
DOCTORAL THESIS

Debarati Das

New Bounds for Combinatorial
Problems and Quasi-Gray Codes

Computer Science Institute of Charles University

Supervisor of the doctoral thesis: Prof. Mgr. Michal Koucký, Ph.D.
Study programme: Informatics (P1801)

Study branch: Discrete Models and Algorithms(4I4)

Prague 2019

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Dedicated to my parents...

ii

Title: New Bounds for Combinatorial Problems and Quasi-Gray Codes

Author: Debarati Das

Department: Computer Science Institute of Charles University

Supervisor: Prof. Mgr. Michal Koucký, Ph.D., Computer Science Institute of
Charles University

Abstract: This thesis consists of two parts. In part I, a group of combinatorial
problems pertaining to strings, boolean matrices and graphs is studied. For given
two strings x and y, their edit distance is the minimum number of character
insertions, deletions and substitutions required to convert x into y. In this thesis
we provide an algorithm that computes a constant approximation of edit distance
in truly sub-quadratic time. Based on the provided ideas, we construct a separate
sub-quadratic time algorithm that can find an occurrence of a pattern P in a given
text T while allowing a few edit errors. Afterwards we study the boolean matrix
multiplication (BMM) problem where given two boolean matrices, the aim is
to find their product over boolean semi-ring. For this problem, we present two
combinatorial models and show in these models BMM requires Ω(n3/2O(

√
log n))

and Ω(n7/3/2O(
√

log n)) work respectively. Furthermore, we also give a construction
of a sparse sub-graph that preserves the distance between a designated source and
any other vertex as long as the total weight increment of all the edges is bounded
by some constant.

In part II, we study the efficient construction of quasi-Gray codes. We give a
construction of space optimal quasi-Gray codes over odd sized alphabets with
read complexity 4 logm n. Moreover, this part also presents a construction of
quasi-Gray codes of length 2n−20n over binary alphabet set with read complexity
6 + log n.

Keywords: Boolean matrix multiplication, Combinatorial lower bounds, Edit
distance, Pattern matching, Graph algorithm, Quasi-Gray code.

iii

Acknowledgements
Firstly, I am immensely grateful to my advisor, Prof. Michal Koucký, for giving
me the opportunity to work in the ERC project LBCAD under his supervision.
He has introduced me to several fundamental problems in theoretical computer
science in past four years. Without any slightest doubt, solving those problems
was the most challenging yet cherishable experience in my career. What I admire
the most about Michal is his unique way of approaching any problem through
proper structuring and pre-assessment of the possible outcomes, to name but a
few. I learnt from him not only how to tackle any problem but also the art of
perseverance and dedication. It has been a great privilege to be his student. I
am thankful to him for his continuous support and encouragement that kept me
motivated and confident throughout the journey of my Ph.D. I also want to thank
his lovely family for inviting me at their home on several occasions.

Next, I want to acknowledge Prof. Michael Saks (Rutgers, The State Uni-
versity of NJ) with whom a significant part of this thesis has been collaborated
with. I consider myself extremely fortunate for having an academic association
with him. I thoroughly enjoyed the insightful discussions with him, which was a
great learning experience for me. On a similar note, I want to thank my other
collaborators - Diptarka Chakraborty, Nitin Saurabh and Elazar Goldenberg.
Special thanks go to Diptarka and Nitin for providing me a wonderful company
in Prague.

During the course of my Ph.D., I made several academic visits that I wish to
acknowledge. I would like to thank Prof. Eric Allender, Dr. Karl Bringmann and
Prof. Mikkel Thorup for hosting me at DIMACS (Rutgers), MPII (Saarbrucken)
and BARC (Copenhagen), respectively.

I am also grateful to the European Research Council (ERC) under the Euro-
pean Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement no. 616787 for the financial support. This dissertation would not
have been possible without their support. Thanks are also due to the Computer
Science Institute of Charles University, Prague for providing the organization
support and infrastructure during my Ph.D. journey.

I do not have enough words that can even highlight the role of my parents,
Maa and Baba, in my life. Right from my childhood, my education and career
have been their sole priority. On countless occasions, they have sacrificed in their
lives only for fulfilling my dreams and aspirations. I am indebted to them for
their unconditional love, support and faith in every stage of my life. My heartfelt
thanks to my brother, Debajyoti, for his kind affection and constant support. I
also want to thank my relatives, cousins, in-laws and friends for their love and
support.

At the end, I wish to thank my better half, Vineet, in every sense. This work
would not have been possible without his support and encouragement. I firmly
believe that together we will achieve the best in our lives in all dimensions.

1

Contents

Preface 5

I. Combinatorial Lower Bounds & Efficient String and Graph Algo-
rithms 6

1 Introduction 7
1.1 Problem Catalogue . 7

1.1.1 Edit Distance . 7
1.1.2 Approximate Pattern Matching 9
1.1.3 Boolean Matrix Multiplication 11
1.1.4 Weight Tolerant Subgraph for Single Source Shortest Path 12

1.2 Organisation . 15

2 Constant approximation of Edit Distance 16
2.1 Preliminaries . 16

2.1.1 Reduction to the gap problem 16
2.1.2 Formal framework of the algorithm 16

2.2 Warm up: A detailed overview of the Covering algorithm 18
2.3 Covering Algorithm: pseudo-code and analysis 24

2.3.1 Pseudo-code . 24
2.3.2 Analysis and correctness of CA 28
2.3.3 Time complexity of CA . 35

2.4 Min-cost Paths in Shortcut Graphs 36
2.5 Conclusion and Bibliographical Notes 39

3 Approximate Pattern Matching 41
3.1 Preliminaries . 41
3.2 Offline Approximate Pattern Matching 42

3.2.1 Technique Overview . 42
3.2.2 Covering phase . 43
3.2.3 Correctness of the covering algorithm 45
3.2.4 Time complexity of the covering algorithm 46

3.3 Min-cost Path in a Grid Graph with Shortcuts 47
3.4 Online Approximate Pattern Matching 49

3.4.1 The online algorithm . 49
3.5 Conclusion and Bibliographical Notes 51

4 Combinatorial Lower Bounds of Boolean Matrix Multiplication 53
4.1 Combinatorial Models . 53
4.2 Technique Overview . 54
4.3 Notation and Preliminaries . 55

4.3.1 Matrices . 55
4.3.2 Model . 56
4.3.3 (r, t)-graphs: The hard instance 57
4.3.4 Diverse and unhelpful graphs 58

4.4 Union Circuits . 60

2

4.5 Circuits with Partitions . 61
4.5.1 The cost of chargeable gates in a partition 65
4.5.2 Large number of partitions 67
4.5.3 Density lemma . 67
4.5.4 The main proof . 68

4.6 Conclusion and Open Problems 69

5 Weight Tolerant Subgraph for Single Source Shortest Path 71
5.1 Preliminaries . 71

5.1.1 Definitions . 71
5.1.2 Max-flow and farthest min-cut 72
5.1.3 Overview of the construction 73

5.2 Farthest Min-cut of Shortest Path Sub-
graph . 76
5.2.1 Computing farthest min-cut of shortest path subgraph . . 76
5.2.2 Disjoint shortest path lemma 77

5.3 Construction of k-WTSS and Locality
Lemma . 79

5.4 Construction of k-WTSS(t) . 80
5.4.1 Description of the algorithm 80
5.4.2 Analysis . 83

5.5 Lower Bound on the Size of k-WTSS 88
5.6 Conclusion and Bibliographical Notes 89

II. Efficient Construction of Quasi-Gray Codes 90

6 Introduction 91
6.1 Organisation . 93

7 Preliminaries and Overview 94
7.1 Preliminaries . 94

7.1.1 Construction of Gray codes 95
7.2 Overview of the construction . 96
7.3 The Key Tools . 97

7.3.1 Chinese Remainder Theorem for Counters 98
7.3.2 Permutation Group and Decomposition of Counters 100

8 Space-optimal Quasi-Gray Codes Over Odd Sized Alphabets 102
8.1 Construction of the Counter . 102

9 Quasi-Gray Codes Over Even Sized Alphabets 111
9.1 Quasi-Gray Codes over Binary Alphabet 111

9.1.1 Counters via Linear Transformation 111
9.1.2 Construction of the counter 112

9.2 Getting counters for Even m . 114
9.3 Bibliographical Notes . 115

10 Conclusion 116

Bibliography 117

3

List of Figures 128

List of Tables 129

List of publications 130

4

Preface
The thesis is organised in two parts. Part I studies a group of combinatorial
problems related to strings, graphs and boolean matrices. Part II of the thesis
presents efficient construction of quasi-Gray Codes.

Part I of the thesis is based on the following publications:

[CDGKS 18] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal
Koucký, Michael Saks. Approximating edit distance within con-
stant factor in truly sub-quadratic time. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018,
pages 979-990.

[DKS 18] Debarati Das, Michal Koucký, Michael Saks. Lower bounds for
combinatorial algorithms for boolean matrix multiplication. In
35th Symposium on Theoretical Aspects of Computer Science,
STACS 2018, pages 23:1-23:14.

[CD 18] Diptarka Chakraborty and Debarati Das. Sparse weight tolerant
subgraph for single source shortest path. In 16th Scandinavian
Symposium and Workshops on Algorithm Theory, SWAT 2018,
pages 15:1-15:15.

[CDK 18] Debarati Das, Diptarka Chakraborty, Michal Koucký. Approxi-
mate online pattern matching in sub-linear time. CoRR,abs/1810.
03551, 2018

Part II of the thesis is based on the following publication:

[CDKS 18] Diptarka Chakraborty, Debarati Das, Michal Koucký, Nitin
Saurabh. Space-Optimal Quasi-Gray Codes with Logarithmic Re-
ad Complexity. In 26th Annual European Symposium on Algo-
rithms , ESA 2018, pages 12:1-12:15.

5

Part I

Combinatorial Lower Bounds
&

Efficient String and Graph
Algorithms

6

1. Introduction
Algorithms are sequential instructions for solving computational problems rang-
ing from addition of two numbers to prediction of the weather. For decades,
researchers have taken significant interest in optimizing the resources (such as
time and space) used by algorithms. Every improved algorithm brings down
the amount of resources needed to solve a particular problem. Nevertheless, the
inherent difficulty of a computational problem poses a restriction on such opti-
mization, which is one of the key concerns in computer science. Such restriction
is formally referred to as the complexity lower bound. To prove a lower bound
for a computational problem, one needs to refute the possibility of any algorithm
that can solve the problem using resources lesser than the specified lower bound.
As a direct formulation of such a proof can be hard, one feasible approach is to
define a meaningful restricted computational model and prove the lower bound
under this model.

In this thesis, we study a special class of problems, called combinatorial prob-
lems, that operate on combinatorial objects such as graphs, hypergraphs, set
systems. Algorithms that are designed for assisting in solving combinatorial
problems are called combinatorial algorithms. These algorithms either attempt
to reduce the computational complexity, by exploiting structural similarities in
different parts of a combinatorial object, or proving some lower bounds on the
computation by showing that, different parts of the object acquire distinct struc-
tural properties. Considerable interest has been taken in developing and under-
standing combinatorial algorithms. This interest is motivated both by intellectual
curiosity and by the fascinating property of combinatorial algorithms where, all
intermediate computations have a natural combinatorial interpretation in terms
of the original problem. Moreover, they are easy to implement and are more
useful for practice.

Part I of this thesis is a testimony to the multi-faceted nature of combinatorial
problems. Here, the contributions are twofold: First we study a collection of prob-
lems related to strings and graphs and for them we devise new algorithms with
improved efficiency. Next, we introduce new combinatorial models for boolean
matrix multiplication (BMM) problem and prove lower bounds for BMM under
these models. Although the aforementioned problems have their own significance
with distinct motivation and impact, they share a common flavour in a sense
that all of them can be reduced to either reachability or shortest path problem
in graphs.

In the rest of the chapter, we introduce each of these problems, along with an
overview of related existing work and discuss in brief our main technical contri-
butions.

1.1 Problem Catalogue

1.1.1 Edit Distance
Edit distance is a measure of similarity between two strings. The edit distance(aka
Levenshtein distance) [Lev66] between strings x, y, denoted by dedit(x, y), is the

7

minimum number of character insertions, deletions, and substitutions needed to
convert x into y. It is a widely used distance measure between strings that finds
applications in fields such as computational biology, pattern recognition, text
processing and information retrieval. Due to its immense practical impact, for
decades, researchers have taken significant interest in designing algorithms that
can efficiently compute dedit(x, y). Additionally, one might also be interested in
finding an alignment of x and y, i.e., a series of edit operations that transform x
into y.

Previous Works: Edit distance can be evaluated exactly in quadratic time
via dynamic programming (Wagner and Fischer [WF74]). Landau et al. [LMS98]
gave an algorithm that finds an optimal alignment in time O(n + dedit(x, y)2),
improving on a previous O(n · dedit(x, y)) algorithm of Ukkonen [Ukk85]. Masek
and Paterson [MP80] obtained the first (slightly) sub-quadratic O(n2/ log n) time
algorithm, and the current asymptotically fastest algorithm Grabowski [Gra16]
runs in time O(n2 log log n/ log2 n). Backurs and Indyk [BI15] showed that a
truly sub-quadratic algorithm (O(n2−δ) for some δ > 0) would imply a 2(1−γ)n

time algorithm for CNF-satisfiabilty, contradicting the Strong Exponential Time
Hypothesis (SETH). Abboud et al. [AHWW16] showed that even shaving off an
arbitrarily large polylog factor from n2 can be hard, as the consequence implies
NEXP does not have non-uniform NC1 circuits. For further “barrier” results, see
[ABW15, BK15].

A long line of research has been carried out on approximating edit distance.
The exact O(n + k2) time algorithm (where k is the edit distance of the input) of
Landau et al. [LMS98] yields a linear time

√
n-factor approximation. This approx-

imation factor was improved, first to n3/7 [BYTKK04], then to n1/3+o(1) [BES06]
and later to 2Õ(

√
log n) [AO09], all with slightly superlinear runtime. Batu et

al. [BEK+03] provided an O(n1−α)-approximation algorithm with runtime
O(nmax{ α

2 ,2α−1}). The strongest result of this type is the (log n)O(1/ϵ) factor ap-
proximation (for every ϵ > 0) with running time n1+ϵ of Andoni et al. [AKO10].
In streaming model a similar kind of approximation algorithm was given by
[CGK16]. This algorithm is based on random walks. Random walk was also used
for computing the Dyck language edit distance in an earlier paper by Saha [Sah14].
Abboud and Backurs [AB17] showed that a truly sub-quadratic deterministic time
1+o(1)-factor approximation algorithm for edit distance would imply new circuit
lower bounds.

Independent of our work, Boroujeni et al. [BEG+18a] obtained a truly sub-
quadratic quantum algorithm that provides a constant factor approximation.
Their latest results [BEG+18b] are a (3+ ϵ) factor with runtime Õ(n2−4/21/ϵO(1))
and a faster Õ(n1.708)-time with a larger constant factor approximation. Andoni
and Nguyen [AN10] found a randomized algorithm that approximates Ulam dis-
tance of two permutations of {1, . . . , n} (edit distance with only insertions and
deletions) within a (large) constant factor in time Õ(

√
n + n/k), where k is the

Ulam distance of the input; this was improved by Naumovitz et al. [NSS17] to a
(1 + ε)-factor approximation (for any ε > 0) with similar runtime.

Our Contribution: This thesis contributes, by presenting a truly sub-

8

quadratic time classical algorithm that approximates edit distance within a con-
stant factor.

Theorem 1. There is a randomized algorithm ED-UB that on input strings x, y
of length n over any alphabet Σ outputs a constant approximation of dedit(x, y) in
time Õ(n12/7), with probability at least 1− n−5.

If the output is U , then the algorithm implicitly finds an alignment of cost at
most U . The algorithm can be modified to explicitly output such an alignment.

1.1.2 Approximate Pattern Matching
Finding the occurrences of a pattern in a larger text is one of the fundamental
problems in computer science. Due to its large practical applications this prob-
lem has been studied extensively under several variations [KJP77, GS81, Abr87,
Cro92, GPR95, CGPR95, Ind98, Nav01, KP18]. One of the most natural vari-
ation is where we are allowed to have a small number of errors while matching
the pattern. This problem of pattern matching while allowing errors is known
as approximate pattern matching. The kind of possible errors varies with the
applications. Generally we capture the amount of errors by the distance metric
defined over the set of strings. One common and widely used distance measure
is the edit distance. In our work we focus on the approximate pattern matching
problem under edit distance. This problem has various applications ranging from
computational biology, signal transmission, web searching, text processing and
many more.

Given a pattern P of length w and a text T of length n over some alphabet
Σ, and an integer k we want to identify all the substrings of T at edit distance at
most k from P . The number of such substrings might be quadratic in n. Hence,
we just focus on finding the set of all right-end positions in T of these substrings
that are at distance at most k. More specifically, for a position t in T , let kt

be the smallest edit distance of a substring of T ending at t-th position in T .
(We number positions in T and P from 1.) The goal is to compute the sequence
k1, k1, . . . , kn for P and T .

In the recent past, researchers also studied the approximate pattern matching
problem in the online setting. The online version of this problem mostly arises in
real life applications that require matching pattern in a massive data set, like in
telecommunications, monitoring Internet traffic, building firewall to block viruses,
malware connections and many more. Formally, the online approximate pattern
matching problem can be defined as follows: first we are given a pattern P and
then the text T arrives symbol by symbol. Upon receipt of the t-th symbol of
the text, we should output the corresponding kt. The online algorithm runs in
amortized time O(ℓ) if it runs in total time O(n · ℓ) and it uses succinct space
O(s) if in addition to storing P it uses at most O(s) cells of memory at any time.

Previous Works: The approximate pattern matching problem is one of the
most extensively studied problems in modern computer science due to its di-
rect applicability to data driven applications. In contrast to the exact pattern
matching here a text location has a match if the distance between the pattern

9

and the text is within some tolerated limit. In this thesis we study the ap-
proximate pattern matching under edit distance metric. For this problem, the
very first O(nw)-time algorithm was given by Sellers [Sel80] in 1980. Masek
and Paterson [MP80] proposed an O(nw/ log n)-time O(n)-space algorithm us-
ing Four Russians [LAAA75] technique. All the hardness results true for edit
distance also holds for approximate pattern matching. The result of Backurs and
Indyk [BI15] indicate that this O(nw) bound cannot be improved significantly un-
less the Strong Exponential Time Hypothesis (SETH) is false. Moreover Abboud
et al. [AHWW16] showed that even shaving an arbitrarily large polylog factor
would imply that NEXP does not have non-uniform NC1 circuits. More hard-
ness results can be found in [ABW15, BK15, AB17, AR18]. In the parametrized
version [Mye86, LV89, GP90] gave O(kn)-time algorithms where k is the upper
limit of allowed edit operations. All of these algorithms use either O(w2) or O(n)
space. However [GG88, UW93] reduced the space usage to O(w) while maintain-
ing the run time. A faster algorithm was given by Cole and Hariharan [CH98],
which has a runtime of O(n(1 + k4/w)). We refer the interested readers to a
beautiful survey by Navarro [Nav01] for a comprehensive treatment on this topic.

All the above mentioned algorithms assume that the entire text is available
from the very beginning of the process. However in the online version, the pat-
tern is given at the beginning and the text arrives in a stream, one symbol at a
time. Clifford et al. [CEPP08] gave a black-box algorithm for online approximate
matching where the supported distance metrics are hamming distance, match-
ing with wildcards, k-mismatch, L1 and L2 norm. Their algorithm has a run
time of O(∑log2 w

j=1 T (n, 2j−1)/n) per symbol arrival, where T (n, w) is the running
time of the best offline algorithm. This result was extended in [CS09] by in-
troducing an algorithm solving online approximate pattern matching under edit
distance metric in time O(k log w) per symbol arrival. This algorithm uses O(w)-
space. In [CS10] the runtime was further improved to O(k) per symbol. Recently,
Starikovskaya [Sta17] gave a randomized algorithm which has a worst case time
complexity of O((k2√w + k13) log4 w) and uses space O(k8√w log6 w). Unfor-
tunately this algorithm takes both sublinear time and sublinear space for very
small values of k. On the lower bound side, Clifford, Jalsenius and Sach [CJS15]
showed in the cell-probe model, the expected amortized run time of any random-
ized algorithm solving online approximate pattern matching problem must be
Ω(
√

log w/(log log w)3/2) per output.

Our Contribution: In our work we focus on finding an approximation to
the sequence k1, k1, . . . , kn for P and T . For real numbers c, k ≥ 0, a se-
quence k̃1, . . . , k̃n is (c, k)-approximation to k1, . . . , kn, if for each t ∈ {1, . . . , n},
kt ≤ k̃t ≤ c · kt + k. Hence, c is the multiplicative error and k is the addi-
tive error of the approximation. An algorithm computes (c, k)-approximation to
approximate pattern matching if it outputs a (c, k)-approximation of the true
sequence k1, k1, . . . , kn for P and T . We refer (c, 0)-approximation simply as
c-approximation. In this thesis we prove the following theorem.

Theorem 2. There is a constant c ≥ 1 and there is a randomized algorithm that
computes c-approximation to approximate pattern matching in time O(n · w3/4)
with probability at least (1− 1/n3).

10

For the online setting we show the following result.

Theorem 3. There is a constant c ≥ 1 so that there is a randomized online
algorithm that computes (c, w8/9)-approximation to approximate pattern matching
in amortized time O(w1−(7/54)) and succinct space O(w1−(1/54)) with probability at
least 1− 1/poly(n).

To the best of our knowledge this is the first online approximation algorithm
that takes sublinear (in the length of the pattern) running time and sublinear
succinct space for the approximate pattern matching problem. Our notion of
the succinct space data structure used in this work is a bit different than the
conventional notion of [Pat08, GST17]. We discuss more about this in Chapter 3.

1.1.3 Boolean Matrix Multiplication
Boolean matrix multiplication (BMM) is one of the core problems in discrete
algorithms where, given two boolean matrices the aim is to find their product
where all the operations are done over boolean semiring. It has numerous ap-
plications including triangle detection in graphs [Ita77], context-free grammar
parsing [Val75], and transitive closure etc. [FM71, Fur70, Mun71]. Boolean
matrix multiplication has a natural interpretation as a path problem in graphs:
Given a layered graph with three layers A, B, C and edges between layers A and
B and between B and C, compute the bipartite graph between A and C in which
a ∈ A and c ∈ C are joined if and only if they have a common neighbor. If we
identify the bipartite graph between A and B with its A×B boolean adjacency
matrix P and the graph between B and C with its B × C boolean adjacency
matrix Q then the desired graph between A and C is just the boolean product
P ×Q.

Previous Upper Bounds: Boolean matrix multiplication is the combinato-
rial counterpart of integer matrix multiplication. Both involve the computation
of n2 output values, each of which can be computed in a straightforward way in
time O(n) yielding a O(n3) algorithm. One of the celebrated classical results in
algorithms is Strassen’s discovery [Str69] that computes ordinary matrix multi-
plication in truly subcubic time, i.e. in time O(nω) for some ω < 3. The algorithm
computes the n2 entries by computing and combining carefully chosen (and highly
non-obvious) polynomial functions of the matrix entries. [CW90, Wil12, Gal14]
made subsequent improvements by reducing the value of ω.

Despite of the intrinsic combinatorial nature, the asymptotically fastest algo-
rithm known for BMM is obtained by treating the boolean entries as integers and
applying fast integer matrix multiplication. The intermediate calculations done
for this algorithm seemingly have little to do with the combinatorial structure of
the underlying bipartite graphs and therefore lack clarity. Moreover these fast
integer matrix multiplication algorithms are impractical because of the huge con-
stant factor hidden in O(·). This indeed motivated the study of a different class
of algorithms called “combinatorial” algorithms for BMM. The first non-trivial
combinatorial algorithm, famous as Four Russians Algorithm by Arlazarov, Dinic,
Kronrod, Faradzhev [VZA70] solves BMM using O(n3/ log2(n)) operations. In
past 10 years a series of combinatorial algorithms [BW12, Cha15, Yu15] have been

11

developed for BMM, all having complexities of the form O(n3/(log n)c) for increas-
ingly large constants c. The best and most recent of these, due to Yu [Yu15]
has complexity Ô(n3/ log4 n) (where the Ô notation suppresses poly(log log(n))
factors.)

While each of these combinatorial algorithms saves just a polylogarithmic
factor in contrast to the power of n saving by the algebraic algorithms, one
obvious question that arises is: Is there a truly subcubic combinatorial algorithm
for BMM?

Our Contribution: In this thesis we address this question and provide results
that manifest towards a negative answer. Before proceeding, we need to first make
a precise notion of a combinatorial algorithm. To formalize, a combinatorial al-
gorithm requires some computational model which specifies what the algorithm
states are, what operations can be performed, and what the cost of those oper-
ations is. In particular, we would like that our model is powerful enough to be
able to simulate all of the known combinatorial algorithms with running time no
larger than their actual running time, but not so powerful that it allows for fast
(e.g. quadratic time) algorithms that are not implementable on a real computer.
Our work takes a step towards this direction. In our work first we give a relatively
relaxed model which is an extension of the row union model by Angluin [Ang76].
Particularly in Angluin’s model non-identical unions (unions over rows having
different indices) having identical content are charged separately. Whereas in our
model a group of different unions having identical content is charged only once.
Our first lower bound shows even in this model, there are matrices for which
BMM has almost cubic cost.

Theorem 4 (Informal statement). In the row-union model with removed repeti-
tions the cost of Boolean matrix multiplication is Ω(n3/2O(

√
log n)).

Subsequently we propose a more general model where we allow the rows to
be divided into pieces. This model is indeed capable of efficiently simulating
Four Russians algorithm, but is sufficiently more general. We then prove a super
quadratic lower bound in this model.

Theorem 5 (Informal statement). In the row-union model with partitioning and
removed repetitions the cost of Boolean matrix multiplication is Ω(n7/3/2O(

√
log n)).

1.1.4 Weight Tolerant Subgraph for Single Source Short-
est Path

In the real world, networks are prone to failures and most of the time such failures
are unpredictable as well as unavoidable in any physical system such as communi-
cation network or road network. As these networks can be naturally modelled by
graphs, this yields several graph theoretical problems like reachability, shortest
path, distance preserver in fault tolerant model. Normally such failures are much
smaller in number compared to the size of the graph. Thus we can associate a
parameter to capture the number of edge or vertex failures and try to build fault
tolerant data structures of size depending on this failure parameter for various
graph theoretic problems.

12

Unfortunately, in case of single source shortest path problem, it is already
known from [DTCR08] that there are graphs with n vertices for which to preserve
the distances under even single edge failure, we need to store a subgraph of size
at least Ω(n2). On the other hand, in case of reachability problem we know
the construction of connectivity preserving subgraph of size only O(2kn) due
to [BCR16] where k is the number of edge failures. However, in case of real world
applications, it is not always the case that there are failures of edges or vertices.
Instead, for weighted graphs, weight of some edge or vertex may increase. For
simplicity, we consider weight to be only on the edges of the graph. In general,
weight of an edge captures aspect like congestion on a particular link in a network.
So it is quite natural to consider the scenario when some links (or edges) become
more congested. Again the good thing is that most of the time such a congestion
is bounded, i.e., over a network total increase in congestion is bounded because of
many reasons like bounded maximum number of consumers present in a network
at any particular time etc. One can easily capture the increase in congestion by
a parameter k that bounds the amount of total increase in weight over all the
edges of a graph. Occurrence of such bounded congestion motivates us to study
the single source shortest path problem under this model.

Related works: Single source shortest path is a well studied problem under
the edge or vertex failure model. One can easily define k-Fault Tolerant Shortest-
path Subgraph (k-FTSS) that preserves the distance information from a specific
source vertex under at most k edge failures. Unfortunately, we know that there
are weighted graphs for which no sparse k-FTSS exists even for k = 1, i.e., there
are weighted graphs with n vertices for which any 1-FTSS must contain Ω(n2)
many edges [DTCR08]. This lower bound on size of 1-FTSS is true even for
undirected graphs. However, better bounds are known for unweighted graphs
for k ≤ 2. Parter and Peleg [PP13] provided a construction of O(n3/2) sized
1-FTSS and showed that this bound is optimal. Later, Parter [Par15] extended
the construction to the case k = 2 for undirected graphs on the cost of weakening
the bound. He gave an algorithm to compute 2-FTSS of size O(n5/3) along with
a matching lower bound. So far there is nothing known for the case k > 2.

However, the situation is much better for single source reachability problem
which is closely related to single source shortest path problem. Baswana, Choud-
hary and Roditty [BCR16] showed that we can compute k-FTRS, which is a
subgraph that preserves the reachability information from a given source under
at most k edge failures, containing 2kn many edges. They also provided a match-
ing lower bound. Another interesting related problem is to compute fault tolerant
reachability oracle. It is trivial to see that using O(2kn) size k-FTRS [BCR16]
one can answer any reachability query in O(n) time for any constant value of k.
However for k ≤ 2, O(n) size data structure is known that can answer any single
source reachability query in O(1) time [LT79, Cho16]. Very recently, existence
of an efficient algorithm to find strongly connected component in fault tolerant
model has also been shown [BCR17].

Now let us come back to the shortest path problem. Instead of preserving the
exact distances (between any pair of vertices), if we consider to preserve the dis-
tances only approximately, then much better results are known. In the literature
such approximate distance preserving subgraphs are called spanners. Construc-

13

tion of spanners with both additive and multiplicative stretch have been studied
extensively [Erd, ADD+93, ACIM99, BKMP05, Woo10, AB16, ABP17]. Fault
tolerant version of spanners were first introduced in the geometric setting [Luk99,
LNS02, CZ04]. For k edge failures, construction of a (2l−1) multiplicative spanner
of size Õ(kn1+1/l), for any k, l ≥ 1, was provided in [CLPR09] whereas for k vertex
failures, the upper bound on size is known to be Õ(k2−1/ln1+1/l) [DK11]. In case
of single vertex failure in an undirected graph, construction of a O(n log n) sized
subgraph that preserves distances within a multiplicative factor of 3, is known due
to [BK13]. The bound on the size was later improved to 3n [PP14]. Braunschvig,
Chechik and Peleg [BCPS15] initiated the study of additive spanners. For β-
additive spanner, Parter and Peleg [PP14] provided a Ω(n1+ϵ(β)) size lower bound
where ϵ(β) ∈ (0, 1). They also constructed a 4-additive spanner of size O(n4/3)
that is resilient to single edge failure. For single vertex failure, constructions of
additive spanners were given in [Par14, BGG+15]. Very recently, for any fixed
k ≥ 1, construction of a sub-quadratic size 2-additive spanner resilient to k edge
or vertex failures has been shown for unweighted undirected graphs [BGPW17].
In the same paper, authors also showed that to achieve O(n2−ϵ) upper bound,
one must allow Ω(ϵk) additive error.

Another closely related problem is the replacement path problem where given
a source and destination vertex and an edge, the objective is to find a path from
source to destination avoiding that particular given edge. Though the problem
was initially defined for single edge failure, later it was extended to multiple
edge failures also. Readers may refer to [Wil11, RZ12, GW12, WY13] for recent
progresses on this problem.

Our Contribution: In this thesis, we introduce the bounded weight increment
model and under this model we study the single source shortest path problem
of weighted directed graphs. The main goal is to find a sparse subgraph that
preserves distance between a designated source and any other vertices under
weight increment operation. We define such subgraph as follows.

Definition 6 (Informal definition). Given a weighted, directed graph G with a
designated source vertex s and an integer k ≥ 1, a subgraph H of G is said to
be k-Weight Tolerant Shortest-path Subgraph (k-WTSS) of G if H preserves the
distance between the source s and any other vertex of G as long as the total weight
increment of all edges is bounded by k and the weight is incremented integrally.

The main contribution of our work is to provide an efficient construction of
a sparse k-WTSS for any k ≥ 1, where sparsity of k-WTSS depends on the
parameter k.

Theorem 7 (Informal statement). Given a directed weighted graph G with n
vertices and m edges, there exists an O((k)km2n)-time algorithm that for any
given integer k ≥ 1 constructs a k-WTSS of G such that the in-degree of every
vertex in the k-WTSS is bounded by e · (k − 1)!2k.

Next, we also prove a lower bound of c · 2kn for some constant c ≥ 5/4, on
the size of k-WTSS.

14

1.2 Organisation
Part I of the thesis is organised as follows: In Chapter 2 we provide an algorithm
that computes the edit distance of two given strings within a constant approxi-
mation factor and has a truly sub-quadratic runtime. Based on this edit distance
algorithm, in Chapter 3 we give another algorithm that solves the approximate
pattern matching problem under both offline and online setting in sublinear (in
the length of the pattern) running time and sublinear succinct space. In Chapter 4
we prove lower bounds for combinatorial models for boolean matrix multiplication
problem. In Chapter 5 we give the construction of a spare subgraph of a directed
weighted graph that preserves the distance between a designated source and any
other vertices under bounded weight increment operation. We also provide a
comparative lower bound on the size of the sparse subgraph.

Chapter 2 is based on [CDG+18], Chapter 3 is based on [CDK18], Chapter 4
is based on [DKS18], Chapter 5 is based on [CD18].

15

2. Constant approximation of
Edit Distance
Recall the edit distance between two strings x and y is the minimum number of
character insertions, deletions and substitutions required to convert x into y. In
this chapter we present an algorithm that given two strings x, y of length n, com-
putes a constant approximation of their edit distance dedit(x, y) in time Õ(n2−2/7).
We also discuss about how to improve this runtime further using recursion while
maintaining the constant factor approximation guarantee. Formally our main
result is the following:

Theorem 8. [main theorem] There is a randomized algorithm ED-UB that on
input strings x, y of length n over any alphabet Σ outputs a value k ∈ (0, n] such
that dedit(x, y) ≤ k ≤ 1220dedit(x, y) with probability at least 1−n−5. Furthermore,
if dedit(x, y) = θn, then the algorithm runs in time Õ(n2−2/7θ4/7).

2.1 Preliminaries

2.1.1 Reduction to the gap problem
Instead of providing the algorithm computing edit distance of x and y directly, we
design a gap algorithm GAP-UBθ , which distinguishes inputs with dedit(x, y) ≤
θn (where the output is at most 610θn), and those with dedit(x, y) > 610θn (where
the output is greater than 610θn). Formally we show:

Theorem 9. For every θ ∈ [n−1/5, 1], there is a randomized algorithm GAP-UBθ

that on input strings x, y of length n outputs u = GAP-UBθ(x, y) such that: (1)
dedit(x, y) ≤ u and (2) on any input with dedit(x, y) ≤ θn, u ≤ 610θn with proba-
bility at least 1− n−7. The runtime of GAP-UBθ is Õ(n2−2/7θ4/7).

Proof of Theorem 8 from Theorem 9. The construction of the main algorithm
ED-UB from GAP-UB is standard: Run the exact algorithm of [LMS98] with
runtime O(n + k2) time on instances of edit distance k, for O(n + n2−2/5) time.
If it terminates then it outputs the exact edit distance. Otherwise, the failure to
terminate implies dedit(x, y) ≥ n4/5. Now run GAP-UBθj

(x, y) for θj = (1/2)j

for j = {0, . . . , log n
5 } and output the minimum of all upper bounds obtained. Let

j be the largest index with θjn ≥ dedit(x, y) (such an index exists since j = 0
works). The output is at most 610θjn ≤ 1220dedit(x, y). We run at most O(log n)
iterations, each with runtime Õ(n2−2/7).

We devote the rest of the chapter to prove Theorem 9.

2.1.2 Formal framework of the algorithm
We use a standard two-dimensional representation of edit distance. Visualize x as
lying on a horizontal axis and y as lying on a vertical axis, with horizontal coordi-
nate i ∈ {1, . . . , n} corresponding to xi and vertical component j corresponding
to yj. The width µ(I) of interval I ⊆ {0, 1, . . . , n} is max(I)−min(I) = |I| − 1.

16

Also, xI denotes the substring of x indexed by I \ {min(I)}. (Note: xmin(I)
is not part of xI , e.g., x = x{0,...,n}. This convention is motivated by Proposi-
tion 10.) We refer to I as an x-interval to indicate that it indexes a substring
of x, and J as a y-interval to indicate that it indexes a substring of y. A box
is a set I × J where I is a x-interval and J is a y-interval; I × J corresponds
to the substring pair (xI , yJ). I × J is a w-box if µ(I) = µ(J) = w. We often
abbreviate dedit(xI , yJ) by dedit(I, J). A decomposition of an x-interval I is a se-
quence I1, . . . , Iℓ of subintervals with min(I1) = min(I), max(Iℓ) = max(I) and
for j ∈ [ℓ− 1], max(Ij) = min(Ij+1).

Edit distance graph. A edit distance graph, associated to x, y is a directed
weighted graph Gx,y, with vertex set {0, . . . , n} × {0, . . . , n} and all edges of the
form (i− 1, j)→ (i, j) (H-steps), (i, j− 1)→ (i, j) (V -steps) and (i− 1, j− 1)→
(i, j) (D-steps). Every H-step or V-step costs 1, and D-steps cost 1 if xi ̸= yj

and 0 otherwise. There is a 1-1 correspondence that maps a path from (0, 0) to
(n, n) to an alignment from x to y, i.e. a set of character deletions, insertions
and substitutions that changes x to y, where an H-step (i− 1, j)→ (i, j) means
“delete xi”, a V-step (i, j−1)→ (i, j) means “insert yj between xi and xi+1” and
a D-step (i − 1, j − 1) → (i, j) means “replace xi by yj, unless they are already
equal”. We have:

Proposition 10. The cost of an alignment, cost(τ), is the sum of edge costs
of its associated path τ , and dedit(x, y) is equal to cost(Gx,y), the min-cost of an
alignment path from (0, 0) to (n, n).

For I, J ⊆ {0, . . . , n}, Gx,y(I×J) ∼= GxI ,yJ
is the grid graph induced on I×J ,

and dedit(I, J) = cost(Gx,y(I × J)). The natural high-level idea of GAP-UBθ

appears (explicitly or implicitly) in previous work.
Certified box. A certified boxes is a pair (I × J, κ), where κ is an upper bound
on the normalized edit distance ∆edit(xI , yJ) = dedit(xI , yJ)/µ(I).

Our algorithm has two phases. First, the covering phase identifies a set R
of certified boxes. Second, the min-cost path phase, takes input R and uses a
straightforward customized variant of dynamic programming to find an upper
bound U(R) on dedit(x, y) in time quasilinear in |R|. The central issue is to
ensure that the covering phase outputs R that is sufficiently informative so that
U(R) ≤ c · dedit(x, y) for constant c, while running in sub-quadratic time.
Simplifying assumptions. The input strings x, y have equal length n. (It is
easy to reduce to this case: pad the shorter string to the length of the longer
using a new symbol. The edit distance of the new pair is between the origi-
nal edit distance and twice the original edit distance. This factor 2 increase in
approximation factor can be avoided by generalizing our algorithm to the case
|x| ≠ |y|, but we omit this from this chapter.) We assume n is a power of 2 (by
padding both strings with a new symbol, which leaves edit distance unchanged).
We assume that θ is a (negative) integral power of 2. The algorithm involves
integer parameters w1, w2, d, all of which are chosen to be powers of 2.

17

2.2 Warm up: A detailed overview of the Cov-
ering algorithm

In this section we give a detailed overview of the covering phase algorithm, its
proof of correctness and run time analysis. For the sake of comprehensibility
we ignore minor technical details. In Section 2.3, we provide the pseudo-code
corresponding to this overview, with technical differences mainly to improve run-
time. We will illustrate the sub-quadratic time analysis with the sample input
parameter θ = n−1/50 and algorithm parameters w1 = n1/10, w2 = n3/10 and
d = n1/5.
Adequate approximating sequence. An adequate approximating sequence for
some path τ is a sequence σ of certified boxes (I1 × J1, κ1), . . . , (Iℓ × Jℓ, κℓ) that
satisfies:

1. I1, . . . , Iℓ is a decomposition of {0, . . . , n}.

2. Ii×Ji is an adequate cover of τi, where τi = τIi
denotes the minimal subpath

of τ whose projection to the x-axis is Ii, and adequate cover means that
the (vertical) distance from the start vertex (resp. final vertex) of τi and
the lower left (resp. upper right) corner of Ii × Ji, is at most a constant
multiple of cost(τi) + θ.

