalence between
BD, V-BD, C-BD and the FVD problem, it is sufficient
to show that FVD is NP-complete for both choices of D.
Because any solution to FVD can be verified in polynomial
time, it holds that FVD is in NP. Towards showing NP-hard-
ness of FVD we give a polynomial time reduction from a
known variant of the 3-SATISFIABILITY problem. Given
a 3-CNF formula Φ with variables x1, . . . , xn and clauses
C1, . . . , Cm such that every literal occurs in exactly two
clauses (this variant of 3-SATISFIABILITY is known to be
NP-complete [Garey and Johnson, 1979]), we construct the
instance 〈G,D, k〉 of FVD as follows. We set k = n + 2m
and the graph G will be the disjoint union of certain variable
and clause gadgets introduced below plus connections be-
tween these variable and clauses gadgets. Namely, for every
variable xi, the graph G contains the variable gadget G(xi)
with the following vertices and edges:

• two vertices xi and xi,

• k − 5 vertices c1i , . . . , c
k−5
i ,

• for every j with 1 ≤ j ≤ k − 5 the two edges {xi, c
j
i}

and {xi, c
j
i}.

Moreover for every clause Cj of Φ with literals l1j , l2j , l3j , the

graph G contains a clause gadget G(CJ ) with the following
vertices and edges:

• three vertices l1j , l2j , and l3j ,

• k − 3 vertices b1j , . . . , b
k−3
j ,

• for every i with 1 ≤ i ≤ k − 3 the three edges {bij , l
1
j},

{bij, l
2
j}, and {bij , l

3
j}.

Note that G(Cj) is simple a complete bipartite graph

with bipartition {{l1j , l
2
j , l

3
j},

{

bij : 1 ≤ i ≤ k − 3
}

.
Now G consists of the disjoint union of
G(x1), . . . , G(xn), G(C1), . . . , G(Cm) plus the following
vertices and edges, which ensure the required connections
between the variable and clause gadgets:

• For every clause Cj (for some j with 1 ≤ j ≤ m) with

literals l1j , l2j , and l3j and every a ∈ {1, 2, 3} we add the

vertices daj and eaj and the edges {laj , d
a
j } and {laj , e

a
j } to

G. Moreover, if laj = xi for some i with 1 ≤ i ≤ n,

we additionally add the edges {xi, d
a
j } and {xi, e

a
j} to

G and if on the other hand laj = xi for some i as above,

then we add the edges {xi, d
a
j } and {xi, e

a
j } to G.

This completes the construction of G, which
is clearly bipartite as for instance witnessed
by the bipartition {U, V (G) \ U}, where

U =
{

xi, xi, l
1
j , l

2
j , l

3
j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

}

. We
will show below that there is always a solution that is entirely
contained in U , which implies that the hardness result holds
for D ∈ {U, V (G)}, and hence all versions of the fracture
backdoor set problem, i.e., BD, V-BD, and C-BD, are
NP-complete. Note that the reduction can be computed in
polynomial time and it remains to show the equivalence
between the two instances.

Towards showing the forward direction, assume that
α : {x1, . . . , xn} → {0, 1} is a satisfying assignment for Φ.
Because α satisfies Φ it follows that for every clause Cj

with literals l1j , l2j , and l3j there is at least one index

a(Cj) ∈ {1, 2, 3} such that the literal l
a(Cj)
j is satisfied by α.

We claim that the set B defined by:

• for every i with 1 ≤ i ≤ n, B contains xi if α(xi) = 1
and xi, otherwise,

• for every j with 1 ≤ j ≤ m, B contains the vertices in
{

lbj : b ∈ {1, 2, 3} \ {a(Cj)}
}

.

is a solution for (G,U, k). Because B contains exactly one
vertex for every variable of Φ and exactly two vertices for ev-
ery clause of Φ, it holds that |B| = k = n+ 2m, as required.
Moreover, B ⊆ U . It hence only remains to show that every
component of G \ B has size at most k. Towards showing
this first consider a component C of G \B that contains at
least one vertex from a variable gadget G(xi) for some i with
1 ≤ i ≤ n. ThenG(xi)∩B ∈ {{xi, xi}} and henceG(xi)\B
is connected, which implies that G(xi) \B ⊆ C. W.l.o.g. as-
sume that G(xi)∩B = {xi}. Then α(xi) = 1 and it follows
that all literal vertices of clause gadgets that correspond to
the literal xi are contained in B. Since moreover xi is con-
tained in exactly two clauses, we obtain that C consists of
exactly k− 4 vertices in G(xi) \B plus the four vertices da1

j1
,

ea1

j1
, da2

j2
and ea2

j2
defined by la1

j1
= xi and la2

j2
= xi. Hence

in total C contains exactly k vertices as required. Now con-
sider a component C that contains at least one vertex from
a clause gadget G(Cj) for some j with 1 ≤ j ≤ m. Then
|G(Cj) ∩ B| = 2 and moreover B contains all but exactly
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one literal vertex say laj for some a ∈ {1, 2, 3} from G(Cj).
W.l.o.g. let xi be the literal of Cj corresponding to laj . Then

α(xi) = 1 and hence xi ∈ B. It follows that C consists
of the exactly k − 2 vertices in G(Cj) \ B plus the two ver-
tices daj and eaj . Hence in total C contains exactly k vertices,

as required. Because every component of G \ B that neither
contains a vertex from a vertex gadget nor from a clause gad-
get has size exactly one, this shows that B is indeed a solution
for (G,U, k) and hence also for (G, V (G), k).

Towards showing the reverse direction, let B be a solution
for (G, V (G), k). We first show that w.l.o.g. we can assume
that B ⊆ U . So assume that B * U . We distinguish three
cases: B contains a vertex daj or eaj for some j and a with
1 ≤ j ≤ m and 1 ≤ a ≤ 3. Let u and v be the two vertices
adjacent to daj and eaj . If B contains both daj and eaj , then

it is straightforward to verify that B \ {daj , e
a
j } ∪ {u, v} is

also a solution. So assume that B contains only daj (the case

that B contains only eaj is analogous). If {u, v} ⊆ B, then

B \{daj} is still a solution. Hence assume that w.l.o.g. u /∈ B.

But then (B \ {daj }) ∪ {u} is a solution. Hence in all cases
we could transform B into a solution that does not contain
a vertex daj or eaj . Next consider the case that B contains

some vertex cji for some i and j with 1 ≤ i ≤ n and 1 ≤
j ≤ k − 5. In this case one can use an argumentation very
similar to the previous case to transform B into a solution not
containing such a vertex. Hence there only remains the case
that B contains some vertex bij for some i and j with 1 ≤ i ≤
k − 3 and 1 ≤ j ≤ m. In this case it is straightforward to

verify that removing all vertices from B∩{b1j , . . . , b
k−3
j } and

replacing those with an equal (or less) amount of vertices in
{l1j , l

2
j , l

3
j} will again give a solution. Hence we can assume

that B ⊆ U .