3. The sequence σ is adequately bounded, i.e., ∑i µ(Ii)κi ≤ c(cost(τ) + θn), for
a constant c.

This is a slight oversimplification of Definition 18 of (k, ζ)-approximation of τ by
a sequence of certified boxes.

The covering phase outputs a set R of certified boxes. The goal is that R
includes an adequate approximating sequence for some min-cost path τ in Gx,y.
The intuition behind the second condition is that τi is “almost” a path between
the lower left and upper right corners of Ii × Ji. Now τi might have a vertical
extent J ′ that is much larger than its horizontal extent Ii, in which case it is
impossible to place a square Ii × Ji with corners close to both endpoints of τi.
But in that case, τi has a very high cost (at least |µ(J ′) − µ(Ii)|. The closeness
required is adjusted based on cost(τi), with relaxed requirements if cost(τi) is
large.

The output of the min-cost path phase should satisfy the requirements of
GAP-UBθ. Lemma 5 shows that if the min-cost path phase receives R that
contains a (k, θ)-approximating sequence to some min-cost path τ , then it will
output an upper bound to dedit(x, y) that is at most k′(dedit(x, y) + θn) for some
k′. So that on input x, y with dedit(x, y) ≤ θn, the output is at most 2k′θn,
satisfying the requirements of GAP-UBθ. This formalizes the intuition that an
adequate approximating sequence captures enough information to deduce a good
bound on cost(τ).

Once and for all, we fix a min-cost path τ . Our task for the covering phase is
that, with high probability, R includes an adequate approximating sequence for
τ .
τ-match. A τ -match for an x-interval I is a y-interval J such that I × J is an
adequate cover of τI .

18

It is easy to show (Proposition 14) that this implies dedit(I, J) ≤ (cost(τI) +
θµ(I)).
τ-compatible. A box I × J is said to be τ -compatible if J is a τ -match for I
and a box sequence is τ -compatible if every box is τ -compatible.

A τ -compatible certified box sequence whose distance upper bounds are (on
average) within a constant factor of the actual cost, satisfies the requirements for
an adequate approximating sequence. Our covering algorithm will ensure that R
contains such a sequence.

A natural decomposition is Iw1 , with all parts of width w1 (think of w1 as a
power of 2 that is roughly n1/10) so ℓ = n/w1 and Ij = {(j − 1)w1, · · · , (j)w1}.
The näıve approach to building R is to include certified boxes for enough choices
of J to guarantee a τ -match for each Ij.
δ-aligned interval. An interval of width w1 is δ-aligned if its upper and lower
endpoints are both multiples of δw1.

(A slightly altered definition of δ-aligned boxes is used for the formal proof in
Section 2.3)

We restrict attention to x-intervals in Iw1 , called x-candidates and θ-aligned
y-intervals of width w1 called y-candidates. It can be shown (see Proposition 15)
that an x-interval I always has a τ -match J that is θ-aligned. (In this overview
we will fix δ to θ for simplification; the actual algorithm has O(log n) iterations
during which the value of δ varies, giving improvements in runtime.) For each
x-candidate I, designate one such τ -match as the canonical τ -match, Jτ (I) for I,
and I × Jτ (I) is the canonical τ -compatible box for I.

In the exhaustive approach, for each (x-candidate, y-candidate)-pair (I, J), its
edit distance is computed in time O(w2

1), and the certified box (I×J, ∆edit(I, J))
is included. There are n

w1
n

θw1
boxes, so the time for all edit distance computations

is O(n2

θ
), which is worse than quadratic. (The factor 1

θ
can be avoided by standard

techniques, but this is not significant to the quest for a sub-quadratic algorithm,
so we defer this until the next section.) Note that |R| is n2

θ(w1)2 (which is n1.82 for
our sample parameters) so at least the min-cost path phase (which runs in time
quasi-linear in R) is truly sub-quadratic.

To achieve a sub-quadratic runtime, two natural goals are: (1) Reduce the
amortized time per box, required to certify boxes significantly below (w1)2 and
(2) Reduce the total number of certified boxes created significantly below n2

θ(w1)2 .
Neither goal is always achievable, and our covering algorithm combines them in
order to ensure that at least one of them is always satisfied.

Reducing amortized time for certifying boxes: the dense case algo-
rithm. We aim to reduce the amortized time per certified box to be much
smaller than (w1)2. We divide our search for certified boxes into iterations
i ∈ {0, . . . , log n}. For iteration i, start with ϵi = 2−i. For all candidate pairs
I, J with ∆edit(I, J) ≤ ϵi, our goal is to include the certified box (I × J, cϵi) for a
fixed constant c. If we succeed, then for each Ij and its canonical τ -match Jτ (Ij),
and for the largest index i for which ∆edit(Ij, Jτ (Ij)) ≤ ϵi, iteration i will certify
(Ij × Jτ (Ij), κj) with κj ≤ cϵi ≤ 2c∆edit(Ij, Jτ (Ij)), as needed.

For a string z of size w1, let H(z, ρ) be the set of x-candidates I with
∆edit(z, xI) ≤ ρ and V(z, ρ) be the set of y-candidates J with ∆edit(z, yJ) ≤ ρ.
In iteration i, for each x-candidate I, we will specify a set Qi(I) of y-candidates
that includes V(xI , ϵi) and is contained in V(xI , 5ϵi). The set of certified boxes

19

(I × J, 5ϵi) for all x-candidates I and J ∈ Qi(I) satisfies the goal of iteration i.
Iteration i proceeds in rounds. In each round we select an x-candidate I, called

the pivot, for whichQi(I) has not yet been specified. Compute ∆edit(xI , yJ) for all
y-candidates J and ∆edit(xI , xI′) for all x-candidates I ′; these determine H(xI , ρ)
and V(xI , ρ) for any ρ. For all I ′ ∈ H(xI , 2ϵi), set Qi(I ′) = V(xI , 3ϵi). By the
triangle inequality, for each I ′ ∈ H(xI , 2ϵi), V(xI , 3ϵi) includes V(xI′ , ϵi) and is
contained in V(xI′ , 5ϵi) so we can certify all the boxes with upper bound 5ϵi.
Mark intervals in H(xI , 2ϵi) as fulfilled and proceed to the next round, choosing
a new pivot from among the unfulfilled x-candidates.

The number of certified boxes produced in a round is |H(xI , 2ϵi)|×|V(xI , 3ϵi)|.
If this is much larger than O(n

θw1
), the number of edit distance computations, then

we have significantly reduced amortized time per certified box. (For example, in
the trivial case i = 0, every candidate box will be certified in a single round.) But
in worst case, there are n

w1
rounds each requiring Ω(nw1

θ
) time, for an unacceptable

total time Θ(n2/θ).
(d, ϵ)-dense. An x-candidate I is (d, ϵ)-dense if |V(xI , ϵ)| ≥ d, i.e., xI is ϵ-close
in edit distance to at least d y-candidates. If a x-candidate is not (d, ϵ)-dense
then it is (d, ϵ)-sparse.
(A more formal definition is given in Section 2.3)

xI1

yJ1

yJ2 yJ3

xI2 yJ4

yJ5

yJ6

xI3

yJ7

yJ8

ϵ′ ≤ 2ϵ

> 2ϵ

≤ 3ϵ

ϵ

Figure 2.1: V(xI1 , ϵ) and V(xI3 , ϵ) are disjoint.

Now we discuss a situation where the number of rounds are much less than n
w1

.
Since any two pivots are necessarily greater than 2ϵi apart, the sets V(xI , ϵi) for
distinct pivots are disjoint. If in each round i, we manage to select a (d, ϵi)-dense
(think of d = n1/5) pivot I, then the number of rounds is O(n

w1dθ
) and the overall

time will be Θ(n2

dθ2). For the sample parameters this is Θ(n1.84). But there’s no
reason to expect that we’ll only choose dense pivots; indeed there need not be
any dense pivot.

Let’s modify the process a bit. When choosing potential pivot I, first test
whether or not it is (approximately) (d, ϵi)-dense. This can be done with high

20

probability, by randomly sampling Θ̃(n
θw1d

) y-candidates and finding the fraction
of the sample that are within ϵi of xI . If this fraction is less than θw1d

2n
then I is

declared sparse and abandoned as a pivot; otherwise I is declared dense, and used
as a pivot. With high probability, all (d, ϵi)-dense intervals that are tested are
declared dense, and all tested intervals that are not (d/4, ϵi)-dense are declared
sparse, so we assume this is the case. Then all pivots are processed (as above) in
time O(n2

dθ2) (under sample parameters: O(n1.84)). We pay Õ(n
w1dθ

)(w1)2 to test
each potential pivot (at most n

w1
of them) so the overall time to test potential

pivots is Õ(n2

dθ
) (with sample parameters: Õ(n1.82)).

Each iteration i (with different ϵi) splits x-candidates into two sets, Si of inter-
vals that are declared sparse, and all of the rest for which we have found the de-
sired set Qi(I). With high probability every interval in Si is indeed (d, ϵi)-sparse,
but a sparse interval need not belong to Si, since it may belong to H(xI , 2ϵi) for
some selected pivot I.

For every x-candidate I ̸∈ Si we have met the goal for the iteration. If Si

is very small for all iterations, then the set of certified boxes will suffice for the
min-cost path algorithm to output a good approximation. But if Si is not small,
another approach is needed.
Reducing the number of candidates explored: the diagonal extension
algorithm. For each x-candidate I, although it suffices to certify the single
box (I, Jτ (I)) with a good upper bound, since τ is unknown, the exhaustive and
dense case approaches both include certified boxes for all y-candidates J . The
potential savings in the dense case approach comes from certifying many boxes
simultaneously using a relatively small number of edit distance computations.

Here’s another approach: for each x-candidate I try to quickly identify a
relatively small subset Y(I) of y-candidates that is guaranteed to include Jτ (I). If
we succeed, then the number of boxes we certify is significantly reduced, and even
paying quadratic time per certified box, we will have a sub-quadratic algorithm.

We need the notion of diagonal extension of a box. The main diagonal of box
I × J , is the segment joining the lower left and upper right corners.
Diagonal Extension. The square box I ′×J ′ is a diagonal extension of a square
subbox I × J if the main diagonal of I × J is a subsegment of the main diagonal
of I ′ × J ′.(see Definition 16)

Given square box I × J and I ′ ⊂ I the diagonal extension of I × J with
respect to I ′ is the unique diagonal extension of I × J having x-interval I ′. The
key observation (Proposition 17) is: if I × J is an adequate cover of τI then any
diagonal extension I ′ × J ′ is an adequate cover of τI′ .

Now let w1, w2 be two numbers with w1|w2 and w2|n. (Think of w1 = n1/10

and w2 = n3/10.) We use the decomposition Iw2 of {0, . . . , n} into intervals of
width w2. The set of y-candidates consists θ-aligned vertical intervals of width
w2 and has size n

θw2
. To identify a small set of potential matches for I ′ ∈ Iw2 ,

we will identify a set (of size much smaller than n
w2

) of w1-boxes B(I ′) having
x-interval in Iw1(I ′) (the decomposition of I ′ into width w1 intervals). For each
box in B(I ′) we determine the diagonal extension I ′ × J ′ with respect to I ′,
compute κ = ∆edit(I ′, J ′) and certify (I ′× J ′, κ). Our hope is that B(I ′) includes
a τ -compatible w1-box I ′′ × Jτ (I ′′), then the observation above implies that its
diagonal extension provides an adequate cover for τI′ .

Here’s how to build B(I ′): Randomly select a polylog(n) size set H(I ′) of

21

w1-intervals from Iw1(I ′). For each I ′′ ∈ H(I ′) compute ∆edit(I ′′, J ′′) for each
y-candidate J ′′, and let J (I ′′) consist of the d candidates J ′′ with smallest edit
distance to I ′′. Here d is a parameter; think of d = n1/5 as before. B(I ′) consists
of all I ′′ × J ′′ where I ′′ ∈ H(I ′) and J ′′ ∈ J (I ′′).

To bound runtime: Each I ′ ∈ Iw2 requires Õ(n
θw1

) width-w1 ∆edit() compu-
tations, taking time Õ(nw1

θ
). Diagonal extension step requires Õ(d) width-w2

∆edit() computations, for time Õ(dw2
2). Summing over n

w2
choices for I ′ gives

time Õ(n2 w1
θw2

+ ndw2) (with sample parameters: Õ(n1.82)).
Why should B(I ′) include a box that is an adequate approximation to τI′?

The intuition behind the choice of B(I ′) is that an adequate cover for τI′ should
typically be among the cheapest boxes of the form I ′× J ′, and if I ′× J ′ is cheap
then for a randomly chosen w1-subinterval I ′′, we should also have I ′′× Jτ (I ′′) is
among the cheapest boxes for I ′′.

Clearly this intuition is faulty: I ′ may have many inexpensive matches J ′ such
that I ′ × J ′ is far from τI′ , which may all be much cheaper than the match we
are looking for. In this bad situation, there are many y-intervals J ′ such that
∆edit(I ′, J ′) is smaller than the match we are looking, and this is reminiscent of
the good situation for the dense case algorithm, where we hope that I ′ has lots
of close matches. This suggests combining the two approaches, and leads to our
full covering algorithm.
The full covering algorithm. Given the dense case and diagonal extension al-
gorithms, the full covering algorithm is easy to describe. The parameters w1, w2, d
are as above. We iterate over i ∈ {0, . . . , log n} with ϵi = 2−i. In iteration i, we
first run the dense case algorithm, and let Si be the set of intervals declared sparse.
Then run the diagonal extension algorithm described earlier (with small modi-
fications): For each w2-interval I ′, select H(I ′) = Hi(I ′) to consist of θ(log2 n)
independent random selections from Si. For each I ′′ ∈ Hi(I ′), find the set of
vertical candidates J ′′ for which ∆edit(I ′′, J ′′) ≤ ϵi. Since I ′′ is (almost certainly)
d-sparse, the number of such J ′′ is at most d. Proceeding as in the diagonal exten-
sion algorithm, we produce a set Pi(I ′) of Õ(d) certified w2-boxes with x-interval
I ′. Let RD (resp. RE) be the set of all certified boxes produced by the dense
case iterations, resp. diagonal extension iterations. The output is R = RD ∪RE.
(See Figure 2.2 for an illustration of the output R.)

The runtime is the sum of the runtime of the dense case and diagonal extension
algorithms, as analyzed above. Later, we will give a more precise runtime analysis
for the pseudo-code.

To finish this extended overview, we sketch the argument that R satisfies the
covering phase requirements.

Claim 1. Let I ′ be an interval in the w2-decomposition. Either (1) the output of
the dense case algorithm includes a sequence of certified w1-boxes that adequately
approximates the subpath τI′, or (2) with high probability the output of the sparse
case algorithm includes a single w2-box that adequately approximates τI′.

(This claim is formalized in Claim 4.) Stitching together the subpaths for
all I ′ implies that R will contain a sequence of certified boxes that adequately
approximates τ .

To prove the claim, we establish a sufficient condition for each of the two
conclusion and show that if the sufficient condition for the second conclusion

22

fails, then the sufficient condition for the first holds.

J

I w2 w1

Figure 2.2: Illustration of the Covering Algorithm: Blue boxes are low cost boxes
in dense w1-strips, while the yellow ones are in sparse w1-strips. The red line
corresponds to the path τ that we are trying to cover. In each w2-strip, τ is
covered by either a collection of many w1-boxes or it is covered by a diagonal
extension of a low cost w1-box. The various boxes might overlap vertically which
is not shown in the picture.

Let I ′ denote the w1-decomposition Iw1(I ′) of I ′. Every interval I ′′ ∈ I ′

has a θ-aligned τ -match Jτ (I ′′). It will be shown (see Proposition 15), that
∆edit(I ′′, Jτ (I ′′)) ≤ 2 cost(τI′′)

µ(I′′) +θ. Let u(I ′′) denote this upper bound. Consider the
first alternative in the claim. During the dense case iteration i = 0, every interval
is declared dense, and (I ′′ × Jτ (I ′′), 5) is in RD for all I ′′. To get an adequate
approximation, we try to show that later iterations provide much better upper
bounds on these boxes, i.e., (I ′′×Jτ (I ′′), γ(I ′′)) ∈ RD for a small enough value of
γ(I ′′). By definition of adequate approximation, it is enough that ∑I′′∈I′ γ(I ′′) ≤
c
∑

I′′∈I′ u(I ′′), for some c. Let t(I ′′) be the last (largest) iteration for which
ϵt(I′′) ≥ u(I ′′) and I ′′ ̸∈ St(I′′) (which is well defined since S0 = ∅). Let b(I ′′) =
ϵt(I′′). Since b(I ′′) ≥ u(I ′′) ≥ ∆edit(I ′′, Jτ (I ′′)), the box (I ′′ × Jτ (I ′′), 5b(I ′′)) is
certified. The collection {(I ′′ × Jτ (I ′′), 5b(I ′′))} is a sequence of certified boxes
that satisfies the first two conditions for an adequate approximation of τ . The
third condition will follow if:

∑
I′′∈I′

5b(I ′′) ≤ c
∑

I′′∈I′
u(I ′′) (2.1)

so this is sufficient to imply the first condition of the claim.
Next consider what we need for the second alternative to hold. Let Si(I ′) be

the set of intervals declared sparse in iteration i. An interval I ′′ ∈ Si(I ′) is a
winner (for iteration i) if ∆edit(I ′′, Jτ (I ′′)) ≤ ϵi, and Wi(I ′) is the set of winners.
In iteration i of the diagonal extension algorithm, we sample θ(log2 n) elements

23

of Si(I ′). If for at least one iteration i our sample includes a winner I ′′ then the
second condition of the claim will hold: I ′′ × Jτ (I ′′) is extended diagonally to
a w2-box, and by the diagonal extension property, the extension is an adequate
cover of τI′ , which we will certify with its exact edit distance.

Thus for the second alternative to fail with non-negligible probability:

For all i, |Wi(I ′)| < |Si(I ′)−Wi(I ′)|, (2.2)

We argue that if the failure condition (2.2) holds, then the success condition
(2.1) holds. Multiply (2.2) by ϵi and sum on i to get:

∑
I′′∈I′

∑
i:I′′∈Wi(I′)

ϵi <
∑

I′′∈I′

∑
i:I′′∈Si(I′)−Wi(I′)

ϵi. (2.3)

For a given interval I ′′ ∈ Iw1(I ′), consider the iterations i for which I ′′ ∈
Wi(I ′) and those for which I ′′ ∈ Si(I ′) − Wi(I ′). First of all if ϵi ≥ u(I ′′) and
I ′′ ∈ Si(I ′) then since ∆edit(I ′′, Jτ (I ′′)) ≤ u(I ′′) ≤ ϵi we conclude I ′′ ∈ Wi(I ′). So
I ′′ ∈ Si(I ′)−Wi(I ′) implies that ϵi < u(I ′′), so the inner sum of the right side of
(2.3) is at most 2u(I ′′) (by summing a geometric series).

Furthermore, for i with u(I ′′) ≤ ϵi < b(I ′′), I ′′ ∈ Si by the choice of t(I ′′).
Either b(I ′′)/2 ≤ u(I ′′) or u(I ′′) < b(I ′′)/2. The latter implies I ′′ ∈ Wt(I′′)+1(I ′),
and then b(I ′′)/2 is upper bounded by the inner sum on the left of (2.3). Therefore:

∑
I′′

b(I ′′) ≤
∑
I′′

⎛⎝2u(I ′′) +
∑

i:I′′∈Wi(I′)
2ϵi

⎞⎠
<

∑
I′′

⎛⎝2u(I ′′) + 2
∑

i:I′′∈Si(I′)−Wi(I′)
ϵi

⎞⎠
≤ 6

∑
I′′

u(I ′′),

as required for (2.1).
This completes the overview of the covering algorithm.

2.3 Covering Algorithm: pseudo-code and anal-
ysis

In this section first we present the pseudo-code of the covering algorithm. Next
we formally prove that each box output by the covering algorithm is correctly
certified and they include an adequate approximating sequence for some min-cost
path τ in Gx,y. Lastly we provide the formal run-time analysis of the covering
algorithm.

2.3.1 Pseudo-code
The pseudo-code consists of CoveringAlgorithm which calls procedures DenseS-
tripRemoval (the dense case algorithm) and SparseStripExtensionSampling (the
diagonal extension algorithm). These are abbreviated, respectively by CA, DSR

24

and SSES. The technical differences between the pseudo-code and the informal
description, are mainly to improve runtime analysis.

The parameters of CA are as described in the overview: x, y are input strings
of length n, θ comes from GAP-UBθ, w1 < w2 < n and d < n are integral
powers of 2, as are the auxiliary input parameters. The output is a set R of
certified boxes. The algorithm uses global constants c0 ≥ 0 and c1 ≥ 120, where
the former one is needed for Proposition 23.

We use a subroutine SMALL-ED which takes strings z1, z2 of length w
and parameter κ and outputs ∞ if ∆edit(z1, z2) > κ and otherwise outputs
∆edit(z1, z2). The algorithm of [Ukk85] implements SMALL-ED in time O(κw2).

One technical difference from the overview, is that the pseudo-code saves time
by restricting the search for certified boxes to a portion of the grid close to the
main diagonal. Recall that GAP-UBθ has two requirements, that the output
upper bounds dedit(x, y) (which will be guaranteed by the requirement that R
contains no falsely certified boxes), and that if dedit(x, y) ≤ θn, the output is
at most cθn for some constant c. We therefore design our algorithm assuming
dedit(x, y) ≤ θn, in which case every min-cost Gx,y-path τ consists entirely of
points within θ

2n steps from the main diagonal, i.e. |i−j| ≤ θ
2n. So we restrict our

search for certified boxes as follows: set m = 1
4θn, and consider the n

m
overlapping

equally spaced boxes of width 8m = 2θn lying along the main diagonal. Together
these boxes cover all points within θn of the main diagonal.

The algorithm of the overview is executed separately on each of these n/m
boxes. Within each of these executions, we iterate over i ∈ {0, . . . , log 1

θ
} (rather

than {0, . . . , log n} as in the overview). In each iteration we apply the dense case
algorithm and the diagonal extension algorithm as in the overview. The output
is the union over all n/m boxes and all iterations, of the boxes produced.

In the procedures DSR and SSES, the input G is an induced grid graph
corresponding to a box IG × JG, as described in the “framework” part of Section
2.1. The procedure DSR on input G, sets T to be the w1-decomposition of IG

(the x-candidates) and B to be the set of ϵi

8 -aligned y-candidates. As in the
overview, the dense case algorithm produces a set of certified boxes (called R1 in
the pseudo-code) and a set S of intervals declared sparse.

SSES is invoked if S ≠ ∅ and iterates over all x-intervals I ′ in the decomposi-
tion Iw2(IG). The algorithm skips I ′ if S contains no subset of I ′, and otherwise
selects a sample H of θ(log2 n) subintervals of I ′ from S. For each sample interval
I ′′ it finds the vertical candidates J ′′ for which ∆edit(I ′′, J ′′) ≤ ϵi, does a diagonal
extension to I ′ and certifies each box with an exact edit distance computation.

There are a few parameter changes from the overview that provide some im-
provement in the time analysis: During each iteration i, rather than take our
vertical candidates to be from a θ-aligned grid, we can afford a coarser grid that
is ϵi/8-aligned. Also, the local parameter d in DSR and SSES is set to d/ϵi during
iteration i.

There is one counterintuitive quirk in SSES: each certified box is replicated
O(log n) times with higher distance bounds. This is permissible (increasing the
distance bound cannot decertify a box), but seems silly (why add the same box
with a higher distance bound?). This is just a convenient technical device to
ensure that the second phase min-cost path algorithm gives a good approximation.

25

Algorithm 1 CA(x, y, n, w1, w2, d, θ)
CoveringAlgorithm
Input: Strings x, y of length n, w1, w2, d ∈ [n], w1 < w2 < θn/4, and θ ∈ [0, 1].

n, w1, w2, θ are powers of 2.
Output: A set R of certified boxes in G.

1: Initialization: G = Gx,y, RD = RE = ∅.
2: Let m = θn

4
3: for k = 0, . . . , 4

θ
do

4: Let I = J = {km, km + 1, . . . , (k + 8)m}.
5: for i = ⌈log 1/θ⌉, . . . , 0 do
6: Set ϵi = 2−i.
7: Invoke DSR(G(I × J), n, w1,

d
ϵi

, ϵi

8 , ϵi) to get S and R1.
8: if S ≠ ∅ then
9: Invoke SSES(G(I × J),S, n, w1, w2,

d
ϵi

, ϵi

8 , ϵi, θ) to get R2.
10: else
11: R2 = ∅.
12: end if
13: Add items from R1 to RD and from R2 to RE.
14: end for
15: end for
16: Output R = RD ∪RE.

Algorithm 2 DSR(G, n, w, d, δ, ϵ)
DenseStripRemoval
Input: G = Gx,y(IG × JG) for some IG, JG ⊆ {0, 1, . . . , n}, w, d ∈ [n], the end-

points of IG and JG are multiples of w and δ, ϵ ∈ [0, 1].
Output: Set S which is a subset of the w-decomposition of IG and a set R of

δ-aligned certified w-boxes all with distance bound 5ϵi.

1: Initialization: S = R = ∅. T = Iw(IG).
2: B, the set of y-candidates, is the set of width w δ-aligned subintervals of JG

(having endpoints a multiple of δw.)
3: while T is non-empty do
4: Pick I ∈ T
5: Sample c0|B|1d log n intervals J ∈ B uniformly at random and for each test

if ∆edit(xI , yJ) ≤ ϵ.
6: if for at most c0

2 log n sampled J ’s, SMALL-ED(xI , yJ , ϵ) <∞ then
7: S = S ∪ {I}; T = T − {I}. (I is declared sparse)
8: else
9: (I is declared dense and used as a pivot)

10: Compute:
11: Y = {J ∈ B; SMALL-ED(xI , yJ , 3ϵ) <∞}.
12: X = {I ′ ∈ T ; SMALL-ED(xI , xI′ , 2ϵ) <∞}.
13: Add (I ′ × J ′, 5ϵ) to R for all pairs (I ′, J ′) ∈ X × Y .
14: T = T − X .
15: end if
16: end while
17: Output S and R.

26

Algorithm 3 SSES(G,S, n, w1, w2, d, δ, ϵ, θ)
SparseStripExtensionSampling
Input: G = Gx,y(IG, JG) with IG, JG ⊆ {0, 1, . . . , n}, w1, w2, d, n are powers of

2, with w1, w2, d < n and w1 < w2. Endpoints of IG and JG are multiples of
w2, S is a subset of the w1-decomposition of IG and δ, ϵ, θ are non-positive
integral powers of 2.

Output: A set R of certified w2-boxes in G.
1: Initialization: R = ∅.
2: B, the set of y-candidates, is the set of width w δ-aligned subintervals of JG

(endpoints are multiples of δw.)
3: for I ′ ∈ Iw2(IG) do
4: if S includes a subset of I ′ then
5: Select c1 log2 n intervals I ∈ S independently and uniformly at random

from Iw1(I ′) ∩ S, to obtain H.
6: for each I ∈ H and each J ∈ B do
7: if SMALL-ED(xI , yJ , ϵ) <∞ then
8: Let J ′ be such that I ′ × J ′ is the diagonal extension of I × J in

I ′ × JG.
9: Let p = SMALL-ED(xI′ , yJ ′ , 3ϵ)

10: if p <∞ then
11: For k = 0, . . . , log n, add (I ′ × J ′, p + θ + 2−k) to R.
12: end if
13: end if
14: end for
15: end if
16: end for
17: Output R.

27

2.3.2 Analysis and correctness of CA
For the analysis we must prove that R contains an “adequate approximation”
of some min-cost alignment path τ . To state this precisely, we start with defini-
tions and observations and prove some simple preliminary claims that formalize
intuitive notions from the overview.
Cost and normalized cost. The cost of a path τ , cost(τ), from (u1, u2) to
(v1, v2) in a grid-graph (see Section 2.1), is the sum of the edge costs, and the
normalized cost is ncost(τ) = cost(τ)

v1−u1
. cost(G(I × J)) (or simply cost(I × J)), the

cost of subgraph G(I × J), is the min-cost of a path from the lower left to the
upper right corner. The normalized cost is ncost(I × J) = 1

µ(I)cost(I × J).
We note the following simple fact without proof:

Proposition 11. For I, J, J ′ ⊆ {0, . . . , n}, |dedit(xI , yJ)−dedit(xI , yJ ′)| ≤ |J∆J ′|,
where ∆ denotes symmetric difference.

Projections and subpaths. The horizontal projection of a path τ = (i1, j1), . . . ,
(iℓ, jℓ) is the set of {i1, . . . , iℓ}. We say that τ crosses box I × J if the vertices of
τ belong to I × J and its horizontal projection is I. If the horizontal projection
of τ contains I ′, τI′ denotes the (unique) minimal subpath of τ whose projection
is I ′.

G
G′

I ′I

J

Figure 2.3: Illustration of a path that crosses a grid: Solid blue edges are the
edges of a given path τ . Dotted blue edges are the edges of path τI′ that crosses
the dashed strip G′.

Proposition 12. Let τ be a path with horizontal projection I, and let I1, . . . , Iℓ

be a decomposition of I. Then the τIj
are edge-disjoint and so:

cost(τ) ≥
ℓ∑

i=1
cost(τIi

)

ncost(τ) ≥
ℓ∑

i=1

µ(Ii)
µ(I) ncost(τIi

).

Definition 13. (1− δ)-cover. Let τ be a path with horizontal projection I and
let I ′ × J ′ be a (not necessarily square) box with I ′ ⊆ I. For δ ∈ [0, 1] the box
I ′×J ′ (1− δ)-covers τ if the initial, resp. final, vertex of the subpath τI′ is within
δµ(I ′) vertical units of (min(I ′), min(J ′)), resp. (max(I ′), max(J ′)).

28

Proposition 14. Let I ′× J ′ be a (not necessarily square) box that (1− δ)-covers
path τ .

1. ncost(I ′ × J ′) ≤ ncost(τI′) + 2δ.

2. If J ′′ is any vertical interval, then I ′× J ′′ (1− δ− |J ′∆J ′′|/µ(I ′)) covers τ .

Proof. For the first part, let J0 be the vertical projection of τI′ . Then ncost(I ′×
J0) ≤ ncost(τI′) since τI′ joins the lower left corner of I ′ × J0 to the upper right
corner. Since I ′ × J ′ (1− δ)-covers τ , |J ′∆J0| ≤ 2δµ(I ′), and by Proposition 11,
ncost(I ′ × J ′) ≤ ncost(τI′) + 2δ.

For the second part, observe that the vertical distance between the lower (resp.
upper) corners of I ′ × J ′ and I ′ × J ′′ is at most |J ′∆J ′′|.

δ-aligned interval. A y-interval J of width w is δ-aligned for δ ∈ (0, 1) if its
endpoints are multiples of δw (which we require to be an integer). (See Figure 2.4)

J J ′
J ′′

δw

I

Figure 2.4: An illustration of δ-aligned interval. Here interval J ′′ is δ-aligned but
J ′ is not.

Proposition 15. Let τ be a path that crosses I × J . Suppose that I ′ ⊆ I has
width w, and µ(J) ≥ w.

1. There is an interval J1 with µ(J1) = µ(I ′) so that ncost(I ′ × J1) ≤
2ncost(τI′) and I ′ × J1 (1− ncost(τI′))-covers τ .

2. There is a δ-aligned interval J ′ ⊆ J of width w so that ncost(I ′ × J ′) ≤
2ncost(τI′) + δ and I ′ × J ′ (1− ncost(τI′)− δ)-covers τ.

(J1, J ′ are “τ -matches” for I ′, in the sense of the overview.)

Proof. Let τ ′ = τI′ be the min-cost subpath of τ that projects to I ′. Let J0 be
the vertical projection of τ ′. Note that |µ(J0) − µ(I ′)| ≤ cost(τ ′). Arbitrarily
choose an interval J1 of width µ(I ′) that either contains or is contained in J0.
Then |J0∆J1| = |µ(J0)−µ(I ′)| ≤ cost(τ ′), so by Proposition 11 ncost(I ′×J1) ≤
2ncost(τ ′). Furthermore I ′ × J1 (1 − ncost(τ ′)) covers τ ′. Let J ′ be the closest
δ-aligned interval to J1, so |J ′∆J1| ≤ δµ(I ′) and so ncost(I ′ × J ′) ≤ ncost(I ′ ×
J1) + δ ≤ 2ncost(τ ′) + δ. Finally since I ′ × J ′ is a vertical shift of I ′ × J1 of
normalized length at most δ, we have I ′ × J ′ (1− ncost(τ ′)− δ) covers τ ′.

29

Definition 16. 1. The main diagonal of a box is the segment joining the lower
left and upper right corners.

2. For a square box I ′×J ′, and I ′ ⊆ I, the true diagonal extension of I ′×J ′ to
I is the square box I × Ĵ whose main diagonal contains the main diagonal
of I ′ × J ′.

3. For a w-box I ′×J ′ contained in strip I×J , the adjusted diagonal extension
of I ′ × J ′ within I × J is the box I × J ′′ obtained from the true diagonal
extension of I ′ × J ′ to I by the minimal vertical shift so that it is a subset
of I × J . (The adjusted diagonal extension is the true diagonal extension if
the true diagonal extension is contained in I × J ; otherwise it’s lower edge
is min(J) or its upper edge is max(J).)

I ′

J ′J

I

Ĵ

Figure 2.5: Illustration of diagonal extension: Given a w-box I ′ × J ′ its true
diagonal extension is the grey box I × Ĵ .

Proposition 17. Suppose path τ crosses I × J and ncost(τI) ≤ ϵ. Let w = µ(I).
Let I ′×J ′ be a w′-box that (1−δ)-covers τI′. Then the adjusted diagonal extension
I×J ′′ of I ′×J ′ within I×J (1− (ϵ+δ w′

w
))-covers τ and satisfies ncost(I×J ′′) ≤

3ϵ + 2δ w′

w
.

Proof. It suffices to show that I × J ′′ (1 − (ϵ + δw′/w))-covers τ , since then
Proposition 14 gives us the needed upper bound on ncost(I × J ′′).
Case 1. I×J ′′ is equal to the true diagonal extension. If ϵ ≥ 1, the claim follows
trivially, so we can assume ϵ < 1. Let τI , τI′ be the min-cost subpath of τ that
projects on I and I ′ respectively.

We will give an upper bound on the vertical distance from the final vertex of
τ to the upper right corner of I×J ′′. Let τu be the subpath of τ that starts at the
final vertex of τI′ and ends at the final vertex of τI . Let Iu and Ju be the horizontal
and vertical projections of τu. The start vertex of τu has vertical distance at most
δw′ from the main diagonal of I×J ′′. The final vertex of τu therefore has vertical
distance at most δw′ + |µ(Iu)− µ(Ju)| from the upper corner of I × J ′′, and this
is at most δw′ + ϵw, since cost(τ) ≥ |µ(Iu) − µ(Ju)|. A similar argument gives

30

the same upper bound on the vertical distance between the start vertex of τI and
the lower left corner of I × J ′′, so G′′(I × J ′′) (1− (ϵ + δw′/w))-covers τ .
Case 2. I × J ′′ is not the true diagonal extension. Extend the set J to J̄ by
adding µ(I) elements before and after. (It is possible that J̄ is not a subset of
{0, . . . , n}; in this case we imagine that y is extended to a sequence y∗ by adding
µ(I) new symbols to the beginning and end of y and that we are in the grid graph
Gx,y∗ .) Let I × J ′′′ be the adjusted diagonal extension of I ′× J ′ to I × J̄ . This is
equal to the true diagonal extension, and so by Case 1, I × J ′′′ (1− (ϵ + δw′/w))-
covers τ . We claim that I × J ′′ does also. Assume J ′′′ falls below min(J) (the
case that J ′′′ is above max(J) is similar). Then I × J ′′ is obtained by shifting
I × J ′′′ up until the lower edge coincides with min(J). The lower vertex of τI has
y-coordinate at least min(J).

If the y-coordinate of the upper vertex of τI is at most max(J ′′), then J ′′

contains vertical projection of τI , and I × J ′′ (1− ϵ)-covers τ . If the y-coordinate
of the upper vertex of τI is greater than max(J ′′), shifting I×J ′′′ up to I×J ′′ can
only decrease the vertical distance from the the lower left corner to the start of
τI and from the upper corner to the end of τI , so I × J ′′ (1− (ϵ + δw′/w))-covers
τ .

(k, ζ)-approximation of a path. This formalizes the notion of adequate
approximation of a path by a certified box sequence.

Definition 18. Let G be a grid graph on I × J . Let ζ, ϵ ∈ [0, 1]. Let τ be
a path that crosses G. A sequence of certified boxes σ = {(I1 × J1, ϵ1), (I2 ×
J2, ϵ2), . . . , (Iℓ × Jℓ, ϵℓ)} (k, ζ)-approximates τ provided that:

1. I1, . . . , Iℓ is a decomposition of I.

2. For each i ∈ [ℓ], Ii × Ji (1− ϵi)-covers τ .

3. ∑i∈[ℓ] ϵiµ(Ii) ≤ (k · ncost(τ) + ζ)µ(I).

Proposition 19. Suppose path τ crosses I×J and I1, . . . , Im is a decomposition
of I, and for i ∈ [m], σi is a certified box sequence that (k, ζ)-approximates τIi

.
Then σ1, . . . , σm (k, ζ)-approximates τ .

Proof. It is obvious that σ is a sequence of certified boxes, that the horizontal
projections of all the boxes form a decomposition of I and that each box (Ii, Ji, ϵi)
(1 − ϵi)-covers τ . The final condition is verified by splitting the sum on the left
into m sums where the jth sum includes terms for Ii ⊆ Ij, and is bounded above
by (k · ncost(τIj

+ ζ)µ(Ij). Summing the latter sum over j and using Proposition
12 we get that σ (k, ζ)-approximates the path τ .

Definition 20. (d, δ, ϵ)-dense and -sparse. Fix a box I×J . An interval I ′ ⊆ I
of width w is (d, δ, ϵ)-sparse (wrt I × J) for integer d and ϵ, δ ∈ (0, 1] if there are
at most d δ-aligned w-boxes in I ′ × J of ncost at most ϵ, and is (d, δ, ϵ)-dense
otherwise.

The sets Si and Si(I ′). For fixed k in the outer loop of CA, the set S created
in iteration i of CA is denoted by Si. For any interval I ′, Si(I ′) is the set of
subintervals of I ′ belonging to Si.

31

Successful Sampling. The algorithm uses random sampling in two places, in
the i loop inside CA and within the conditional on S containing a set from Iw1(I ′)
in SSES. We now specify what we need from the random sampling.

Definition 21. A run of the algorithm has successful sampling provided that for
all k ∈ {0, . . . , 4/θ} and i ∈ {0, . . . , log 1

θ
} in the nested CA loops:

• For every w1 interval I with endpoints a multiple of w1, if I is (d
ϵi

, ϵi

8 , ϵi)-
dense interval (in terms of global parameters), DSR does not assign I to S
and if I is (d

4ϵi
, ϵi

8 , ϵi)-sparse, DSR places I in S.

• On all calls to SSES, for every w2 interval I with endpoints a multiple of
w2, if |Wi(I)| has size at least |Si(I)−Wi(I)|/32 then the sample H selected
contains an element ofWi(I). (Here Si(I) andWi(I) are that defined in the
proof of Claim 4, whose definitions don’t depend on the randomness used to
select H.)

We will need the following variant of the Chernoff bound.

Proposition 22 (Chernoff bound). There is a constant c0 such that the following
is true. Let 1 ≤ d ≤ n be integers, B be a set and E ⊆ B. Let us sample c0

|B|
d

log n
samples from B independently at random with replacement.

1. If |E| ≥ d then the probability that less than c0
2 log n samples are from E is

at most 1/n10.

2. If |E| ≤ d/4 then the probability that at least c0
2 log n samples are from E is

at most 1/n10.

Proposition 23. For large enough n, a run of CA has successful sampling with
probability at least 1− n−7.

Proof. By Proposition 22, the probability that the first condition fails for a
particular k, i, I is at most n−10. The number of choices for k, i, I is at most
(4

θ
+ 1) · (1 + log 1

θ
) n

w1
≤ n2 (for large enough n) so the overall probability that

(1) fails is at most n−8.
The probability that the second condition fails for a particular k, i, I is (1 −

1
32)c1 log2 n ≤ n−10. The number of k, i, I is less than n2 (for large enough n), so
the overall failure probability is at most n−8 .

We assume that coins are fixed in a way that gives successful sampling.

Correctness of the covering algorithm:

The main property of CA to be proved is:

Theorem 24. Let x, y be strings of length n, 1/n ≤ θ ≤ 1 be a real. Let w1, w2, d
satisfy w1 ≤ θw2, w2 ≤ θn

4 and 1 ≤ d ≤ θn
w1

. Assume n, w1, w2, d, θ are powers of 2.
Let R be the set of weighted boxes obtained by running CA(x, y, n, w1, w2, d, θ) with
c1 > 120. Then (1) Every (I ×J, ϵ) ∈ R is correctly certified, i.e., ∆edit(xI , yJ) ≤
ϵ, and (2) In a run that satisfies successful sampling, for every path τ from the
source to the sink in G = Gx,y of cost at most θ there is a subset of R that
(45, 15θ)-approximates τ .

32

Proof. All boxes output are correctly certified: Each box in RE comes from SSES
which only certifies boxes with at least their exact edit distance. For (I × J, ϵ) ∈
RD, there must be an I ′ such that ∆edit(xI′ , yJ) ≤ 3

5 · ϵ and ∆edit(xI′ , xI) ≤ 2
5 · ϵ

and so by triangle inequality ∆edit(xI , yJ) ≤ ϵ.
It remains to establish (2). Fix a source-sink path τ of normalized cost κ.
By Proposition 19 it is enough to show that for each I ′ ∈ Iw2 , R contains a

box sequence that (45, 15θ)-approximates τI′ . So we fix I ′ ∈ Iw2 .
The main loop (on k) of CA processes G in overlapping boxes. Since ncost(τ)

≤ θ, one of these boxes, which we’ll call I × J , must contain τI′ .
Claim 2. Let I ′ ∈ Iw2. There exist intervals I, J ⊆ N, I = J that are enumerated
in the main loop of CA such that I ′ ⊆ I and τI′ crosses G(I ′ × J).

Proof. Since τ is of cost at most θ, it cannot use more than θn/2 horizontal edges
as for each horizontal edge of cost 1, it must use one vertical edge of cost 1. Sim-
ilarly for vertical edges. So τ is confined to diagonals {−θn/2, . . . , 0, . . . , θn/2}
of G. By the choice of m in CA, there will be I and J considered in the main
loop of the algorithm such that I ′ ⊆ I and τI′ crosses G(I × J). In particular,
I = J = {km, km + 1, . . . , (k + 8)m}, where k is the largest integer such that
km ≤ min(I ′)− θn

2 has the desired property.

Let I, J be as provided by the claim. Let I ′ be the w1-decomposition of I ′. We
will show one of the following must hold: (1) RD contains a sequence of certified
w1-boxes that (45, 15θ)-approximates τI′ , or (2) There is a single certified w2-box
in RE that (45, 15θ)-approximates τI′ .

Let t = log 1
θ
. For i = t, . . . , 0, let ϵi = 2−i and let Si be the set S obtained at

the iteration i of CA(x, y, n, w1, w2, d, θ).
We note:

Claim 3. Let i ∈ {0, . . . , log 1/θ}. Suppose I ′′ ∈ Iw1(I) and J ′′ ⊆ J is ϵi/8-
aligned. If I ′′ ̸∈ Si and cost(I ′′ × J ′′) ≤ ϵi then (I ′′ × J ′′, 5ϵi) ∈ RD.

Proof. If I ′′ ̸∈ Si then in the call to DSR(G(I×J), n, w1, d/ϵi, ϵi/8, ϵi) there is an
iteration of the main loop,where the selected interval Ĩ from T is declared dense
and ∆edit(xĨ , xI′′) ≤ 2ϵi. Since ∆edit(xI′′ , yJ ′′) ≤ ϵi, ∆edit(xĨ , yJ ′′) ≤ 3ϵi and so
I ′′ ∈ X and J ′′ ∈ Y . Thus, DSR certifies (I ′′×J ′′, 5ϵi), which is added to RD.

The theorem follows from:
Claim 4. For an interval I ′ ∈ Iw2, assuming successful sampling RE or RD

contains a (45, 15θ)-approximation of τI′.
The proof is similar to that of Claim 1, with adjustments for some technical-

ities.

Proof. Let τ ′ = τI′ and κ = ncost(τ ′). Let I ′ = Iw1(I ′). For I ′′ ∈ I ′, let
κI′′ = ncost(τI′′). By Proposition 15, for all I ′′ ∈ I ′ and ϵi ≥ κI′′ there is an
ϵi/8-aligned vertical interval Jτ

i (I ′′), such that ncost(I ′′ × Jτ
i (I ′′)) ≤ 2κI′′ + ϵi/8

and I ′′ × Jτ
i (I ′′) (1− κI′′ − ϵi/8)-covers τI′ .

Let s(I ′′) be the largest integer such that ϵs(I′′) ≥ 3κI′′+κ+θ. Let t(I ′′) ≤ s(I ′′)
be the largest integer such that I ′′ ̸∈ St(I′′). (Since θn/w1 ≥ d, S0 = ∅, so t(I ′′) is
well-defined.) Let a(I ′′) = ϵs(I′′) (this plays a similar role to u(I ′′) in Section 2.2)
and b(I ′′) = ϵt(I′′).

33

For all ϵi ∈ [a(I ′′), b(I ′′)], ncost(I ′′ × Jτ
i (I ′′)) ≤ ϵi and I ′′ × Jτ

i (I ′′) (1 − ϵi)-
covers τ ′. By the definition of b(I ′′) and Claim 3, RD contains the certified box
(I ′′ × Jτ

t(I′′)(I ′′), 5bI′′). So RD contains a (45, 15θ)-approximation of τ ′ provided
that: ∑

I′′∈I′
5b(I ′′) ≤ 45

8
∑

I′′∈I′
a(I ′′) (2.4)

since a(I ′′) ≤ 2(3κI′′ + κ + θ).
Next we determine a sufficient condition thatRE contain a box sequence (con-

sisting of a single box) that (5, 4θ)-approximates τ ′. Let Si(I ′) = Si∩I ′. Interval
I ′′ ∈ Si(I ′) is a winner for iteration i if ϵi ≥ a(I ′′). This set of winners is denoted
by Wi(I ′). It suffices that during iteration i, the set of c1 log2 n samples taken in
SSES includes a winner I ′′; then since ∆edit(I ′′, Jτ

i (I ′′)) ≤ ϵi, the (adjusted) diag-
onal extension I ′× J̃ of I ′′×Jτ

i (I ′′) will be certified. By Proposition 17, I ′× J̃ has
normalized cost at most 3κ+2ϵiw1/w2 ≤ 3κ+2θ ≤ 3ϵi and it (1− (κ+θ))-covers
τ ′. If κ = 0 then (I ′ × J̃ , ncost(I ′ × J̃) + θ + 2− log n) is in RE by the behavior of
SSES and it (5, 4θ)-approximates τ ′. Otherwise κ ≥ 1/n; so set k = ⌊log 1/κ⌋.
Thus, k ≤ log n and 2−k ∈ [κ, 2κ). Then (I ′ × J̃ , ncost(I ′ × J̃) + θ + 2−k) is in
RE and it (5, 4θ)-approximates τ ′.

Under successful sampling if |Wi(I ′)| ≥ 1
32 |Si(I ′)−Wi(I ′)|, at least one interval

from Wi(I ′) will be included in our c1 log2 n samples during SSES and RE will
contain a (5, 4θ)-approximation of τ ′ as above. So suppose this fails:

For all i, |Wi(I ′)| < 1
32 |Si(I ′)−Wi(I ′)|. (2.5)

We show that this implies (2.4). Multiplying (2.5) by ϵi and summing on i yields:

∑
I′′∈I′

∑
i:I′′∈Wi(I′)

ϵi <
1
32

∑
I′′∈I′

∑
i:I′′∈Si(I′)−Wi(I′)

ϵi. (2.6)

I ′′ ∈ Si(I ′)−Wi(I ′) implies ϵi < a(I ′′). Summing the geometric series:∑
i:I′′∈Si(I′)−Wi(I′)

ϵi ≤ 2a(I ′′). (2.7)

Either a(I ′′) = b(I ′′) or a(I ′′) < b(I ′′). If the latter, then I ′′ ∈ Wi(I ′) for
ϵi = b(I ′′)/2. So:

∑
I′′∈I′

b(I ′′) ≤
∑
I′′

(
a(I ′′) +

∑
i:I′′∈Wi(I′)

2ϵi

)

<
∑
I′′

(
a(I ′′) + 1

16
∑

i:I′′∈Si(I′)−Wi(I′)
ϵi

)

≤ 9
8
∑

I′′∈I′
a(I ′′)

which implies Equation 2.4. (The second inequality follows from (2.6) and the
last inequality from (2.7).)

34

2.3.3 Time complexity of CA
We write t(w, ϵ) for the time of SMALL-ED(z1, z2, ϵ) on strings of length w.
We assume t(w, ϵ) ≥ w, and that for k ≥ 1, there is a constant c(k) such that for
all ϵ ∈ [0, 1] and all w > 1, t(w, kϵ) ≤ c(k) · t(w, ϵ) + c(k). As mentioned earlier,
by [Ukk85], we can use t(w, ϵ) = O(w2ϵ).

Theorem 25. Let n be a sufficiently large power of 2 and θ ∈ [1/n, 1] be a power
of 2. Let x, y be strings of length n. Let log n ≤ w1 ≤ w2 ≤ θn/4, 1 ≤ d ≤ n
be powers of 2, where w1|w2 and w2|n, and w1/w2 ≤ θ. The size of the set R
output by CA is O((n

w1
)2 log2 n) and in any run that satisfies successful sampling,

CA runs in time:

O

⎛⎝|R|+ ∑
k=log 1/θ,...,0

ϵ=2−k

(
θn2 log n

dϵw2
1
·t(w1, ϵ)+ θn2 log2 n

w1w2ϵ
·t(w1, ϵ)+ nd log2 n

w2ϵ
·t(w2, ϵ)

)⎞⎠

Proof. To bound |R| note that for each choice of k, i in the outer and inner
loops of CA, the set of candidate boxes of width w1 has size O(θn

w1
θn

w1ϵi
). This

upper bounds the number of boxes certified by DSR. The call to SSES constructs
at most one diagonal extension for each such candidate box, and each diagonal
extension gives rise to at most O(log n) certified boxes. Thus, for each (k, i) there
are O(θ2n2 log n

(w1)2ϵi
) certified boxes. Summing the geometric series over i, noting that

min(ϵi) = θ, and summing over O(1/θ) values of k gives the required bound on
|R|.

The steps in the algorithm that actually construct certified boxes (13 of DSR,
11 of SSES, 13 of CA) cost O(1) per box giving the first term in the time bound.

We next bound the other contributions to runtime. The outer loop of CA has
4
θ

+1 iterations on k’s. The inner loop has 1+log 1
θ

iterations on i. Each iteration
invokes DSR and SSES on I × J with I and J of width at most 4θn.

We bound the time of a call to DSR. To distinguish between local variables of
DSR and global variables of CA, we denote local input variables as Ĝ, n̂, ŵ, d̂, δ̂, ϵ̂.
For B and T as in DSR, |B| ≤ µ(IĜ)

δ̂ŵ
. since µ(IĜ) = µ(JĜ). The main while loop of

DSR repeatedly picks intervals I ∈ T and samples c0|B| log n̂

d̂
≤ c0µ(IĜ) log n̂

d̂δ̂ŵ
vertical

intervals J and tests whether ∆edit(xI , yJ) ≤ ϵ̂. Each such test takes time t(ŵ, ϵ̂).
This is done at most once for each of the µ(IĜ)/ŵ horizontal candidates for a
total time of O(µ(IĜ)2 log n̂

ŵ2δ̂d̂
)t(ŵ, ϵ̂). We next bound the cost of processing a pivot

I. This requires testing ∆edit(xI , yJ) ≤ 3ϵ̂ for J ∈ B and ∆edit(xI , xI′) ≤ 2ϵ̂
for I ′ ∈ T . Each test costs O(t(ŵ, ϵ̂)) (by our assumption on t(·, ·)), and since
|T | ≤ |B| = µ(IĜ)

ŵδ̂
, I is processed in time O(µ(IĜ)

ŵδ̂
t(ŵ, ϵ̂)). This is multiplied

by the number of intervals declared dense, which we now upper bound. If I
is declared dense then at the end of processing I, X is removed from T . This
ensures ∆edit(I, I ′) > 2ϵ for any two intervals I, I ′ declared dense. By the triangle
inequality the sets B(I) = {J ∈ B; ∆edit(xI , yJ) ≤ ϵ} are disjoint for different
pivots. By successful sampling, for each pivot I, |B(I)| ≥ d̂

4 , and thus at most
|B|/(d̂/4) = 4µ(IĜ)

d̂δ̂ŵ
intervals are declared dense, so all intervals declared dense are

processed in time O(µ(IĜ)2

ŵ2d̂δ̂2)t(ŵ, ϵ̂).

35

The time for dense/sparse classification of intervals and for processing intervals
declared dense is at most O(µ(IĜ)2 log n̂

ŵ2d̂δ̂2)t(ŵ, ϵ̂). During iteration i of the inner
loop of CA, the local variables of DSR are set as n̂ = n, µ(IĜ) ≤ 4θn, ŵ = w1,
d̂ = d/ϵi, δ̂ = ϵi/8. Substituting these parameters yields time O(θ2n2 log n

(w1)2dϵi
)t(w1, ϵi).

Multiplying by the O(1/θ) iterations on k gives the first summand of the theorem.
Next we turn to SSES. The local input variables n, w1, w2,S, θ are set to their

global values so we denote them without ˆ . The other local input variables are
denoted as Ĝ, d̂, δ̂, ϵ̂. The local variable B has size µ(IĜ)

δ̂w1
. By successful sampling,

we assume that on every call, every interval in S is (d̂, δ̂, ϵ̂)- sparse. The outer
loop enumerates the µ(IĜ)/w2 intervals I ′ of Iw2(IĜ). We select H to be c1 log2 n
random subsets from subsets of I ′ belonging to S. For each I ∈ H and J ∈ B,
we call SMALL-ED(xI , yJ , ϵ̂), taking time t(w1, ϵ̂). The total time of all tests
is O(µ(IĜ)2 log2 n

δ̂w1w2
)t(w1, ϵ̂). Using d̂ = d/ϵi, δ̂ = ϵi/8 and ϵ̂ = ϵi from the ith call to

SSES gives O(θ2n2 log2 n
ϵiw1w2

)t(w1, ϵi). Multiplying by the O(1/θ) iterations on k gives
the second summand in the theorem.

Assuming successful sampling, all intervals in the set S passed from DSR to
SSES are (d̂, δ̂, ϵ̂)-sparse. Therefore, for each sampled I, at most d̂ intervals J
are within ϵ̂ of I. For each of these we do a diagonal extension of I × J to a
w2-box I ′×J ′, and call SMALL-ED(xI′ , yJ ′ , 3ϵ̂) at cost O(t(w2, ϵ̂)) for each call.
The number of such calls is O(µ(IĜ)d̂ log2 n

w2
). Using the parameter d̂ = d/ϵi in the

ith call of the inner iteration of CA, we get a cost of O(θnd log2 n
ϵiw2

)t(w2, ϵi) and
multiplying by the O(1/θ) gives the third summand in the theorem.

Choosing the parameters to minimize the maximum term in the time bound,
subject to the restrictions of the theorem and using t(w, ϵ) = O(ϵw2) we have:

Corollary 26. For all sufficient large n, and for θ ≥ n−1/5 (both powers of 2)
choosing w1, w2, and d to be the largest powers of two satisfying: w1 ≤ θ−2/7n1/7,
w2 ≤ θ1/7n3/7, and d ≤ θ3/7n2/7, with probability at least 1 − n−1/7, CA runs in
time Õ(n12/7θ4/7), and outputs the set R of size at most Õ(n12/7θ4/7).

Proof. Set w1, w2, and d to be the largest powers of two satisfying: w1 ≤
θ−2/7n1/7, w2 ≤ θ1/7n3/7, and d ≤ θ3/7n2/7.

Use the algorithm of [Ukk85] that gives t(w, ϵ) = O(ϵw2). It can be easily
verified that these choices satisfy the requirements of Theorem 25, and also that
all three terms in the time analysis, and the number of boxes are all bounded by
the claimed bound.

2.4 Min-cost Paths in Shortcut Graphs
We now describe the second phase of our algorithm, which uses the set R output
by CA to upper bound dedit(x, y). A shortcut graph on vertex set {0, . . . , n} ×
{0, . . . , n} consists of the H and V edges of cost 1, together with an arbitrary
collection of shortcut edges (i, j) → (i′, j′) where i < i′ and j < j′, also denoted
by eI,J where I = {i, . . . , i′} and J = {j, . . . , j′}, along with their costs. A
certified graph (for x, y) is a shortcut graph where every shortcut edge eI,J has
cost at least dedit(xI , yJ). The min-cost path from (0, 0) to (n, n) in a certified

36

graph upper bounds dedit(x, y). The second phase algorithm uses R to construct
a certified graph, and computes the min cost path to upper bound on dedit(x, y).

A certified box (I × J, κ) corresponds to the eI,J with cost κµ(I). (In the
certified graph we use non-normalized costs.) However, the certified graph built
from R in this way may not have a path of cost O(dedit(x, y) + θn). We need
a modified conversion of (I × J, κ). If κ ≥ 1/2 we add no shortcut. Otherwise
(I × J, κ) converts to the edge eI,J ′ with cost 3κµ(I) where J ′ is obtained by
shrinking J : min(J ′) = min(J)+ℓ and max(J ′) = max(J ′)−ℓ where ℓ = ⌊κµ(I)⌋.
Call the resulting graph G̃. We claim:

Lemma 5. Let τ be a path from source to sink in Gx,y. If R contains a sequence
σ that (k, θ)-approximates τ then there is a source-sink path τ ′ in G̃ that con-
sists of the shortcuts corresponding to σ together with some H and V edges with
cost

G̃
(τ ′) ≤ 5(k · costGx,y(τ) + θn).

Figure 2.6: (a) The shortcut edge ei is added for box Ii × Ji. (b) An example
of a path τ (in solid) passing through a box Ih × Jh. The dashed path τ ′

h is
an approximation of τ between ph and ph+1. Here sh = (min(Ih), min(J ′

h)) and
th = (max(Ih), max(J ′

h)).

37

Proof. We will modify the path τ in Gx,y to a path τ ′ in G̃ of comparable cost.
Let {(I1 × J1, ϵ1), (I2 × J2, ϵ2), . . . , (Im × Jm, ϵm)} be the set of certified boxes
that (k, θ)-approximates τ . Let ℓi = µ(Ii) · ϵi. Let L be the subset [m] for which
ϵi ≤ 1/2. For i ∈ L, let ei = eIi,J ′

i
be the shortcut edge with weight 3ϵi. We claim

(1) there is a source-sink path in G̃ that consists of {ei : i ∈ L} together with
a horizontal path Hi whose projection to the x-axis is Ii for each i ∈ [m] − L,
and a collection of (possibly empty) vertical paths V0, V1, . . . , Vm where the x-
coordinate of Vi for i > 0 is max(Ii) and 0 for V0, and (2) its cost satisfies the
bound of the Lemma.

For the first claim, define for h ∈ [m] ph = (ih, jh) to be the first point in
τIh

and define pm+1 = (n, n). We will define τ ′ to pass through all of the ph.
In preparation, observe that for h ∈ L, since Ih × Jh (1 − ϵh) covers τ , we have
min(J ′

h) = min(Jh) + ℓh ≥ jh and max(J ′
h) = max(J) − ℓh ≤ jh+1. Define the

portion τ ′
h between ph and ph+1 by climbing vertically from ph to (ih, min(J ′

h))
and if h ∈ L traversing eh = eIh,J ′

h
and climbing to ph+1 and if h ̸∈ L then move

horizontally from (ih, min(J ′
h)) to (ih+1, min(J ′

h)) and then climb to ph+1.
For the second claim, we upper bound cost(τ ′). For h ∈ L, eIh,Jh

costs 3ℓh, and
for h ̸∈ L, the horizontal path that projects to Ih costs µ(Ih) ≤ 2ℓh; the total is at
most∑h 3ℓh. The cost of vertical edges is n−∑h∈L µ(J ′

h) = ∑
h∈L(µ(Jh)−µ(J ′

h))+∑
h̸∈L µ(Jh) = ∑

h∈L 2ℓh +∑
h̸∈L µ(Jh) ≤ ∑

h 2ℓh, since ∑h µ(Jh) = ∑
h µ(Ih) = n.

So cost(τ ′) ≤ ∑
h 5ℓh. Since ∑m

i=1 ℓi ≤ k · costGx,y(τ) + θ · n by definition of
(k, θ)-approximation, the lemma follows.

The min-cost path algorithm.
We present an O(n+m log(mn)) algorithm to find a min cost source-sink path

in a shortcut graph G̃ with m shortcuts. It’s easier to switch to the max-benefit
problem: Let H̃ be the same graph with cost ce of e = (i, j)→ (i′, j′) replaced by
benefit be = (i′− i)+(j′−j)−ce, (so H and V edges have benefit 0). The min-cost
path of G̃ is 2n minus the max-benefit path of H̃. To compute the max-benefit
path of H̃, we use a binary tree data structure with leaves {1, . . . , n}, where each
node v stores a number bv, and a collection of lists L1,. . . ,Ln, where Li stores
pairs (e, q(e)) where the head of e has x-coordinate i and q(e) is the max benefit
of a path that ends with e.

We proceed in n− 1 rounds. Let the set Ai consist of all the shortcuts whose
tail has x-coordinate i. The preconditions for round i are: (1) for each leaf j, the
stored value bj is the max benefit path to (i, j) that includes a shortcut whose
head has y-coordinate j (or 0 if there is no such path), (2) for each internal
node v, bv = max{bj : j is a leaf in the subtree of v}. and (3) for every edge
e = (i′, j′) → (i′′, j′′) with i′ < i, the value q(e) has been computed and (e, q(e))
is in list Li′′ . During round i, for each shortcut e = (i, j) → (i′, j′) in Ai, q(e)
equals the max of bv + be over tree leaves v with v ≤ j. This can be computed
in O(log n) time as max bv + be, over {j} union the set of left children of vertices
on the root-to-j path that are not themselves on the path. Add (e, q(e)) to list
Li′ . After processing Ai, update the binary tree: for each (e, q(e)) ∈ Li+1, let j
be the y-coordinate of the head of e and for all vertices v on the root-to-j path,
replace bv by max(bv, q(e)). The tree then satisfies the precondition for round
i + 1. The output of the algorithm is bn at the end of round n − 1. It takes
O(n) time to set up the data structure, O(m log m) time to sort the shortcuts,

38

and O(log n) processing time per shortcut (computing q(e) and later updating
the data structure).

2.5 Conclusion and Bibliographical Notes
To summarize, the algorithm GAP-UBθ first runs the CoveringAlgorithm of
Section 2.3 that outputs a set of certifies boxes. The algorithm then converts the
output into a shortcut graph, and runs the min-cost path algorithm of Section 3.3
to find a min-cost source-sink path in the shortcut graph. By Corollary 26,
and the quasilinear runtime (in the number of shortcuts) of the min-cost path
algorithm, the algorithm GAP-UBθ runs in time Õ(n12/7θ4/7). Moreover, by
Lemma 24 and Lemma 5, combined with the padding argument from Section
2.1, the final approximation factor is 610.

Further improvements:
Optimizing the approximation factor. In order to preserve the simplicity,
we do not optimize the approximation factor in our algorithm. Our algorithms
can be easily adjusted to guarantee an approximation factor 5 + ϵ, for any fixed
ϵ > 0, while increasing the running time only by a constant factor. To do that one
needs to chose various estimates (such as θ, ϵi, . . .) in smaller increments (instead
of directly doubling) and align boxes with finer granularity. This yields a finer
approximation to the shortest path in our covering algorithm. The factor comes
from the triangle inequality used in the dense case. We omit the proof details
from the current thesis.
Speeding up the algorithm. The runtime of ED-UB is dominated by the
cost of SMALL-ED(z1, z2, ϵ) on pairs of strings of length w ∈ {w1, w2}. We use
Ukkonen’s algorithm [Ukk85] with t(w, ϵ) = O(ϵw2). Replacing the Ukkonen’s
algorithm with ED-UB, we get a revised algorithm ED-UB1. This worsens
the approximation factor (roughly multiplying it by the approximation factor of
ED-UB) but improves runtime. The internal parameters w1, w2, d are adjusted
to maximize savings. One can iterate this process any constant number of times
to get faster algorithms with worse (but still constant) approximation factors.
Because of the dependence of the analysis on θ, we do not get a faster edit
distance algorithm for all θ ∈ [0, 1] but only for θ close to 1. (This may be an
artifact of our analysis rather than an inherent limitation.)

In the special case of one level of the recursion, using t(w, ϵ) = Õ(w12/7ϵ4/7)
and choosing w1, w2, and d to be the largest powers of two satisfying: w1 ≤
θ−27/277n49/277, w2 ≤ θ85/277n399/831, and d ≤ θ112/277n84/277 , we obtain an al-
gorithm for the full range of θ ∈ [0, 1] that runs in time Õ(n2−98/277θ54/277) =
Õ(n1.647θ0.195) if dedit(x, y) ≤ θn.

Open Problems. The most promising open problem after [CDG+18] is to get
a constant approximation of edit distance in near linear time. Another question
that arises is, to improve the approximation factor. In our algorithm, we can
bring down the approximation factor to 5+ ϵ. But due to triangular inequality 2-
approximation seems to be a real bottleneck. Therefore it will be quite interesting

39

to investigate whether the approximation factor can be brought down below 2 or
not. Apart from this, one can also try other variants of the standard edit distance
problem, where the input strings follow some nice property using which one can
hope for some better and efficient algorithm.

40

3. Approximate Pattern
Matching
In this chapter we consider the approximate pattern matching problem. We
study this problem in both offline and online setting. Both of our algorithms
are randomized and produce correct answer with high probability. To the best
of our knowledge, this is the first worst case sub-linear time (in the length of
the pattern) and sub-linear succinct space algorithm for online pattern matching.
In this chapter, the term “succinct space” has somewhat different interpretation
than it’s usual notion. By this we mean that, other than storing the pattern, the
online algorithm requires space which is sub-linear in the length of the pattern.
Our results are largely build over the techniques developed in Chapter 2, for
computing constant approximation of edit distance in sub-quadratic time.

3.1 Preliminaries
The basic definitions and preliminary observations and claims used in this chapter
are mostly taken or derived from Chapter 2. We recall and restate a few of them.
Consider the text T of length n to be aligned along the horizontal axis and the
pattern P of length w to be aligned along the vertical axis. For i ∈ {1, . . . , n}, Ti

denotes the i-th symbol of T and for j ∈ {1, . . . , w}, Pj denotes the j-th symbol
of P . Ts,t is the substring of T starting by the s-th symbol and ending by the
t-th symbol of T . For any interval I ⊆ {0, . . . , n}, TI denotes the substring of T
indexed by I \ {min(I)} and for J ⊆ {0, . . . , w}, PJ denotes the substring of P
indexed by J \ {min(J)}.

Edit distance and pattern matching graphs. For a text T of length n
and a pattern P of length w, the edit distance graph GT,P is a directed weighted
graph with vertex set {0, · · · , n}×{0, · · · , w} (see Definition 2.1.2). The pattern
matching graph G̃T,P is the same as the edit distance graph GT,P except for the
cost of horizontal edges (i, 0)→ (i + 1, 0) which is zero.

For I ⊆ {0, . . . , n} and J ⊆ {0, . . . , w}, GT,P (I × J) is the subgraph of GT,P

induced on I × J . Clearly, GT,P (I × J) ∼= GTI ,PJ
. We define the cost of a path

τ in GTI ,PJ
, denoted by costGTI ,PJ

(τ), as the sum of the costs of its edges. We
also define the cost of a graph GTI ,PJ

, denoted by cost(GTI ,PJ
), as the cost of the

cheapest path from (min I, min J) to (max I, max J).
The following is well known in the literature (e.g. see [Sel80]).

Proposition 27. Consider a pattern P of length w and a text T of length n, and
let G = G̃T,P . For any t ∈ {1, . . . , n}, let I = {0, · · · , t}, and J = {0, · · · , w}.
Then kt = cost(G(I × J)) = mini≤t dedit(Ti,t, P).

A similar proposition is also true for the edit distance graph.

Proposition 28. Consider a pattern P of length w and a text T of length n,
and let G = GT,P . For any i1 ≤ i2 ∈ {1, · · · , n}, j1 ≤ j2 ∈ {1, · · · , w} let I =
{i1−1, · · · , i2} and J = {j1−1, · · · , j2}. Then cost(G(I×J)) = dedit(Ti1,i2 , Pj1,j2).

41

Let G be a grid graph on I × J and τ = (i1, j1), . . . , (il, jl) be a path in G.
Horizontal projection of a path τ is the set {i1, . . . , il}. Let I ′ be a set contained
in the horizontal projection of τ , then τI′ denotes the (unique) minimal subpath
of τ with horizontal projection I ′. Let G′ = G(I ′ × J ′) be a subgraph of G. For
δ ∈ [0, 1] we say that I ′ × J ′ (1− δ)-covers the path τ if the initial and the final
vertex of τI′ are at a vertical distance of at most δ(|I ′|−1) from (min(I ′), min(J ′))
and (max(I ′), max(J ′)), resp..

A certified box of G is a pair (I ′×J ′, ℓ) where I ′ ⊆ I, J ′ ⊆ J are intervals, and
ℓ ∈ N such that cost(G(I ′ × J ′)) ≤ ℓ. At high level, our goal is to approximate
each path τ in G by a path via the corner vertices of certified boxes. For that
we want that a substantial portion of the path τ goes via those boxes and that
the sum of the costs of the certified boxes is not much larger than the actual
cost of the path. The next definition makes our requirements precise. Let σ =
{(I1 × J1, ℓ1), (I2 × J2, ℓ2), . . . , (Im × Jm, ℓm)} be a sequence of certified boxes in
G. Let τ be a path in G(I × J) with horizontal projection I. For any k, ζ ≥ 0,
we say that σ (k, ζ)-approximates τ if the following three conditions hold:

1. I1, . . . , Im is a decomposition of I, i.e., I = ⋃
i∈[m] Ii, and for all i ∈ [m− 1],

min(Ii+1) = max(Ii).

2. For each i ∈ [m], Ii × Ji (1− ℓi/(|Ii| − 1))-covers τ .

3. ∑i∈[m] ℓi ≤ k · cost(τ) + ζ.

3.2 Offline Approximate Pattern Matching
Theorem 29. There is a constant c ≥ 1 and there is a randomized algorithm that
computes c-approximation to approximate pattern matching in time O(n · w3/4)
with probability at least (1− 1/n3).

3.2.1 Technique Overview
To prove the above theorem we design our algorithm that works as follows: For
k = 2j, j = 0, . . . , log w3/4, we run the standard O(kn) algorithm [GG88] to
identify all t such that kt ≤ k. To identify positions with kt ≤ k for k > w3/4

where k is a power of two we will use the technique of Chapter 2 to compute
(O(1), O(w3/4))-approximation of k1, . . . , kn. The obtained information can be
combined in a straightforward manner to get a single O(1)-approximation to
k1, . . . , kn: For each t, if for some 2j ≤ w3/4, kt is at most 2j (as determined
by the former algorithm) then output the smallest such 2j as the approximation
of kt, otherwise output the approximation of kt found by the latter algorithm.
This way, for kt ≤ w3/4 we will get 2-approximation, and for k > w3/4 we will
get a O(1)-approximation. We will now elaborate on the latter algorithm. The
technique is primarily based on the edit distance algorithm of Chapter 2, which
works in two phases and this is similar for our pattern matching algorithm as
well. The first phase (covering phase) identifies a set of certified boxes, that is
subgraphs of the pattern matching graph with good upper bounds on their cost.
These certified boxes should adequately cover the min-cost paths of interest.
Then the next phase runs a min-cost path algorithm on these boxes to obtain

42

the output sequence. We will show that both of these phases will take Õ(nw3/4)
time so the overall running time of our algorithm will be Õ(nw3/4).

We next describe the two phases of the algorithm. The algorithm will use the
following parameters: w1 = w1/4, w2 = w1/2, d = w1/4, θ = w−1/4, which essen-
tially mean the same as in Chapter 2 though their setting is different. Moreover
similar to Chapter 2, we use the following simplifying assumptions: without loss
of generality we assume that w1 and w2 are powers of two (by rounding them
down to the nearest powers of two), 1/θ is a reciproval of a power of two (by de-
creasing θ by at most a factor of two), w2|w (by chopping off a small suffix from P
which will affect the approximation by a negligible additive error as w3/4 ≫ w2),
and w|n (if not we can run the algorithm twice: on the largest prefix of T of
length divisible by w and then on the largest suffix of T of length divisible by w).
Let c0, c1 ≥ 0 be the large enough constants. The algorithm will not explicitly
compute kt for all t but only for t where t is a multiple of w2, and then it will
use the same value for each block of w2 consecutive kt’s. Again, this will affect
the approximation by a negligible additive error.

3.2.2 Covering phase
We describe the first phase (covering phase) of the algorithm now. First, we
partition the text T into substrings T 0

1 , . . . , T 0
n0 of length w, where n0 = n/w.

Then we process each of the parts independently. Let T ′ be one of the parts. We
partition T ′ into substrings T 1

1 , T 1
2 , . . . , T 1

n1 of length w1, and we also partition T ′

into substrings T 2
1 , T 2

2 , . . . , T 2
n2 of length w2, where n1 = w/w1 and n2 = w/w2.

For a substring u of v starting by i-th symbol of v and ending by j-th symbol of
v, we let {i− 1, i + 1, . . . , j, j} be its span. Moreover for δ ∈ (0, 1) we call u to be
(δ)-aligned if both i−1 and j−1 are divisible by δ(j− i). The covering algorithm
proceeds in phases j = 0, . . . , ⌈log 1/θ⌉ associated with ϵj = 2−i. Similar to the
edit distance algorithm, here also each phase has two parts, namely the dense
case and the extension sampling.

Dense case. In this part the algorithm aims to identify for each ϵj, a set of sub-
strings T 1

i which are similar to more than d (ϵj/8)-aligned, w1 length substrings
of P . We identify each T 1

i by testing a random sample of relevant substrings of
P . If we determine with high confidence that there are at least Ω(d) substrings of
P similar to T 1

i , we add T 1
i into a set Dj of such strings, and we also identify all

T 1
i′ that are similar to T 1

i . By triangle inequality we would also expect them to
be similar to many relevant substrings of P . So we add these T 1

i′ to Dj as well as
we will not need to process them anymore. We output the set of certified boxes
of edit distance O(ϵjw1) found this way. More formally:

For j = ⌈log 1/θ⌉, . . . , 0, the algorithm maintains sets Dj of substrings T 1
i .

These sets are initially empty.
Step 1. For each i = 1, . . . , n1 and j = ⌈log 1/θ⌉, . . . , 0, if T 1

i is in Dj then we
continue with the next i and j. Otherwise we process it as follows.
Step 2. Set ϵj = 2−j. Independently at random, sample 8c0 ·w · (ϵjw1d)−1 · log n
many (ϵj/8)-aligned substrings of P of length w1. For each sampled substring
u check if its edit distance from T 1

i is at most ϵjw1. If less than 1
2 · c0 · log n of

43

the samples have their edit distance from T 1
i below ϵjw1 then we are done with

processing this i and j and we continue with the next pair.
Step 3. Otherwise we identify all substrings T 1

i′ that are not in Dj and are at
edit distance at most 2ϵjw1 from T 1

i , and we let X to be the set of their spans
relative to the whole T .
Step 4. Then we identify all (ϵj/8)-aligned substrings of P of length w1 that are
are at edit distance at most 3ϵjw1 from T 1

i , and we let Y to be the set of their
spans. We might allow also some (ϵjw1/8)-aligned substrings of P of edit distance
at most 6ϵjw1 to be included in the set Y (as some might be misidentified to have
the smaller edit distance from T 1

i by our procedure that searches for them).
Step 5. For each pair of spans (I, J) from X × Y we output corresponding
certified box (I × J, 8ϵjw1). We add substrings corresponding to X into Dj and
continue with the next pair i and j.

Once we process all pairs of i and j, we proceed to the next phase: extension
sampling.

Extension sampling. In this part for every ϵj = 2−j and every substring T 2
i ,

which does not have all its substrings T 1
ℓ contained in Dj we randomly sample a

set of such T 1
ℓ ’s. For each sampled T 1

ℓ we determine all (ϵj/8)-aligned, w1 length
substrings of P at edit distance at most ϵjw1 from T 1

ℓ . There should be O(d)-
many such substrings of P . We extend each such substring into a substring of
size |T 2

i | within P and we check the edit distance of the extended string from T 2
i .

For each extended substring of edit distance at most 3ϵjw2 we output a set of
certified boxes.

Here we define the appropriate extension of substrings. Let u be a substring
of T of length less than |P |, and let v be a substring of u starting by the i-th
symbol of u. Let v′ be a substring of P of the same length as v starting by the
j-th symbol of P . The diagonal extension u′ of v′ in P with respect to u and v,
is the substring of P of length |u| starting at position j − i. If (j − i) ≤ 0 then
the extension u′ is the prefix of P of length |u|, and if j − i + |P | > |P | then the
extension u′ is the suffix of P of length |u|.
Step 6. Process all pairs i = 1, . . . , n2 and j = ⌈log 1/θ⌉, . . . , 0.
Step 7. Independently at random, sample c1 · log2 n · log w substrings T 1

ℓ that
are part of T 2

i and that are not in Dj. (If there is no such substring continue for
the next pair of i and j.)
Step 8. For each T 1

ℓ , find all (ϵj/8)-aligned substrings v′ of P of length w1 that
are at edit distance at most ϵjw1 from T 1

ℓ .
Step 9. For each v′ determine its diagonal extension u′ with respect to T 2

i and
T 1

ℓ . Check if the edit distance of u′ and T 2
i is less than 3ϵjw2. If so, compute it

and denote the distance by c. Let I ′ be the span of T 2
i relative to T , and J ′ be

the span of u′ in P . For all powers a and b of two, w3/4 ≤ a ≤ b ≤ w, output the
certified box (I ′ × J ′, c + a + b). Proceed for the next i and j.