We show next that B contains at least one of xi and xi

from every variable gadget G(xi). Suppose not and consider
the component C of G \ B containing xi. Because B ⊆ U ,
we obtain that C contains all k − 3 vertices in G(xi) and ad-
ditionally at least the 8 vertices adjacent to xi and xi. Hence
|C| ≥ k − 3 + 8 > k a contradiction to our assumption that
B is a solution.

We show next that B contains at least two of {l1j , l
2
j , l

3
j}

from every clause gadget G(Cj). Suppose not and consider
a component C of G \ B containing at least one vertex from
G(Cj). Because B ⊆ U , we obtain that C contains all of the
at least k − 3 + 2 = k − 1 vertices in G(Cj) \ B and addi-
tionally the at least four vertices adjacent to the (at least two)
literal vertices in {l1j , l

2
j , l

3
j}\B. Hence |C| ≥ k − 1 + 4 > k

a contradiction to our assumption that B is a solution.

HenceB contains at least one vertex for every variable ofΦ
and at least two vertices for every clause of Φ. Moreover, be-
cause B is a solution it holds that |B| ≤ k = n+ 2m. Hence
|B| = n+ 2m and B contains exactly one vertex from every
variable gadget and exactly two vertices from every clause
gadget. We claim that the assignment α with α(xi) = 1 if
and only if xi ∈ B is a satisfying assignment for Φ. Sup-
pose not and let Cj be a clause of Φ that is not satisfied by Φ
and let laj be the (unique) literal vertex of G(Cj) that is not

in B. Consider the component C of G \ B that contains laj

and assume w.l.o.g. that laj = xi for some i with 1 ≤ i ≤ n.

Because α does not satisfy Cj , we obtain that xi /∈ B. Be-
cause furthermore B ⊆ U we obtain that C contains all of
the k− 3+ 1 = k− 2 vertices in G(Cj) \B and additionally
at least the two vertices adjacent to laj as well as the vertex xi.
Hence in total C contains at least k − 2 + 3 > k vertices, a
contradiction to our assumption that B is a solution.

Even though BD is NP-complete, here we provide two ef-
ficient algorithms for solving it: we show that the problem is
fixed-parameter tractable parameterized by k and can be ap-
proximated in polynomial time within a factor of k. Both of
these algorithms are based on the observation that any back-
door has to contain at least one vertex from every connected
subgraph of the instance of size k + 1.

Theorem 7. BD, V-BD, and C-BD can be solved in time
O((k + 1)k|E(G)|) and are hence fpt.

Proof. Because of the equivalence of the problems BD,
V-BD, and C-BD with the FVD problem, it is sufficient to
show the result for FVD.

We will show the lemma by providing a depth-bounded
search tree algorithm for any instance I = 〈G,D, k〉 of FVD,
which is based on the following observations.

O1 If G is not connected then a solution for I can be ob-
tained as the disjoint union of solutions for every com-
ponent of G.

O2 If G is connected and C is any set of k+1 vertices of G
such that G[C] is connected, then any solution for I has
to contain at least one vertex from C.

These observations lead directly to the following recursive al-
gorithm that given an instance I = 〈G,D, k〉 of FVD either
determines that the instance is a NO-instance or outputs a so-
lution B ⊆ D of minimal size for I . The algorithm also
remembers the maximum size of any component in a global
constant c, which is set to k for the whole duration of the al-
gorithm. The algorithm first checks whether G is connected.
If G is not connected the algorithm calls itself recursively on
the instance (C,D∩C, k) for each componentC of G. If one
of the recursive calls returns NO or if the size of the union
of the solutions returned for each component exceeds k, the
algorithm returns that I is a NO-instance. Otherwise the al-
gorithm returns the union of the solutions returned for each
component of G.

If G is connected and |V (G)| ≤ c, the algorithm returns
the empty set as a solution. Otherwise, i.e., if G is connected
but |V (G)| > c the algorithm first computes a set C of c+ 1
vertices of G such that G[C] is connected. This can for in-
stance be achieved by a depth-first search that starts at any
vertex of G and stops as soon as c + 1 vertices have been
visited. If C ∩ D = ∅ then the algorithm returns NO. Oth-
erwise the algorithm branches on the vertices in C ∩ D, i.e.,
for every v ∈ C ∩ D the algorithm recursively computes a
solution for the instance (G \ {v}, k − 1). It then returns the
solution of minimum size returned by any of those recursive
calls, or NO-if none of those calls return a solution. This com-
pletes the description of the algorithm. The correctness of the
algorithm follows immediately from the above observations.
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Moreover the running time of the algorithm is easily seen to
be dominated by the maximum time required for the case that
at each step of the algorithm G is connected. In this case the
running time can be obtained as the product of the number
of branching steps times the time spent on each of those. Be-
cause at each recursive call the parameter k is decreased by
at least one and the number of branching choices is at most
c + 1, we obtain that there are at most (c + 1)k = (k + 1)k

branching steps. Furthermore, the time at each branching step
is dominated by the time required to check whether G is con-
nected, which is linear in the number of edges of G. Putting
everything together, we obtainO((k+1)k|E(G)|) as the total
time required by the algorithm, which completes the proof of
the lemma.

We note that the depth-first search algorithm in the above
proof can be easily transformed into a polynomial time ap-
proximation algorithm for BD and its variants that exhibits an
approximation ratio of k+1. In particular, instead of branch-
ing on the vertices of a connected subgraphC of G with k+1
vertices, this algorithm would simply add all the vertices of
C into the current solution. This way we obtain:

Theorem 8. BD, V-BD, and C-BD can be approximated in
polynomial time within a factor of k + 1.

5 The Case of Bounded Coefficients

The goal of this section is to obtain the algorithmic results
presented on the first row of Table 1. Recall that in this case
we will be parameterizing also by cA, which is the maximum
absolute value of a coefficient occurring in A. Before we
proceed to the results themselves, we first need to introduce a
natural notion of “equivalence” among the components of an
ILP instance.

Let Z be a backdoor to ℓ-compactness for an ILP instance I.
We define the equivalence relation ∼ on the components of
I\Z as follows: two componentsC1 and C2 are equivalent iff
there exists a bijection γ between var(C1) and var(C2) such
that the ILP instance obtained from I after renaming the vari-
ables in var(C1) and var(C2) according to γ and γ−1, respec-
tively, is equal to I. We say that components C1 and C2 have
the same type if C1 ∼ C2.

Lemma 9. Let I be an ILP instance and k = p(I). For any

backdoor witnessing p(I), ∼ has at most
(

2cA(I) + 1
)2k2

equivalence classes. Moreover, one can test whether two com-
ponents have the same type in time O(k!k2).

Proof. Let Z be the backdoor witnessing p(I) and fix a
component C of I \ Z . First observe that there are only 3
submatrices of the constraint matrix of I that can contain
nonzero coefficients and containing an element of C; we
refer to Fig. 2, where we denote these matrices QC ,Q

V
C ,

and QC
C . We will now bound the number of these possibly

nonzero coefficients. In order to do this we denote by
gv = |var(Z)|, gc = |Z| − gv, cv = |var(C)|, cc = |C| − cv ,
and c = max cc, cv. Observe that c ≤ k. Now the
number of possibly nonzero coefficients is bounded by
gvcc + gccv + cccv ≤ (gv + gc)c + c2 ≤ 2k2. We finish

QCQV
C

QC
C

0

0

00

xC

con(C)

Figure 2: A situation for a component C.

the proof of the first part by observing that the number of
possible coefficients is bounded by 2cA(I) + 1.

Observe that two components C1 and C2 have the same
type if their number of constraints and variables is the same
and there exist a permutation of variables of C1 and a permu-
tation of constraints of C1 such that the three submatrices of
I containing nonzero elements are exactly the same. Again
as |C| ≤ k one can check all pairs of permutations in time k!
and for each pair we are checking O(k2) entries.

We now proceed to the main tool used for our algorithms.

Theorem 10. Let I be an ILP instance with matrix A, Z be
a backdoor set witnessing p(I), and let n be the number of

components of I \ Z . There is an algorithm which runs in
time O(n2(p(I)+1)!+ |I|) and computes an (r+u)× (s+ t)

matrix A =

(

A1 A2

A3 A4

)

, a positive integer N ≤ n, and a

4-block N -fold instance I = (A(N),x,b, l,u, η) such that:

(P1) any solution for I can be transformed (in polynomial
time) into a solution for I (and vice versa), and

(P2) max{r, s} ≤ p(I) and max{t, u} ≤ f
(

cA, p(I)
)

for
some computable function f .

Proof. Let C be the set of connected components of I\Z . We
define a triple of matrices (QV

C ,Q
C
C ,QC) for a componentC.

Please refer to Figure 2.

• The matrix QV
C is the part of constraints in C dealing

with variables in Z , that is, AF(C),var(Z),

• the matrix QC
C is the part of the constraints in Z dealing

with var(C), that is, AF(Z),var(C), and

• the matrix QC is the part of constraints in C dealing

with var(C), that is, AcF (C),var(C).

Observe that this totally decomposes all constraints and
variables contained in C as all coefficient for other variables
are 0 and variables of C cannot appear in other components.
For a triple of matrices T = (QV ,QC ,Q) a component C
has type T if QV = QV

C ,QC = QC
C , and Q = QC holds.

The set of all possible types is the set

T =
{

T = (QV ,QC ,Q) : ∃C ∈ C with type T
}

.
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The multiplicity mult(T ) of type T ∈ T is the num-
ber of components in C having type T . We set
N = maxT∈T mult(T ).

The idea of the proof is to build the matrix A1 from Z and
matrices A2,A3,A4 as representatives of the types in such
a way that the resulting N -fold 4 block ILP is equivalent to

the given ILP instance I.
The matrix A1 is simply the submatrix of Z that is the part

of global constraints of A containing var(Z) only.

Claim 1. There is an ILP instance Î that is equivalent to ILP
instance Ī with mult

Î
(T ) = N for all T ∈ T

Î
. Moreover,

c
Î
= cĪ and the sizes of the matrices Q can only double.

In this case we put all possible matrices on a diagonal of the
relevant matrix A4, next to each other in the matrix A2, and
under each other in the matrix A3. That is we set A2 to hori-
zontal concatenation of all (QC

T )T∈T , A3 to vertical concate-

nation of (QV
T )T∈T , and finally A4 has matrices (QT )T∈T

on its diagonal. The bound on size of the matrix A follows
from Lemma 9 and Claim 1.

Proof of Claim 1. The idea here is to take a type with less
representatives and add a new one as a copy of a previous
one. But this has to be done carefully in order to maintain
equivalence of intermediate ILPs. For the local part we start
by observing that if we add a copy of some previous compo-
nent, then the set of solutions for these two components is
the same. However, as these components also interact with
the global constraints we would like to have to restrict the
set of solutions of the newly added component to all 0 so-
lution only. Note that this cannot be done using lower and
upper bounds only as the former set of solutions does not
have to contain such a solution. That is, the (optimal) set-
ting of global variables together with setting all component
local variables to 0 can violate the right-hand side. In order to
achieve the claim, we extend the matrices we have obtained
from the componentC in the following way. Let C be of type
T = (QV

C ,Q
C
C ,QC) then the extension of type T if

T̂ =
(

QV
C , [Q

C
C | 0], [QC | QC ]

)

.

We denote the former C-variables as xC and the new C-vari-
ables as x̂C . We say that the extension is of

• first kind if ℓC ≤ xC ≤ uC and 0 ≤ x̂C ≤ 0, and

• second kind if 0 ≤ xC ≤ 0 and ℓC ≤ x̂C ≤ uC .

Note that with this we have only doubled the number of local
variable of component C.

Claim 2. Let I be an ILP instance and let T be a type of I.
Denote I

T→T̂
the ILP instance I where components of type

T are replaced with components of T̂ of the first kind. Then,
there is a bijection between solutions of ILP instances I and
I
T→T̂

.

Proof. Note that it holds that x̂C = 0 for every component C

of type T̂ . Now a solution for IT→T̂ has a natural projection
to a solution of I (forget all x̂C variables). Furthermore, a
solution for I can be extended to a solution of I

T→T̂
by set-

ting x̂C = 0 for each component C of type T . This yields a
bijection between the solution sets.

We say that a component C is extended if it has been cre-
ated by the extension of the first kind. We transform all
components with multiplicity less than N to extended com-
ponents and denote IE the resulting ILP instance. Note that
by Claim 2 the ILP instances I and IE are in equivalent.

Claim 3. Let I be an ILP instance, let C be a component of I,
and let C′ be an extension of C of the second kind. Denote I′

the ILP instance I with C′ added (i.e., it has one more com-
ponent) then instances I and I′ are equivalent.

Proof. First we argue that I does have a solution if and only
if I′ does. To see this take a solution x of I and let xC be the
part of x corresponding to C-variables. We build a solution
to I′ follows. We copy the solution of every variable but the
variables of C′. We set variables xC′ = 0 and x̂C′ = xC .

Note that by this we have actually build a natural corre-
spondence between the set of solutions to I and the set of
solutions to I′. Observe that this correspondence is not one-
to-one as in general there can be more possibilities how to
extend the solution to variables x̂C′ . We say that all these so-
lutions project to the same solution x to instance I. However,
as all the C′-variables do not occur in the objective function
the value of the objective function of all solutions that project
to x is the same.

By combining the two claims it is possible to transform

ILP instance I to Î with the following properties.

• all components of Î are either extended or for their type
T it holds that multI(T ) = N ,

• for each type T̂ of Î it holds that mult
Î
(T̂ ) = N ,

• bℓ(Î) = bℓ(I),

• number of variables in Î is at most twice the number of
variables in I.

Let us now discuss algorithmic consequences of Theo-
rem 10 for all types of backdoors. Together with Theorems 4
and 7, we obtain the following corollary.

Corollary 11. Let a and z be constants and let I be an ILP
instance with cA(I) ≤ a and p(I) ≤ z, then I can be solved
in polynomial time.

For variable and constraint backdoors, using Theorem 5
instead of Theorem 4 yields the following results.

Corollary 12. ILP is fpt when parameterized by
max{cA, pV } and also when parameterized by
max{cA, pC}.