This ends the covering algorithm which outputs various certified boxes.
To implement the above algorithm we will use Ukkonen’s [Ukk85] O(nk)-

time algorithm to check whether the edit distance of two strings of length w1 is
at most ϵjw1 in time O(w2

1ϵj). Given the edit distance is within this threshold the
algorithm can also output its precise value. To identify all substrings of length w1

44

at edit distance at most ϵjw1 of S from a given string R (where S is the pattern
P of length w and R is one of the T 1

i of length w1) we use the O(nk)-time pattern
matching algorithm of Galil and Giancarlo [GG88]. For a given threshold k, this
algorithm determines for each position t in S, whether there is a substring of edit
distance at most k from R ending at that position in S. If the algorithm reports
such a position t then we know by the following proposition that the substring
St−|R|+1,t is at edit distance at most 2k. At the same time we are guaranteed to
identify all the substrings of S of length w1 at edit distance at most k from R.
Hence in Step 4, finding all the substrings at distance 3ϵjw1 with perhaps some
extra substrings of edit distance at most 6ϵjw1 can be done in time O(ww1ϵj).

Proposition 30. For strings S and R and integers t ∈ {1, . . . , |S|}, k ≥ 0 , if
mini≤t dedit(Si,t, R) ≤ k then dedit(St−|R|+1,t, R) ≤ 2k.

Proof. Let Si,t be the best match for R ending by the t-th symbol of S. Hence, k =
dedit(Si,t, R). If Si,t is by ℓ symbols longer that R then k ≥ ℓ and dedit(St−|R|+1,t, R)
≤ k + ℓ ≤ 2k by the triangle inequality. Similarly, if Si,t is shorter by ℓ symbols.

3.2.3 Correctness of the covering algorithm
Lemma 6. Let t ≥ 1 be such that t is a multiple of w2. Let τt be the min-cost path
between vertex (t−w, 0) and (t, w) in the edit distance graph G = GT,P of T and
P of cost at least w3/4 ≥ θw. The covering algorithm outputs a set of weighted
boxes R such that every (I×J, ℓ) ∈ R is correctly certified i.e., cost(G(I×J)) ≤ ℓ
and there is a subset of R that (O(1), O(kt))-approximates τt with probability at
least 1− 1/n7.

It is clear from the description of the covering algorithm that it outputs only
correct certified boxes from the edit distance graph of T and P , that is for each
box (I × J, ℓ), cost(G(I × J)) ≤ ℓ.

The cost of τt corresponds to the edit distance between P and Tt−w+1,t and
it is bounded by 2kt by Proposition 30. Let k′

t be the smallest power of two
≥ kt. We claim that by essentially the similar argument as in Proposition 23
and Theorem 24 of Chapter 2 the algorithm outputs with high probability a
set of certified boxes that (O(1), O(k′

t))-approximates τt. Therefore instead of
repeating the whole proof, here we sketch the differences between the current
covering algorithm with that of Chapter 2 and argue about how to handle them.

The main substantial difference is that the edit distance algorithm in 2
searches for certified boxes located only within O(kt) diagonals along the main
diagonal of the edit distance graph. (This rests on the observation of Ukkonen
[Ukk85] that a path of cost ≤ kt must pass only through vertices on those diag-
onals.) Here we process certified boxes in the whole matrix as each t requires a
different “main” diagonal. Except for this difference and the order of processing
various pieces the algorithms are the same.

The discovery of certified boxes depends on the number (density) of relevant
substrings of P similar to a given T 1

i . In the edit distance algorithm in 2 this
density is measured only in the O(kt)-width strip along the main diagonal of the
edit distance graphs whereas here it is measured within the whole P . (So the
actual classification of substrings T 1

i on dense (in Dj) and sparse (not in Dj) might

45

differ between the two algorithms.) Hence, One could think (though technically
not quite correct) that the certified boxes output by the current algorithm form a
superset of boxes output by the edit distance algorithm of Chapter 2. However,
this difference is immaterial for the correctness argument in Theorem 24 of
Chapter 2 .

Another difference is that in Steps 4 we use O(ww1ϵj)-time algorithm to search
for all the similar substrings. This algorithm will report all the substrings we
were looking for and additionally it might report some substrings of up to twice
the required edit distance. This necessitates the upper bound 8ϵjw1 in certified
boxes in Step 5. It also means a loss of factor of at most two in the approximation
guarantee as the boxes of interest are reported with the cost 8ϵjw1 instead of the
more accurate 5ϵjw1 of the original algorithm in Chapter 2 which would give
a (45, 15cost(τt))-approximation. (In that theorem θw represents an (arbitrary)
upper bound on the cost of τt provided it satisfies certain technical conditions
requiring that θ is large enough relative to w. This is satisfied by requiring that
cost(τt) ≥ w3/4 ≥ θw.)

Another technical difference is that the path τt might pass through two edit
distance graphs GT 0

ℓ−1,P and GT 0
ℓ

,P , where t ∈ [(ℓ − 1)w + 1, ℓw]. This means
that one needs to argue separately about restriction of τt to GT 0

ℓ−1,P and GT 0
ℓ

,P .
However, the proof of Theorem 24 in Chapter 2 analyses approximation of the
path in separate parts restricted to substrings of T of size w2. As both t and w
are multiples of w2, the argument for each piece applies in our setting as well.

3.2.4 Time complexity of the covering algorithm
Claim 7. The covering algorithm runs in time Õ(nw3/4) with probability at least
1− 1/n8.

We analyse the running time of the covering algorithm for each T ′ = T 0
i

separately. We claim that the running time on T ′ is Õ(w7/4) so the total running
time is Õ((n/w)w7/4) = Õ(nw3/4).

In Step 1, for every i = 1, . . . , n1 and j = 0, . . . , log w1/4, we might sample
O(w

ϵjw1d
· log n) substrings of P of length w1 and check whether their edit distance

from T 1
i is at most ϵjw1. This takes time at most Õ(w

ϵjw1d
· w

w1
·w2

1ϵj) = Õ(w2/d) =
Õ(w7/4) in total.

We say that a bad event happens either if some substring T 1
i has more than

d relevant substrings of P having distance at most ϵjw1 but we sample less than
1
2 ·c0 log n of them, or if some substring T 1

i has less than d/4 relevant substrings of
P having distance at most ϵjw1 but we sample more than 1

2 · c0 log n of them. By
Chernoff bound, the probability of a bad event happening during the whole run
of the covering algorithm is bounded by exp(−O(log n)) ≤ 1/n8, for sufficiently
large constant c0. Assuming no bad event happens we analyze the running time
of the algorithm further.

Each substring T 1
i that reaches Step 3 can be associated with a set of its

relevant substrings in P of edit distance at most ϵjw1 from it. The number of
these substrings is at least d/4 many. These substrings must be different for
different strings T 1

i that reach Step 3 as if they were not distinct then the two
substrings T 1

i and T 1
i′ would be at edit distance at most 2ϵjw1 from each other

46

and one of them would be put into Dj in Step 5 while processing the other one
so it could not reach Step 3. Hence, we can reach Steps 3–5 for at most 8w

ϵjw1
· 4

d

strings T 1
i . For a given j and each T 1

i that reaches Step 3, the execution of Steps
3 and 4 takes O(ww1ϵj) time, hence we will spend in them Õ(w2/d) = Õ(w7/4)
time in total.

Step 5 can report for each j at most 8w
ϵjw1
· w

w1
certified boxes, so the total time

spent in this step is Õ(w2/w1) = Õ(w7/4) as ϵjw1 ≥ 1/4.
Step 7 takes order less time than Step 8. In Step 8 we use Ukkonen’s [Ukk85]

O(nk)-time edit distance algorithm to check the distance of strings of length w1.
We need to check Õ(n2 · w

ϵjw1
) pairs for the total cost Õ(w

w2
· w

ϵjw1
·w2

1ϵj) = Õ(w7/4)
per j.

As no bad event happens, for each T 1
ℓ , there will be at most d/4 strings v′

processed in Step 9. We will spend O(w2
2ϵj) time on each of them to check for

edit distance and O(log2 n) to output the certified boxes. Hence, for each j we
will spend here Õ(w

w2
· dw2

2ϵj) time, which is Õ(ww2d) in total.
Thus, the total time spent by the algorithm in each of the steps is Õ(w7/4) as

required.

3.3 Min-cost Path in a Grid Graph with Short-
cuts

In this section we explain how we use certified boxes to calculate the approxima-
tion of kt’s. Consider any grid graph G. A shortcut in G is an additional edge
(i, j)→ (i′, j′) with cost ℓ, where i < i′ and j < j′.

Let GT,P be the edit distance graph for T and P . Let (I × J, ℓ) be a certified
box in GT,P with |I| = |J |. If ℓ < 1/2(|I| − 1) add a shortcut edge eI,J from
vertex (min I, min J + ℓ) to vertex (max I, max J − ℓ) with cost 3ℓ. Do this for
all certified boxes output by the covering algorithm to obtain a graphG′

T,P . Next
remove all the diagonal edges (D-steps) of cost 0 or 1 from graph G′

T,P and obtain
graph graph G′′

T,P .
Lemma 8. If τ is a path from (t − w, 0) to (t, w) in GT,P which is (k, ζ)-
approximated by a subset of certified boxes σ by the covering algorithm then there
is a path from (t− w, 0) to (t, w) in G′′

T,P of cost at most 5 · (k · costGT,P
(τ) + ζ)

consisting of shorcut edges corresponding to σ and H and V steps.
The proof of the above lemma is exactly similar to the proof of Lemma 5 in

Chapter 2. Hence, we omit this form the current thesis.
By Lemma 6 and Proposition 8, for t, where w2|t, the cost of a shortest path

from (t − w, 0) to (t, w) in G′′
T,P is bounded by O(kt). At the same time, any

path in G′′
T,P from (i, 0) to (t, w), i ≤ t, has cost at least kt. So we only need to

find the minimal cost of a shortest path from any (i, 0) to (t, w) in G′′
T,P to get

an approximation of kt.
To find the minimal cost, we reset to zero the cost of all horizontal edges

(i, 0)→ (i + 1, 0) in G′′
T,P to get a graph G. The graph G corresponds to taking

the pattern matching graph G̃T,P , removing from it all its diagonal edges and
adding the shortcut edges. The cost of a path from (0, 0) to (t, w) in G is the
minimum over i ≤ t of the cost of a shortest path from (i, 0) to (t, w) in G′′

T,P .

47

Hence, we want to calculate the cost of the shortest path from (0, 0) to (t, w)
for all t.1 For this we will use a simple algorithm that will make a single sweep
over the shortcut edges sorted by their origin and calculate the distances for
t = 0, . . . , n. The algorithm will maintain a data structure that at time t will
allow to answer efficiently queries about the cost of the shortest path from (0, 0)
to (t, j) for any j ∈ {0, . . . , w}.

The data structure will consist of a binary tree with w + 1 leaves. Each node
is associated with a subinterval of {0, . . . , w} so that the j-th leaf (counting from
left to right) corresponds to {j}, and each internal node corresponds to the union
of all its children. We denote by Iv the interval associated with a node v. The
depth of the tree is at most 1 + log(w + 1). At time t, query to the node v of the
data structure will return the cost of the shortest path from (0, 0) to (t, max Iv)
that uses some shortcut edge (i, j) → (i′, j′), where j′ ∈ Iv. Each node v of the
data structure stores a pair of numbers (cv, tv), where cv is the cost of the relevant
shortest path from (0, 0) to (tv, max Iv) and tv is the time it was updated the last
time. (Initially this is set to (∞, 0).) At time t ≥ tv, the query to the node v
returns cv + (t− tv).

At time t to find the cost of the shortest path from (0, 0) to (t, j) we traverse
the data structure from the root to the leaf j. Let v1, . . . , vℓ be the left children of
the nodes along the path in which we continue to the right child. We query nodes
v1, . . . , vℓ to get answers a1, . . . , aℓ. The cost of the shortest paths from (0, 0) to
(t, j) is a = min{j, a1 + (j −max Iv1), a2 + (j −max Iv2), . . . , aℓ + (j −max Ivℓ

)}.
As each query takes O(1) time to answer, computing the shortest path to (t, j)
takes O(log w) time.

The algorithm that outputs the cheapest cost of any path from (0, 0) to (t, w)
in G will process the shortcut edges (i, j) → (i′, j′) one by one in the order of
increasing i. The algorithm will maintain lists L0, . . . , Ln of updates to the data
structure to be made before time t. At time t the algorithm first outputs the
cost of the shortest path from (0, 0) to (t, w). Then it takes each shortcut edge
(t, j) → (t′, j′) one by one, t < t′. (The algorithm ignores shortcut edges where
t = t′.) Using the current state of the data structure it calculates the cost c of
a shortest path from (0, 0) to (t, j) and adds (c + d, j′) to list Lt′ , where d is the
cost of the shortcut edge (t, j)→ (t′, j′).

After processing all edges starting at (t, ·) the algorithm performs updates to
the data structure according to the list Lt+1. Update (c, j) consists of traversing
the tree from the root to the leaf j and in each node v updating its current values
(cv, tv) to the new values (c′

v, t+1), where c′
v = min{cv +t+1−tv, c+max Iv−j}.

Then the algorithm increments t and continues with further edges.
If the number of shortcut edges is m then the algorithm runs in time O(n +

m(log m + log w)). First, it has to set-up the data structure, sort the edges by
their origin and then it processes each edge. Processing each edge will require
O(log w) time to find the min-cost path to the originating vertex and then later
at time t′ it will require time O(log w) to update the data structure. As there
are Õ(n

w
· w

θw1
· w

w1
) ≤ Õ(nw3/4) certified boxes in total the running time of the

algorithm is as required.
The correctness of the algorithm is immediate from its description.

1Although, we really care only about t, where w2|t + 1 as for all the other values of t we will
approximate kt by kt′ for the previous multiple t′ + 1 of w2.

48

3.4 Online Approximate Pattern Matching
In this section we describe the online algorithm from Theorem 3. In the online
setting the pattern P is given while the text T arrives in online fashion. The main
challenge of this setting is that at any point of time (other than the pattern) we
are allowed to store a substring of the text of length just sub-linear in w. To
overcome this situation the online algorithm is based on interleaved execution of
the cover and min-cost path algorithms from Sections 3.2.2 and 3.3. Moreover we
need to maintain some extra datastructure in a clever manner for the covering
algorithm. Also to get the required space bound we use a little modified tree
data structure for the min-cost path algorithm. For the online setting we use the
same parameters as the offline one, but we set their values slightly differently:
w1 = w11/18, w2 = w20/27, d = w7/54, θ = w−1/9. Next, we describe the data
structure used in the covering algorithm and the modified tree data structure for
the min-cost path algorithm.
Covering algorithm data structure. For each substring T 0

m of w consecutive
input symbols of text T , and j = ⌈log 1/θ⌉, . . . , 0 the algorithm will maintain a
set D′

j that stores the content of strings T 1
i that reached Step 3 of the covering

algorithm during processing of T 0
m. Moreover for each of such string T 1

i the
algorithm will also store a set Yi,j that contains the spans obtained in Step 4
while processing T 1

i . This is done as the whole w length string T 0
m can’t be stored

at once. Moreover to bound the size of D′
j and Yi,j, before adding a new T 1

i that
reached Step 3 of the covering algorithm to D′

j, we first ensure that no string
close to T 1

i is already contained in D′
j. Also after finishing each T 0

m we discard
all the information associated with it.
Modified tree data structure. Here we describe the modified tree data struc-
ture used for the min-cost path algorithm. Notice, every shortcut edge corre-
sponds to some certified box. Our covering algorithm has log 1/θ rounds where
in any round the total number of possible vertical positions, where the bottom
left corner or the top right corner point of any certified box might lie is bounded
by w

θw1
. Next, we round up all the edit distance estimates to powers of two,

hence in any certified box there are at most 2 log w positions from which a short-
cut edge might start or end. Therefore, the number of distinct vertical posi-
tions where these shortcut edges might originate from or lead to is bounded by
q = 2w

θw1
· log 1/θ · log w. Thus the tree data structure of the min-cost path al-

gorithm will ever perform updates to at most q log w distinct nodes. We do not
need to store the nodes that are never updated, so the tree data structure will
occupy only space Õ(w

θw1
).

3.4.1 The online algorithm
Now we explain how to interleave the two phases to achieve required time and
space bound. The algorithm processes the input text T in batches of w2 symbols.
Upon receipt of the t-th symbol we buffer the symbol, if t is not divisible by w2
then the algorithm outputs the previous value kt−1 as the current value kt and
waits for the next symbol. Otherwise we received batch T 2

ℓ of next w2 symbols,
for ℓ = t/w2, and we will proceed as follows.

The covering algorithm in the online setting is almost similar to the covering

49

algorithm offline setting. However here, we will execute the covering algorithm
twice on each T 2

ℓ where during the first execution the only thing that we will
send to the min-cost path algorithm are the certified boxes produced at Step 9,
all other modifications to data structures will be discarded. During the second
run of the algorithm on T 2

ℓ , we will preserve all modifications to D′
j’s and other

data structures except we will discard the certified boxes produced at Step 9 (we
will not send them to the min-cost path algorithm as they are already sent in the
first pass).
Covering algorithm. We now describe how the covering algorithm executes on
each T 2

ℓ . The algorithm maintain sets Sj, j = ⌈log 1/θ⌉, . . . , 0 that are empty
at the beginning. We partition T 2

ℓ into T 1
g , . . . , T 1

h of length w1, where g =
(ℓ− 1) · w2

w1
+ 1 and h = g + w2

w1
− 1. For i = g, . . . , h we do the following. For each

j = ⌈log 1/θ⌉, . . . , 0, set ϵj = 2−j. Check, whether T 1
j is at edit distance at most

2ϵjw1 from some string T 1
i′ in D′

j. If it is then send the set of all the certified
boxes (I, J, 8ϵjw1) to the min-cost path algorithm, where I is the span of T 1

i in
T and J ∈ Yi′,j. If it is not close to any string in D′

j then sample the relevant
substring in P as in Step 2 and see how many of them are at edit distance ≤ ϵjw1
from T 1

i . If at most 1
2 · c0 · log n of the samples have their edit distance from

T 1
i below ϵjw1 then put index i into Sj and continue for another j and then the

next i. Otherwise we execute Step 4 of the algorithm to find set Y . (We always
skip Step 3.) We put T 1

i into Dj and set Yi,j to Y . During the first execution
of the covering algorithm, upon processing all j and i we will directly proceed
to the sparse extension sampling part whereas after the second execution of the
covering algorithm, we send all the certified boxes (I, J, 8ϵjw1) to the min-cost
path algorithm, where I is the span of T 1

i and J ∈ Yi,j.
In the extension sampling part for each j = ⌈log 1/θ⌉, . . . , 0, we sample from

the set Sj the strings T 1
ℓ in Step 7, and we proceed for them as in Steps 8–

9. During the first execution of the covering algorithm, for each certified box
(I, J, ℓ′) produced in Step 9 round up ℓ′ to the nearest larger or equal power of
two and send the box to the min-cost path algorithm.
Min-cost path algorithm. The min-cost path algorithm receives certified boxes
from the covering algorithm and it converts them into corresponding shortcut
edges. The algorithm receives the certified boxes at two distinct phases.

Shortcut edges generated after the first execution of the covering algorithm
correspond to boxes that were produced at Step 9. These edges are sorted by
their originating vertex, stored, and processed at appropriate time steps during
the next phase.

During the next phase the algorithm receives boxes (I, J, 8ϵjw1), where I is
the span of some T 1

i and J ∈ Yi,j. It converts them into edges and upon receiving
all the edges for a particular T 1

i , it sorts them according to their originating
vertex. Then the min-cost path algorithm proceeds for times steps (i − 1) · w1
to i · w1 − 1, and processes all stored shortcut edges that originate in these time
steps. During these time steps it also updates its tree data structure as in the
offline case. Again we use lists for storing pending updates. At any moment of
time, the number of unprocessed edges and updates is bounded by the number
of edges produced in Step 9 and edges produced for a particular string T 1

i . This
is at most Õ(w

θw1
). We conclude by the following lemma:

50

Lemma 9. Let n and w be large enough integers. Let P be the pattern of length
w, T be the text of length n (arriving online one symbol at a time), 1/w ≤ θ ≤ 1
be a real. Let θw1 ≥ 1, w1 ≤ θw2, w1|w2 and w2|n. With probability at least
1 − 1/poly(n) the online algorithm for pattern matching runs in amortized time
Õ(w

d
+ ww1

w2
+dw2+ w

w1
) per symbol and in succinct space Õ(w2+ w

dθ
+ w

w1θ
+ w2

θ2w2
1d

+d).

Proof. The running time of the online algorithm can be analyzed in a similar
manner as the offline algorithm. The only difference is that here the covering and
the min-cost path algorithm is interleaved. For each batch of w2 symbols we run
the covering algorithm twice with the modification that instead of executing Step
3 for each T 1

j we check whether it is at distance at most 2ϵjw1 from some string
in D′

j. But this step takes amortized time Õ(w
ϵjw1d

·w2
1ϵj · 1

w1
) = Õ(w

d
). Moreover

the total number of certified boxes send by the covering algorithm to the min-cost
path algorithm is the same in both the offline and the online algorithm. Hence
the online algorithm has the amortized time of Õ(w

d
+ ww1

w2
+dw2 + w

w1
) per symbol.

To determine the space complexity of the online algorithm we analyse the
space used by the covering algorithm and the min-cost path algorithm separately.
At any time the covering algorithm stores a batch of w2 symbols which takes space
O(w2). Next for j = ⌈log 1/θ⌉, . . . , 0 it stores set D′

j of strings T 1
i that reached

Step 3 of the covering algorithm. Each of these strings is of length w1, hence
requires O(w1) space. Moreover for each such string the algorithm stores set Yi,j

of spans obtained at Step 4 and this require space O(w
ϵjw1

). For each such string
(as it reached Step 3), there exist at least d/4 relevant substrings of P which are
at distance at most ϵjw1, and for any two strings of D′

j (as they are at distance
more than 2ϵjw1) these sets of relevant substrings of P are disjoint. Hence D′

j

stores contents of at most 4w
ϵjw1d

different strings and the total space used by all D′
j

and Yi,j is Õ(w
θw1d
·w1 + w

θw1d
· w

θw1
) = Õ(w

θd
+ w2

θ2w2
1d

). Maintaining sets Sj does not
require any extra space as we store the whole batch of w2 symbols. As argued
before the tree data structure stored by the min-cost path algorithm occupies
space Õ(w

θw1
) and the list of edges can be stored in Õ(w

θw1
+ d) space. Hence total

succinct space used by the online algorithm is Õ(w2 + w
dθ

+ w
w1θ

+ w2

θ2w2
1d

+ d).

For example, we can instantiate the above proposition for the parameters:
w1 = w11/18, w2 = w20/27, d = w7/54, θ = w−1/9, to get the following:

Theorem 31. There is a constant c ≥ 1 so that there is a randomized online
algorithm that computes (c, w8/9)-approximation to approximate pattern matching
in amortized time O(w1−(7/54)) and succinct space O(w1−(1/54)) with probability at
least 1− 1/poly(n).

3.5 Conclusion and Bibliographical Notes
For the online pattern matching algorithm, it can be noticed that there is a clear
tradeoff among the runtime, the succinct space used by the algorithm and the
additive part of the approximation factor. Keeping the runtime fixed, decreasing
the additive part of the approximation factor would increase the succinct space
used whereas, keeping the additive error part fixed, decreasing the runtime would
increase the succinct space used.

51

Open Problem. The online algorithm presented in this chapter have non triv-
ial time and space complexity only for the case when the edit distance between
the pattern and the text is high. Therefore, it will be a nice idea to extend our
online approximation algorithm for the full range of edit distance which will be
interesting from both theoretical and practical perspectives.

52

4. Combinatorial Lower Bounds
of Boolean Matrix Multiplication
In this chapter we propose two combinatorial models for the Boolean Matrix Mul-
tiplication (BMM) problem, and prove lower bounds on computing BMM in these
models. First, we give a relatively relaxed combinatorial model and prove that
the time required for any algorithm to compute BMM is at least Ω(n3/2O(

√
log n)).

Subsequently, we propose a more general model capable of simulating the “Four
Russians Algorithm”. We prove a lower bound of Ω(n7/3/2O(

√
log n)) for the BMM

under this model.

4.1 Combinatorial Models
The first combinatorial model for BMM was given by Angluin [Ang76]. To com-
pute the product of two n×n matrices P and Q, the model allows to take bit-wise
OR (union) of rows of the matrix Q, in order to generate the individual rows of
the resulting product matrix PQ. Formally, for any i ∈ [n], to generate the ith
row of the product matrix PQ denoted by PQi, check the set of indices of l’s in
the ith row of P . Let, this be Pi′ . Then, PQi = ⋁

j∈Pi′Qj, where ⋁ represents
the bit-wise OR of rows. The cost in this model is, the total number of unions
taken. By a counting argument, Angluin [Ang76] showed that there are matrices
P and Q such that the number of unions required must be Ω(n2/ log n). This
bound matches the number of unions taken by the Four Russians Algorithm, and
in that sense the Four Russians Algorithm is optimal.

If the cost of computing each row union is counted as n, the total cost becomes
Θ(n3/ log n). The Four Russians Algorithm improves this bound to O(n3/ log2 n)
by leveraging “word-level parallelism” that enables computing each row union in
time O(n/ log n).

A possible approach to speed-up the Four Russians Algorithm would be to
lower the cost of each union operation even further. The above analysis ignores
the fact that we might be taking the union of rows with identical content multiple
times. For example if P and Q are random matrices (as in the lower bound of
Angluin) then each row of the resulting product matrix is an all-one row. Such
rows will appear after taking an union of merely O(log n) different rows from Q.
An entirely naive algorithm would be to take unions of an all-one row with n
possible rows of Q after only few unions. Hence, there would be only O(n log n)
different unions to take, that has a total cost of O(n2·poly(log n)). The repetitions
of unions can be easily detected by maintaining a short fingerprint for each row
evaluated.

Our first model takes repetitions into account. Similar to Angluin, our focus
is on the number of unions taken by the algorithm but we charge for each union
operation differently. The natural cost of a union of two rows with values u, v ∈
{0, 1}n is the minimum of the number of ones in u and v. This charging scheme
is meaningful as one could use sparse set representation of u and v. In addition
to that if unions of the rows (vectors) with identical content are taken multiple
times we charge all of them only once, i.e., we charge the first one the actual cost

53

and all the additional unions are charged just by a unit cost. As we have argued,
on random matrices P and Q, BMM will cost O(n2 log n) in this model. Our first
lower bound shows that even in this model, there are matrices for which the cost
of BMM is almost cubic.

The next natural operation one might allow to the algorithm is to divide rows
into pieces. This is indeed what the Four Russians Algorithm and many other
algorithms do. In the Four Russians Algorithm, this corresponds to the “word-
level parallelism”. Hence we might allow the algorithm to break rows into pieces,
take unions of the pieces, and concatenate the resultant pieces back. In our more
general model we set the cost of the partition and concatenation to be a unit
cost, and we only allow to split a piece into continuous segments. More complex
partitions can be simulated by performing many two-sided partitions and paying
proportionally to the complexity of the partition. The cost of a union operation
is again proportional to the smaller number of ones in the pieces, while repeated
unions are charged for a unit cost. In this model one can implement the Four
Russians Algorithm for the cost O(n3/ log2 n), matching its usual cost. In the
model without partitions the cost of the Four Russians Algorithm is Θ(n3/ log n).
In this model we are able to prove super-quadratic lower bound when we restrict
that all partitions happen first, then unions take place, and then concatenations.

Perhaps, the characteristic property of “combinatorial” algorithms is that,
from the run of such an algorithm one can extract a combinatorial proof (witness)
for the resulting product. This is how we interpret our models. For given P and
Q we construct a witness circuit that mimics the work flow of the algorithm.
The circuit operates on rows of Q to derive the rows of the resulting matrix PQ.
The values flowing through the circuit are bit-vectors representing the values of
resultant rows together with information about which union of which submatrix
ofQ the row represents. The gates can partition the vectors in pieces, concatenate
them and take their union. For our lower bound we require that unions take place
only after all partitions and before all concatenations. This ordering among the
operations seems to be a reasonable restriction since we do not have to emulate the
run of an algorithm step by step but rather see what it eventually produces. Also
allowing the partition, union and concatenation operations to occur in arbitrary
order could perhaps lead to only quadratic cost on all matrices. The proper
modelling of combinatorial algorithms is a significant issue here: one wants a
model that is strong enough to capture known algorithms (and other conceivable
algorithms) but not so strong that it admits unrealistic quadratic algorithms.

4.2 Technique Overview
Our lower bounds are primarily dependent on are graphs that are derived from
(r, t)-graphs of Rusza and Szemeredi [RS78]. Our graphs are tripartite with
vertices split into parts A, B, C, where |A| = |C| = n and |B| = n/3. The
key property of these graphs is that there are almost quadratically many pairs
(a, c) ∈ A×C that are connected via a single (unique) vertex from B. In terms of
the corresponding matrices P (adjacency matrix representing the bipartite graph
between A and B) and Q (adjacency matrix representing the bipartite graph
between B and C) this means that in order to evaluate a particular row of their
product we must take a union of very specific rows in Q. The number of rows in

54

the union must be almost linear. Since Q is dense this might lead to an almost
cubic cost for the whole algorithm provided different vertices in A are connected
to different vertices in B so that we are required to take different unions.

Though, this is not apriori the case for the (r, t)-derived graph, we can easily
achieve this by removing edges between A and B at random, each independently
with probability 1/2. This indeed make the neighborhoods of different vertices
in A very different from each other. We call such a graph diverse (see a later
section for a formal definition). It turns out that for our lower bound we need a
slightly stronger property, not only that for different vertices of A, we need to take
unions of different rows ofQ but, also that for different vertices the results of these
unions are different as well. We call this stronger property unhelpfulness. Using
unhelpfulness of graphs we are able to derive the almost cubic lower bound on
the simpler model. Unhelpfulness is a much more subtle property than diversity,
and we crucially depend on the combinatorial properties of our graphs to derive
it.

Next we tackle the issue of lower bounds for the partition model. This turns
out to be a substantially harder problem. One needs unhelpfulness on different
pieces of rows (restrictions to columns of Q), that is, making sure that the result
of union of some pieces of rows does not appear (too often) as a result of union
of other pieces of rows. This is impossible to achieve in full generality. Roughly
speaking what we can achieve is that, different parts of any witness circuit cannot
produce the same results of unions. The key lemma that formalizes it (Lemma
14) shows that the results of unions obtained for a particular interval of columns
in Q can be used at most O(log n) times on average in the rest of the circuit.
This is a property of the graph which we refer to as that the graph admitting
only limited reuse. This key lemma is technically complicated and challenging to
prove (albeit elementary). Putting all the pieces together turns out to be also
quite non trivial.

4.3 Notation and Preliminaries
For any integer k ≥ 1, [k] = {1, . . . , k}. For a vertex a in a graph G and a
subset S of vertices of G, Γ(a) are the neighbors of a in G, and ΓS(a) = Γ(a)∩S.
(To emphasize which graph G we mean we may write ΓS,G(a).) A subinterval
of set C = {c1, c2, . . . , cn} is any set K = {ci, ci+1, . . . , cj}, for some 1 ≤ i ≤
j ≤ |C|. We interpret min K as i and max K as j. For a subinterval K =
{ci, ci+1, . . . , ci+ℓ−1} of C and a vector v = {v1, . . . , vℓ} ∈ {0, 1}ℓ, K ↾v denotes
the set {cj ∈ K; vj−i+1 = 1}. For a vector v ∈ {0, 1}n, v ↾K= vi, vi+1, . . . , vi+ℓ−1.
For a binary vector v, |v| denotes the number of ones in v. For two sets S1 and
S2, their set-union is represented by S1 ∪ S2 and for two vectors v1, v2 ∈ {0, 1}n,
v1
⋁

v2 represents their bit-wise Or.

4.3.1 Matrices
We will denote matrices by calligraphic letters P ,Q,R. All matrices we consider
are binary matrices. For integers i, j, Pi represents the i-th row of P and Pi,j

represents the (i, j)-th entry of P . Let P be an nA × nB matrix and Q be an
nB×nC matrix, for some integers nA, nB, nC . We associate matrices P ,Q with a

55

tripartite graph G. The vertices of G is the set A∪B∪C where A = {a1, . . . , anA
},

B = {b1, . . . , bnB
} and C = {c1, . . . , cnC

}. The edges of G are (ai, bk) for each i, k
such that Pi,k = 1, and (bk, cj) for each k, j such that Qk,j = 1. In this chapter we
only consider graphs of this form. For a set of indices S ⊆ B, row(QS) = ⋁

i∈S Qi

is the bit-wise Or of rows of Q given by S.

4.3.2 Model

Circuit. A circuit is a directed acyclic graph W where each node (gate) has
in-degree either zero, one or two. The degree of a gate is its in-degree and the
fan-out is its out-degree. Degree one gates are called unary gates and degree two
gates are binary gates. Degree zero gates are called input gates. For each binary
gate g, left(g) and right(g) are its two predecessor gates. A computation of a
circuit proceeds by passing values along the edges, where each gate processes its
incoming values to decide on the value passed along its outgoing edges. The input
gates have some predetermined values. The output of the circuit is the output
value of some designated gate or gates.
Witness. Let P andQ be matrices of dimension nA×nB and nB×nC , resp., with
G be their associated graph. A witness for the matrix product P ×Q is a circuit
consisting of input gates, unary partition gates, binary union gates and binary
concatenation gates. The values passed along the edges are triples (S, K, v), where
S ⊆ B identifies a set of rows of the matrix Q, the subinterval K ⊆ C identifies
a set of columns of Q, and v is row(QS) ↾K , the restriction of row(QS) to the
columns of K. Each input gate outputs ({b}, C, Qb) for some assigned b ∈ B. A
partition gate with an assigned subinterval K ′ ⊆ C on input (S, K, v) outputs
undefined if K ′ ̸⊆ K and outputs (S, K ′, v′) otherwise, where v′ ∈ {0, 1}|K′| is such
that for each j ∈ [|K ′|], v′

j = vj+min K′−min K . A union gate on inputs (SL, KL, vL)
and (SR, KR, vR) from its children outputs undefined if KL ̸= KR, and outputs
(SL ∪ SR, KL, vL

⋁
vR) otherwise. A concatenation gate, on inputs (SL, KL, vL)

and (SR, KR, vR) where min KL ≤ min KR, is undefined if max KL + 1 < min KR
or SL ̸= SR or max KL > max KR and outputs (SL, KL∪KR, v′) otherwise, where
v′ is obtained by concatenating vL with the last (max KR −max KL) bits of vR.

It is straightforward that whether a gate is undefined depends solely on the
structure of the circuit but not on the actual values of P or Q. We will say that
the circuit is structured if union gates do not send values into partition gates, and
concatenation gates do not send values into partition and union gates. Such a
circuit first breaks rows of Q into parts, computes union of compatible parts and
then assembles resulting rows using concatenation.

We say that a witness W is a correct witness for P ×Q if W is structured, no
gate has undefined output, and for each a ∈ A, there is a gate in W with output
(ΓB(a), C, v) for v = row(QΓB(a)).
Cost. The cost of the witness W is defined as follows. For each union gate g with
inputs (SL, KL, vL) and (SR, KR, vR) and an output (S, K, v) we define its row-
class to be class(g) = {v, vL, vR}. If T is a set of union gates from W , class(T) =
{{u, v, z}, {u, v, z} is the row-class of some gate in T}. The cost of a row-class
{u, v, z} is min{|u|, |v|, |z|}. The cost of set T is ∑{u,v,z}∈class(T) cost of {u, v, z}.
The cost of witness W is the number of gates in W plus the cost of the set
containing all union gates in W .

56

We can make the following simple observation.

Proposition 32. If W is a correct witness for P×Q, then for each a ∈ A, there
exists a collection of subintervals K1, . . . , Kℓ ⊆ C such that C = ⋃

i Ki and for
each i ∈ [ℓ], there is a union gate in W which outputs (ΓB(a), Ki, row(QΓB(a)) ↾Ki

).

Union and resultant circuit. One can look at the witness circuit from two
separate angles which are captured in the next definitions. A union circuit over
a universe B is a circuit with gates of degree zero and two where each gate g
is associated with a subset set(g) of B so that for each binary gate g, set(g) =
set(left(g)))∪ set(right(g)). For integer ℓ ≥ 1, a resultant circuit is a circuit with
gates of degree zero and two where each gate g is associated with a vector row(g)
from {0, 1}ℓ so that for each binary gate g, row(g) = row(left(g))∨ row(right(g)),
where ∨ is a coordinate-wise Or.

For a vertex a ∈ A and a subinterval K = {ci, ci+1, . . . , ci+ℓ−1} of C, a union
witness for (a, K) is a union circuit W over B with a single output gate gout where
set(gout) = ΓB(a) and for each input gate g of W , set(g) = {b} for some b ∈ B
connected to a.
Induced union witness. Let W be a correct witness for P × Q. Pick a ∈
A and a subinterval K ⊆ C. Let there be a union gate g in W with output
(ΓB(a), K, row(QΓB(a)) ↾K). An induced union witness for (a, K) is a union circuit
over B whose underlying graph consists of copies of the union gates that are
predecessors of g, and a new input gate for each input or partition gate that feeds
into one of the union gates. They are connected in the same way as in W . For
each gate g in the induced witness we let set(g) = S whenever its corresponding
gate in W outputs (S, K ′, v) for some K ′ and v. From the correctness of W it
follows that each such K ′ = K and the resulting circuit is a correct union witness
for (a, K).

4.3.3 (r, t)-graphs: The hard instance
We will use special type of graphs for constructing matrices which are hard for
our combinatorial model of Boolean matrix multiplication. For integers r, t ≥ 1,
an (r, t)-graph is a graph whose edges can be partitioned into t pairwise disjoint
induced matchings of size r. Somewhat counter-intuitively as shown by Rusza
and Szemeredi [RS78] there are dense graphs on n vertices that are (r, t)-graphs
for r and t close to n.

Theorem 33 (Rusza and Szemerédi [RS78]). For all large enough integers n, for
δn = 1/2Θ(

√
log n) there is a (δnn, n/3)-graph Gr,t

n .

A more recent work of Alon, Moitra Sudakov [AMS12] provides a construction
of a (r, t)-graphs on n vertices with rt = (1−o(1))

(
n
2

)
and r = n1−o(1). The graphs

of Rusza and Szemerédi are sufficient for us.
Let Gr,t

n be the graph from the previous theorem and let M1, M2, . . . , Mn/3 be
the disjoint induced matchings of size δnn. We define a tripartite graph Gn as fol-
lows: Gn has vertices A = {a1, . . . , an}, B = {b1, . . . , bn/3} and C = {c1, . . . , cn}.
For each i, j, k such that (i, j) ∈ Mk there are edges (ai, bk) and (bk, cj) in Gn.
The following immediate lemma states one of the key properties of Gn.

57

Lemma 10. If (i, j) ∈ Mk in Gr,t
n then there is a unique path between ai and cj

in Gn via bk.

For the rest of the chapter, we will fix the graphs Gn. Additionally, we will
also use a graph G̃n which is obtained from Gn by removing each edge between
A and B independently at random with probability 1/2. (Technically, G̃n is a
random variable.) When n is clear from the context we will drop the subscript n.

Fix some large enough n. Let P be the n × n/3 adjaceny matrix between
A and B in G and Q be the n/3 × n adjacency matrix between B and C in G.
The adjacency matrix between A and B in G̃ will be denoted by P̃ . (P̃ is also a
random variable.) The adjacency matrix between B and C in G̃ is Q.

We say that c ∈ C is unique for A if there is exactly one b ∈ B such that
(a, b) and (b, c) are edges in G. The previous lemma implies that on average a has
many unique vertices c in G, namely δnn/3. For S ⊆ C, let S[a] denote the set of
vertices from S that are unique for a in G. E.g., C[a] are all vertices unique for
a. Let βa(S) denote the set of vertices from B that are connected to a and some
vertex in S[a]. Notice, |βa(S)| = |S[a]|. Since βa(·) and ·[a] depend on edges in
graph G, to emphasise which graph we have in mind we may subscript them by
G: βa,G(·) and ·[a]G.