6 Unary ILP

Here we will prove that UNARY ILP is polynomial time solv-
able when pC is bounded by a constant; this contrasts the case
of general ILP, which remains NP-hard in this case (see The-
orem 22 later). In particular, we will give an XP algorithm
for UNARY ILP parameterized by pC . We will also present
lower bounds showing that such an algorithm cannot exist for
UNARY ILP parameterized by pV or p, and rule out the exis-
tence of a fixed-parameter algorithm for pC .
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6.1 The Algorithm

The crucial, and also most technically demanding, part of this
result is showing that it suffices to restrict our search space to
assignments over polynomially bounded variable domains.

Before showing this we need some preparation.

Proposition 13. Let A be an integer k × k non-singular ma-
trix and b an integer vector. Then |x[i]| ≤ k!cb(cA)k−1 for
the unique x such that Ax = b.

Proof. Because of Proposition 2 it holds that

x[i] =
det(A(i))

det(A)
.

Moreover, since A is a non-singular integer ma-
trix, we have that | det(A)| ≥ 1 and thus
|x[i]| ≤ | det(A(i))|, which together with Proposition 1 im-
plies |x[i]| ≤ | det(A(i))| ≤ k!cb(cA)k−1, as required.

Lemma 14. Let Q be a k×n matrix of rank k, y be a vector
of n variables, d be a vector of size k, I be a set of k lin-
early independent columns of Q, V be their corresponding
variables in var(y), and let β be an assignment of the vari-
ables in var(y) such that Qβ(y) = d. Then for every v ∈ V,
it holds that

|β(v)| ≤ k!
(

cd + cQ
∑

u∈var(y)\V

β(u)
)

(

cQ
)k−1

.

Proof. Let y′ be y restricted to the variables in var(y) \ V
and let J be the set of all columns of Q that are not in I .
We will now apply the assignment β for the variables in y′

to Q. This will give us a set of equations that need to be
satisfied for the variables in V allowing us to obtain a bound
on β for these variables. Namely, the right-hand side denoted
by d′ of our equations is obtained from d by subtracting the
application of β to Q(∗,J), i.e., d′ = d−Q(∗,J)β(y

′), which
after restricting Q to the columns I and using the restriction
y′′ of y to the variables in V gives us the following equations
that are satisfied by β:

Q(∗,I)β(y
′′) = d′ (1)

Note that because I is a set of k linearly independent
columns the matrix Q(∗,I) is non-singular. Moreover, ob-

serve that d
′[i] ≤ cd + cQ

∑

u∈var(y)\V β(u) for every i

with 1 ≤ i ≤ k. Because β satisfies 1 we obtain from Propo-
sition 13 that

|β(v)| ≤ k!
(

cd + cQ
∑

u∈var(y)\V

β(u)
)

(

cQ
)k−1

,

for every variable v ∈ V .

The following lemma provides an important ingredient for
Lemma 17 below. Its proof crucially makes use of the specific
structure of our ILP instance.

Lemma 15. Let I be an instance of UNARY ILP with ma-
trix A. Then for any set D of linearly dependent columns
of A, it holds that A(∗,D) contains a subset of at most

pC(I)(pC(I) + 1) linearly dependent columns.

Proof. Let Z ⊆ F(I) be a constraint backdoor for I of
size at most pC(I) and let s be a non-zero vector satisfying
A(∗,D)s = 0. Let C1, . . . , Cp be all components of I \Z that
contain at least one variable corresponding to a column in D
and let Di be the set of all columns in D that correspond to
variables in Ci. Moreover, let sCi

be the restriction of s to
the entries corresponding to variables in Ci. Note that if p ≤
pC(I)+ 1, then D already contains at most pC(I)(pC(I)+ 1)
linearly dependent columns and the lemma follows. So we
can assume in the following that p > pC(I) + 1. Denote by
wCi

the vector A(∗,Di)sCi
. If wCi

= 0, then the variables in

Ci that s does not assign to 0 correspond to at most pC(I) lin-
early dependent columns and the lemma follows. Otherwise,
it is easy to observe that if wCi

[j] 6= 0 then j corresponds to a
constraint in Z . Hence for every Ci all non-zero entries of the
vector wCi

correspond to constraints in Z . Consequently any
subset of pC(I) + 1 vectors from wC1 , . . . ,wCp

in particular
the vectors wC1 , . . . ,wC

pC(I)+1
are linearly dependent (since

all their non-zero entries correspond to constraints in Z and
|Z| ≤ pC(I)), which implies that the set

⋃

1≤i≤pC(I)+1 Di

is the required subset of at most pC(I)(pC(I) + 1) linearly
dependent columns of A(∗,D).

Lemma 16. Let I = (A,x,b, l,u, η) be an ILP instance, α a
solution for I, and δ a non-zero integer vector such that α+ δ
and α − δ are feasible assignments for I. Then ηδ = 0 and
moreover α+ δ and α− δ are also solutions for I.

Proof. Assume for a contradiction that ηδ 6= 0, then either
η(α+ δ) > η(α) or η(α− δ) > η(α), contradicting that α is
a solution.

We are now ready to show that we only need to consider
solutions with polynomially bounded variable domain.

Lemma 17. Let I be a feasible instance of UNARY ILP-FEA-
SIBILITY of size n. Then, there exists a solution α with
|α(v)| ≤ mL for every v ∈ var(I), where

mL = 8
(

2(pC(I) + 2)2
)

!(n)2(p
C(I)+2)2 .

Proof. Let I = (A,x,b, l,u, η) be the provided instance of
UNARY ILP and let Z ⊆ F(I) be a constraint backdoor wit-
nessing pC(I).

Let
mS =

(

(pC(I) + 1)2
)

!(n)(p
C(I)+1)2 ,

mM = 4
(

(pC(I) + 2)2
)

!(n)(p
C(I)+2)2 .

For a solution α of I, let V (α) be the set of all variables v
of I such that |α(v)| ≥ 2mS. Let us now consider a solution
α which minimizes the size of V (α). Observe that because
mL ≥ 2mS it holds that if |V (α)| = 0 then the lemma holds,
and so we may assume that V (α) is non-empty.

In the following we consider the submatrix B = A(∗,V (α)).
Let us first consider the case where the columns of B are
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linearly dependent. We show that in this case, we can find
a solution α′ such that |V (α′)| < |V (α)|, which contradicts
the choice of α.