For the randomized graph G̃ we will denote by S[a]′
G̃

the set of vertices from
S that are unique for a in G and that are connected to a via B also in G̃. (Thus,
vertices from S that are not unique for a in G but became unique for a in G̃ are
not included in S[a]′

G̃
.) Let β′

a,G̃
(S) denotes βa(S[a]′

G̃
)

4.3.4 Diverse and unhelpful graphs
In this section we define two properties of G̃ that capture the notion that one
needs to compute many different unions of rows of Q to calculate P̃ × Q. The
simpler condition stipulates that neighborhoods of different vertices from A are
quite different. The second condition stipulates that not only the neighborhoods
of vertices from A are different but also the unions of rows fromQ that correspond
to these neighborhoods are different as well.

Let G and G̃ and P ,Q, P̃ be as in the previous section. For integers k, ℓ ≥ 1,
we say G̃ is (k, ℓ)-diverse if for every set S ⊆ B of size at least ℓ, no k vertices in
A are all connected to all the vertices of S.

Lemma 11. Let c, d ≥ 4 be integers. The probability that G̃ is (c log n, d log n)-
diverse is at least 1− n−(cd/2) log n.

Proof. G̃ is not (c log n, d log n)-diverse if for some set S ⊆ B of size ℓ ≥ d log n,
and some k-tuple of distinct vertices a1, . . . , ak ∈ A for k = c log n, each vertex
ai is connected to all vertices from S in G̃. The probability that all vertices of
a given k-tuple a1, . . . , ak ∈ A are connected to all vertices in a given set S of
size ℓ ≥ d log n in G̃ is at most 2−kℓ. (The probability is zero if some ai is not
connected to some vertex from S in G.) Hence, the probability that there is some
set S ⊆ B of size ℓ ≥ d log n, and some k-tuple of distinct vertices a1, . . . , ak ∈ A
where each vertex ai is connected to all vertices from S in G̃ is bounded by:

58

n∑
ℓ=d log n

(
n

ℓ

)
·
(

n

k

)
· 2−ℓk ≤

n∑
ℓ=d log n

nℓ · nk · 2−ℓk

≤
n∑

ℓ=d log n

2(ℓ+k) log n−ℓk

≤
n∑

ℓ=d log n

2−ℓk/2

≤
n∑

ℓ=d log n

1
n(cd/2) log n

where the second inequality follows from c, d ≥ 4.

For S ⊆ B, a ∈ A and a subinterval K ⊆ C, we say that S is helpful for a on
K if there exists a set S ′ ⊆ β′

a,G̃
(K) such that |S| ≤ |S ′| and C[a]G∩ (K ↾row(QS)

) = C[a]G∩(K ↾row(QS′)). In other words, the condition means that row(QS) and
row(QS′) agree on coordinates in K that correspond to vertices unique for a in
G. This is a necessary precondition for row(QS) ↾K= row(QS′) ↾K which allows
one to focus only on the hard-core formed by the unique vertices. In particular, if
for some S ′′ ⊆ Γ

B,G̃
(a) in G̃, row(QS) ↾K= row(QS′′) ↾K , then S ′ = S ′′ ∩ β′

a,G̃
(K)

satisfies C[a]G ∩ (K ↾row(QS)) = C[a]G ∩ (K ↾row(QS′)). (See the proof below.)
For integers k, ℓ ≥ 1, we say G̃ is (k, ℓ)-unhelpful on K if for every set S ⊆ B

of size at least ℓ, there are at most k vertices in A for which S is helpful on K.

Lemma 12. Let c, d ≥ 4 be integers. Let and K = {ci, ci+1, . . . , ci+ℓ−1} be a
subinterval of C. The probability that G̃n is (c log n, d log n)-unhelpful on K is at
least 1− n−(cd/2) log n.

Proof. Take any set S ⊆ B of size ℓ ≥ d log n and arbitrary vertices a1, . . . , ak ∈ A
for k = c log n. Consider row(QS) ↾K and some i ∈ [k]. Since edges between B
and C are always the same in G̃, row(QS) ↾K is always the same in G̃. If S
is helpful on K for ai then there exists Si ⊆ β′

a,G̃
(K) such that |Si| ≥ ℓ and

C[a]G ∩ (K ↾row(QSi
)) = C[a]G ∩ (K ↾row(QS)). It turns out that given ai, the

possible Si is uniquely determined by row(QS) ↾K . Whenever row(QS) ↾K has
one in a position c that corresponds to a unique vertex of a in G, row(QSi

) ↾K

must have one there as well so the corresponding b must be in Si. Conversely,
whenever row(QS) ↾K has zero in a position c that corresponds to a unique vertex
of a in G, row(QSi

) ↾K must have zero there as well so the corresponding b is not
in Si. The probability that Si ⊆ β′

a,G̃
(K) is 2−|Si|.

Hence, the probability over choice of G̃ that S is helpful for ai on K is at
most 2−ℓ. For different ai’s this probability is independent as it only depends on
edges between ai and B. Thus the probability that S is helpful for a1, . . . , ak is
at most 2−ℓk.

There are at most
(

n
ℓ

)
·
(

n
k

)
choices for the set S of size ℓ and a1, . . . , ak. Hence,

the probability that G̃ is not (c log n, d log n)-unhelpful on K is at most:

59

n∑
ℓ=d log n

(
n

ℓ

)
·
(

n

k

)
· 2−ℓk ≤

n∑
ℓ=d log n

nℓ · nk · 2−ℓk

≤
n∑

ℓ=d log n

2(ℓ+k) log n−ℓk

≤
n∑

ℓ=d log n

2−ℓk/2

≤
n∑

ℓ=d log n

1
n(cd/2) log n

where the third inequality follows from c, d ≥ 4.

4.4 Union Circuits
In this section we prove a cubic lower bound for our first model. Precisely our
goal is to prove the following theorem:

Theorem 34. There is a constant c > 0 such that for all n large enough there
are matrices P ∈ {0, 1}n×n/3 and Q ∈ {0, 1}n/3×n such that any correct witness
for P ×Q consisting of only union gates has cost at least n3/2c

√
log n.

Here by consisting of only union gates we mean consisting of union gates and
input gates. Our almost cubic lower bound on the cost of union witnesses is an
easy corollary to the following lemma.

Lemma 13. Let n be a large enough integer and G̃n be the graph from Section
4.3.3, and P̃ ,Q be its corresponding matrices. Let W be a correct witness for
P̃ ×Q consisting of only union gates. Let P̃ have at least m ones. Let each row
of Q have at least r ones. If G̃ is (k, ℓ)-unhelpful on C for some integers k, ℓ ≥ 1
then any correct witness for P̃ ×Q consisting of only union gates has cost at least
(mr/2kℓ)− nr/k.

Proof. Let W be a correct witness for P̃ ×Q consisting of only union gates. For
each gate g of W with output (S, C, v), for some v, define set(g) = S. Consider
a ∈ A. Let ga be a gate of W such that set(ga) = Γ

B,G̃
(a) (which equals β′

a,G̃
(C)).

Take a maximal set Da of gates from W , descendants of ga, such that for each g ∈
Da, |set(g)| ≥ ℓ and either |set(left(g))| < ℓ or |set(right(g))| < ℓ, also for g ̸= g′ ∈
Da, {set(g), set(left(g)), set(right(g))} ≠ {set(g′), set(left(g′)), set(right(g′))}.

Notice, if g ̸= g′ ∈ Da then class(g) ̸= class(g′). This is because for any sets
S ̸= S ′ ⊆ set(ga), row(QS) ̸= row(QS′). (Say, b ∈ S \ S ′, then there is 1 in
Qb which corresponds to a vertex c unique for a. Thus, row(QS)c = 1 whereas
row(QS′)c = 0.)

We claim that since Da is maximal, |Da| ≥ ⌊|set(ga)|/2ℓ⌋. We prove the
claim. Assume set(ga) ≥ 2ℓ otherwise there is nothing to prove. Take any
b ∈ set(ga) and consider a path g0, g1, . . . , gp = ga of gates in W such that
set(g0) = {b}. Since |set(g0)| = 1, |set(ga)| ≥ 2ℓ and set(gi−1) ⊆ set(gi),
there is some gi with |set(gi)| ≥ ℓ and |set(gi−1)| < ℓ. By maximality of

60

Da there is some gate g ∈ Da such that {set(g), set(left(g)), set(right(g))} =
{set(gi), set(left(gi)), set(right(gi))}. Hence, b is in set(left(g)) or set(right(g)) of
size < ℓ. Thus

set(ga) ⊆
⋃

g∈Da; |set(left(g))|<ℓ

set(left(g)) ∪
⋃

g∈Da; |set(right(g))|<ℓ

set(right(g))

Hence, |set(ga)| ≤ 2ℓ · |Da| and the claim follows.
For a given a, gates in Da have different row-classes. Since G̃ is (k, ℓ)-unhelpful

on C, the same row-class can appear in Da only for at most k different a’s. (Say,
there were a1, a2, . . . , ak+1 vertices in A and gates g1 ∈ Da1 , . . . , gk+1 ∈ Dak+1

of the same row-class. For each i ∈ [k + 1], set(gi) ⊆ Γ
B,G̃

(ai) = β′
ai,G̃

(C) and
|set(gi)| ≥ ℓ. The smallest set(gi) would be helpful for a1, a2, . . . , ak+1 contradict-
ing the unhelpfulness of G̃.) Since

∑
a

|Da| ≥
∑

a

⌊|set(ga)|/2ℓ⌋ ≥ m

2ℓ
− n,

witness W contains gates of at least (m/2kℓ)− n/k different row-classes. Since,
each Qb contains at least r ones, the total cost of W is as claimed.

Proof of Theorem 34. Let G̃n be the graph from Section 4.3.3, and P̃ ,Q
be its corresponding matrices. Let r = nδn. By Lemma 12, the graph G̃
is (5 log n, 5 log n)-unhelpful on C with probability at least 1 − 1/nlog n, and
by Chernoff bound, P̃ contains at least nr/10 ones with probability at least
1 − exp(n). So with probability at least 1/2, P̃ has m ≥ nr/10 ones while
G̃ is (5 log n, 5 log n)-unhelpful on C. By the previous lemma, any witness for
P̃ × Q is of cost (nr2/25 log n) − nr/5 log n. For large enough n, this is at least
nr2/50 log n = n3δ2

n/50 log n, and the theorem follows.

4.5 Circuits with Partitions
In this section, our goal is to prove the lower bound Ω(n7/3/2O(

√
log n)) on the

cost of a witness for matrix product when the witness is allowed to partition the
columns of Q. Namely we prove the following:

Theorem 35. For all n large enough there are matrices P ∈ {0, 1}n×n/3 and
Q ∈ {0, 1}n/3×n such that any correct witness for P ×Q has cost at least
Ω(n7/3/2O(

√
log n)).

We provide a brief overview of the proof first. The proof builds on ideas seen
already in the previous section but also requires several additional ideas. Consider
a correct witness for P̃ ×Q. We group its union gates based on their correspond-
ing subinterval of C. If there are many vertices in A that use many different
subintervals (roughly Ω(n4/3) in total) the lower bound follows by counting the
total number of gates in the circuit using diversity of G̃ (Lemma 17). If there are
many vertices in A which use only few subintervals (less than roughly O(n1/3)
each) then these subintervals must be large in size on average (about n2/3) and
contain lots of vertices from C unique for their respective vertices from A.

61

In this case we divide the circuit (its union gates) based on the associated
subinterval, and we calculate the contribution of each part separately. To do that
we have to limit the amount of reuse of a given row-class within each part, and
also among distinct parts. Within each part we limit the amount of reuse using a
similar technique to Lemma 13 based on unhelpfulness of the graph (Lemma 16).
However, for distinct parts we need a different tool which we call limited reuse.
Limited reuse is somewhat different than unhelpfulness, specifically in the type
of guarantee we get. The guarantee is weaker in some sense, as we are not able
to limit the reuse of a row-class for each single gate but only the total reuse of
row-classes of all the gates in a particular part of the circuit. On average the
reuse is again roughly O(log n).

However, the number of gates in a particular part of the circuit might be
considerably larger than the number of gates we are able to charge for work in
that part. In general, we are able to charge only those gates that already made
some non-trivial progress in the computation (as otherwise the gates could be
reused heavily.) We overcome this obstacle by balancing the size (total number
of gates) of the part against the number of chargeable gates in that part.

If the total number of gates in the part is at least n1/3-times larger than the
total number of chargeable gates, we charge the part for its size. Otherwise we
charge it for work. Each chargeable gates contributes by about n2/3 units of work
or more, however this can be reused almost n1/3-times elsewhere. Either way,
approximately Ω(n7/3) of work must be done in total. Now we present the actual
proof.

In order to prove the theorem we introduce few more definitions. Let Gn and
G̃n and P ,Q, P̃ be as in the Section 4.3.3. All witness circuits in this section are
with respect to P̃ × Q (i.e., G̃n). Let c0 and c1 be some constants that we will
fix later.

The following definition aims to separate contribution from different rows
within a particular subcircuit. A witness circuit may benefit from taking a union
of the same row of Q multiple times to obtain a particular union. This could
help various gates to attain the same row-class. In order to analyze the cost of
the witness we want to effectively prune the circuit so that contribution from
each row of Q is counted at most once. The following definition captures this
prunning.

Let W be a union circuit over B with a single vertex gout of out-degree zero
(output gate). The trimming of W is a map that associates to each gate g of
W a subset trim(g) ⊆ set(g) such that trim(gout) = set(gout) and for each non-
input gate g, trim(g) = trim(left(g))∪̇trim(right(g)). For each circuit W , we fix
a canonical trimming that is obtained from set(·) by the following process: For
each b ∈ set(gout), find the left-most path from gout to an input gate g such that
b ∈ set(g), and remove b from set(g′) of every gate g′ that is not on this path.

Given the trimming of a union circuit W we will focus our attention only
on gates that contribute substantially to the cost of the computation. We call
such gates chargeable in the next definition. For a vertex a ∈ A and a subinterval
K ⊆ C, let W be a union witness for (a, K) with its trimming. We say a gate g in
W is (a, K)-chargeable if |trim(g)∩β′

a,G̃
(K)| ≥ c0 log n and trim(left(g))∩β′

a,G̃
(K)

and trim(right(g)) ∩ β′
a,G̃

(K) are both different from trim(g) ∩ β′
a,G̃

(K). (a, K)-
Chargeable descendants of g are (a, K)-chargeable gates g′ in W where trim(g′)∩

62

β′
a,G̃

(K) ⊆ trim(g) ∩ β′
a,G̃

(K). Observe that the number of (a, K)-chargeable
descendants of a gate g is at most |trim(g) ∩ β′

a,G̃
(K)|+ 1− c0 log n.

From a correct witness for P̃×Q, we extract some induced union circuit W for
(a, K) and some resultant circuit W ′. We say that a gate g from W is compatible
with a gate g′ from W ′ if row(Qset(g)) ↾K= row(g′).

We want to argue that chargeable gates corresponding to gates of a given
correct witness have many different row-classes. Hence, we want to bound the
number of gates whose result is compatible with each other. This is akin to the
notion of helpfulness. In the case of helpfulness we were able to limit the repetition
of the same row-class for individual gates operating on the same subinterval of
columns of Q. In addition to that we need to limit the occurence of the same row-
class for gates that operate on distinct subintervals. As opposed to the simpler
case of helpfulness, we will need to focus on the global count of row-classes that
can be reused elsewhere from gates operating on the same subinterval. The next
definition encapsulates the desired property of G̃.

For a, a′ ∈ A and subintervals K, K ′ of C, we say that (a, K) and (a′, K ′) are
independent if either a ̸= a′ or K ∩K ′ = ∅. A resultant circuit W ′ over {0, 1}ℓ

is consistent with Q, if there exists a subinterval K ⊆ C of size ℓ, such that
for each input gate g of W ′, row(g) = Qb ↾K for some b ∈ B. We say that G̃
admits only limited reuse if for any resultant circuit W ′ of size at most n3 which
is consistent with Q and any correct witness circuit W for P̃ × Q, the number
of gates in any induced union witnesses W1, . . . , Ws for any pairwise independent
pairs (a1, K1), . . . , (as, Ks) that are chargeable and compatible with some gate in
W ′ is at most c1|W ′| log n.

We will show that with high probability G̃ admits only limited reuse.

Lemma 14. Let c1 ≥ 7 and c0 ≥ 20 be constants. Let n be a large enough integer.
Let G̃n be the graph from Section 4.3.3, and P̃ ,Q be its corresponding matrices.
The probability that G̃ admits only limited reuse is at least 1− 1/n.

To prove this lemma we will analyze individual pairs (a, K) and their induced
union circuits.

Lemma 15. Let c0 ≥ 5 be a constant. Let 1 ≤ m, ℓ ≤ n be integers. Let W ′ be
arbitrary resultant circuit over {0, 1}ℓ with at most n3 gates. Let a ∈ A and K be
a subinterval of C of size ℓ. Let Em be the event that there is a union witness W
for (a, K) in which at least m (a, K)-chargeable gates are compatible with gates in
W ′. There exists another event E ′

m that depends only on the presence or absence
of edges between a and β′

a,G̃
(K) in G̃ such that Em implies E ′

m, and the probability
Pr[Em] ≤ Pr[E ′

m] ≤ 2−m−(c0−5) log n.

For independent pairs (a, K) and (a′, K ′), the events E ′
m from Lemma 15

are independent so we will be able to bound the probability of them occuring
simultaneously.

Proof. We claim that if Em occurs then there must be a t-tuple of gates g′
1, . . . , g′

t

in W ′, where t ≤ n3, such that the set:

X =
t⋃

j=1
β′

a,G̃
(K ↾row(g′

j))

63

satisfies

1. |X| ≥ m + t(c0 − 1) log n, and

2. edges between a and X are all present in G̃.

The existence of such a t-triple is our event E ′
m. E ′

m has probability at most

n3∑
t=1
|W ′|t · 2−(m+t(c0−1) log n) ≤ 2−m ·

n3∑
t=1

2−t(c0−4) log n) ≤ 2 · 2−m−(c0−4) log n,

as there are |W ′|t choices for the t-tuple g′
1, . . . , g′

t, and the probability that all
edges between a and X are present in G̃ is 2−|X|. The lemma follows in such
a case as E ′

m only depends on the presence or absence of edges between a and
β′

a,G̃
(K) in G̃. So we only need to prove the existence of the t-tuple of required

properties whenever Em occurs.
Let S be a set of m (a, K)-chargeable gates in W which are compatible with

some gate in W ′. For each gate g ∈ S, let trim′(g) = trim(g) ∩ β′
a,G̃

(K). Let
g1, . . . , gs be all the gates in S that are maximal with respect to inclusion of
their sets trim′(gi). All the gates in S are among the chargable descendants of
g1, . . . , gs. Observe:

1. For any i ̸= j ∈ [s], trim′(gi) ∩ trim′(gj) = ∅, and

2. for any i ∈ [s], the number of (a, K)-chargeable descendants of gi is at most
|trim′(gi)|+ 1− c0 log n.

The first item holds as trim(gi) are either related by inclusion or disjoint, the
second item holds by the definition of (a, K)-chargeable gates. This implies:

|S| = m ≤
(

s∑
i=1
|trim′(gi)|

)
+ s− sc0 log n.

Pick the smallest set of gates g′
1, . . . , g′

t in W ′ so that each of the gates g1, . . . , gs

is compatible with at least one of them. Clearly, t ≤ s. Let gout be the top-
most gate of W . By definition, set(gout) = Γ

B,G̃
(a). If gi is compatible with g′

j

then row(Qset(gi)) ↾K= row(g′
j). Hence, β′

a,G̃
(K ↾row(g′

j)) ⊆ set(gi) ⊆ set(gout),
and trim′(gi) ⊆ β′

a,G̃
(K ↾row(g′

j)) by properties of vertices unique for a. For
the set X = ⋃t

j=1 β′
a,G̃

(K ↾row(g′
j)), the former implies that all edges between

a and X must be present in G̃. The latter implies |X| ≥ ∑s
i=1 |trim′(gi)| ≥

m + s(c0 − 1) log n ≥ m + t(c0 − 1) log n. Hence, g′
1, . . . , g′

t is a tuple of required
properties and the lemma follows.

Proof of Lemma 14. Fix arbitrary resultant circuit W ′ of size at most n3 consis-
tent with Q. Fix s ∈ [n3] and pairwise independent (a1, K1), (a2, K2), . . . , (as, Ks)
, where each ai ∈ A and Ki is a subinterval of C. Fix a sequence of positive
integers m1, m2, . . . , ms such that ∑i∈[s] mi ≥ c1|W1| log n.

Take G̃ at random. Let W be some correct witness for P̃ ×Q which for each
i ∈ [s], contains an induced union witness Wi for (ai, Ki) such that Wi contains

64

at least mi (ai, Ki)-chargeable gates compatible with gates in W ′. W might not
exist. Our goal is to estimate the probability that such a union witness W exists.

Let Ei be the event that there is some union witness Wi for (ai, Ki) which
contains at least mi (ai, Ki)-chargeable gates compatible with gates in W ′. We
can associate to Ei also an event E ′

i from Lemma 15. Since (a1, K1), (a2, K2), . . . ,
(as, Ks) are pairwise independent, the events E ′

i are mutually independent. Thus
we can bound the probability of the existence of W by

Pr[W1, W2, . . . , Ws exists] = Pr[E1 ∩ E2 · · · ∩ Es]
≤ Pr[E ′

1 ∩ E ′
2 · · · ∩ E ′

s]
=

∏
i∈[s]

Pr[E ′
i]

≤
∏
i∈[s]

2−mi−(c0−5) log n

≤ 2−c1|W ′| log n−s(c0−5) log n

where the second equality follows from the independence and the second inequal-
ity follows from Lemma 15.

This probability is for a fixed choice of W , s, ai’s, Ki’s, and mi’s. For a given
size t = |W ′| there are at most (t2 +n)tn2 choices for W ′ consistent with Q. There
are also at most (n3)s choices for (a1, K1), . . . , (as, Ks) and at most (c1n

3 log n)s

choices for m1, . . . , ms.
Thus the probability that G̃ does not admit only limited reuse is at most:

n3∑
t=1

n3∑
s=1

n3s+2(t2 + n)t · (c1n
3 log n)s · 2−c1|W ′| log n−s(c0−5) log n ≤ 1/n.

4.5.1 The cost of chargeable gates in a partition
For P̃ ,Q from Section 4.3.3, let W be a correct witness for P̃ ×Q. We say that
a gate g in W is (a, K)-chargeable if g corresponds to an (a, K)-chargeable gate
in the lexicographically first induced union witness for (a, K) in W .

The next lemma lower bounds the contribution of chargeable gates to the total
cost of the witness. It is similar in spirit to Lemma 13 and its proof is similar. It
focuses on union gates dealing with a particular subinterval K ⊆ C.

Lemma 16 (Partition version). Let n be a large enough integer and G̃n be the
graph from Section 4.3.3, and P̃ ,Q be its corresponding matrices. Let r, k > 1
be integers and ℓ = c0 log n. Let W be a correct witness for P̃ × Q. Let K ⊆ C
be a subinterval. Let R ⊆ B be such that for each b in R, Qb ↾K has at least
r ones. Let A′ ⊆ A be such that for each a ∈ A′, |R ∩ β′

a,G̃
(K)| ≥ 2ℓ. Let

m = ∑
a∈A′ |R ∩ β′

a,G̃
(K)|. If G̃ is (k, ℓ)-unhelpful on K then there is a set D of

union gates in W such that

1. Each gate in D is (a, K)-chargeable for some vertex a ∈ A, and

65

2. The number of different row-classes of gates in D of cost ≥ r is at least
m/4kℓ.

Proof. Pick a ∈ A′ for which there is an induced union witness in W . Fix the
lexicographically first union witness Wa for (a, K). Let trim(·) be its trimming.
Define trim′(g) = trim(g)∩R∩β′

a,G̃
(K). For the output gate ga of Wa, trim′(ga) =

R ∩ β′
a,G̃

(K) as β′
a,G̃

(K) ⊆ Γ
B,G̃

(a) = trim(ga). Take a maximal set Da of gates
from Wa such that for each g ∈ Da, |trim′(g)| ≥ ℓ, trim′(left(g)), trim′(right(g)) ⊊
trim′(g) and either |trim′(left(g))| < ℓ or |trim′(right(g))| < ℓ, and furthermore for
g ̸= g′ ∈ Da, {trim′(g), trim′(left(g)), trim′(right(g))} ≠ {trim′(g′), trim′(left(g′)),
trim′(right(g′))}. Clearly, gates in Da are (a, K)-chargeable.

Notice, if g ̸= g′ ∈ Da then class(g) ̸= class(g′). (Here we identify g with
its corresponding gate in W .) This is because for any sets S ̸= S ′ ⊆ trim′(ga),
row(QS) ↾K ̸= row(QS′) ↾K . (Say, b ∈ S \ S ′, then there is 1 in Qb ↾K which
corresponds to a vertex c unique for a. Thus, row(QS)c = 1 whereas row(QS′)c =
0.) Also, if g ∈ Da and {u, v, z} is its row-class then |u|, |v|, |z| ≥ r, since
trim′(g), trim′(left(g)), trim′(right(g)) have non-empty intersection with R.

We claim that since Da is maximal, |Da| ≥ ⌊|trim′(ga)|/2ℓ⌋. We prove the
claim. Assume trim′(ga) ≥ 2ℓ otherwise there is nothing to prove. Take any
b ∈ trim′(ga) and consider a path g0, g1, . . . , gp = ga of gates in Wa such that
trim′(g0) = {b}. Since |trim′(g0)| = 1, |trim′(ga)| ≥ 2ℓ and trim′(gi−1) ⊆
trim′(gi), there is some gi with |trim′(gi)| ≥ ℓ and |trim′(gi−1)| < ℓ. Say gi−1 =
left(gi). Since b ∈ trim′(left(gi)) ⊊ trim′(gi) and trim′(left(gi))∪̇trim′(right(gi)) =
trim′(gi), trim′(right(gi)) ̸= trim′(gi). By maximality of Da there is some gate g ∈
Da such that {trim′(g), trim′(left(g)), trim′(right(g))} = {trim′(gi), trim′(left(gi)),
trim′(right(gi))}. Hence, b is in trim′(left(g)) or trim′(right(g)) of size < ℓ. Thus

trim′(ga) ⊆
⋃

g∈Da; |trim′(left(g))|<ℓ

trim′(left(g)) ∪
⋃

g∈Da; |trim′(right(g))|<ℓ

trim′(right(g))

Hence, |trim′(ga)| ≤ 2ℓ · |Da| and the claim follows.
Set D = ⋃

a Da. For a given a, gates in Da have different row-classes. Each of
the row-classes is of cost at least r. Indeed, for each g ∈ Da, trim′(g), trim′(left(g))
and trim′(right(g)) are all non-empty, so each of the set(g), set(left(g)) and
set(right(g)) contains some b with |Qb ↾K | ≥ r.

Since G̃ is (k, ℓ)-unhelpful on K, the same row-class can appear in Da only
for at most k different a’s. (Say, there were a1, a2, . . . , ak+1 in A and gates g1 ∈
Da1 , . . . , gk+1 ∈ Dak+1 of the same row-class. For each i ∈ [k + 1], trim′(gi) ⊆
set(gi)∩β′

ai,G̃
(K) so |set(gi)∩β′

ai,G̃
(K)| ≥ ℓ. The smallest set(gi)∩β′

ai,G̃
(K) would

be helpful for a1, a2, . . . , ak+1 contradicting the unhelpfulness of G̃.)
Since ∑

a∈A′
|Da| ≥

∑
a∈A′
⌊|trim′(ga)|/2ℓ⌋ ≥ m

4ℓ
,

D contains chargeable gates of at least m/4kℓ different row-classes with cost
≥ r.

66

4.5.2 Large number of partitions
If the witness for P̃ × Q involves many subintervals for many vertices we will
apply the next lemma.

Let n be a large enough integer and G̃n be the graph from Section 4.3.3 with
associated matrices P̃ ,Q. Let W be a witness for P̃ ×Q. By Proposition 32 each
a ∈ A is associated with distinct subintervals Ka,1, . . . , Ka,ℓa ⊆ C, for some ℓa,
such that C = ⋃

j∈[ℓa] Ka,j and there are union gates ga,1, . . . , ga,ℓa in W such that
ga,j outputs (Γ

B,G̃
(a), Ka,j, va,j) for some va,j ∈ {0, 1}|Ka,j |.

Lemma 17. Let W , ℓa’s, Ka,j’s, ga,j’s be as above. Let c, d ≥ 4 and ℓ, r ≥ 1 be
integers where r is large enough. Let L = {a ∈ A, ℓa ≥ ℓ & |Γ

B,G̃
(a)| ≥ r}. If G̃

is (c log n, d log n)-diverse then the size of W is at least rℓ · |L|/(2cd log2 n).

Proof. If two union gates g, g′ have outputs (S, K, v) and (S ′, K ′, v′), resp., where
K ̸= K ′, then g and g′ cannot have a descendant union gate in common. (This
follows from consistency of union gates.) Consider a union gate g in W that
outputs (S, K, v), where |S| ≥ d log n. Let T = {(a, j) ∈ L× [ℓ], ga,j has g among
its descendants}. Clearly, for all (a, j) ∈ T , ga,j outputs (Γ

B,G̃
(a), K, va,j) for

some va,j ∈ {0, 1}|K|. Hence, (a, j), (a, j′) ∈ T implies j = j′. For each (a, j) ∈ T ,
S ⊆ Γ

B,G̃
(a). By (c log n, d log n)-diversity of G̃, |T | ≤ c log n.

For each (a, j) ∈ L × [ℓ], ga,j has at least ⌊|Γ
B,G̃

(a)|/d log n⌋ ≥ ⌊r/d log n⌋ ≥
r/2d log n distinct descendant union gates g′ with output (S ′, Ka,j, v′), where
|S ′| ≥ d log n and v′ is arbitrary. (Each such g′ has distinct S ′.) Each such g′ can
be descendant of at most c log n gates ga,j by the bound on T . Hence, there are
at least |L| · ℓr/(2cd log2 n) distinct union gates in W .

4.5.3 Density lemma
We state here an auxiliary density lemma. The proof is standard but we include
it for completeness.

Lemma 18. Let n, r ≥ 1 be integers. Let K1, . . . , Kr be a collection of (not
necessarily distinct) subintervals of [n]. Let u1 ∈ K1, u2 ∈ K2, . . . , ur ∈ Kr be
distinct elements. Denote U = {u1, . . . , ur}. There are at least r/2 sets Ki such
that |Ki ∩ U | ≥ |Ki|r/4n.

Proof. Any subinterval I of [n] is called sparse if |I∩U | < |I|r/4n. Let I1, . . . , Ik

be the set of all sparse subintervals of [n]. We want to prove |∪i∈[k] (Ii∩U)| < r/2.
Denote S = ∪i∈[k]Ii. Suppose I ′ = {I ′

1, . . . , I ′
ℓ} be the minimal set of sparse

subintervals covering all sparse subintervals. Thus ∪i∈[k]Ii = ∪j∈[ℓ]I
′
j. We claim,

any u ∈ S is covered by at most two subintervals of I ′. As otherwise assume
there are more than two subintervals in I ′ which contain u. All these intervals
must have some nontrivial intersection including u. Among them consider the
two, having the left most starting point and right most end point in [n]. It can
be easily seen that the union of these two intervals covers all the other intervals
and hence the minimality of I ′ is violated. Therefore our claim follows. Now as
|S| ≤ n, from the previous claim we get ∑j∈[ℓ] |I ′

j| ≤ 2n. The construction also
implies ⋃i∈[k](Ii ∩ U) = ⋃

j∈[ℓ](I ′
j ∩ U). By the sparsity of the intervals, there are

at most 2n× r/4n = r/2 elements of U contained in ⋃j∈[ℓ](I ′
j ∩ U) and therefore

67

in ⋃
i∈[k](Ii ∩ U). Thus each of the r/2 elements of U \ S are contained only in

subintervals which are not sparse. Hence each set Ki associated with these r/2
elements satisfies |Ki ∩ U | ≥ |Ki|r/4n.

4.5.4 The main proof
In this section we prove the lower bound ≈ n7/3 on the cost of witnesses for matrix
product.

Theorem 36. For all n large enough there are matrices P ∈ {0, 1}n×n/3 and
Q ∈ {0, 1}n/3×n such that any correct witness for P ×Q has cost at least
Ω(n7/3/2O(

√
log n)).

Let n be large enough and let G̃n be the graph from Section 4.3.3. Set
c = 5, d = 5, c0 = 7, c1 = 20. Let r = δnn, s = n1/3, ℓ = n1/3. With prob-
ability at least 1/2, G̃ is simultaneously (c log n, d log n)-diverse (Lemma 11),
(c log n, d log n)-unhelpful on each of the

(
n
2

)
subintervals of C (Lemma 12), ad-

mits only limited reuse (Lemma 14), and ∑
a∈A |C[a]′

G̃
| ≥ nr/3 (by Chernoff

inequality).
Let W be a correct witness for G̃, our goal is to lower bound its cost.
We will define a sequence of sets T6 ⊆ T5 ⊆ · · · ⊆ T1 ⊆ A×C of pairs of (a, c)

where c is unique for a.

1. (Unique pairs.) T1 = {(a, c), a ∈ A, c ∈ C[a]′
G̃
} is the set of pairs of a and

its unique vertices. By assumption, |T1| ≥ nr/3.

2. (Removing sparse a’s.) Let A2 = {a ∈ A, |Γ
B,G̃

(a)| ≥ r/6}. Clearly,
|A2| ≥ r/6. Let T2 = T1 ∩ (A2 × C) = {(a, c) ∈ T1, |ΓB,G̃

(a)| ≥ r/6}. By
an averaging argument, |T2| ≥ nr/6.

3. (Removing a’s with many subintervals K.) For each a ∈ A2, let
Ka,1, . . . , Ka,ℓa be obtained from Proposition 32. Let A3 = {a ∈ A2, ℓa ≤ ℓ}
and A′

2 = A2 \A3. If |A′
2| ≥ r/12 we apply Lemma 17 to conclude that the

size of W is at least r
12 ·

r
6 ·

ℓ
2cd log2 n

≥ r2ℓ/150 log2 n. In this case we are
done.
Otherwise consider the case |A3| ≥ r/12. Let T3 = T2 ∩ (A3 × C). Since
|A′

2| < r/12, |T3| ≥ nr/12.

4. (Removing small subintervals K.) For each a ∈ A3, let K ′
a,1, . . . , K ′

a,ℓ′
a

be the subsequence of Ka,1, . . . , Ka,ℓa obtained by removing each Ka,j of size
smaller than r/24ℓ. So ℓ′

a ≤ ℓa ≤ ℓ, and each |K ′
a,j| ≥ r/24ℓ.

We remove pairs (a, c) from T1 not covered by large Ka,j’s: Let T4 =
T3 ∩ (⋃a∈A3{a} × (⋃j∈[ℓ′

a] K ′
a,j)). By the size and number of the removed

subintervals K, |T4| ≥ nr/24.

5. (Removing overlapping subintervals K.) For each a ∈ A3 find a
collection of disjoint subintervals K ′′

a,1, . . . , K ′′
a,ℓ′′

a
such that |T4 ∩ ({a} ×⋃

j∈[ℓ′′
a] K ′′

a,j)| ≥ |T4 ∩ ({a} × ⋃j∈[ℓ′
a] K ′

a,j)|/2. (Such a collection exists: Take
the smallest subcollection of K ′

a,1, . . . , K ′
a,ℓ′

a
which covers their entire union.

68

Each point from T4 ∩ ({a} ×⋃j∈[ℓ′
a] K ′

a,j) is contained in at most two inter-
vals of this subcollection. Order the subcollection by the smallest element
in each interval. Either the subset of intervals on odd positions in this
ordering or on even positions has the required property.)
Let T5 = T4 ∩ (⋃a∈A3({a} × ⋃j∈[ℓ′′

a] K ′′
a,j)). By the choice of removed subin-

tervals K, |T5| ≥ nr/48.

6. (Disregarding sparse sub-rows of Q.) For b ∈ B, let Tb = {(a, c) ∈
T5, {b} = βa({c}), i.e. b is on the path between a and c}. Let K(a, c) denote
K ′′

a,j such that c ∈ K ′′
a,j. (This is uniquely defined as K ′′

a,j’s are disjoint.)
Set B6 = {b ∈ B, |Tb| ≥ r/48}. For b ∈ B6, (a, c) ∈ Tb, we say that the
triple (b, a, c), is dense if |Qb ↾K(a,c) | ≥ r

24ℓ
· r

48 ·
1

4n
. By Lemma 18, for at

least half of the pairs (a, c) ∈ Tb, (b, a, c) is dense.
Let T6 = ⋃

b∈B6{(a, c) ∈ T5, (b, a, c) is dense}.
There are at most r

48 ·
n
3 pairs removed from T5 because b ̸∈ B6 and at most

half of the remaining points afterwards. So |T6| ≥ |T5|/3 ≥ nr/150.

Given sets T6 and A3, B6 obtained so far we proceed with the final calculation.
Consider a subinterval K ⊆ C. Let AK = {a ∈ A3, |T6 ∩ ({a} × K)| ≥

2c0 log n}, and RK = {b ∈ B, |Qb ↾K | ≥ r2

4800·nℓ
}.

Let mK = ∑
a∈AK

|RK ∩ β′
a,G̃

(K)| and m′
K = ∑

a∈AK
|T6 ∩ ({a} ×K)|. Since

for any a ∈ A3, |T6 ∩ ({a} ×K)| ≤ |RK ∩ β′
a,G̃

(K)|, m′
k ≤ mk. Also, ∑K mK ≥∑

K m′
K ≥ |T6| − 2c0nℓ log n ≥ |T6|/2.

Let sK be the number of union gates in W that correspond to K (i.e., that
output (S, K, v) for some S and v.)

Consider subintervals K ⊆ C, where smK ≤ sK , C = {K ⊆ C, K subinterval,
smK ≤ sK}. If ∑K∈C mK ≥ |T6|/4 then the |W | ≥ snr/600 so we are done. So
consider the case when ∑K∈C′ mK ≥ |T6|/4, where C ′ = {K ⊆ C, K subinterval,
smK > sK}. For each K ∈ C ′, apply Lemma 16 (R ← RK , A′ ← AK , k ←
c log n, ℓ← c0 log n, r ← r2/4800nℓ, D → DK) to obtain the set DK of gates with
at least mK/4cc0 log2 n row-classes of cost at least r2/4800nℓ. As all the gates in
DK are (a, K)-chargeable for some a ∈ A, by definition of limited reuse, their row-
class coincides with at most c1sK log n ≤ mKsc1 log n other gates in ⋃K′∈C′ DK′ .
Thus, ⋃K′∈C′ DK′ contains gates of at least ∑K′∈C′ mK′/4c1cc0s log3 n row-classes
each of cost at least r2/4800nℓ. This contributes to the cost of W by at least

r2

4800nℓ
· nr

2400c1cc0s log3 n
= Θ(r3/ℓs log3 n). The theorem follows.

4.6 Conclusion and Open Problems
In this chapter we have proposed combinatorial models for BMM and proved lower
bounds for them. Though these models are not strong enough to simulate the
recent combinatorial approaches, it provides a starting point for more comprehen-
sive analysis of the limitations of combinatorial algorithms. Therefore it will be
interesting to extend our current model to a more generalized one, capable of sim-
ulating all recent and naturally anticipated combinatorial algorithms and prove
better lower bounds for them. Towards this direction one idea would be to allow
arbitrary partitioning of the rows. Another interesting attempt will be to improve

69

the combinatorial upper bound. Though getting a truly sub-cubic one will be a
break through, coming up with an upper bound of the form Ω(n3/2O(

√
log n)) will

be quite interesting as well.

70

5. Weight Tolerant Subgraph for
Single Source Shortest Path
In this chapter we provide the construction of a sparse subgraph of a given directed
weighted graph with a designated source vertex, such that the subgraph preserves
the distance from the source to all other vertices as long as the total weight
increment of all the edges is bounded by k.