Because of Lemma 15 there is a non-empty set O of lin-
early dependent columns of B of size at most pC(I)(pC(I) +
1). Consider a subset Y = {v1, . . . ,v|Y |} of linearly de-
pendent columns of O such that the columns of each proper

subset of Y are linearly independent and let X = Y \ {v|Y |}.
Because Y is a minimal set of linearly dependent columns, it
holds that there is a vector a without any zero entries such
that B(∗,Y )a = 0, which implies the existence of a vector

aX , again without zero entries, such that B(∗,X)aX = v|Y |.
We will show that there is a vector a that is integer and satis-
fies |a[i]| ≤ mS for every 1 ≤ i ≤ |Y |. We start by solving

B(∗,X)aX = v|Y | using Cramer’s rule. Because the columns
in X are linearly independent, it follows that B(∗,X) has a

set R of linearly independent rows with |R| = |X |. Then be-
cause the matrix B(R,X) is non-singular, we have that there

is a unique aX such that B(R,X)aX = v
|Y |
R , where v

|Y |
R de-

notes the restriction of the vector v|Y | to the entries associ-
ated with the columns in R. Moreover, because there is a
non-zero vector aX with B(∗,X)aX = v|Y |, it follows that

the unique vector aX satisfying B(R,X)aX = v
|Y |
R also sat-

isfies B(∗,X)aX = v|Y |. Using Cramer’s Rule, we obtain

aX [i] =
det(B(R,X)(i))

det(B(R,X))
for every i with 1 ≤ i ≤ |X | as the

unique vector satisfying B(R,X)aX = v
|Y |
R .

Hence the vector d with d[i] = aX [i] det(B(R,X)) =
det(B(R,X)(i)) for every i with 1 ≤ i ≤ |X | and d[|Y |] =
− det(B(R,X)) is a non-zero integer vector that satisfies
B(∗,Y )d = 0. From Proposition 1, we obtain that

|d[i]|

≤
(

pC(I)(pC(I) + 1)
)

!(cA)p
C(I)(pC(I)+1)

≤
(

(pC(I) + 1)2
)

!(n)(p
C(I)+1)2

= mS,

as required.
For notational convenience we will in the following assume

that A starts with the columns v1, . . . ,v|Y | from Y . Let w
be the vector defined by:

• w[i] = d[i], if i ≤ |Y |, and

• w[i] = 0 otherwise

Note that Aw = 0. For an integer ∆, let α∆ : var(I) → Z
denote the assignment α∆ = α + ∆w. Note that α∆ is an
integral assignment, moreover because

Aα∆(x) = Aα(x) + ∆Aw = Aα(x)

it follows that α∆ is a feasible integral assignment for Ax =
b for every ∆ ∈ Z. Let ∆ be the integer with smallest ab-
solute value such that there is at least one variable v ∈ V (α)
with |α∆(v)| ≤ 2mS. We claim that for every |δ| ≤ |∆|, αδ

is a solution for I. We first show that l[i] ≤ αδ(x[i]) ≤ u[i]
for every i with 1 ≤ i ≤ |var(I)|. If x[i] corresponds to
a column that is not in Y , then αδ(x[i]) = α(x[i]), which
implies l[i] ≤ αδ(x[i]) ≤ u[i]. Otherwise, assume w.l.o.g.

that α(x[i]) ≥ 0 (the case that α(x[i]) < 0 is symmetric).
Because α(x[i]) ≥ 2mS and |d[j]| ≤ mS for every j with
1 ≤ j ≤ |Y | together with the choice of ∆, we obtain that
mS ≤ αδ(x[i]). Because mS > n and since α is a feasible
solution it follows that u[i] = ∞ and l[i] ≤ mS, which shows
that l[i] ≤ αδ(x[i]) ≤ u[i]. Hence in particular α∆ and also
α1 = α + w and α−1 = α − w are feasible assignments,
which together with Lemma 16 (after setting δ to w) implies
that ηw = 0 and hence ηα = ηα∆. Consequently α∆ is a so-
lution for I with |V (α∆)| < |V (α)|, contradicting our choice
of α.

We conclude that the columns of B must be linearly in-
dependent, which implies that there is a set R of |V (α)| lin-
early independent rows in B. Consider the set S of all compo-
nents of I \ Z that have a non-empty intersection with either
V (α) or the constraints corresponding to the rows in R. Let
C1, . . . , Cp be the restrictions of the components in S to the
variables in V (α) and the constraints in R.

Observe that for every componentCi, it holds that the rows
in R that correspond to constraints in Ci are zero everywhere
but at the entries corresponding to variables in Ci. Because
the rows in R are independent it follows that every component
must have at least as many variables as constraints. More-
over, because B(R,∗) is a square matrix and the only rows in
R that do not correspond to constraints in components, cor-
respond to the constraints in Z , we obtain that there are at
most |Z| ≤ pC(I) components that have strictly more vari-
ables than constraints, all other components have the same
number of rows and columns. Let Ci be a component with
the same number of rows as columns and let C′

i be the unique
component of I \ Z containing Ci. Let Q = A(C(C′

i
),R(Ci))

and y be the subvector of x restricted to the variables of C′
i ,

d be the subvector of b restricted to entries that correspond
to the constraints of Ci, V = var(Ci), I the set of columns
of Q corresponding to the variables in V , and β the assign-
ment α restricted to the variables in y. Because the rows
in Q are independent its rank is |F(Ci)|, because α satisfies
Aα(x) = b and all but the columns corresponding to the
variables in var(C′

i) of A∗,F(Ci) are zero everywhere, it holds

that Qβ(y) = d. Hence we can apply Lemma 14 for Q, y,
d, V , I , and β and obtain:

|α(v)|

≤ pC(I)!
(

cb + cA
∑

u∈var(C′
i
)\var(Ci)

α(u)
)

(

cA
)p

C(I)−1

≤ pC(I)!
(

cb + cApC(I)2mS

)

(cA)p
C(I)−1

≤ pC(I)!4mSp
C(I)(n)p

C (I)

≤ 4
(

(pC(I) + 2)2
)

!(n)(p
C(I)+2)2

= mM

for every variable v ∈ V . The second to last inequality fol-
lows because |α(v)| ≤ 2mS for every v in var(C′

i) \ var(Ci),
which is because (var(C′

i)\var(Ci)) ⊆ (var(I)\V (α)). This
shows that the assignment α is bounded by mM for all vari-
ables contained in components Ci that have the same number
of variables and constraints. Consider the remaining compo-
nents D1, . . . , Ds among C1, . . . , Cp, i.e., the components
among C1, . . . , Cp that have more variables than constraints.
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Recall that s ≤ |Z| ≤ pC(I). Let V =
⋃

1≤i≤s var(Di) and

let J be the corresponding columns of V in A. Note that
|J | ≤ (pC(I))2. Because V ⊆ V (α) it holds that J is a set of
linearly independent columns. Hence there is a set R′ of |J |
linearly independent rows in A(∗,J).

Let Q = A(R′,∗), y = x, d be the subvector of b restricted
to entries that correspond to the rows in R′, I be the columns
in J restricted to the rows in R′, and β = α. Because the rows
in Q are independent its rank is |I|, because Q is a submatrix
of A only restricted in rows, we have Qβ(y) = d. Hence we
can apply Lemma 14 for Q, y, d, V , I , and β and obtain:

|α(v)|

≤
(

pC(I)2
)

!
(

cb + cA
∑

u∈var(I)\V

α(u)
)

(

cA
)(pC(I))2−1)

≤
(

pC(I)2
)

!
(

cb + cA|var(I)|mM

)

(cA)(p
C(I))2−1)

≤ 8
(

2(pC(I) + 2)2
)

!(n)2(p
C(I)+2)2

= mL

for every variable v ∈ V . The second to last inequality fol-
lows follows because |α(v)| ≤ mM for every v in var(I) \ V ,
as shown previously. This concludes the proof of the lemma.

To complete the proof of the desired statement, we use a
recent result of [Ganian et al., 2017, Proposition 2 and Theo-
rem 11] on solving ILP using treewidth (which is always at
most p) and obtain:

Proposition 18 (Proposition 2 and Theorem 11 in
Ganian et al. 2017). Let I = (A,x,b, l,u, η) be an ILP
with incidence treewidth ω and such that l[i] 6= −∞ and
u[i] 6= ∞ for every entry i. Then I can be solved in time
O((cA · ∆ · |var(I)|)ω)(|var(I)| + |F(I)|), where ∆ =
maxi{|l[i]|, |u[i]}.

Theorem 19. UNARY ILP is polynomial time solvable for
any fixed value of pC(I), where I is the input instance.

Proof. Let I be an input instance of UNARY ILP encoded
in n bits and let I′ be the instance obtained from I by re-
placing −∞ and ∞ entries in l and u with −mL and mL,
respectively (for the definition of mL see the statement of
Lemma 17). It follows from Lemma 17 that I and I′ are equiv-
alent ILP instances. Now let ω be the incidence treewidth
of I′ (which is equal to the incidence treewidth of I). Ob-
serve that ω ≤ pC(I) and hence it follows from Propo-
sition 18 that I′ (and thus also I) can be solved in time

O((cA ·mL · |var(I)|)p
C (I))(|var(I)| + |F(I)|).

6.2 Lower Bounds

We complement our algorithm with matching lower bounds:
strong NP-hardness for variable and mixed backdoors,
W[1]-hardness in the case of constraint backdoors, and weak
NP-hardness for constraint and mixed backdoors.

Theorem 20. UNARY ILP-FEASIBILITY is pNP-hard pa-
rameterized by pV (I).

Proof. We prove the theorem by a polynomial time re-
duction from the well-known NP-hard 3-COLORABILITY

problem [Garey and Johnson, 1979]: given a graph, decide

whether the vertices of G can be colored with three colors
such that no two adjacent vertices of G share the same color.

The main idea behind the reduction is to represent a 3-
partition of the vertex set of G (which in turn represents a
3-coloring of G) by the domain values of three “global” vari-
ables. The value of each of these global variables will rep-
resent a subset of vertices of G that will be colored using
the same color. To represent a subset of the vertices of G in
terms of domain values of the global variables, we will as-
sociate every vertex of G with a unique prime number and
represent a subset by the value obtained from the multiplica-
tion of all prime numbers of vertices contained in the subset.
To ensure that the subsets represented by the global variables
correspond to a valid 3-partition of G we will introduce con-
straints which ensure that:

C1 For every prime number representing some vertex of G
exactly one of the global variables is divisible by that
prime number. This ensures that every vertex of G is
assigned to exactly one color class.

C2 For every edge {u, v} of G it holds that no global vari-
able is divisible by the prime numbers representing u
and v at the same time. This ensures that no two adja-
cent vertices of G are assigned to the same color class.

Thus let G be the given instance of 3-COLORING and assume
that the vertices of G are uniquely identified as elements of
{1, . . . , |V (G)|}. In the following we denote by p(i) the i-th
prime number for any positive integer i, where p(1) = 2. We
construct an instance I of ILP-FEASIBILITY in polynomial
time with pV (I) ≤ 25, and coefficients bounded by a poly-
nomial in V (G) such that G has a 3-coloring if and only if I
has a feasible assignment. This instance I has the following
variables:

• The global variables c1, c2, and c3 with an arbitrary
positive domain, whose values will represent a valid 3-
Partitioning of V (G).

• For every i and j with 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤
3, the variables mi,j , sl1i,j , and sl2i,j (with an arbitrary
non-negative domain), ri,j (with domain between 0 and
p(i)−1), and ui,j (with binary domain). These variables
are used to secure condition C1.

• For every e ∈ E(G), i ∈ e, and j with 1 ≤ j ≤ 3,

the variables me,i,j , sl3e,i,j , sl4e,i,j , and sl5e,j (with an arbi-
trary non-negative domain), re,i,j (with domain between
0 and p(i) − 1), and ue,i,j (with binary domain). These
variables are used to secure condition C2.

Note that the variables sl1i,j , sl2i,j , sl3e,i,j , sl4e,i,j , and sl5e,i are
so-called “Slack” variables, whose sole purpose is to obtain
an ILP instance that is in equation normal form. The instance
I has the following constraints (in the following let α be any
feasible assignment of I):

• domain restrictions for all variables as given above, i.e.:

– for every i and j with 1 ≤ i ≤ |V (G)| and 1 ≤
j ≤ 3, the constraints cj ≥ 0, mi,j ≥ 0, sl1i,j ≥ 0,

sl2i,j ≥ 0, 0 ≤ ri,j ≤ p(i)− 1, and 0 ≤ ui,j ≤ 1.
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– for every e ∈ E(G), i ∈ e, and j with 1 ≤ j ≤ 3,

the constraints me,i,j ≥ 0, sl3e,i,j ≥ 0, sl4e,i,j ≥ 0,

sl5e,j ≥ 0, 0 ≤ re,i,j ≤ p(i)−1, and 0 ≤ ue,i,j ≤ 1.

• The following constraints, introduced for each 1 ≤ i ≤
|V (G)| and 1 ≤ j ≤ 3, together guarantee that condition
C1 holds:

– Constraints that ensure that α(ri,j) is equal to the
remainder of α(cj) divided by p(i), i.e., the con-
straint cj = p(i)mi,j + ri,j .

– Constraints that ensure that α(ui,j) = 0 if and only

if α(ri,j) = 0, i.e., the constraints ui,j+sl1i,j = ri,j
and ri,j + sl2i,j = (p(i)− 1)ui,j . Note that together

the above constraints now ensure that α(ui,j) = 0
if and only if cj is divisible by p(i).

– Constraints that ensure that exactly one of α(ui,1),
α(ui,2), and α(ui,3) is equal to 0, i.e., the con-
straints ui,1 + ui,2 + ui,3 = 2. Note that together
all the above constraints now ensure condition C1
holds.

• The following constraints, introduced for each 1 ≤ j ≤
3, together guarantee that condition C2 holds:

– Constraints that ensure that for every e ∈ E(G)
and i ∈ e, it holds that α(re,i,j) is equal to the
remainder of cj divided by p(i), i.e., the constraint
cj = p(i)me,i,j + re,i,j .

– Constraints that ensure that for every e ∈ E(G),
i ∈ e, and j with 1 ≤ j ≤ 3 it holds that
α(ue,i,j) = 0 if and only if α(re,i,j) = 0, i.e.,

the constraints ue,i,j + sl3e,i,j = re,i,j and re,i,j +

sl4e,i,j = (p(i) − 1)ue,i,j . Note that together the

above constraints now ensure that α(ue,i,j) = 0 if
and only if cj is divisible by p(i).

– Constraints that ensure that for every e = {i, k} ∈
E(G) and j with 1 ≤ j ≤ 3 it holds that at least
one of α(ue,i,j) and α(ue,k,j) is non-zero, i.e., the

constraint ue,i,j + ue,k,j − sl5e,j = 1. Note that
together with all of the above constraints this now
ensures condition C2.