5.1 Preliminaries

5.1.1 Definitions
We start with the following basic definitions. For any positive integer r, we
denote the set {1, 2, · · · , r} by [r]. Throughout this chapter we use N to indicate
the set of natural numbers including zero. For any k-dimensional vector σ and
i ∈ [k], σ(i) denotes the value of the i-th coordinate of σ. Given a directed graph
G = (V, E) on n = |V | vertices and m = |E| edges with a weight function w
defined on the set of edges and a source vertex s ∈ V , a destination vertex t ∈ V ,
we use the following notations throughout this chapter.

• V (G), E(G) : the set of vertices and edges of G respectively.

• w(P) : weight of any path P .

• distG,w(x, y) : the sum of the weight of the edges appearing on the shortest
path between two vertices x and y in G when weight of each edge is defined
by the weight function w.

• G + (u, v) : the graph obtained by adding an edge (u, v) to the graph G.

• G \ F : the graph obtained by removing the set of edges F from the graph
G.

• In(A) : the set of all vertices in V \ A having an outgoing edge to some
vertex in set A ⊆ V .

• Out(A) : the set of all vertices in V \ A having an incoming edge from
A ⊆ V .

• In-Edge(A) : the set of edges incoming to A ⊆ V .

• Out-Edge(A) : the set of edges out of A ⊆ V .

• P [x, y] : the subpath of a path P from a vertex x to y.

• P ◦Q : the path formed by concatenating paths P and Q assuming the fact
that last vertex of P is same as first vertex of Q.

• E(f) : the set of edges e such that under a given flow f , f(e) ̸= 0.

71

• MaxFlow(G, S, t) : any maximum valued flow in G from a source set S to
t.

• Gshort : the shortest path subgraph of G, i.e., union of all shortest s − t
paths in G.

• ShortMaxF low(G, S, t) : any maximum valued flow returned by MaxFlow
(Gshort, S, t).

We now define the notion of k-FTRS (from [BCR16]) and k-WTSS with
respect to a fixed vertex t.

Definition 37 (k-FTRS(t)). [BCR16] Given a graph G, a source vertex s ∈
V (G), another vertex t ∈ V (G) and an integer k ≥ 1, a subgraph Ht = (V (G), E ′)
where E ′ ⊆ E(G) is said to be k-FTRS(t) of G if for any set F of k edge failures,
the following holds: t is reachable from s in G \ F if and only if t is reachable
from s in Ht \ F .

Definition 38 (k-WTSS(t)). Given a graph G with weight function w, a source
vertex s ∈ V (G), another vertex t ∈ V (G) and an integer k ≥ 1, a subgraph
Ht = (V (G), E ′) where E ′ ⊆ E(G) is said to be k-WTSS(t) of G if for any weight
increment function I : E(G) → N such that ∑e∈E(G) I(e) ≤ k, the following
holds: for the weight function defined by w′(e) = w(e) + I(e) for all e ∈ E(G),
distG,w′(s, t) = distHt,w′(s, t).

Following are the alternative definitions of k-FTRS and k-WTSS in terms of
k-FTRS(t) and k-WTSS(t) respectively.

Definition 39. [BCR16] A subgraph H of G is a k-FTRS if and only if it is a
k-FTRS(t) for all t ∈ V (G).

Definition 40. A subgraph H of G is a k-WTSS if and only if it is a k-WTSS(t)
for all t ∈ V (G).

5.1.2 Max-flow and farthest min-cut
Our algorithm for constructing the k-WTSS heavily exploits the connection be-
tween min-cut, max-flow and the number of edge disjoint paths present in a graph.
We start with the following well known theorem.

Theorem 41. In any graph with unit capacity on edges, there is a flow of value
r from a source set S to a destination vertex t if and only if there exist r edge
disjoint paths that originate from the set S and terminate at t.

Now we define (S, t)-min-cut in a graph G.

Definition 42 ((S, t)-min-cut). In any graph G an (S, t)-cut is a set of edges
C ⊆ E(G) such that every path from any vertex s ∈ S to t must pass through
some edge in C. An (S, t)-cut is called (S, t)-min-cut if it has the smallest size
among all other (S, t)-cuts.

72

Any (S, t)-cut C partitions the vertex set V (G) into two subsets A(C) and
B(C) where A(C) is the set of all the vertices reachable from S in G \ C and
B(C) = V (G) \ A(C). Note that S ⊆ A(C) and t ∈ B(C). From now on-
wards, we assume this pair of vertex sets (A(C), B(C)) to be output of a function
Partition(G, C).

For our purpose we do not just consider any (S, t)-min-cut, instead we consider
the farthest one.

Definition 43 (Farthest Min Cut). Let S be a source set and t be a destination
vertex in any graph G and suppose for any (S, t)-min-cut C, (A(C), B(C)) =
Partition(G, C). Any (S, t)-min-cut Cfar is called farthest min-cut, denoted by
FMC(G, S, t), if for any other (S, t)-min-cut C, it holds that A(C) ⊊ A(Cfar).

The following lemma given by Ford and Fulkerson establishes the uniqueness
of farthest min-cut and also provides an algorithm to compute it.

Lemma 19. [FF] Suppose f be a max-flow in G from any source set S to t and
Gf be the corresponding residual graph. If B be the set of vertices from which
there is a path to t in Gf and A = V (G) \ B, then the set C of edges that start
at A and terminate at B is the unique farthest (S, t)-min-cut.

Now we state following three important properties of farthest min-cut from
[BCR16].

Lemma 20. [BCR16] For any graph G, a source set S and a destination vertex
t, let C = FMC(G, S, t) and (A, B) = Partition(G, C) and for any edge (s, b) ∈
(S × B) define G′ = G + (s, b). Then the value of max-flow from S to t in G′ is
exactly one greater than that in G and FMC(G′, S, t) = C ∪ {(s, b)}.

Lemma 21. [BCR16] Consider a source vertex s and a destination vertex t in
any graph G. Let S ⊆ V (G) such that s ∈ S and t ̸∈ S and f be a max-flow
from S to t in G and C = FMC(G, S, t), (A, B) = Partition(G, C). Then we
can always find a max-flow fmax from s to t such that E(fmax) ⊆ E(A) ∪ E(f).

Lemma 22. [BCR16] Consider a source vertex s and a destination vertex t in any
graph G. Let S ⊆ V (G) such that s ∈ S, t ̸∈ S and (A, B) = Partition(G, FMC
(G, s, t)). Then for (A′, B′) = Partition(G, FMC(G, S, t)), B′ ⊆ B.

5.1.3 Overview of the construction
In this section we provide a overview of our construction of the k-WTSS of graph
G. We first simplify the construction by concentrating just on a single vertex t
and describe how to build a subgraph that preserves the distance between the
source s and t under weight increment. We call such a subgraph a k-WTSS(t).
We then argue that using Locality Lemma (see Section 5.3), these subgraphs for
different vertices can be combined to construct the k-WTSS of graph G. Locality
Lemma actually says slightly more, that if we can construct such a subgraph for a
particular vertex t with an additional property that in-degree of t in the subgraph
is bounded by some value c, then we can build a k-WTSS of size at most cn.

So from now onwards we focus on constructing k-WTSS(t) for some vertex
t. Let us first consider a toy example which provides a motivation behind our

73

technique. Let the input graph be G with weight function w and distG,w(s, t) = d.
Suppose G is such that, it can be decomposed into k + 1 disjoint subgraphs
G0, · · · , Gk where for 0 ≤ i ≤ k − 1, Gi contains all the s − t paths of weight
d + i present in G and any s− t path in Gi has weight exactly d + i. In general
such a decomposition might not exist. However, if it exists then it is not hard
to get such a decomposition. Now given such a decomposition, we compute a
k-FTRS(t) of G0 and for i ∈ [k − 1], a (k − i− 1)-FTRS(t) of Gi and then take
the union of these subgraphs. We claim that the obtained subgraph will be a
k-WTSS(t). Let, under the incremented weight function, the shortest distance
between s and t is d + j for 1 ≤ j < k. The bound on j is justified because for
j = 0, k it is trivial as we have included k-FTRS(t). Without loss of generality
we further assume that no weight increment happens on the edges of the current
shortest path. The justification of this assumption is provided later. But this
indeed implies that the current shortest path is contained in subgraph Gj and
any s − t path contained in graph Gi, where 0 ≤ i ≤ k − 1 has weight at least
d+j +1. Therefore, the total increase in weight on the edges of Gj is bounded by
k− (j + 1). Now as our weight increment function is integer valued the previous
bound implies that at most k − (j + 1) many edges of Gj are affected by weight
increment. Note, this is the place where integer valued increment plays a crucial
role. However by our construction, we include the (k−j−1)-FTRS(t) of Gj in our
subgraph. Thus even if we consider the removal of those affected edges then also
as there is a path in Gj on which there is no weight increment, by the definition
of (k− j− 1)-FTRS(t) there will be a surviving path included in our constructed
subgraph. This proves the correctness. Also by the result of [BCR16], in-degree
of t in each (k − i − 1)-FTRS(t) of Gi is bounded by 2k−i−1 and hence total
in-degree of t in the constructed k-WTSS(t) is bounded by 2k+1. Hence we get a
k-WTSS of size at most 2k+1n.

Now we consider the more general situation where for a given a graph, there
does not exists any nice decomposition of above type. In general, if we consider
a subgraph by taking all the s − t paths upto some specific weight, then that
particular subgraph may also contain a s− t path with larger weight and at this
point, all the above arguments fail. However, the nice thing is that instead of
any arbitrary weight, if we build a subgraph containing all the shortest s − t
paths then the subgraph will not contain any s− t path of larger weight. Now if
we use the construction of k-FTRS on this shortest path subgraph, then we can
guarantee the preservation of distances as long as the distances do not change
even after the weight increment. Though if the distance changes, we can not say
anything. This is the main challenge that we overcome in our algorithm. For
that purpose we use the properties of the farthest min-cut of the shortest path
subgraph.

In [BCR16] Baswana et al. used the concept of farthest min-cut to construct
k-FTRS. In their work, they first compute a series of k farthest min-cuts by taking
source sets in some nested fashion. Then they calculate a max-flow between the
final source set and the vertex t and keep only those incoming edges of t that have
non-zero flow. We further exploit their technique in order to design our algorithm.
We consider the shortest path subgraph and then compute a series of farthest min-
cuts similar to [BCR16]. However as mentioned in the last paragraph, in this way
we can construct the k-FTRS(t) only for the shortest path subgraph. Now let us

74

take the farthest min-cut considering s as source. Since it is a (s, t)-cut of the
shortest path subgraph, removal of it destroys all the shortest s− t paths present
in the original graph. Now if we again compute the shortest path subgraph, we
will get a subgraph containing only s − t paths of weight d + i, for some i > 0.
Then we can process this new subgraph as before to compute a sequence of k
farthest min-cuts and remove the first one. We proceed in this way until we
reach a point where all the s− t paths have weight at least d + k.

Now let us compare the situation with what we have already discussed with
our toy example. Removal of cut edges only helps us to generate some subgraph
of each of Gi’s. However computing k-FTRS(t) of just some subgraph of Gi may
not be sufficient to get k-WTSS(t). Thus for each Gi, we try to consider a lot
of subgraphs so that when we combine k-FTRS(t) of all of them, we get the
same advantage that we got from computing (k− i− 1)-FTRS(t) of Gi in the toy
example. One way of getting a lot of subgraphs of Gi is to try out removal of
different cuts (not just the farthest one). Obviously we cannot try for all possible
cuts, because there can be too many. Moreover, each time to reach at a subgraph
of weight d+ i we may have to remove a series of cuts. As a result we may end up
with exponentially many choices on removal of cuts to get all possible subgraphs
of Gi.

The good thing is that it suffices to use just a series of k farthest min-cuts
computed before for the purpose of removal. This will reduce the number of
choices to ki for any fixed Gi. In our algorithm we establish even a slightly better
bound on the number of subgraphs of Gi, needed to consider to construct a k-
WTSS(t). In the proof we use k-dimensional vectors to efficiently enumerate all
of these subgraphs. After getting those subgraphs we apply a construction similar
to that of k-FTRS(t) from [BCR16] to get a bound on in-degree of t. Though our
techniques are build on the algorithm of [BCR16], to achieve the claimed bound
we need to do much more than just using the algorithm of [BCR16] in a black
box fashion. Moreover in the algorithm, without loss of generality we assume the
following.

Assumption 44. The out degree of source vertex s is 1 and the out degree of all
other vertices is bounded by 2.

Explanations for Assumption 44. We are given a directed graph G = (V, E)
with an associated weight function w : E(G)→ R and a source vertex s. We claim
that, for any vertex t ∈ V (G), we can construct a new graph G′ = (V ′, E ′) with
a weight function w′ : E(G′)→ R and a source vertex s′ such that, G′ has O(m)
vertices and O(m) edges, for any vertex v ∈ V (G), distG,w(s, v) = distG′,w′(s′, v),
the out-degree of the source vertex s′ is 1 and the out-degree of every other vertex
v′ ∈ V (G′) is bounded by 2, given a k-WTSS(t) of G′ (say H ′) we can construct
a k-WTSS(t) of G (say H) and in-degree of any vertex in H is same as that of
in H ′.

Now we describe given graph G how to construct graph G′. If |Out(s)| > 1
then add a new vertex s′ to G and add an edge (s′, s) and set w′(s′, s) = 0. Then
make this new vertex s′ as the source vertex of G′. Otherwise, set s′ = s. Next,
for each v ∈ V (G), we construct a binary tree Tv as follows: Define rv to be the
root of Tv. Suppose d(v) denotes the out-degree of v in G. Then Tv contains
exactly d(v) many leaves, say l1

v, · · · , ld(v)
v . Let (v, u1), · · · , (v, ud(v)) are the out

75

edges of v in G. We delete all of them and in that place we insert the binary
tree Tv by adding an edge from vertex v to rv and adding edges from vertex li

v

to ui, for all i ∈ [d(v)]. We define the weight function w′ for G′ as follows: Set,
w′(v, rv) = 0, w′(li

v, ui) = w(v, ui) for all i ∈ [d(v)] and for rest of the edges e ∈ Tv

set w′(e) = 0.
Subsequently we observe the following properties of G′.

1. The source vertex s′ has out-degree 1 and every other vertex of G′ has
out-degree at most 2 whereas in-degree is same as that of in the graph G.

2. Graph G′ has O(m) vertices and O(m) edges.

3. Every edge (v, ui) of G is represented by a path Pv→ui
= (v, rv)◦(path from

rv to li
v in Tv)◦(li

v, ui) in G′ and w(v, ui) = w′(Pv→ui
). Hence for any vertex

v ∈ V (G), distG,w(s, v) = distG′,w′(s′, v).

Now we show, given a k-WTSS(t), say H ′ of the graph G′ how to construct a
k-WTSS(t), say H for the graph G. We build H as follows: For each ui ∈ Out(v)
of the graph G, we include an edge (v, ui) in H if and only if the edge (li

v, ui) is
present in graph H ′. Now the claim is that H is a k-WTSS(t) for the graph G. Let
I : E(G)→ Z be any increment function on graph G such that ∑e∈E(G) I(e) ≤ k.
Now define another increment function I ′ : E(G′) → Z for the graph G′ as
follows: For every edge (v, ui), set I ′(li

v, ui) = I(v, ui). For all other edges e ∈ G′,
set I ′(e) = 0. Clearly, ∑

e∈E(G′)
I ′(e) =

∑
e∈E(G)

I(e) ≤ k.

Now from the construction we can observe that for any vertex t in G, distH,w+I

(s, t) = distH′,w′+I′(s′, t). Now as H ′ is a k-WTSS(t) for the graph G′, we have
that distH′,w′+I′(s′, t) = distG′,w′+I′(s′, t) and therefore

distH,w+I(s, t) = distH′,w′+I′(s′, t) = distG′,w′+I′(s′, t) = distG,w+I(s, t).

Hence H is a k-WTSS(t) for the graph G and in-degree of any vertex in H is
same as that of in H ′. Hence for any vertex t ∈ V (G), computing k-WTSS(t) of
G is same as computing k-WTSS(t) for G′ which has O(m) vertices and edges,
and out-degree of source vertex is one and out-degree of every other vertex is
bounded by two.

5.2 Farthest Min-cut of Shortest Path Sub-
graph

5.2.1 Computing farthest min-cut of shortest path sub-
graph

In this section we give an algorithm to find farthest min-cut of the shortest path
subgraph of a given graph. We are given a weighted directed graph G, where
weight of each edge is defined by a weight function w : E(G) → R. Let s and t
be two vertices in G and distG,w(s, t) = d. We denote the set of all s− t paths of

76

weight d, under the weight function w, by Pd and the corresponding underlying
subgraph (just the union of all paths in Pd) of G by Gshort, more specifically,
V (Gshort) = V (G) and E(Gshort) = {e | e ∈ P for some P ∈ Pd}.

Definition 45. Let s and t be two vertices in any graph G. For any source
set S ⊆ V (Gshort), the farthest min-cut of shortest path subgraph, denoted as
FSMC(G, S, t) is defined by FMC(Gshort, S, t)

For any (S, t)-cut C of Gshort, define the partition function by ShortPartition
(G, C) = Partition(Gshort, C).

Next given any graph G and two vertices s and t, we generate the subgraph
Gshort as follows: For each edge (u, v) ∈ E(G) include (u, v) in a new edge set
E ′ if distG,w(s, u) + w(u, v) + distG,w(v, t) = distG,w(s, t). Then output the graph
G′ = (V (G), E ′). It can be easily observed that G′ = Gshort as for some P ∈ Pd,
an edge e = (u, v) ∈ P if and only if distG,w(s, u) + w(u, v) + distG,w(v, t) =
distG,w(s, t).

We can implement the above procedure by first storing the values of distG,w(s,
u) for all u ∈ V (G) and distG,w(v, t) for all v ∈ V (G) which can be done in time
O(mn) [Bel58, For56] where |V (G)| = n and |E(G)| = m. Hence the time
complexity to output the subgraph G′ = Gshort will be O(mn).

Now we can simply apply well known Ford-Fulkerson algorithm [FF] on the
subgraph Gshort to find the ShortMaxF low(G, S, t) and FSMC(G, S, t). The
correctness of FSMC(G, S, t) follows from Lemma 19 applying on the subgraph
Gshort.

5.2.2 Disjoint shortest path lemma
Choose any r ∈ N and consider the following: Set S1 = {s} and for i ∈ [r],
define Ci = FSMC(G, Si, t), (Ai, Bi) = ShortPartition(G, Ci) and Si+1 = (Ai ∪
Out(Ai)) \ {t}. Let E ′ ⊆ E(G) be such that E ′ = {(u1, v1), · · · , (ur, vr)}, where
(ui, vi) ∈ Ci.

Now let us introduce an auxiliary graph G′ = G + (s, v1) + · · · + (s, vr) and
set w(s, vi) = distG,w(s, vi) for i ∈ [r]. Suppose f be a max-flow from Sr+1 to t in
the shortest path subgraph of G and E(t) be the set of incoming edges of t having
nonzero flow value assigned by f . Now consider a new graph G∗ = (G′ \ In-
Edge(t)) + E(t).

Lemma 23. There will be at least r + 1 disjoint paths in G∗ each of weight equal
to distG,w(s, t).

Note that a similar claim was shown in [BCR16]. However, our claim is
slightly more general as all the edges of E ′ may not lie on a single s− t path in
G. Moreover we also comment on the weight of the disjoint paths. Both these
requirements are crucial for the correctness proof in Section 5.4. Fortunately, the
proof in [BCR16] does not rely on the fact that those edges (ui, vi)’s are part of
a single s− t path. For the sake of completeness we include the proof here.

77

s

v1

t

u2

v2

Figure 5.1: Suppose the yellow colored region represents Gshort. The edges of C1
and C2 are colored with blue and red respectively. Brown colored edges are the
edges added in the auxiliary graph G′ and the edges colored with green constitute
the set E(t). Paths represented by the thick edges are the 3 edge disjoint paths
in G′ when r = 2.

Let us denote the shortest path subgraph (union of all minimum weight s− t
paths) of G and G′ by Gshort and G′

short respectively. Now let us introduce a
series of subgraphs Gi’s as follows:

G1 = Gshort, Gi = Gshort + (s, v1) + · · ·+ (s, vi−1) for 2 ≤ i ≤ r + 1.

Note that Gi+1 = Gi +(s, vi). Since w(s, vi) = distG,w(s, vi), the edge (s, vi) must
belong to G′

short. This is because (ui, vi) already lie on some shortest s− t path,
say P in G which is a subgraph of G′. Then (s, vi) ◦ P [vi, t] will be a minimum
weight s− t path. Hence Gr+1 = G′

short. Now let us first prove the following.

Lemma 24. For any two vertices u, v ∈ V (Gshort), every u − v path in Gshort

has weight distG,w(u, v).

Proof. For the sake of contradiction, suppose P be a u − v path in Gshort that
has weight strictly greater than distG,w(v, t). By the definition of Gshort, for
all e ∈ P , e must lie in some shortest s − t path in G. If all the edges in P
lies in the same shortest s − t path then the claim is trivial. Otherwise there
must exists two consecutive edges e1 = (x, y) and e2 = (y, z) such that they lie
in two different shortest s − t paths, say P1 and P2 respectively. Observe that
w(P1[s, y]) = w(P2[s, y]), otherwise either of P1 or P2 is not a shortest s − t
path. Now consider the path P3 = P1[s, y] ◦ (y, z) ◦ P2[z, t]. By construction
w(P3) = w(P1[s, y]) + w(y, z) + w(P2[z, t]) = w(P2) as w(P1[s, y]) = w(P2[s, y]).
So we get another shortest s− t path containing both e1 and e2. We can continue
this process until we get a shortest s − t path such that all e ∈ P lie in it and
this concludes the proof.

Claim 25. Ci = FMC(Gi, Si, t).

78

Proof. We know that Ci = FMC(Gshort, Si, t). Observe that for each j < i, we
add Out(Aj) \ {t} to Sj+1. Thus for each edge (s, vj), j < i, both the endpoints
lie inside the source set Si. Hence Ci is also same as FMC(Gi, Si, t).

Claim 26. The value of a max-flow from s to t in G′
short is at least r + 1.

Proof. We use induction to show that the value of a max-flow from s to t in Gi

is at least i for i ∈ [r + 1]. The base case i = 1 is trivial because G1 = Gshort

and there is a s − t path in Gshort. Now for the induction argument, let us first
take (A, B) = ShortPartition(G, FMC(Gi, s, t)). Then by applying Lemma 22
on the graph Gi, we say that Bi ⊆ B. Hence by Lemma 20, we can argue that
the value of a max-flow from s to t in Gi+1 is at least one more than that in Gi

which is at least i by the induction argument, i.e., the value of a max-flow from
s to t in Gi+1 is at least i + 1.

Now consider a new subgraph G∗
short = (Gr+1 \ In-Edge(t)) + E(t). Note that

G∗
short is a subgraph of G∗.

Proof of Lemma 23. As f be a max-flow from Sr+1 to t in Gshort and both the
endpoints of the edge (s, vi), for any i ∈ [r] are inside Sr+1, the flow f is also a
max-flow from Sr+1 to t in Gr+1 = G′

short. Now by applying Lemma 21 on the
graph G′

short, we can get another max-flow fmax from s to t such that E(fmax) ⊆
E(Ar+1)∪E(f). As fmax terminates t using edges from E(t), so it is a valid flow
also in G∗

short. So the value of a max-flow from s to t in G∗
short is also at least r+1.

Now as by Lemma 24 every s− t path in G∗
short is of weight equal to distG,w(s, t)

and G∗
short is a subgraph of G∗, the lemma follows.

5.3 Construction of k-WTSS and Locality
Lemma

In this section we reduce the problem of finding k-WTSS to the problem of finding
k-WTSS(t) for any fixed vertex t ∈ V (G). The following lemma, a variant of
which also appears in [BCR16], serves our purpose.

Lemma 27 (Locality Lemma). Let there be an algorithm A that given a directed
weighted graph G and a vertex t ∈ V (G), generates a subgraph Ht of G such that:

• Ht is a k-WTSS(t); and

• in-degree of t in Ht is bounded by a constant ck.

Then we can compute a k-WTSS of G such that it has at most ck · n edges.

Proof. Let (v1, v2, · · · , vn) be any arbitrary ordering of the vertices of G. Given
the algorithm A we design another algorithm A′ which generates k-WTSS in n
rounds. The algorithm A′ proceeds as follows: In the first round it starts with
the graph G0 = G which is trivially a k-WTSS and computes another graph G1
which is a k-WTSS and in G1 in-degree of v1 is bounded by ck. Similarly in the
i-th round, a graph Gi is computed such that Gi is a k-WTSS and in-degree of
every vertex vj for j ≤ i in Gi is bounded by ck.

79

Now we describe round i in details. We start with a graph Gi−1 which we
know is a k-WTSS and in-degree of any vertex vj for j < i is bounded by ck.
Let Hi be the k-WTSS(vi) for graph Gi−1, computed by algorithm A. We define
Gi to be a subgraph of Gi−1 where the incoming edges of vi is restricted to that
present in Hi. Hence this process assures that in Gi the in-degree of vertices
v1, · · · , vi are bounded by ck.

Next we need to prove that for each i ∈ [n], Gi is also a k-WTSS and we do
this using induction. The base case is true as G0 = G is trivially a k-WTSS.
Next assuming Gi−1 is a k-WTSS we prove the same for Gi. Now consider
any increment function I. Let F be the set of edges for which I has non zero
value in Gi−1 i.e., F = {e ∈ E(Gi−1) | I(e) > 0}. Suppose the new weight
function is w′ defined by w′(e) = w(e) + I(e). Now consider any vertex t. Let
distG,w′(s, t) = d′ and hence by the induction argument, distGi−1,w′(s, t) = d′.
Suppose the corresponding path is P in Gi−1. We need to show there exist an s−t
path R of weight d′ in Gi such that w′(R) = d′. If path P does not contain vertex
vi set R = P . Otherwise consider the segments P [s, vi] and P [vi, t]. We have
that w′(P [s, vi]) + w′(P [vi, t]) = d′. Observe that w′(P [s, vi]) = distGi−1,w′(s, vi)
otherwise P cannot be a shortest s − t path under w′. Now as Gi differs from
Gi−1 only at the incoming edges of vi, path segment P [vi, t] remains intact. As
Hi is a k-WTSS(vi) for Gi−1, there exist an s − vi path, say R′ in Hi of weight
distGi−1,w′(s, vi). By the construction Gi contains Hi and hence R′ ◦ P [vi, t] is a
walk from s to t of weight w′(R′)+w′(P [vi, t]) = distGi−1,w′(s, vi)+w′(P [vi, t]) = d′

in Gi. Removing loops we get our desired path R of weight at most d′. Now as
Gi is a subgraph of Gi−1, we can conclude that w′(R) = d′. Hence Gi is a
k-WTSS.

5.4 Construction of k-WTSS(t)
In this section we provide an algorithm to compute a k-WTSS(t) for any fixed
vertex t ∈ V (G) where source vertex is s.

5.4.1 Description of the algorithm
Before describing the algorithm we introduce some notations that we will use in
our algorithm. Consider any k-dimensional vector σ ∈ {−1, 0, 1, · · · , k}k such
that, for any i ∈ [k], if σ(i) = −1 then for all i′ ∈ [k] and i′ > i, σ(i′) = −1.
Otherwise if, σ(i) ̸= −1 then for all i′ < i, σ(i′) ̸= −1. We use these vectors
to efficiently enumerate all the subgraphs of G for which we want to calculate
farthest min-cuts. Now for any such vector σ and r ∈ [k], we recursively define
the subgraph Gσ, set of source vertices Sσ,r and edge set Cσ,r as follows: if σ =
(−1,−1, · · · ,−1), Gσ is the union of all s−t paths in G, starting with Sσ,1 = {s},
for any r ∈ [k] define Cσ,r = FSMC(Gσ, Sσ,r, t), Sσ,r+1 = (A∪Out(A))\{t} where
(A, B) = ShortPartition(Gσ, Cσ,r). For σ ̸= (−1, · · · ,−1), Gσ is the union of all
s− t paths in Gσ′ \ Cσ′,σ(i)+1, where σ′ ∈ {−1, 0, 1, · · · , k}k such that,

∀i′ ∈ [k], σ′(i′) =

⎧⎨⎩σ(i′) if i′ < i

−1 otherwise

80

s

t

Figure 5.2: Region shaded with green color represents Gσ for σ = (1,−1, · · · ,−1)
whereas yellow colored region is the shortest path subgraph of G. The edges of
C(−1,··· ,−1),1 and C(−1,··· ,−1),2 are colored with blue and red respectively. Gσ is
obtained by removing red colored edges.

and, i = max{i′ | σ(i′) ̸= −1}. Now starting with Sσ,1 = {s}, if there exists a
s− t path of weight d + i then for any r ∈ [k] define Cσ,r = FSMC(Gσ, Sσ,r, t),
Sσ,r+1 = (A ∪ Out(A)) \ {t} where (A, B) = ShortPartition(Gσ, Cσ,r); else set
Cσ,r = ϕ. We refer the reader to Figure 5.2 for the better understanding about
the graph Gσ.

We are given a weighted directed graph G with weight function w and a source
vertex s and a destination vertex t. The weight of each edge of G is defined by the
weight function w : E(G) → Z. Overall our algorithm (Algorithm 4) performs
the following tasks: For different values of σ ∈ {−1, 0, · · · , k}k it computes the
sets Cσ,i and Sσ,i for i ∈ [k]. Then for each such σ, it computes max-flow in the
shortest path subgraph of Gσ by considering Sσ,k as source and add the edges
incident on t with non-zero flow to a set E(t). At the end, our algorithm returns
the subgraph Ht = (G \ In-Edge(t)) + E(t).

Our algorithm performs the above tasks in the recursive fashion. Starting
with σ = (−1, · · · ,−1), it first considers the shortest path subgraph of Gσ = G
and performs k iterations on it. At each iteration it computes the farthest min-
cut Cσ,i by considering Sσ,i as source and t as sink starting with Sσ,1 = {s}. Then
it updates the graph by removing the edges present in Cσ,i and passes this new
graph in the next recursive call. Before the recursive call it also updates the σ by
incrementing the value of σ(j) by one and passes the updated value of σ to the
recursive call. Here j is a parameter which denotes that the smallest coordinate
of σ that has value −1. Initially j was set to 1 and before the next recursive
call we increment its value by one. At the end of each iteration our algorithm
updates the source set to Sσ,i+1 by including end points of all the edges present
in the cut Cσ,i in the set Sσ,i. At the end of k iterations, the algorithm computes
max-flow in the shortest path subgraph of Gσ by considering Sσ,k as source and
add the edges incident on t with non-zero flow to a set E(t).

81

Algorithm 4 Algorithm for computing k-WTSS(t)
Input: A graph G with weight function w and two vertices s and t
Output: A subgraph Ht

1: Initialization: For all σ ∈ {−1, 0, · · · , k}k and r ∈ [k], set Cσ,r to be ϕ;
2: Set σcurr = (−1, · · · ,−1);
3: RecursiveWTSS(G, σcurr, 1);
4: Return Ht = (G \ In-Edge(t)) + E(t);

Procedure 5 RecursiveWTSS(Gcurr, σ, j)
1: if there exists an i ∈ [j − 1] such that σ(i) ≥ k − j + i− 1 then
2: return ;
3: end if
4: Define σcurr by setting σcurr(j) = 0 and σcurr(i) = σ(i) for all i ̸= j;
5: if distGcurr,w(s, t) = d + j − 1 then
6: S1 ← {s};
7: for i = 1, · · · , k do
8: Cσ,i ← FSMC(Gcurr, Si, t);
9: RecursiveWTSS((Gcurr \ Cσ,i), σcurr, j + 1);

10: σcurr(j)← σcurr(j) + 1;
11: (Ai, Bi)← ShortPartition(Gcurr, Cσ,i);
12: Si+1 ← (Ai ∪Out(Ai)) \ {t};
13: end for
14: f ← ShortMaxF low(Gcurr, Sσ,k+1, t);
15: Add incoming edges of t present in E(f) in E(t);
16: else
17: Define σcurr by setting σcurr(j) = 0 and σcurr(i) = σ(i) for all i ̸= j;
18: RecursiveWTSS(Gcurr, σcurr, j + 1);
19: end if

82

5.4.2 Analysis

Correctness:
In this section we first show that, for any vertex t ∈ V (G), the output graph Ht

is indeed a k −WTSS(t). We start with the following simple observation.

Observation 46. For any σ ∈ {−1, 0, · · · , k}k, any s− t path in Gσ must have
weight at least d + i− 1 where i = min{i′ | σ(i′) = −1}.

Proof. Now for any σ, let us consider a sequence of vectors α1, · · · , αi ∈ {−1, 0,
· · · , k}k where i = min{i′ | σ(i′) = −1} as follows: for any 1 ≤ j ≤ i,

αj(i′) =

⎧⎨⎩σ(i′) if i′ < j

−1 otherwise

Note that αi = σ. Now we use induction on j to show that any s− t path in Gαj

must have weight at least d + j − 1 and that will prove our claim.
As a base case when j = 1, as α1 = (−1, · · · ,−1), Gαj

= G and hence the
claim is trivially true. Now suppose the claim is true for all j ∈ [i − 1] and we
need to prove it for j +1. By definition, Gαj+1 is a subgraph of Gαj

. By induction
hypothesis all the s − t paths in Gαj

have weight at least d + j − 1. If there is
no s− t path of weight d + j − 1 in Gαj

then we are done because of our integer
valued weight function. Otherwise any such path of weight d + j − 1 must pass
through the cut set Cαj ,σ(j)+1. Now by definition, Gαj+1 is build by removing
the edge set Cαj ,σ(j)+1 from the graph Gαj

. Hence there will be no s− t path of
weight d + j − 1 in Gαj+1 . Since our weight function is integer valued, the claim
follows.

Note that the above observation is true only because we consider the range of
our weight function w to be Z. Otherwise it will trivially be false.

Now consider any increment function I : E(G)→ N such that ∑e∈E(G) I(e) ≤
k and then denote the set of edges with non-zero value of the function I by F ,
i.e., F = {e ∈ E(G)|I(e) > 0}. So clearly |F | ≤ k. Now suppose distG,w′(s, t) =
d′ = d + j for some 0 ≤ j ≤ k where w′(e) = w(e) + I(e). Thus we need to show
that there also exists an s− t path of weight d′ in the subgraph Ht under the new
weight function w′.

Suppose P be an s− t path in G such that w′(P) = d′ = d + j. For simplicity
let us assume the following.

Assumption 47. For all e ∈ P , I(e) = 0.

In other words we are assuming that w′(P) = w(P). We will now argue to
justify our assumption.

Explanation for Assumption 47. Suppose P be one of the shortest paths
from s to t in G under the new weight w′, i.e., w′(P) = d′. Then consider the
following set S = {e ∈ P |I(e) > 0} and suppose ∑e∈S I(e) = k′ ≤ k. Now define
the following new weight function:

w′′(e) =

⎧⎨⎩w(e) if e ∈ P

w′(e) otherwise

83

Now w′′(P) = d′ − k′. Then use the argument same as before to show that there
exists a path, say R in Ht of weight at most d′−k′ under this new weight function
w′′. Clearly, w′(R) ≤ w′′(R) + k′ = d′.

Next we claim the following.

Lemma 28. One of the following three cases must satisfy.

1. There exists a σ such that P belongs to the subgraph Gσ where σ(j) = −1
and for some positive integer r, the last edge of P belongs to the edge set
Cσ,r.

2. There exists a σ such that P belongs to the subgraph Gσ where σ(j+1) = −1,
σ(j) ̸= −1 and there is no i ∈ [j − 1] such that σ(i) ≥ k − j + i− 1.

3. There exists a σ such that P belongs to the subgraph Gσ where if i = min{i′ |
σ(i′) = −1} then i ≤ j and for any i′ ≤ i, σ(i′) < k − j + i′ − 1 and P
passes through all the cut sets Cσ,1, · · · , Cσ,k−j+i−1.

Proof. Here we describe a procedure to find desired σ for the path P . Let us
initialize σ = (−1, · · · ,−1). So Gσ = G and thus trivially P belongs to Gσ.
Suppose P pass through edges of the cut sets Cσ,1, · · · , Cσ,r1 , but does not pass
through any edge of Cσ,r1+1. Note that r1 will be equal to 0 if P does not pass
through any of the cut sets. Update σ by setting σ(1) = r1. By the definition
of Gσ, P belongs to it. Now suppose P passes through edges of the cut sets
Cσ,1, · · · , Cσ,r2 , but does not pass through any edge of Cσ,r2+1. Then update σ by
setting σ(2) = r2. Now proceed in this way until σ(j) is set or we reach at a point
where for some i ∈ [j − 1], P passes through all the cut sets Cσ,1, · · · , Cσ,k−j+i−1.
This process may stop prematurely if P reaches t before satisfying either of above
two conditions, but in that case the last edge, say (v, t) of P must belong to some
cut set Cσ,r. Hence we will be in the first case and this completes the proof.

Now let us call the path P is of type-1, type-2 and type-3 respectively de-
pending on which of the above three cases it satisfies.

Type-1: This case is the simplest among the three.

Lemma 29. If P is a type-1 path then P is contained in the subgraph Ht.

Proof. Suppose (v, t) is the last edge of the path P . Now as (v, t) ∈ Cσ,r for
some σ and r, (v, t) ∈ E(t). Thus by the construction of the subgraph Ht, the
edge (v, t) belongs to Ht. Also by the construction of the subgraph Ht, for all
the vertices u ̸= t, In-Edge(u) belong to Ht. Hence P must lie completely inside
Ht.

Type-2: As path P belongs to the subgraph Gσ where σ(j) ̸= −1 and σ(j +
1) = −1, by Observation 46, w(P) ≥ d + j. However by our Assumption 47,
w(P) = d + j and so it must pass through an edge (ur, vr) ∈ Cσ,r for all r ∈ [k].
Now consider an auxiliary graph G′

σ = Gσ + (s, v1) + · · · + (s, vk) and extend
the weight function w as w(s, vr) = w(P [s, vr]). Then define another graph
G∗

σ = (G′
σ \ In-Edge(t)) + E(t). By Lemma 23 we can claim the following.

84

Corollary 48. There will be k + 1 edge disjoint paths in G∗
σ each of weight w(P)

under weight function w.

Now we use the above corollary to conclude the following.

Lemma 30. If P is a type-2 path then there exists an s− t path of weight d′ in
the subgraph Ht under the new weight function w′.

Proof. By Corollary 48, we get k + 1 edge disjoint paths P1, · · · , Pk+1 each of
weight w(P) = d + j. Since |F | ≤ k where F = {e ∈ E(G)|I(e) > 0}, at least
one of the k + 1 many edge disjoint paths, say P1 must survive in G∗

σ \ F . If P1
also belongs to the subgraph Ht then we are done. Otherwise P1 must take some
of the (s, vr)’s as the first edge and the remaining portion P1[vr, t] lies inside Ht.
Now consider the following path R = P [s, vr] ◦ P1[vr, t]. By the construction of
G′

σ, w′(R) = w′(P1) = w(P) and this completes the proof.

Type-3: Suppose P is a type-3 path and thus belongs to Gσ for some σ where
if i = min{i′ | σ(i′) = −1} then i ≤ j and for any i′ ≤ i, σ(i′) < k − j + i′ − 1
and P passes through all the cut sets Cσ,1, · · · , Cσ,k−j+i−1. P passes through an
edge (ur, vr) ∈ Cσ,r for all r ∈ [k − j + i − 1]. Now if there exists a positive
integer r ∈ [k − j + i − 1] such that w(P [vr−1, ur]) > distGσ ,w(vr−1, ur), replace
the portions of path P [vr−1, ur] by the vr−1−ur path of weight distGσ ,w(vr−1r, ur).
We do this until there is no such r and after that we call this new path as P ′.