This completes the construction of I. Clearly I can be con-
structed in polynomial time, and the largest coefficient used
by I is equal to p(|V (G)|). It is well-known that p(i) is upper-
bounded by O(i log i) due to the Prime Number Theorem,
and so this in particular implies that the numbers which oc-
cur in I are bounded by a polynomial in |V (G)|.

Following the construction and explanations provided
above, it is not difficult to see that I has a feasible assignment
if and only if G has a 3-coloring. Indeed, for any 3-coloring
of G, one can construct a feasible assignment of I by com-
puting the prime-number encoding for vertices that receive
colors 1, 2, 3 and assign these three numbers to c1, c2, c3, re-
spectively. Such an assignment allows us to straightforwardly
satisfy the constraints ensuring C1 holds (since each prime oc-
curs in exactly one global constraint), the constraints ensuring
C2 holds (since each edge is incident to at most one of each
color) while maintaining the domain bounds.

On the other hand, for any feasible assignment α, clearly
each of α(c1), α(c2), α(c3) will be divisible by some sub-
set of prime numbers between 2 and p(|V (G)|). In partic-
ular, since α is feasible it follows from the construction of
our first group of constraints that each prime between 2 and
p(|V (G)|) divides precisely one of α(c1), α(c2), α(c3), and
so this uniquely encodes a corresponding candidate 3-color-
ing for the vertices of the graph. Finally, since α also satis-
fies the second group of constraints, this candidate 3-coloring
must have the property that each edge is incident to at exactly
2 colors, and so it is in fact a valid 3-coloring.

It remains to show that pV (I) ≤ 25. We show this by
showing that the set B = {c1, c2, c3} is a variable backdoor
set to 25-compactness. Note that the graph GI \ {c1, . . . , c3}
has only two types of components (all other components are
isomorphic to one of the two types):

• for every i with 1 ≤ i ≤ |V (G)|, one component

containing the variables mi,1, . . . ,mi,3, sl1i,1, . . . , sl1i,3,

sl2i,1, . . . , sl2i,3, ri,1, . . . , ri,3, ui,1, . . . , ui,3. Moreover,
these 15 variables occur in exactly 10 constraints to-
gether; these are the constraints introduced above to en-
sure condition C1. Hence the total size of these compo-
nents is 25.

• for every e = {w, v} ∈ E(G) and j with 1 ≤ j ≤ 3, one

component on the vertices me,w,j , me,v,j , sl3e,w,j , sl4e,v,j ,

re,w,j , re,v,j , ue,w,j , ue,v,j , and sl5e,j . Moreover, these 9
variables occur in exactly 7 constraints together; these
are the constraints introduced above to ensure condition
C2. Hence the total size of these components is 16.

This show that B is a variable backdoor to 25-compactness,
as required.

Theorem 21. UNARY ILP-FEASIBILITY is W[1]-hard pa-
rameterized by pC(I).

Proof. We prove the theorem by a parameterized reduction
from MULTICOLORED CLIQUE, which is well-known to be
W[1]-complete [Pietrzak, 2003]. Given an integer k and a
k-partite graph G with partition V1, . . . , Vk, the MULTICOL-
ORED CLIQUE problem ask whether G contains a k-clique.
In the following we denote by Ei,j the set of all edges in G
with one endpoint in Vi and the other endpoint in Vj , for ev-
ery i and j with 1 ≤ i < j ≤ k. To show the lemma, we
will construct an instance I of ILP-FEASIBILITY in polyno-

mial time that has a constraint backdoor set of size 2k+2
(

k
2

)

to 3-compactness and coefficients bounded by a polynomial
in |V (G)| such that G has a k-clique if and only if I has a
feasible assignment.

The main idea behind the reduction is to first guess one
vertex from each part Vi and one edge between every two
parts Vi and Vj and to then verify that the selected vertices
and edges form a k-clique in G.

The first step is achieved by introducing one binary vari-

able for every vertex and edge of G together with 2k + 2
(

k
2

)

global constraints that ensure that (1) exactly one of the vari-
ables representing the vertices in Vi is set to one and (2) ex-
actly one of the variables representing the edges between Vi

and Vj is set to one. The second step, i.e., verifying that
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the chosen vertices and edges indeed form a k-clique of G,
is achieved by identifying each vertex of G with a unique
number such that the sum of any two numbers assigned to
two vertices of G is unique. By identifying each edge of G
with the sum of the numbers assigned to its endpoints, it is
then possible to verify that the selected vertices and edges
form a k-clique by checking whether the number assigned
to the selected edge e is equal to the sum of the numbers
assigned to the selected vertices in Vi and Vj . Sets of num-
bers for which the sum of every two numbers from the set
is unique are also known as Sidon sequences. Indeed a
Sidon sequence is a sequence of natural numbers such that
the sum of every two distinct numbers in the sequence is
unique. For our reduction we will need a Sidon sequence
of |V (G)| natural numbers, i.e., containing one number for
each vertex of G. Since the numbers in the Sidon sequence
will be used as coefficients of I, we need to ensure that the
largest of these numbers is bounded by a polynomial in G.
Indeed [Erdös and Turán, 1941] shows that a Sidon sequence
containing n elements and whose largest element is at most
2p2, where p is the smallest prime number larger or equal
to n can be constructed in polynomial time. Together with
Bertrand’s postulate [Aigner et al., 2010], which states that
for every natural number n there is a prime number between
n and 2n, we obtain that a Sidon sequence containing |V (G)|
numbers and whose largest element is at most 8|V (G)|2 can
be found in polynomial time. In the following we will assume
that we are given such a Sidon sequence S and we denote
by S(i) the i-th element of S for any i with 1 ≤ i ≤ |V (G)|.
Moreover, we denote by max(S) and max2(S) the largest
element of S respectively the maximum sum of any two num-
bers in S.

We are now ready to construct the instance I of ILP-FEA-
SIBILITY such that G has a k-clique if and only if I has a
feasible assignment. This instance I has the following vari-
ables:

• For every v ∈ V (G) a binary variable v (with domain
{0, 1}) that is 1 if v is selected to be in the k-clique and
0 otherwise.

• For every e ∈ E(G) a binary variable e (with domain
{0, 1}) that is 1 if e is selected to be in the k-clique and
0 otherwise.

• For every i with 1 ≤ i ≤ k, a variable vi (with unre-
stricted domain), which will be set to S(v) if the vertex
v ∈ Vi was selected to be in the k-clique.

• For every i and j with 1 ≤ i < j ≤ k, a variable ei,j
(with unrestricted domain), which will be set to S(v) +
S(u) if the edge e ∈ Ei,j with e = {u, v} was selected
to be in the k-clique.

I has the following constraints:

• Constraints that restrict the domains of all variables as
specified above, i.e.:

– for every v ∈ V (G), the constraints 0 ≤ v ≤ 1.

– for every e ∈ E(G), the constraints 0 ≤ e ≤ 1.

We will denote by D the set of all these constraints.

• for every i with 1 ≤ i ≤ k, the constraint
∑

v∈Vi
v = 1,

which ensures that from every part Vi exactly one vertex
is selected to be in the k-clique. We will denote by VSEL

the set of all these constraints.

• for every i and j with 1 ≤ i < j ≤ k, the constraint
∑

e∈Ei,j
e = 1, which ensures that between any two

parts Vi and Vj exactly one edge is selected to be in the
k-clique. We will denote by ESEL the set of all these
constraints.

• for every i with 1 ≤ i ≤ k, the constraint
∑

v∈Vi
S(v)v = vi, which ensures that vi is equal to

S(v) whenever v is selected for the k-clique. We will
denote by VASS the set of all these constraints.

• for every i and j with 1 ≤ i < j ≤ k, the constraint
∑

e={u,v}∈Ei,j
(S(u) + S(v))e = ei,j , which ensures

that ei,j is equal to S(u) + S(v) whenever the edge e ∈
Ei,j with endpoints u and v is selected for the k-clique.
We will denote by EASS the set of all these constraints.

• for every i and j with 1 ≤ i < j ≤ k, the constraint
vi + vj = ei,j , which ensures that between any two
parts Vi and Vj the vertices selected for the clique are
equal to the endpoints of the edge chosen between the
two parts. We will denote by V ECHECK the set of all
these constraints.

This completes the construction of I. Clearly I can
be constructed in polynomial time, and the largest coeffi-
cient used by I is equal to max2(S), which is at most
2max(S) ≤ 16|V (G)|2. We first show that I has a small con-
straint backdoor to 3-compactness, and hence our parameter
can bounded in terms of k. Namely, we claim that the set
B = VSEL ∪ ESEL ∪ VASS ∪ EASS ∪ V ECHECK of con-
straints of I is a constraint backdoor of size at most 2k+3

(

k
2

)

to 3-compactness. Clearly, the components of GI \ B have
size at most 3, i.e., GI has one component of size one for ev-
ery variable in {v1, . . . , vk, e1,2, . . . , ek−1,k} as well as one
component of size 3 for every a ∈ V (G) ∪ E(G), contain-
ing the variable a together with the two constrains 0 ≤ a and
a ≤ 1. Moreover, the sets VSEL, ESEL, VASS , EASS , and
V ECHECK have sizes at most k,

(

k
2

)

, k,
(

k
2

)

, and
(

k
2

)

, respec-

tively, which implies that |B| ≤ 2k + 3
(

k
2

)

.
It remains to show that G has k-clique if and only if I is

feasible. For the forward direction suppose that G has a k-
clique on the vertices c1, . . . , ck, where ci ∈ Vi for every i
with 1 ≤ i ≤ k. Then it is straightforward to verify that the
assignment α with:

• α(ci) = 1 for every i with 1 ≤ i ≤ k and α(v) = 0 for
every v ∈ V (G) \ {c1, . . . , ck},

• α({ci, cj}) = 1 for every i and j with
1 ≤ i < j ≤ k and α(e) = 0 for every
e ∈ E(G) \ { {ci, cj} : 1 ≤ i < j ≤ k },

• α(vi) = S(ci) for every i with 1 ≤ i ≤ k, and

• α(ei,j) = S(ci) + S(cj) for every i and j with
1 ≤ i < j ≤ k

is a feasible assignment for I.
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For the reverse direction suppose that we are given a fea-
sible assignment α for I. Then because α satisfies the con-
straints in D∪VSEL ∪ESEL we obtain that for every i and j
with 1 ≤ i < j ≤ k it holds that exactly one of the variables
in Vi and exactly one of the variables in Ei,j is set to one. Let
ci denote the unique vertex in Vi with α(ci) = 1 and simi-
larly let di,j denote the unique edge in Ei,j with α(di,j) = 1.
It follows from the constraints in VASS that α(vi) = S(ci)
and similarly using the constraints in EASS we obtain that
α(ei,j) = S(u) + S(v), where u and v are the endpoints of
the edge di,j in G. Moreover, we obtain from the constraints
in V ECHECK that vi+vj = ei,j and hence S(ci)+S(cj) =
S(u) + S(v), where again u and v are the endpoints of the
edge di,j in G. Because S is a Sidon sequence, it follows
that this can only hold if S(ci) = S(u) and S(cj) = S(v),
which implies that ci = u and cj = v. This shows that the
endpoints of the selected edges d1,2, . . . , dk−1,k are the ver-
tices in c1, . . . , ck and hence G[{c1, . . . , ck}] is a k-clique of
G.

We conclude with a simple reduction ruling out an exten-
sion of our XP algorithm to general ILPs parameterized by pc.

Theorem 22. ILP is NP-hard even if pC = 1.

Proof. We show the result by a polynomial reduction from
the SUBSET SUM problem, which is well-known to be weakly
NP-complete. Given a set S := {s1, . . . , sn} of integers
and an integer s, the SUBSET SUM problem asks whether
there is a subset S′ ⊆ S such that

∑

s∈S′ s′ = s. Let

I := (S, s) with S := {s1, . . . , sn} be an instance of SUBSET

SUM. We will construct an equivalent ILP instance I with
pC(I) = 1 in polynomial time as follows. The instance I has
n binary variables x1, . . . , xn and apart from the domain con-
straints for these variables only one global constraint defined
by

∑

1≤i≤n sixi = s. Because I has only one constraint, it

holds that pC(I) = 1 and moreover it is straightforward to
verify that I is equivalent to (S, s) (this has also for instance
been shown in [Jansen and Kratsch, 2015, Theorem 1]).

7 Concluding Notes

In order to overcome the complexity barriers of ILP, a
wide range of problems have been encoded in restricted
variants of ILP such as 2-stage stochastic ILP and N -fold
ILP; examples for the former include a range of trans-
portation and logistic problems [Powell and Topaloglu, 2003;
Hrabec et al., 2015], while examples for the latter range
from scheduling [Knop and Koutecký, 2016] to, e.g., com-
putational social choice [Knop et al., 2017]. Our framework
based on fracture backdoors provides a unified platform
which generalizes 2-stage stochastic ILP, N -fold ILP and also
4-block N -fold ILP. More importantly though, it represents a
natural measure of the complexity of ILPs which can be ap-
plied to any ILP instance, including those which lie outside
of the scope of all previously known algorithmic frameworks.
In fact, one may view our algorithmic results as “algorithmic
meta-theorems” for ILP, where previously known algorithms
for 2-stage stochastic ILP, N -fold ILP and 4-block N -fold
ILP only represent a simple base case.

Our algorithms are complemented with matching lower
bounds showing that the considered restrictions are, in fact,
necessary in order to obtain fixed-parameter or XP algo-
rithms. The only remaining blank part in the presented com-
plexity map is the question of whether mixed fracture back-
doors admit a fixed-parameter algorithm in case of bounded
coefficients; we believe that this is in fact a major open prob-
lem in the area. A first step towards settling this question
would be to resolve the fixed-parameter (in)tractability of 4-
block N -fold ILP, which was also left open in previous work;
progress in this direction seems to require new techniques and
insights [Hemmecke et al., 2010].
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