Now consider an auxiliary graph G′
σ = Gσ + (s, v1) + · · · + (s, vk−j+i−1) and

extend the weight function w as w(s, vr) = w(P [s, vr]). Next define another graph
G∗

σ = (G′
σ \ In-Edge(t)) + E(t). Now we use a slightly different argument than

that used previously.
Let us now analyze by considering the following two cases separately.

Case 1: [w(P [s, u1]) = distGσ ,w(s, u1)]

Claim 31. There will be at least k−j + i edge disjoint paths in G∗
σ each of weight

at most d + j under weight function w. Moreover, at least one path among them
will be of weight d + i− 1.

Proof. Let us consider a new weight function w1 as follows:

w1(e) =

⎧⎨⎩distGσ ,w(s, vr) if e = (s, vr) for some r ∈ [k − j + i− 1]
w(e) otherwise

Then by Lemma 23, G∗
σ has (k − j + i) edge disjoint paths, say P1, · · · , Pk−j+i

each of weight d + i − 1 under the new weight function w1 where the weight
bound follows from Observation 46. Now since by Assumption 44 the out degree
of s is 1, so |Cσ,1| = 1. As both P and P ′ pass through the edge (u1, v1) and
w(P [s, u1]) = distGσ ,w(s, u1), so from the construction of P ′ it can be observed
that w1(s, v1) = w(s, v1). Now consider the path that takes (s, v1) as the first
edge and say it is P1. Then

w(P1) = w(s, v1) + w(P1[v1, t]) = w1(s, v1) + w1(P1[v1, t]) = w1(P1) = d + i− 1.

For any other path, say P2, clearly w(P2) ≤ w1(P2) + (j − i + 1) = d + j because
for any 2 ≤ r ≤ k − j + i− 1, w(s, vr)− w1(s, vr) ≤ j − i + 1.

85

So we get k − j + i edge disjoint paths P1, · · · , Pk−j+i each of weight at most
d + j and suppose P1 has weight d + i− 1. Let us also extend the weight function
w′ by setting w′(s, vr) = w(s, vr) and extend I by setting I(s, vr) = 0. If any one
of these k− j + i edge disjoint paths, say Q satisfies that w′(Q) ≤ d + j, then we
are done. This is because in that case either Q lies inside Ht which makes Q to
be our desired path or for some r ∈ [k − j + i − 1], Q must take (s, vr)’s as the
first edge and the remaining portion Q[vr, t] lies inside Ht. In the second case,
we consider the path R = P [s, vr] ◦Q[vr, t]. Note that w′(R) = w′(Q) ≤ d + j.

Now we argue that there must exists one path among k − j + i edge disjoint
paths such that it will have weight at most d + j under the weight function w′.
Otherwise for all r ∈ [k− j + i], w′(Pr) ≥ d + j + 1. Hence I(P1) ≥ j − i + 2 and
I(Pr) ≥ 1 for all 2 ≤ r ≤ k − j + i. Thus

∑
e∈E(G∗

σ)
I(e) ≥ (j − i + 2) + (k − j + i− 1) ≥ (k + 1).

However as I(s, v1) = I(s, v2) = · · · = I(s, vσ(i)) = 0,∑
e∈E(G∗

σ)
I(e) ≤

∑
e∈E(G)

I(e) ≤ k

which leads to a contradiction.

Case 2: [w(P [s, u1]) > distGσ ,w(s, u1)]
In this case also by the argument used in the first part of the proof of Claim 31,

we can claim the following.

Claim 32. There will be at least k−j + i edge disjoint paths in G∗
σ each of weight

at most d + j under weight function w.

Note that on the contrary to Claim 31, now we do not have the extra guarantee
that at least of the edge disjoint paths must have weight d + i− 1. Now just like
the previous case, we only need to argue that there must exists one path among
k − j + i edge disjoint paths, say P1, · · · , Pk−j+i such that it will have weight at
most d + j under the weight function w′ and we will be done.

Now suppose w(P [s, u1]) = distGσ ,w(s, u1) + l, for l > 0. Consider the path
that takes (s, v1) as the first edge and say it is P1. Then by the argument used
in the proof of Claim 31, one can show that

w(P1) = w(s, v1)+w(P1[v1, t]) = (distGσ ,w(s, v1)+ l)+w1(P1[v1, t]) = d+ i+ l−1.

Let Q be a shortest s − v path in Gσ under weight w. Now since w(P [s, u1]) >
distGσ ,w(s, u1) and P is a shortest s − t path under the weight w′ (recall that
w′ = w + I), I(Q) ≥ l + 1. Moreover,∑

e∈Q and e̸∈P

I(e) ≥ l + 1.

Now if for all r ∈ [k − j + i], w′(Pr) ≥ d + j + 1, it must satisfy that I(P1) ≥
j − i− l + 2 and I(Pr) ≥ 1 for all 2 ≤ r ≤ k − j + i.

86

∑
e∈E(G∗

σ)
I(e) ≥ (l + 1) + (j − i− l + 2) + (k − j + i− 2) ≥ (k + 1).

However as I(s, v1) = I(s, v2) = · · · = I(s, vσ(i)) = 0,∑
e∈E(G∗

σ)
I(e) ≤

∑
e∈E(G)

I(e) ≤ k

which again leads to a contradiction.
Now from the above we can conclude the following.

Lemma 33. If P is a type-3 path then there exists an s − t path of weight
w(P) = d′ in the subgraph Ht under the new weight function w′.

Bounding the size of E(t):
In this part we establish an upper bound on the size of the set of edges E(t).
We define Cσ,k+1 = FSMC(Gσ, Sσ,k+1, t) for any σ ∈ {−1, 0, · · · , k}k. Now as
FSMC(Gσ, Sσ,i+1, t) = FMC(Gshort

σ , Sσ,i+1, t) for any i ∈ [k], where Gshort
σ is the

shortest path subgraph of Gσ, so we can restate Lemma 6.6 from [BCR16] in the
following form.

Lemma 34. For any i ∈ [k], |Cσ,i+1| ≤ 2× |Cσ,i|.

Reader may note that the proof of the above lemma in [BCR16] crucially relies
on the Assumption 44. Next, we prove the following.

Lemma 35. |E(t)| ≤ e(k − 1)!2k.

Proof. In our algorithm for each σ ∈ {−1, 0, · · · , k}k we compute the cut sets
Cσ,1, · · · , Cσ,k and add |Cσ,k+1| many edges in the set E(t) if for all i′ ≤ i, σ(i′) <
k − i + i′ − 1 where i = min{j | σ(j) = −1}; otherwise we do not compute
anything. So the total number of σ for which we add edges in E(t) is bounded by
1+(k−1)+(k−1)(k−2)+· · ·+(k−1)! = (k−1)![1/0!+1/1!+· · ·+1/(k−1)!] ≤ e·
(k − 1)!

Now by applying Lemma 34, we get that for each such σ, |Cσ,k+1| ≤ 2k and
this proves the claimed bound.

Time Complexity:
Now we analyze the running time of our algorithm to find k-WTSS(t) for some
given vertex t ∈ V (G). We first preprocess the input graph to generate a new
graph in a way so that the new graph satisfies Assumption 44. This takes O(m)
time. Next we apply Algorithm 4 on this new graph which has O(m) many
vertices and edges. By the argument in the proof of Lemma 35 we see that our
algorithm computes k farthest min-cuts on shortest path subgraphs of Gσ for
e(k − 1)! many different σ’s. Now from the discussion in Section 5.2.1, assuming
we have Gσ explicitly, to generate each such shortest path subgraph on this new
transformed graph we need O(m2) time and then to compute k farthest min-cuts
takes total O(∑k

i=1 |Cσ,i| ×m) = O(2km) time (see [FF]). Finally, one can get k-
WTSS(t) of the original graph from that of the transformed graph in O(m) time.

87

So overall time needed to compute k-WTSS(t) of any given graph with n vertices
and m edges is O((k−1)!2km2) = O((k)km2) (by Stirling’s approximation). Now
since by the Locality Lemma (Lemma 27), finding k-WTSS requires n rounds
where in each round we find k-WTSS(v) for some v ∈ V (G), computing k-WTSS
takes total O((k)km2n) time.

5.5 Lower Bound on the Size of k-WTSS
In this section we give explicit construction of a graph that will establish a lower
bound on the size of a k-WTSS. Formally we prove the following.

Theorem 49. For any positive integer k ≥ 2, there exists an positive integer n′

such that for all n > n′, there exists a directed graph G with n vertices and a
weight function w : E(G)→ Z, such that its k-WTSS must contain c · 2kn many
edges for some constant c ≥ 5/4.

Proof. Consider the largest ℓ such that ∑ℓ
j=2 j ≤ k. Next, take ℓ full binary trees

T1, . . . , Tℓ such that for each ℓ ≤ i ≤ l, Ti has height hi = k −∑i
j=2 j with root

ri. Let Li be the set of leaves of tree Ti and thus |Li| = 2hi . Next consider
L = ∪iLi and another set X containing n vertices. Finally define a graph G with
V (G) = {s} ∪ (∪iV (Ti)) ∪X and E(G) = {(s, ri)|1 ≤ i ≤ ℓ} ∪ {(u, v)|u ∈ L, v ∈
X}∪(∪iE(Ti)). Now let us consider the following weight function w : E(G)→ N,

w(e) =

⎧⎨⎩
∑i

j=2 j + i if e = (s, ri)
1 otherwise

Clearly, |E(G)| = l + ∑ℓ
i=1(2|Li| − 1) + |L| × |X| = c · 2kn for some constant

c ≥ 5/4.
It only remains to show that any k-WTSS of G must contain all the edges of

G. It can be easily observed that any edge of the form (s, ri) and all the edges
present in tree Ti, where 1 ≤ i ≤ ℓ must be contained in k-WTSS of G. Now
consider an edge (t, t′) ∈ L×X. Suppose t ∈ Li. Now let P be the path from s
to t. Naturally, P consists of edge (s, ri) and a path from ri to t that is contained
in tree Ti. consider the set S = {(u, v)|(u, v) ∈ Ti, u ∈ P but v ̸∈ P}. Let us
now consider the following increment function I : E(G)→ {0, · · · , k},

I(e) =

⎧⎪⎪⎨⎪⎪⎩
i + 1− j if e = (s, rj) and 1 ≤ j < i

1 e ∈ S

0 otherwise

Clearly, ∑e∈E(G) I(e) ≤ k due to the choice of ℓ. Also P ◦ (t, t′) will be the only
shortest path from s to t′ in G under the new weight function w′(e) = w(e)+I(e),
∀e∈E(G) because all the s− t′ paths whose first edge is (s, rj) for j < i and all the
s − t′ paths except P , whose first edge is (s, ri) will now have weight k + i + 1.
Therefore any k-WTSS of G must contain the edge (t, t′). This completes the
proof.

88

5.6 Conclusion and Bibliographical Notes
In this work we initiate the study of single source shortest path problem in a
model where weight of any edge can be increased. This model is motivated
from congestion in any network and is simpler than the edge fault model. For
this model we provide an efficient algorithm to compute a sparse subgraph that
preserves the distances from any designated source vertex and is also resilient
under bounded weight increment. When the weight increment is bounded by k
then the subgraph computed by our algorithm will have size at most O(kkn). We
also show a lower bound of 5

42kn on the size of such a subgraph.
In another variation, instead of edges, it is also possible to take weights on the

vertices and performing increment over them. However, one can directly apply
our result by splitting each vertex v into two vertices vi and vo where all the
incoming and outgoing edges of v are respectively directed into vi and directed
out of vo, and then considering an edge (vi, vo) with the weight equal to that on
the vertex v.

Open Problems. Our upper and lower bound results show that our construc-
tion is tight up to some constant factor as long as k is bounded by some constant.
Consequently, it will be interesting to further study this problem to close the gap
between the upper and lower bound. Another open problem can be to improve
the runtime of the construction.

89

Part II

Efficient Construction of
Quasi-Gray Codes

90

6. Introduction
One of the fundamental question in the domain of combinatorics and algorithm
design concerns with the efficient enumeration of all the elements of a specific
combinatorial class. The aim is to generate a list such that an element in the
list can be obtained by a small amount of change to the element that pre-
cedes it. One of the classic examples is, the binary Gray code introduced by
Gray [Gra53], initially used in pulse code communication. Gray codes have
found numerous applications in a wide variety of areas, such as information
storage and retrieval [CCC92], processor allocation [CS90], computing the per-
manent [NW78], circuit testing [RC81], data compression [Ric86], graphics and
image processing [ASD90], signal encoding [Lud81], modulation schemes for flash
memories [JMSB09, GLSB11, YS12] and many more. Interested reader may refer
to an excellent survey by Savage [Sav97] for a comprehensive treatment on this
subject.

The original idea of a Gray code was to list down all binary strings of length
n, i.e, all the elements of Zn

2 , such that any two successive strings differ by exactly
one bit. Later, the domain was generalised from Zn

2 to Zn
m. Formally, a code over

domain Zn
m is a cyclic sequence of all distinct elements from Zn

m. As another
generalization researchers studied (e.g. [Fre78, RM10, BCJ+10, BGPS14]) codes
where instead of enumerating all the elements of the sequence, the aim is to
list down ℓ distinct of them where each two consecutive elements differ in one
position. We refer to such codes as Gray codes of length ℓ [Fre78]. A code is
called space-optimal, if it enumerates all the elements of the domain. It is often
required that the last and the first strings appearing in the list also differ in one
position. Such codes are called cyclic Gray codes. In another variation, we study
codes where any two consecutive codewords in the sequence differs at most in
c > 0 (where c is a constant) positions. Such codes are called quasi-Gray-codes
[BCJ+10].

In our work [CDKS18], We study the problem of constructing quasi-Gray
codes over Zn

m in the cell probe model [Yao81], where each cell stores an element
from Zm. The efficiency of a construction is measured using three parameters.
First, we want the length of a quasi-Gray code to be as large as possible. Ideally,
we want space-optimal codes. Second, we want to minimize the number of coor-
dinates of the input string the algorithm reads in order to generate the next (or,
previous) string in the code. Finally, we also want the number of cells written in
order to generate the successor (or, predecessor) string to be as small as possi-
ble. Since our focus is on quasi-Gray codes, the number of writes will always be
bounded by a universal constant. We are interested in the worst-case behavior
and we use decision assignment trees (DAT) of Fredman [Fre78] to measure these
complexities.

Related Works: The construction of Gray codes is central to the design of
algorithms for many combinatorial problems [Sav97]. Frank Gray [Gra53] first
came up with a construction of Gray code over binary strings of length n, where
to generate the successor or predecessor strings one needs to read n bits in the
worst-case. The type of code described in [Gra53] is known as binary reflected

91

Reference Value of m length Worst-case cell read Worst-case cell write
[Gra53] 2 2n n 1
[Fre78] 2 2Θ(n) O(log n) O(1)

[FMS97] 2 Θ(2n/n) log n + 1 log n + 1
[RM10] 2 2n−1 log n + 4 4

[BCJ+10] 2 2n −O(2n/nt) O(t log n) 3
[BGPS14] 2 2n − 2n−t log n + t + 3 2
[BGPS14] 2 2n − 2n−t log n + t + 2 3

[Fre16] 2 2n n− 1 1
Theorem 51 2 2n −O(n) log n + 4 2

[Coh63] any m mn n 1
Theorem 50 any odd m mn 4 logm n + 3 2

Table 6.1: Taxonomy of construction of Gray/quasi-Gray codes over Zn
m

Gray code. Later Bose et al. [BCJ+10] provided a different type of Gray code
construction, namely recursive partition Gray code which attains O(log n) aver-
age case read complexity while having the same worst-case read requirements.
The read complexity we referred here is in the bit-probe model. It is easy to
observe that any space-optimal binary Gray code must read log n + 1 bits in
the worst-case [Fre78, NRR13, Fre16]. Recently, this lower bound was improved
to n/2 in [Ras17]. An upper bound of even n − 1 was not known until very
recently [Fre16]. This is also the best known so far.

Fredman [Fre78] extended the definition of Gray codes by considering codes
that may not enumerate all the strings (though presented in a slightly different
way in [Fre78]) and also introduced the notion of decision assignment tree (DAT)
to study the complexity of any code in the bit-probe model. He provided a
construction that generates a Gray code of length 2c·n for some constant c < 1
while reducing the worst-case bit-read to O(log n). Using the idea of Lucal’s
modified reflected binary code [Luc59], Munro and Rahman [RM10] got a code
of length 2n−1 with worst-case read complexity only 4 + log n. However in their
code two successive strings differ by 4 coordinates in the worst-case, instead of just
one and we refer to such codes as quasi-Gray codes following the nomenclature
used in [BCJ+10]. Brodal et al. [BGPS14] extended the results of [RM10] by
constructing a quasi-Gray code of length 2n−2n−t for arbitrary 1 ≤ t ≤ n−log n−
1, that has t + 3 + log n bits (t + 2 + log n bits) worst-case read complexity and
any two successive strings in the code differ by at most 2 bits (3 bits). In contrast
to the Gray codes over binary alphabets, Gray codes over non-binary alphabets
received much less attention. The construction of binary reflected Gray code was
generalized to the alphabet Zm for any m ∈ N in [Flo56, Coh63, JWW80, Ric86,
Knu11, HR16]. However, each of those constructions reads n coordinates in the
worst-case to generate the next element. As mentioned before, we measure the
read complexity in the well studied cell probe model [Yao81] where we assume that
each cell stores an element of Zm. The argument of Fredman in [Fre78] implies
a lower bound of Ω(logm n) on the read complexity of quasi-Gray code on Zn

m.
To the best of our knowledge, for non-binary alphabets, there is nothing known
similar to the results of Munro and Rahman or Brodal et al. [RM10, BGPS14].
We summarize the previous results along with ours in Table 6.1.

Despite of an extensive research conducted so far, no construction is known
for a quasi-Gray code of length 2n − 2ϵn, (for some constant ϵ < 1), with sub-

92

linear read complexity. Rather recently Raskin [Ras17] showed that, any space-
optimal quasi-Gray code over the domain Zn

2 (which can be easily generalized
for any domain Zn

m, where m is even) must have the read complexity n/2. The
immediate question that pops up naturally is: Is Raskin’s lower bound true for
quasi-Gray code over odd sized alphabet as well?

Our Contribution: In this thesis, we refute this by giving the construction of
a space optimal quasi-Gray code over Zn

m (where m is odd) with read complexity
4 logm n and write complexity 2. As a consequence we get an exponential separa-
tion between the read complexity of space-optimal quasi-Gray code over Zn

2 and
that over Zn

3 . Formally we show the following.

Theorem 50. Let m ∈ N be odd and n ∈ N be such that n ≥ 15. Then,
there is a space-optimal quasi-Gray code C over Zn

m for which, the two functions
next(C, w) and prev(C, w) can be implemented by inspecting at most 4 logm n cells
while writing only 2 cells.

In the statement of the above theorem, next(C, w) denotes the element ap-
pearing after w in the cyclic sequence of the code C, and analogously, prev(C, w)
denotes the preceding element. Using the argument as in [Fre78, NRR13] it is
easy to see a lower bound of Ω (logm n) on the read complexity when the domain
is Zn

m. Hence our result is optimal up to some small constant factor.
Raskin showed Ω(n) lower bound on the read complexity of space-optimal

binary quasi-Gray codes. The existence of binary quasi-Gray codes with sub-
linear read complexity of length 2n − 2ϵn, for some constant ϵ < 1, was open.
Using a different technique than that used in the proof of Theorem 50 we get a
quasi-Gray code over the binary alphabet which enumerates all but O(n) many
strings.

Theorem 51. Let n ≥ 15 be any natural number. Then, there is a quasi-Gray
code C of length at least 2n−20n over Zn

2 , such that the two functions next(C, w)
and prev(C, w) can be implemented by inspecting at most 6 + log n cells while
writing only 2 cells.

6.1 Organisation
Prat II of the thesis is organised as follows: In Chapter 7 we present the prelimi-
nary notions, definitions and tools used for the construction of quasi-Gray codes.
The chapter also presents a brief overview of the construction. In Chapter 8 we
present space-optimal quasi-Gray code having logarithmic read complexity over
odd sized alphabet set. Next, in Chapter 9 we give quasi-Gray code over even
sized alphabet set, that misses only linearly many code words and has logarithmic
read complexity. We provide the concluding remark along with a brief discussion
on prospective open problem in Chapter 10. Part II is based on [CDKS18].

93

7. Preliminaries and Overview
In this chapter we first provide the preliminary notations, definitions and the
computational model used for building the quasi-Gray codes. Next we give a
brief technical overview of the construction. Then we describe the required tools
and the underlying structure behind all of our constructions of quasi-Gray codes.

7.1 Preliminaries
Notations: We use the standard notions of groups and fields, and mostly we
use only elementary facts about them (see [DF04, LN96] for background.). By
Zm we mean the set of integers modulo m, i.e., Zm := Z/mZ. Throughout
this chapter whenever we use addition and multiplication operation between two
elements of Zm, then we mean the operations within Zm that is modulo m. For
any m ∈ N, we let [m] denote the set {1, 2, . . . , m}. Unless stated otherwise
explicitly, all the logarithms we consider throughout this paper are based 2.

Now we define the notion of counters used in our work.

Definition 52 (Counter). A counter of length ℓ over a domain D is any cyclic
sequence C = (w1, . . . , wℓ) such that w1, . . . , wℓ are distinct elements of D. With
the counter C we associate two functions next(C, w) and prev(C, w) that give the
successor and predecessor element of w in C, that is for i ∈ [ℓ], next(C, wi) = wj

where j − i = 1 mod ℓ, and prev(C, wi) = wk where i− k = 1 mod ℓ. If ℓ = |D|,
we call the counter a space-optimal counter.

Often elements in the underlying domain D have some “structure” to them.
In such cases, it is desirable to have a counter such that consecutive elements in
the sequence differ by a “small” change in the “structure”. We make this concrete
in the following definition.

Definition 53 (Gray Code). Let D1, . . . ,Dn be finite sets. A Gray code of length
ℓ over the domain D = D1×· · ·×Dn is a counter (w1, . . . , wℓ) of length ℓ over D
such that any two consecutive strings wi and wj, j− i = 1 mod ℓ, differ in exactly
one coordinate when viewed as an n-tuple. More generally, if for some constant
c ≥ 1, any two consecutive strings wi and wj, j − i = 1 mod ℓ, differ in at most
c coordinates such a counter is called a c-Gray Code.

By a quasi-Gray code we mean c-Gray code for some unspecified fixed c > 0.
In the literature sometimes people do not place any restriction on the relationship
between wℓ and w1 and they refer to such a sequence a (quasi)-Gray code. In
their terms, our codes would be cyclic (quasi)-Gray codes. If ℓ = |D|, we call the
codes space-optimal (quasi-)Gray codes.

Decision Assignment Tree: The computational model we consider in our
work is called Decision Assignment Tree (DAT). The definition we provide below
is a generalization of that given in [Fre78]. It is intended to capture random
access machines with small word size.

Let us fix an underlying domain Dn whose elements we wish to enumerate.
In the following, we will denote an element in Dn by ⟨x1, x2, . . . , xn⟩. A decision

94

assignment tree is a |D|-ary tree such that each internal node is labeled by one of
the variables x1, x2, . . . , xn. Furthermore, each outgoing edge of an internal node
is labeled with a distinct element of D. Each leaf node of the tree is labeled by
a set of assignment instructions that set new (fixed) values to chosen variables.
The variables which are not mentioned in the assignment instructions remain
unchanged.

The execution on a decision assignment tree on a particular input vector
⟨x1, x2, . . . , xn⟩ ∈ Dn starts from the root of the tree and continues in the following
way: at a non-leaf node labeled with a variable xi, the execution queries xi and
depending on the value of xi the control passes to the node following the outgoing
edge labeled with the value of xi. Upon reaching a leaf, the corresponding set
of assignment statements is used to modify the vector ⟨x1, x2, . . . , xn⟩ and the
execution terminates. The modified vector is the output of the execution.

Thus, each decision assignment tree computes a mapping from Dn into Dn.
We are interested in decision assignment trees computing the mapping
next(C, ⟨x1, x2, . . . , xn⟩) for some counter C. When C is space-optimal we can
assume, without loss of generality, that each leaf assigns values only to the vari-
ables that it reads on the path from the root to the leaf. (Otherwise, the decision
assignment tree does not compute a bijection.) We define the read complexity of
a decision assignment tree T , denoted by READ(T), as the maximum number of
non-leaf nodes along any path from the root to a leaf. Observe that any mapping
from Dn into Dn can be implemented by a decision assignment tree with read
complexity n. We also define the write complexity of a decision assignment tree
T , denoted by WRITE(T), as the maximum number of assignment instructions
in any leaf.

Instead of the domain Dn, sometime we also use domains that are a Carte-
sian product of different domains. The definition of a decision assignment tree
naturally extends to this case of different variables having different domains.

For any counter C = (w1, . . . , wℓ), we say that C is computed by a decision
assignment tree T if and only if for i ∈ [ℓ], next(C, wi) = T (wi), where T (wi)
denotes the output string obtained after an execution of T on wi. Note that any
two consecutive strings in the cyclic sequence of C differ by at most WRITE(T)
many coordinates.

For a small constant c ≥ 1, some domain D, and all large enough n, we will be
interested in constructing cyclic counters on Dn that are computed by decision
assignment trees of write complexity c and read complexity O(log n). By the
definition such cyclic counters will necessarily be c-Gray codes.

7.1.1 Construction of Gray codes
For our construction of quasi-Gray codes on a domain Dn with decision assign-
ment trees of small read and write complexity we will need ordinary Gray codes
on a domain DO(log n). Several constructions of space-optimal binary Gray codes
are known where the oldest one is the binary reflected Gray code [Gra53]. This
can be generalized to space-optimal (cyclic) Gray codes over non-binary alphabets
(see e.g. [Coh63, Knu11]).

Theorem 54 ([Coh63, Knu11]). For any m, n ∈ N, there is a space-optimal
(cyclic) Gray code over Zn

m.

95

7.2 Overview of the construction
Our construction of Gray codes relies heavily on the notion of s-functions de-
fined by Coppersmith and Grossman [CG75]. An s-function is a permutation
τ on Zn

m defined by a function f : Zs
m → Zm and an (s + 1)-tuple of in-

dices i1, i2, . . . , is, j ∈ [n] such that τ(⟨x1, x2, . . . , xn⟩) = (⟨x1, x2, . . . , xj−1, xj +
f(xi1 , . . . , xis), xj+1, . . . , xn⟩), where the addition is inside Zm. Each s-function
can be computed by some decision assignment tree that given a vector x =
⟨x1, x2, . . . , xn⟩, inspects s + 1 coordinates of x and then it writes into a single
coordinate of x.

A counter C (quasi-Gray code) on Zn
m can be thought of as a permutation on

Zn
m. Our goal is to construct some permutation α on Zn

m that can be written as
a composition of 2-functions α1, . . . , αk, i.e., α = αk ◦ αk−1 ◦ · · · ◦ α1.

Given such a decomposition, we can build another counter C ′ on Zr+n
m , where

r = ⌈logm k⌉, for which the function next(C ′, x) operates as follows. The first
r-coordinates of x serve as an instruction pointer i ∈ [mr] that determines which
αi should be executed on the remaining n coordinates of x. Hence, based on the
current value i of the r coordinates, we perform αi on the remaining coordinates
and then we update the value of i to i+1. (For i > k we can execute the identity
permutation which does nothing.)

We can use known Gray codes on Zr
m to represent the instruction pointer

so that when incrementing i we only need to write into one of the coordinates.
This gives a counter C ′ which can be computed by a decision assignment tree that
reads r+3 coordinates and writes into 2 coordinates of x. (A similar composition
technique is implicit in Brodal et al. [BGPS14].) If C is of length ℓ = mn − t,
then C ′ is of length mn+r − tmr. In particular, if C is space-optimal then so is
C ′.

Hence, we reduce the problem of constructing 2-Gray codes to the problem of
designing large cycles in Zn

m that can be decomposed into 2-functions. Copper-
smith and Grossman [CG75] studied precisely the question of, which permutations
on Zn

2 can be written as a composition of 2-functions. They show that a permu-
tation on Zn

2 can be written as a composition of 2-functions if and only if the
permutation is even. Since Zn

2 is of even size, a cycle of length 2n on Zn
2 is an odd

permutation and thus it cannot be represented as a composition of 2-functions.
However, their result also implies that a cycle of length 2n − 1 on Zn

2 can be
decomposed into 2-functions.

We want to use the counter composition technique described above in con-
nection with a cycle of length 2n − 1. To maximize the length of the cycle C ′ in
Zn+r

2 , we need to minimize k, the number of 2-functions in the decomposition.
By a simple counting argument, most cycles of length 2n − 1 on Zn

2 require k to
be exponentially large in n. This is too large for our purposes. Luckily, there are
cycles of length 2n − 1 on Zn

2 that can be decomposed into polynomially many
2-functions, and we obtain such cycles from linear transformations.

There are linear transformations Zn
2 → Zn

2 which define a cycle on Zn
2 of

length 2n − 1. For example, the matrix corresponding to the multiplication by
a fixed generator of the multiplicative group F∗

2n of the Galois field GF [2n] is
such a matrix. Such matrices are full rank and they can be decomposed into
O(n2) elementary matrices, each corresponding to a 2-function. Moreover, there

96

are matrices derived from primitive polynomials that can be decomposed into at
most 4n elementary matrices.1 We use them to get a counter on Zn′

2 of length
at least 2n′ − 20n′ whose successor and predecessor functions are computable by
decision assignment trees of read complexity ≤ 6 + log n′ and write complexity
2. Such counter represents 2-Gray code of the prescribed length. For any prime
q, the same construction yields 2-Gray codes of length at least qn′ − 5q2n′ with
decision assignment trees of read complexity ≤ 6 + logq n′ and write complexity
2.

The results of Coppersmith and Grossman [CG75] can be generalized to Zn
m

as stated in Richard Cleve’s thesis [Cle89]. For odd m, if a permutation on Zn
m

is even then it can be decomposed into 2-functions. Since mn is odd, a cycle
of length mn on Zn

m is an even permutation and so it can be decomposed into
2-functions. If the number k of those functions is small, so the logm k is small,
we get the sought after counter with small read complexity. However, for most
cycles of length mn on Zn

m, k is exponential in n.
We show there is a cycle α of length mn on Zn

m that can be decomposed into
O(n3) 2-functions. This in turn gives space-optimal 2-Gray codes on Zn′

m with
decision assignment trees of read complexity O(logm n′) and write complexity 2.

We obtain the cycle α and its decomposition in two steps. First, for i ∈ [n],
we consider the permutation αi on Zn

m which maps each element 0i−1ay onto
0i−1(a + 1)y, for a ∈ Zm and y ∈ Zn−i

m , while other elements are mapped to
themselves. Hence, αi is a product of mn−i disjoint cycles of length m. We show
that α = αn◦αn−1◦· · ·◦α1 is a cycle of length mn. In the next step we decompose
each αi into O(n2) 2-functions.

For i ≤ n− 2, we can decompose αi using the technique of Ben-Or and Cleve
[BC92] and its refinement in the form of catalytic computation of Buhrman et
al. [BCK+14]. We can think of x ∈ Zn

m as content of n memory registers, where
x1, . . . , xi−1 are the input registers, xi is the output register, and xi+1, . . . , xn

are the working registers. The catalytic computation technique gives a program
consisting of O(n2) instructions, each being equivalent to a 2-function, which
performs the desired adjustment of xi based on the values of x1, . . . , xi−1 without
changing the ultimate values of the other registers. (We need to increment xi iff
x1, . . . , xi−1 are all zero.) This program directly gives the desired decomposition
of αi, for i ≤ n− 2. (Our proof in Chapter 8 uses the language of permutations.)

The technique of catalytic computation fails for αn−1 and αn as the program
needs at least two working registers to operate. Hence, for αn−1 and αn we have
to develop entirely different technique. This is not trivial and quite technical but
it is nevertheless possible, thanks to the specific structure of αn−1 and αn.

7.3 The Key Tools
In this section we talk about the key tools used to construct quasi-Gray codes
over Zn

m for m ∈ N. First we show how to compose decision assignment trees over
different domains to get a decision assignment tree for a larger mixed domain.
We use the Chinese remainder theorem for this purpose.

1Primitive polynomials were previously also used in a similar problem, namely to construct
shift-register sequences (see e.g. [Knu11]).

97

7.3.1 Chinese Remainder Theorem for Counters
Theorem 55 (Chinese Remainder Theorem for Counters). Let r, n1, . . . , nr ∈ N
be integers, and let D1,1, . . . ,D1,n1 ,D2,1, . . . ,Dr,nr be some finite sets of size at least
two. Let ℓ1 ≥ r − 1 be an integer, and ℓ2, . . . , ℓr be pairwise co-prime integers.
For i ∈ [r], let Ci be a counter of length ℓi over Di = Di,1 × · · · × Di,ni

computed
by a decision assignment tree Ti over ni variables. Then, there exists a decision
assignment tree T over ∑r

i=1 ni variables that implements a counter C of length∏r
i=1 ℓi over D1×· · ·×Dr. Furthermore, READ(T) = n1 +max{READ(Ti)}r

i=2,
and WRITE(T) = WRITE(T1) + max{WRITE(Ti)}r

i=2.

Proof. For any i ∈ [r], let the counter Ci = (wi,1, . . . , wi,ℓi
). Let x1, . . . , xr be vari-

ables taking values in D1, . . . ,Dr, respectively. The following procedure, applied
repeatedly, defines the counter C:

If x1 = w1,i for some i ∈ [r − 1] then
xi+1 ← next(Ci+1, xi+1)
x1 ← next(C1, x1)

else
x1 ← next(C1, x1).

It is easily seen that the above procedure defines a valid cyclic sequence when
starting at w1,i1 , . . . , wr,ir for any ⟨i1, i2, . . . , ir⟩ ∈ [ℓ1]× · · · × [ℓr]. That is, every
element has a unique predecessor and a unique successor, and that the sequence is
cyclic. It can easily be implemented by a decision assignment tree, say T . First it
reads the value of x1. Since x1 ∈ D1 = D1,1×· · ·×D1,n1 , it queries n1 components.
Then, depending on the value of x1, it reads and updates another component,
say xj. This can be accomplished using the decision assignment tree Tj. We
also update the value of x1, and to that end we use the appropriate assignments
from decision assignment tree T1. Observe that irrespective of how efficient T1
is, we read x1 completely to determine which of the remaining r − 1 counters
to update. Hence, READ(T) = n1 + max {READ(Ti)}r

i=2, and WRITE(T) =
WRITE(T1) + max {WRITE(Ti)}r

i=2.
Now it only remains to show that the counter described above is indeed

of length ∏r
i=1 ℓi. Thus, it suffices to establish that starting with the string

⟨w1,1, . . . , wr,1⟩, we can generate the string ⟨w1,i1 , . . . , wr,ir⟩ for any ⟨i1, . . . , ir⟩ ∈
[ℓ1] × · · · × [ℓr]. Let us assume i1 = 1. At the end of the proof we will re-
move this assumption. Suppose the string ⟨w1,1, w2,i2 , . . . , wr,ir⟩ is reachable from
⟨w1,1, w2,1, . . . , wr,1⟩ in t steps. As our procedure always increment x1, t must be
divisible by ℓ1. Let d = t/ℓ1. Furthermore, the procedure increments a variable
xi, i ̸= 1, exactly after ℓ1 steps. Thus, ⟨w1,1, w2,i2 , . . . , wr,ir⟩ is reachable if and
only if d satisfies the following equations:

d ≡ i2 − 1 (mod ℓ2)
d ≡ i3 − 1 (mod ℓ3)

...
d ≡ ir − 1 (mod ℓr).

98

Since ℓ2, . . . , ℓr are pairwise co-prime, Chinese Remainder Theorem (for a ref-
erence, see [DPS96]) guarantees the existence of a unique integral solution d
such that 0 ≤ d <

∏r
i=2 ℓi. Hence, ⟨w1,1, w2,,i2 , . . . , wr,ir⟩ is reachable from

⟨w1,1, w2,1, . . . , wr,1⟩ in at most ∏r
i=1 ℓi steps.

Now we remove the assumption i1 = 1, i.e., w1,i1 ̸= w1,1. Consider the string
⟨w1,1, w2,i

′
2
, . . . , wr,i′

r
⟩ where wj,i

′
j

= wj,ij−1 for 2 ≤ j ≤ min{i1, r}, and wj,i
′
j

= wj,ij

for j > min{i1, r}. From the arguments in the previous paragraph, we know that
this tuple is reachable. We now observe that the next i1− 1 steps increment w1,1
to w1,i1 and wj,i

′
j

to wj,ij
for 2 ≤ j ≤ min{i1, r}, thus, reaching the desired string

⟨w1,i1 , . . . , wr,ir⟩.

Remark. We remark that if Ci’s are space-optimal in Theorem 55, then so is C.

In the above proof, we constructed a special type of a counter where we always
read the first coordinate, incremented it, and further depending on its value, we
may update the value of another coordinate. From now on we refer to such
type of counters as hierarchical counters. One can note that the above theorem
is similar to the well known Chinese Remainder Theorem and has similar type
of application for constructing of space-optimal quasi-Gray codes over Zn

m for
arbitrary m ∈ N.

Lemma 36. Let n, m ∈ N be such that m = 2ko, where o is odd and k ≥
0. Given decision assignment trees T1 and T2 computing space-optimal (quasi-
)Gray codes over (Z2k)n−1 and Zn−1

o , respectively, there exists a decision as-
signment tree T implementing a space-optimal quasi-Gray code over Zn

m such
that READ(T) = 1 + max{READ(T1), READ(T2)}, and WRITE(T) = 1 +
max{WRITE(T1), WRITE(T2)}.

Proof. We will view Zn
m as Zm × (Z2k)n−1 × (Zo)n−1 and simulate a decision

assignment tree operating on Zm × (Z2k)n−1 × (Zo)n−1 on Zn
m. From the Chi-

nese Remainder Theorem (see [DPS96]), we know that there exists a bijection
(in fact, an isomorphism) f : Zm → Z2k × Zo. We denote the tuple f(z) by
⟨f1(z), f2(z)⟩. From Theorem 55 we know that there exists a decision assignment
tree T ′ over Zm× (Z2k)n−1× (Zo)n−1 computing a space-optimal quasi-Gray code
such that READ(T ′) = 1 + max{READ(T1), READ(T2)}, and WRITE(T ′) =
1 + max{WRITE(T1), WRITE(T2)}.

We can simulate actions of T ′ on an input Zn
m to obtain the desired decision

assignment tree T . Indeed, whenever T ′ queries x1, T queries the first coordinate
of its input. Whenever T ′ queries the i-th coordinate of (Z2k)n−1, T queries the
(i+1)-th coordinate of its input and makes its decision based on the f1(·) value of
that coordinate. Similarly, whenever T ′ queries the j-th coordinate of (Zo)n−1, T
queries the (j + 1)-th coordinate and makes its decision based on the f2(·) value
of that coordinate. Assignments by T are handled in similar fashion by updating
only the appropriate part of ⟨f1(z), f2(z)⟩. (Notice, queries made by T might
reveal more information than queries made by T ′.)

Before proceeding further, we would also like to point out that to get a space-
optimal decision assignment tree over Z2k , it suffices to a get space-optimal de-
cision assignment trees over Z2 for arbitrary dimensions. Thus, to get a decision
assignment tree implementing space-optimal quasi-Gray codes over Zm, we only

99

need decision assignment trees implementing space-optimal quasi-Gray codes over
Z2 and Zo. This also justifies our sole focus on construction of space-optimal de-
cision assignment trees over Z2 and Zo in the later chapters.

Lemma 37. If, for all n ∈ N, there exists a decision assignment tree T imple-
menting a space-optimal (quasi-)Gray code over Zn

2 , then for any k and n ∈ N,
there exists a decision assignment tree T ′ implementing a space-optimal (quasi-
)Gray code over (Z2k)n such that the read and write complexity remain the same.

Proof. Consider any bijective map f : Z2k → Zk
2. For example, one can take

standard binary encoding of integers ranging from 0 to 2k − 1 as the bijective
map f . Next, define another map g : (Z2k)n → Zkn

2 as follows: g(x1, . . . , xn) =
⟨f(x1), . . . , f(xn)⟩. Now consider T that implements a space-optimal (quasi-
)Gray code over Zkn

2 . We fix a partition of the variables {1, . . . , k} ⊎ · · · ⊎ {(n−
1)k + 1, . . . , nk} into n blocks of k variables each.

We now construct a decision assignment tree T ′ over (Z2k)n using T and the
map f . As in the proof of Lemma 36, our T ′ follows T in the decision making.
That is, if T queries a variable, then T ′ queries the block in the partition where
the variable lies. (Again, as noted before, T ′ may get more information than
required by T .) Upon reaching a leaf, using f , T ′ updates the blocks depending
on T ’s updates to the variables.

7.3.2 Permutation Group and Decomposition of Counters
We start this part with some basic notation and facts about the permutation
group which we will use heavily in our construction. The set of all permutations
over a domain D forms a group under the composition operation, denoted by ◦,
which is defined as follows: for any two permutations σ and α, σ◦α(x) = σ(α(x)),
where x ∈ D. The corresponding group, denoted SN , is the symmetric group of
order N = |D|. We say, a permutation σ ∈ SN is a cycle of length ℓ if there
are distinct elements a1, . . . , aℓ ∈ [N] such that for i ∈ [ℓ − 1], ai+1 = σ(ai),
a1 = σ(aℓ), and for all a ∈ [N] \ {a1, a2, . . . , aℓ}, σ(a) = a. We denote such a
cycle by (a1, a2, · · · , aℓ). Below we state few simple facts about composition of
cycles.

Proposition 56. Consider two cycles C1 = (t, a1, · · · , aℓ1) and C2 = (t, b1, · · · ,
bℓ2) where for any i ∈ [ℓ1] and j ∈ [ℓ2], ai ̸= bj. Then, C = C2 ◦ C1 is the cycle
(t, a1, · · · , aℓ1 , b1, · · · , bℓ2) of length ℓ1 + ℓ2 + 1.

Proposition 57. If σ ∈ SN is a cycle of length ℓ, then for any α ∈ SN , α◦σ◦α−1

is also a cycle of length ℓ. Moreover, if σ = (a1, a2, · · · , aℓ), then α ◦ σ ◦ α−1 =
(α(a1), α(a2), · · · , α(aℓ)).

The permutation α◦σ◦α−1 is called the conjugate of σ with respect to α. The
above proposition is a special case of a well known fact about the cycle structure
of conjugates of any permutation and can be found in any standard text book on
Group Theory (e.g., Proposition 10 in Chapter 4.3 of [DF04].).

Roughly speaking, a counter of length ℓ over D, in the language of permu-
tations, is nothing but a cycle of the same length in S|D|. We now make this

100

correspondence precise and give a construction of a decision assignment tree that
implements such a counter.

Lemma 38. Let D = D1 × · · · × Dr be a domain. Suppose σ1, . . . , σk ∈ S|D| are
such that σ = σk ◦ σk−1 ◦ · · · ◦ σ1 is a cycle of length ℓ. Let T1, . . . , Tk be decision
assignment trees that implement σ1, . . . , σk respectively. Let D′ = D′

1×· · ·×D′
r′

be a domain such that |D′| ≥ k, and let T ′ be a decision assignment tree that
implements a counter C ′ of length k′ over D′ where k′ ≥ k.

Then, there exists a decision assignment tree T that implements a counter of
length k′ℓ over D′ × D such that READ(T) = r′ + max{READ(Ti)}k

i=1, and
WRITE(T) = WRITE(T ′) + max{WRITE(Ti)}k

i=1.

Proof. Suppose C ′ = (a1, . . . , ak′). Now let us consider the following procedure
P : on any input ⟨x1, x2⟩ ∈ D′ ×D,

If x1 = aj for some j ∈ [k] then
x2 ← σj(x2)
x1 ← next(C ′, x1)

else
x1 ← next(C ′, x1).

Now using a similar argument as in the proof of Theorem 55, the above
procedure is easily seen to be implementable using a decision assignment tree
T of the prescribed complexity. Each time we check the value of x1 ∈ D′ =
D′

1 × · · · × D′
r′ . Thus, we need to read r′ components. Depending on the value

of x1, we may apply σj on x2 using the decision assignment tree Tj. Then we
update the value of x1. Hence, READ(T) = r′ + max{READ(Ti)}k

i=1, and
WRITE(T) = WRITE(T ′) + max{WRITE(Ti)}k

i=1.
Let (w1, w2 · · · , wℓ) be the cycle of length ℓ given by σ. We now argue that

the procedure P generates a counter of length k′ℓ over D′×D starting at ⟨a1, w1⟩.
Without loss of generality, let us assume that σ = σk′◦· · ·◦σk+1◦σk◦σk−1◦· · ·◦σ1,
where for j ≥ k+1, σj is the identity map. Fix j ∈ [k′]. Define αj = σj−1◦· · ·◦σ1,
and τj = αj ◦ σ ◦ α−1

j = σj−1 ◦ · · · ◦ σ1 ◦ σk′ ◦ · · · ◦ σj. For i = 0, 1, . . . , ℓ, let
⟨gi, ei⟩ = P ik′(⟨aj, αj(w1)⟩) where P ik′ denotes ik′ invocations of P . Since P
increments x1 in every invocation, for i = 1, 2, . . . , ℓ, gi = aj and ei = τj(ei−1).

By Proposition 57, τj is a cycle (αj(w1)αj(w2) · · ·αj(wℓ)) of length ℓ. Hence,
e1, . . . , eℓ are all distinct and eℓ = e0.

As a consequence we conclude that for any x ∈ D′×D and 1 ≤ j1 ̸= j2 ≤ k′ℓ,
P j1(x) ̸= P j2(x) and P k′ℓ(x) = x. This completes the proof.

In the following two chapters we describe the construction of σ1, · · · , σk ∈ SN

where N = mn for some m, n ∈ N and show how the value of k depends on the
length of the cycle σ = σk ◦ σk−1 ◦ · · · ◦ σ1.

101

8. Space-optimal Quasi-Gray
Codes Over Odd Sized Alphabets
This chapter deals with space-optimal counter over Zn

m for any Odd m. We start
by recalling Theorem 50 in terms of decision assignment tree complexity.

Theorem 58 (Restatement of Theorem 50). For any odd m ∈ N and any positive
integer n ≥ 15, there is a space-optimal 2-Gray code over Zn

m that can be computed
by a decision assignment tree T such that READ(T) ≤ 4 logm n.

Before providing the details, we give a short plan of how we proceed with
the construction of the quasi-Gray code. First we set n′ = n− c · log n for some
constant c > 0 that will be fixed later. Then we define suitable permutations
α1, . . . , αn′ ∈ SN where N = mn′ such that their composition αn′ ◦ · · · ◦ α1 is a
cycle of length mn′ . Next we show that each αi can be further decomposed into
αi,1, . . . , αi,j ∈ SN for some j, such that each αi,r for r ∈ [j] can be computed
using a decision assignment tree with read complexity 3 and write complexity 1.
Finally to complete the construction we use Lemma 38 with αi,r’s playing the
role of σ1, . . . , σk in the lemma.

We recall the notion of r-functions over Zn
m that was introduced by Copper-

smith and Grossman [CG75] for m = 2. Below we generalize that definition for
any m ∈ N.

Definition 59. For any r ∈ [n − 1], an r-function on Zn
m is a permutation τ

over Zn
m identified by a subset {i1, . . . , ir, j} ⊆ [n] of size r + 1 and a function

f : Zr
m → Zm such that for any ⟨a1, . . . , an⟩ ∈ Zn

m,

τ(⟨a1, . . . , an⟩) = ⟨a1, . . . , aj−1, aj + f(ai1 , . . . , air), aj+1, . . . , an⟩.

Observe that any r-function can be implemented using a decision assignment
tree T that queries xi1 , . . . , xir and xj at internal nodes, and at leaves it assigns
value only to the variable xj. Thus, READ(T) = r + 1 and WRITE(T) = 1.

Claim 39. Any r-function on Zn
m can be implemented using a decision assignment

tree T with n variables such that READ(T) = r + 1 and WRITE(T) = 1.

8.1 Construction of the Counter
We are now ready to provide details of our construction of a space-optimal quasi-
Gray code over Zn

m for any odd m. Define n′ := n− c · logm n for some constant
c > 0 that will be fixed later.

Step 1: Construction of α1, . . . , αn′.

We consider specific permutations α1, . . . , αn′ over Zn′
m such that α = αn′ ◦ · · · ◦α1

is a cycle of length mn′ . We define them below.

102

Definition 60. Let m and n′ be natural numbers. For i ∈ [n′], we define αi to be
the permutation given by the following map: for any ⟨x1, . . . , xi, . . . , xn′⟩ ∈ Zn′

m,

αi (⟨x1, . . . , xi, . . . , xn′⟩) =

⎧⎨⎩⟨x1, . . . , xi + 1, . . . , xn′⟩ if xj = 0, ∀j ∈ [i− 1]
⟨x1, . . . , xi, . . . , xn′⟩ otherwise.

The addition operation in the mapping xi ← xi + 1 is within Zm.

The following observation is easily seen from the definitions of r-functions and
αi.

Claim 40. For any i ∈ [n′], αi is an (i− 1)-function on Zn′
m. Furthermore, each

αi is composed of disjoint cycles of length m over Zn′
m.

We now establish a crucial property of the αi’s, i.e., their composition is a full
length cycle.

Claim 41. α = αn′ ◦ · · · ◦ α1 is a cycle of length mn′.

Proof. Consider the sequence of permutations τ1, . . . , τn′ such that τi = αi ◦
αi−1 ◦ · · · ◦ α1 for i ∈ [n′]. Clearly, τn′ = α. We now prove the claim. In fact, we
establish the following stronger claim: for i ∈ [n′], τi is a permutation composed
of mn′−i disjoint cycles, each of the cycles being of length mi. Furthermore,
for every ⟨ai+1, . . . , an′⟩ ∈ Zn′−i

m there is a cycle that involves all tuples of the
form ⟨x1, . . . , xi, ai+1, . . . , an′⟩. The claim, α is a cycle of length mn′ , follows as a
consequence. We prove the stronger claim by induction on i.

Base case: τ1 = α1. From the definition of α1, it follows that there is a cycle
of length m of the form (⟨0, a2, . . . , an′⟩, ⟨1, a2, . . . , an′⟩, . . . , ⟨m− 1, a2, . . . , an′⟩)
for each ⟨a2, . . . , an′⟩ ∈ Zn′−1

m . Hence our induction hypothesis clearly holds for
the base case.

Induction step: Suppose our induction hypothesis holds until some i ∈ [n′]
and we would like to establish it for i + 1. Let us consider the permutation αi+1.
We know that it is composed of mn′−(i+1) disjoint cycles of length m. Indeed, for
each ⟨ai+2, . . . , an′⟩ ∈ Zn′−(i+1)

m , αi+1 contains a cycle that involves all m tuples
where the first i coordinates are all 0 and the last n′ − (i + 1) coordinates are
set to ⟨ai+2, . . . , an′⟩. From the cycle decomposition of αi+1 and τi into disjoint
cycles, it is clear that for any cycle say C in αi+1 there are m disjoint cycles
C1, . . . , Cm in τi, each of them intersecting C in exactly one element. Consider
C ′ = C◦C1◦· · ·◦Cm. By repeated application of Proposition 56, we conclude that
C ′ is a cycle of length ∑m

i=1 |Ci| = mi+1. (Here by |Ci| we mean the length of the
cycle Ci.) Also C ′ involves tuples where the last n′− (i+1) coordinates are set to
some fixed ⟨ai+2, . . . , an′⟩ ∈ Zn′−(i+1)

m . Thus, C ′ is a cycle of length mi+1 containing
all tuples of the form ⟨x1, . . . , xi+1, ai+2, . . . , an′⟩. Since τi+1 = αi+1 ◦ τi and
αi+1 contains mn′−(i+1) disjoint cycles, we conclude that τi+1 consists of exactly
mn′−(i+1) disjoint cycles, each of length mi+1 and containing tuples of the required
form. This finishes the proof.

It can be noted that the above step does not use the fact that m is odd and,
thus, it is true for any m ∈ N. If we were to directly implement αi by a decision
assignment tree, its read complexity would be i. Hence, we would not get any
savings in Lemma 38. So we need to further decompose αi into permutations of
small read complexity.

103

Step 2: Further decomposition of αi’s.

Our goal is to describe αi is a composition of 2-functions. Recall, Claim 40, each αi

is an (i−1)-function on Zn′
m. Suppose, for i ∈ [n′], there exists a set of 2-functions

αi,1, . . . , αi,ki
such that αi = αi,ki

◦ · · · ◦ αi,1. Then using Lemma 38, where αi,k’s
play the role of σj’s, we obtain a decision assignment tree implementing a 2-
Gray code with potentially low read complexity. Indeed, each αi,k has low read
complexity by Claim 39, hence the read complexity essentially depends on how
large is ∑i ki. In the following we will argue that αi’s can be decomposed into
a small set of 2-functions, thus keeping the maximum ki small. As a result, the
read complexity bound in Theorem 58 will follow.

Note α1, α2 and α3 are already 2-functions. In the case of αi, 4 ≤ i ≤ n′−2, we
can directly adopt the technique from [BC92, BCK+14] to generate the desired
set of 2-functions. However, as discussed in Chapter 7, that technique falls
short when i > n′ − 2. (It needs two free registers to operate.) For i = n′ − 1,
it is possible to generalize the proof technique of [CG75] to decompose αn′−1.
Unfortunately all the previously known techniques fail to decompose αn′ and we
have to develop a new technique.

First we provide the adaptation of [BC92, BCK+14], and then develop a new
technique that allows us to express both αn′−1 and αn′ as a composition of small
number of 2-functions, thus overcoming the challenge described above.

Lemma 42. For any 4 ≤ i ≤ n′ − 2, let αi be the permutation given by
Definition 60. Then there exists a set of 2-functions αi,1, . . . , αi,ki

such that
αi = αi,ki

◦ · · · ◦ αi,1, and ki ≤ 4(i− 1)2 − 3.

It is worth noting that, although in this section we consider m to be odd, the
above lemma holds for any m ∈ N. In [BC92], computation uses only addition
and multiplication from the ring, whereas we can use any function g : Zm → Zm.
This subtle difference makes the lemma to be true for any m ∈ N instead of being
true only for prime powers.

Proof. Pick i ≤ n′ − 2. Let us represent αi as an (i − 1)-function. From the
definition we have,

αi (⟨a1, . . . , ai, . . . , an′⟩) = ⟨a1, . . . , ai−1, ai + f(a1, . . . , ai−1), ai+1, . . . , an′⟩,

where the map f : Zi−1
m → Zm is defined as follows:

f(a1, . . . , ai−1) =

⎧⎨⎩1 if (a1, . . . , ai−1) = (0, . . . , 0),
0 otherwise.

Observe that f is an indicator function of a tuple; in particular, of the all-
zeroes tuple. To verify the lemma, we would prove a stronger claim than the
statement of the lemma. Consider the set S of r-functions, 1 ≤ r ≤ n′ − 3, such
that the function f , used to define them is the indicator function of the all-zeroes
tuple. That is, τ ∈ S if and only if there exists a set {i1, i2, . . . , ir} ⊆ [n′] of size
r and a j ∈ [n′] \ {i1, i2, . . . , ir} such that

τ(⟨a1, . . . , an′⟩) = ⟨a1, . . . , aj−1, aj + f(ai1 , . . . , air), aj+1, . . . , an′⟩,

where f(x1, . . . , xr) = 1 if (x1, . . . , xr) = (0, . . . , 0), and 0 otherwise. Observe
that αi ∈ S for 4 ≤ i ≤ n′ − 2. We establish the following stronger claim.

104

Claim 43. For an r-function τ ∈ S, there exist 2-functions τ1, . . . , τkr such that
τ = τkr ◦ · · · ◦ τ1 and kr ≤ 4r2 − 3. (We stress that τ1, . . . , τkr need not belong to
S.)

Clearly, the claim implies the lemma. We now prove the claim by induction
on r. The base case is r ≤ 2, in which case the claim trivially holds. Suppose the
claim holds for all (r−1)-functions in S. Let τ ∈ S be an r-function identified by
the set S := {i1, i2, . . . , ir} ⊆ [n′] and j ∈ [n′]\S. Since f is an indicator function,
it can be expressed as a product of indicator functions. That is, f(ai1 , . . . , air) =∏

s∈S g(as) where g : Zm → Zm is the following {0, 1}-map:

g(y) =

⎧⎨⎩1 if y = 0,

0 otherwise.

Consider a partition of S into two sets A and B of sizes ⌊r/2⌋ and ⌈r/2⌉,
respectively. Let j1 and j2 be two distinct integers in [n′]\S∪{j}. The existence of
such integers is guaranteed by the bound on r. We now express τ as a composition
of (r/2)-functions and 2-functions, and then use induction hypothesis to complete
the proof. The decomposition of τ is motivated by the following identity:

aj +
∏
s∈S

g(as) = aj +
(

aj1 +
∏
s∈A

g(as)− aj1

)(
aj2 +

∏
s∈B

g(as)− aj2

)

= aj +
(

aj1 +
∏
s∈A

g(as)
)(

aj2 +
∏
s∈B

g(as)
)

−
(

aj1 +
∏
s∈A

g(as)
)

aj2 − aj1

(
aj2 +

∏
s∈B

g(as)
)

+ aj1aj2 .

Therefore, we consider three permutations γ, τA and τB such that for any
⟨a1, . . . , an′⟩ ∈ Zn′

m their maps are given as follows:

γ (⟨a1, . . . , an⟩) = ⟨a1, . . . , aj−1, aj + aj1aj2 , aj+1, . . . , an′⟩,
τA (⟨a1, . . . , an′⟩) = ⟨a1, . . . , aj1−1, aj1 +∏

s∈A g(as), aj1+1, . . . , an′⟩, and
τB (⟨a1, . . . , an′⟩) = ⟨a1, . . . , aj2−1, aj2 +∏

s∈B g(as), aj2+1, . . . , an′⟩,

where both the multiplications and additions are in Zm. Using the identity it is
easy to verify the following decomposition of τ :

τ = τ−1
B ◦ γ−1 ◦ τ−1

A ◦ γ ◦ τB ◦ γ−1 ◦ τA ◦ γ.

Clearly, γ is a 2-function, while τA and τB are ⌊r/2⌋-function and ⌈r/2⌉-function,
respectively, and belong to S. By induction hypothesis τA and τB can be expressed
as a composition of 2-functions. Thus their inverses too. Hence we obtain a
decomposition of τ in terms of 2-functions. The bound on kr, the length of the
decomposition, follows from the following recurrence:

T (r) ≤ 2T (⌊r/2⌋) + 2T (⌈r/2⌉) + 4.

105

We would like to mention that another decomposition of τ in terms of 2-
functions can be obtained by following the proof of [CG75], albeit with a much
worse bound on the value of kr. Further, by strengthening the induction hypoth-
esis, it is easily seen that the above proof can be generalized to hold for certain
special type of r-functions. Let β be an r-function, r ≤ n′ − 3, such that for any
⟨a1, . . . , an′⟩ ∈ Zn′

m,

β (⟨a1, . . . , an′⟩) = ⟨a1, . . . , ai−1, ai + fe(ai1 , . . . , air), ai+1, . . . , an′⟩,

where the function fe : Zr
m → Zm is defined by:

fe(x) =

⎧⎨⎩b if x = e,

0 otherwise,

for some b ∈ Zm and e ∈ Zr
m, i.e., fe is some constant multiple of the characteristic

function of the tuple e. A crucial step in the proof is to express fe as a product of
indicator functions. In this case we consider the following functions gij

: Zm → Zm

for 1 ≤ j ≤ r. Define gi1 : Zm → Zm such that for any y ∈ Zm, gi1(y) = b if y = e1,
and 0 otherwise. For any 2 ≤ j ≤ r, define gij

: Zm → Zm as gij
(y) = 1 if y = ei,

and 0 otherwise. By definition, we have fe(x1, . . . , xr) = gi1(x1)gi2(x2) · · · gir(xr).
Thus we get the following generalization of Lemma 42.

Lemma 44. For any m ∈ N and 1 ≤ r ≤ n′− 3, let τ be an r-function such that
for any ⟨a1, . . . , an′⟩ ∈ Zn′

m,

τ (⟨a1, . . . , an′⟩) = ⟨a1, . . . , aj−1, aj + fe(ai1 , . . . , air), aj+1, . . . , an′⟩

where the function fe : Zr
m → Zm is defined by: fe(x) = b if x = e; and 0

otherwise. Then there exists a set of 2-functions τ1, . . . , τkr such that τ = τkr ◦
· · · ◦ τ1, and kr ≤ 4r2 − 3.

Comment on decomposition of general r-functions for 3 ≤ r ≤ n′− 3:
Any function f : Zr

m → Zm can be expressed as f = ∑
e ce · χe, where χe is

the characteristic function of the tuple e ∈ Zr
m, and ce ∈ Zm. Thus Lemma 44

suffices to argue that any r-function can be decomposed into a set of 2-functions.
However, the implied bound on kr may not be small. In particular, the number
of tuples where f takes non-zero value might be large.

It remains to decompose αn′−1 and αn′ . The following lemma about cycles
that intersect at exactly one point serves as a key tool in our decomposition.

Lemma 45. Suppose there are two cycles, σ = (t, a1, · · · , aℓ−1) and τ = (t, b1, · · ·
, bℓ−1)
, of length ℓ ≥ 2 such that ai ̸= bj for every i, j ∈ [ℓ−1]. Then, (σ◦τ)ℓ◦(τ ◦σ)ℓ =
σ2.

Proof. By Proposition 56, we have

β := τ ◦ σ = (t, a1, · · · , aℓ−1, b1, · · · , bℓ−1), and
γ := σ ◦ τ = (t, b1, · · · , bℓ−1, a1, · · · , aℓ−1).

106

Both β and γ are cycles of length 2ℓ− 1. Also note that 2ℓ− 1 is co-prime with
ℓ. Thus both βℓ and γℓ are also cycles of length 2ℓ− 1 given as follow:

βℓ = (t, b1, a1, b2, a2, · · · , bℓ−1, aℓ−1), and
γℓ = (t, a1, b1, a2, b2, · · · , aℓ−1, bℓ−1).

Now by Proposition 57,

σ ◦ βℓ ◦ σ−1 = (σ(t), σ(b1), σ(a1), · · · , σ(aℓ−2), σ(bℓ−1), σ(aℓ−1))
= (a1, b1, a2, b2, · · · , aℓ−1, bℓ−1, t) = γℓ.

Therefore,

βℓ ◦ σ−1 = (t, aℓ−1, aℓ−2, · · · , a1) ◦ (t, a1, b1, a2, b2, · · · , aℓ−1, bℓ−1)
= (a1, b1)(a2, b2) · · · (aℓ−1, bℓ−1).

It is thus evident that
(
βℓ ◦ σ−1

)2
is the identity permutation. Hence,

γℓ ◦ βℓ = σ ◦ βℓ ◦ σ−1 ◦ βℓ

= σ ◦ βℓ ◦ σ−1 ◦ βℓ ◦ σ−1 ◦ σ

= σ2.

Before going into the detailed description of the decomposition procedure, let
us briefly discuss the main idea. Here we first consider αn′ . The case of αn′−1 will
be analogous. Recall that αn′ = (⟨00 · · · 00⟩, ⟨00 · · · 01⟩, ⟨00 · · · 02⟩, · · · , ⟨00 · · · 0
(m− 1)⟩) is a cycle of length m. For a = (m + 1)/2, we define σ = (⟨00 · · · 0(0 ·
a)⟩, ⟨00 · · · 0(1 · a)⟩, ⟨00 · · · 0(2 · a)⟩, · · · , ⟨00 · · · 0((m − 1) · a)⟩), and τ = (⟨(0 ·
a)00 · · · 0⟩, ⟨(1 · a)00 · · · 0⟩, ⟨(2 · a)00 · · · 0⟩, · · · , ⟨((m − 1) · a)00 · · · 0⟩), where the
multiplication is in Zm. Since m is co-prime with (m + 1)/2, σ and τ are cycles
of length m. (Here we use the fact that m is odd.) Observe that σ2 = αn′ , so
by applying Lemma 45 to σ and τ we get αn′ . It might seem we didn’t make
much progress towards decomposition, as now instead of one (n′ − 1)-function
αn′ we have to decompose two (n′ − 1)-functions σ and τ . However, we will not
decompose σ and τ directly, but rather we obtain a decomposition for (σ ◦ τ)m

and (τ ◦ σ)m. Surprisingly this can be done using Lemma 44 although indirectly.
We consider an (n′ − 3)-function σ′ whose cycle decomposition contains σ as

one of its cycles. Similarly we consider a 3-function τ ′ whose cycle decomposition
contains τ as one of its cycles. We carefully choose these σ′ and τ ′ such that
(σ′ ◦ τ ′)m = (σ ◦ τ)m and (τ ′ ◦ σ′)m = (τ ◦ σ)m. We will use Lemma 44 to directly
decompose σ′ and τ ′ to get the desired decomposition.

Lemma 46. For any n′− 1 ≤ i ≤ n′, let αi be the permutation over Zn′
m given by

Definition 60 where m is odd. Then, there exists a set of 2-functions αi,1, . . . , αi,ki

such that αi = αi,ki
◦ · · · ◦ αi,1, and ki = O(m · (i− 1)2).

Proof. For the sake of brevity, we will only describe the procedure to decompose
αn′ into a set of 2-functions. The decomposition of αn′−1 is completely analogous.
(We comment on this more at the end of the proof.)

107

Let σ be the following permutation: for any ⟨a1, . . . , an′⟩ ∈ Zn′
m,

σ (⟨a1, . . . , an′⟩) = ⟨a1, . . . , an′−1, an′ + f(a1, . . . , an′−1)⟩

where the function f : Zn′−1
m → Zm is defined as follows:

f(x) =

⎧⎨⎩(m + 1)/2 if x = ⟨0, . . . , 0⟩,
0 otherwise.

Note that (m + 1)/2 is well defined because m is odd. Further, since m and
(m+1)/2 are co-prime, σ is a m length cycle. Moreover, σ2 = αn′ . The description
of σ uses crucially that m is odd. If m were not odd, then the description fails.
Indeed finding a substitute for σ is the main hurdle that needs to be addressed
to handle the case when m is even.

We also consider another permutation τ such that for any ⟨a1, . . . , an′⟩ ∈ Zn′
m,

τ (⟨a1, . . . , an′⟩) = ⟨a1 + f(a2, . . . , an′), a2, . . . , an′⟩

where the function f is the same as in the definition of σ. So τ is also a cycle of
length m. Let t = (m + 1)/2. Then the cycle decomposition of σ and τ are,

σ = (⟨0, . . . , 0, 0 · t⟩, ⟨0, . . . , 0, 1 · t⟩, ⟨0, . . . , 0, 2 · t⟩, · · · , ⟨0, . . . , 0, (m− 1) · t⟩) ,

τ = (⟨0 · t, 0, . . . , 0⟩, ⟨1 · t, 0, . . . , 0⟩, ⟨2 · t, 0, . . . , 0⟩, · · · , ⟨(m− 1) · t, 0, . . . , 0⟩)

where the multiplication is in Zm. Observe that ⟨0, . . . , 0⟩ is the only common
element involved in both cycles σ and τ . Therefore, by Lemma 45,

(σ ◦ τ)m ◦ (τ ◦ σ)m = σ2 = αn′ .

We note that both σ and τ are (n′− 1)-functions. Thus so far it is not clear how
the above identity helps us to decompose αn′ . We now define two more permuta-
tions σ′ and τ ′ such that they are themselves decomposable into 2-functions and,
moreover, (σ′ ◦ τ ′)m = (σ ◦ τ)m and (τ ′ ◦ σ′)m = (τ ◦ σ)m.

The permutations σ′ and τ ′ are defined as follows: for any ⟨a1, . . . , an′⟩ ∈ Zn′
m,

σ′ (⟨a1, . . . , an′⟩) = ⟨a1, . . . , an′−1, an′ + g(a1, . . . , an′−3)⟩, and
τ ′ (⟨a1, . . . , an′⟩) = ⟨a1 + h(an′−2, an′−1, an′), a2, . . . , an′⟩

where g : Zn′−3
m → Zm is the following map:

g(x) =

⎧⎨⎩(m + 1)/2 if x = ⟨0, . . . , 0⟩,
0 otherwise,

and h : Z3
m → Zm is similarly defined but on lower dimension:

h(x) =

⎧⎨⎩(m + 1)/2 if x = ⟨0, 0, 0⟩,
0 otherwise.

Since m and (m + 1)/2 are co-prime, σ′ is composed of m2 disjoint cycles, each
of length m. Similarly, τ ′ is composed of m(n′−4) disjoint cycles, each of length

108

m. Moreover, σ is one of the cycles among m2 disjoint cycles of σ′ and τ is one
of the cycles among m(n′−4) disjoint cycles of τ ′. So, we can write

σ′ = σ ◦ C1 ◦ · · · ◦ Cm2−1, and
τ ′ = τ ◦ C ′

1 ◦ · · · ◦ C ′
m(n′−4)−1

where each of Ci’s and C ′
j’s is a m length cycle. An important fact regard-

ing σ′ and τ ′ is that the only element moved by both is the all-zeros tuple
⟨0, . . . , 0⟩. This is easily seen from their definitions. Recall we had observed
that the all-zeroes is, in fact, moved by σ and τ . In other words, cycles in the
set {C1, . . . , Cm2−1, C ′

1, . . . , C ′
m(n′−4)−1} are mutually disjoint, as well as they are

disjoint from σ and τ . Thus, using the fact that Ci’s and C ′
j’s are m length cycles,

we have

(τ ′ ◦ σ′)m = (τ ◦ σ)m, and
(σ′ ◦ τ ′)m = (σ ◦ τ)m.

Therefore, we can express αn′ in terms of σ′ and τ ′,

αn′ = σ2 = (σ ◦ τ)m ◦ (τ ◦ σ)m = (σ′ ◦ τ ′)m ◦ (τ ′ ◦ σ′)m.

But, by definition, σ′ and τ ′ are an (n′ − 3)-function and a 3-function, respec-
tively. Furthermore, they satisfy the requirement of Lemma 44. Hence both
σ′ and τ ′ can be decomposed into a set of 2-functions. As a result we ob-
tain a decomposition of αn′ into a set of kn′ many 2-functions, where kn′ ≤
2m (4(n′ − 3)2 − 3 + 4 · 32 − 3) = m (8(n′ − 3)2 + 60) ≤ 60 ·m (n′ − 3)2.

The permutation αn′−1 can be decomposed in a similar fashion. Note that
αn′−1 is composed of m disjoint m length cycles. Each of the m disjoint cycles
can be decomposed using the procedure described above. If we do so, we get the
length kn′−1 = O(m2 · (n′ − 3)2), which would suffice for our purpose. However,
we can improve this bound to O(m · (n′ − 2)2) by a slight modification of σ, τ, σ′

and τ ′. Below we define these permutations and omit the details of the proof as
it is analogous to the proof above. The argument should be carried with σ, τ, σ′

and τ ′ defined as follows: for any ⟨a1, . . . , an′⟩ ∈ Zn′
m,

σ (⟨a1, . . . , an′⟩) = ⟨a1, . . . , an′−2, an′−1 + f(a1, . . . , an′−2), an′⟩,
τ (⟨a1, . . . , an′⟩) = ⟨a1 + f(a2, . . . , an′−1), . . . , an′−1, an′⟩,

σ′ (⟨a1, . . . , an′⟩) = ⟨a1, . . . , an′−2, an′−1 + g(a1, . . . , an′−3), an′⟩, and
τ ′ (⟨a1, . . . , an′⟩) = ⟨a1 + h(an′−2, an′−1), a2, . . . , an′−1, an′⟩,

where the function f : Zn′−2
m → Zm is defined as: f(x) = (m + 1)/2 if x =

⟨0, . . . , 0⟩; otherwise f(x) = 0, the function g : Zn′−3
m → Zm is defined as: g(x) =

(m + 1)/2 if x = ⟨0, . . . , 0⟩; otherwise g(x) = 0 and the function h : Z2
m → Zm

is defined as: h(x) = (m + 1)/2 if x = ⟨0, 0⟩; otherwise h(x) = 0. The only
difference is now that both σ and τ are composed of m disjoint cycles of length
m, instead of just one cycle as in case of αn′ . However every cycle of σ has non-
empty intersection with exactly one cycle of τ , and furthermore, the intersection
is singleton. Hence we can still apply Lemma 45 with m pairs of m length cycles,
where each pair consists of one cycle from σ and another from τ such that they
have non-empty intersection.

109

Step 3: Invocation of Lemma 38

To finish the construction we just replace αi’s in α = αn′◦· · ·◦α1 by αi,ki
◦· · ·◦αi,1.

Take the resulting sequence as σ = σk ◦· · ·◦σ1, where k = ∑n′

i=1 ki ≤ c3 ·m ·n′3 for
some constant c3 > 0. Now we apply Lemma 38 to get a space-optimal counter
over Zn

m. In Lemma 38, we set k′ = mr′ such that r′ is the smallest integer for
which mr′ ≥ k and set D′ = Zr′

m. Hence r′ ≤ logm k + 1 ≤ 3 logm n + c, for
some constant c > 1. Since each of σi’s is a 2-function, by Claim 39 it can be
implemented using a decision assignment tree Ti such that READ(Ti) = 3 and
WRITE(Ti) = 1. In Lemma 38, we use the standard space-optimal Gray code
over D′ = Zr′

m as C ′. The code C ′ can be implemented using a decision assignment
tree T ′ with READ(T ′) = r′ and WRITE(T ′) = 1 (Theorem 54). Hence the final
counter implied from Lemma 38 can be computed using a decision assignment
tree T with READ(T) ≤ 4 logm n and WRITE(T) = 2. This completes our
required construction.

110

9. Quasi-Gray Codes Over Even
Sized Alphabets
In this chapter we describe how to construct quasi-Gray code over Zn

m for any
even m. We start with binary alphabet.

9.1 Quasi-Gray Codes over Binary Alphabet

9.1.1 Counters via Linear Transformation
The construction for binary alphabet is based on linear transformations. Consider
the vector space Fn

q , and let L : Fn
q → Fn

q be a linear transformation. A basic
fact in linear algebra says that if L has full rank, then the mapping given by L is
a bijection. Thus, when L is full rank, the mapping can also be thought of as a
permutation over Fn

q . Throughout this chapter we use many basic terms related
to linear transformation without defining them, for the details of which we refer
the reader to any standard text book on linear algebra (e.g. [Lan87]).

A natural way to build counter out of a full rank linear transformation is to
fix a starting element, and repeatedly apply the linear transformation to obtain
the next element. Clearly this only list out elements in the cycle containing
the starting element. Therefore, we would like to choose the starting element
such that we enumerate the largest cycle. Ideally, we would like the largest
cycle to contain all the elements of Fn

q . However this is not possible because
any linear transformation fixes the all-zero vector. But there do exist full rank
linear transformations such that the permutation given by them is a single cycle of
length qn−1. Such a linear transformation would give us a counter over a domain
of size qn that enumerates all but one element. Clearly, a trivial implementation
of the aforementioned argument would lead to a counter that reads and writes
all n coordinates in the worst-case. In the rest of this chapter, we will develop
an implementation and argue about the choice of linear transformation such that
the read and write complexity decreases exponentially.

We start with recalling some basic facts from linear algebra.

Definition 61 (Linear Transformation). A map L : Fn
q → Fn

q is called a linear
transformation if L(c · x + y) = cL(x) + L(y), for all x, y ∈ Fn

q and c ∈ Fq.

It is well known that every linear transformation L is associated with some
matrix A ∈ Fn×n

q such that applying the linear transformation is equivalent to the
left multiplication by A. That is, L(x) = Ax where we interpret x as a column
vector. Furthermore, L has full rank iff A is invertible over Fq.

Definition 62 (Elementary matrices). An n× n matrix over a field F is said to
be an elementary matrix if it has one of the following forms:

(a) The off-diagonal entries are all 0. For some i ∈ [n], (i, i)-th entry is a
non-zero c ∈ F. Rest of the diagonal entries are 1. For a fixed i, we denote
all matrices of this type by Ei,i. (See Fig. 9.1.)

111

(b) The diagonal entries are all 1. For some i and j, 1 ≤ i ̸= j ≤ n, (i, j)-th
entry is a non-zero c ∈ F. Rest of the off-diagonal entries are 0. For each
i and j, i ̸= j, we denote all matrices of this type by Ei,j. (See Fig. 9.1.)

(a)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i

1
. . .

1
i c

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
or, (b)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j

1
. . .

1
. . .

i c 1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 9.1: Elementary matrices

From the definition it is easy to see that left multiplication by an elementary
matrix of type Ei,i is equivalent to multiplying the i-th row with c, and by an
elementary matrix of type Ei,j is equivalent to adding c times j-th row to the i-th
row.

Proposition 63. Let A ∈ Fn×n be invertible. Then A can be written as a product
of k elementary matrices such that k ≤ n2 + 4(n− 1).

Proof. Consider the inverse matrix A−1 which is also full rank. It is easily seen
from Gauss elimination that by left multiplying A−1 with at most n2 many ele-
mentary matrices, we can reduce A−1 to a permutation matrix. A permutation
matrix is a {0, 1}-matrix that has exactly one 1 in each row and column. Now
we need at most (n − 1) row swaps to further reduce the obtained permutation
matrix to the identity matrix. We claim that a row swap can be implemented
by left multiplication with at most 4 elementary matrices. Indeed, to swap row
i and row j, the following sequence of operation suffices: (i) add j-th row to
i-th row, (ii) subtract i-th row from j-th row, (iii) add j-th row to i-th row,
and (iv) multiply j-th row with −1. (The last operation is not required if the
characteristic of the underlying field is 2.)

Hence, the inverse of A−1 which is our original matrix A is the product of k
elementary matrices.

9.1.2 Construction of the counter
Let A be a full rank linear transformation from Fn

q → Fn
q such that when viewed

as permutation it is a single cycle of length qn − 1. More specifically, A is
an invertible matrix in Fn×n

q such that for any x ∈ Fn
q where x ̸= (0, . . . , 0),

Ax, A2x, . . . , A(qn−1)x are distinct. Such a matrix exists, for example, take A to
be the matrix of a linear transformation that corresponds to multiplication from
left by a fixed generator of the multiplicative group of Fqn under the standard
vector representation of elements of Fqn . Let A = EkEk−1 · · ·E1 where Ei’s are
elementary matrices.

112

Theorem 64. Let q, A, and k be as defined above. Let r ≥ logq k. There
exists a quasi-Gray code on the domain (Fq)n+r of length qn+r − qr that can be
implemented using a decision assignment tree T such that READ(T) ≤ r+2 and
WRITE(T) ≤ 2.

Proof. The proof follows readily from Lemma 38, where Ei’s play the role of
σi’s, and noting that the permutation given by any elementary matrix can be
implemented using a decision assignment tree that reads at most two coordinates
and writes at most one. For the counter C ′ on (Fq)r we chose a Gray code of
trivial read complexity r and write complexity 1.

Thus, we obtain a counter on a domain of size roughly kqn that misses at
most qk elements. Clearly, we would like to minimize k. A trivial bound on k is
O(n2) that follows from Proposition 63. We now discuss the choice of A so that
k becomes O(n). We start with recalling a notion of primitive polynomials over
finite fields.

Definition 65 (Primitive polynomials). A primitive polynomial p(z) ∈ Fq[z] of
degree n is a monic irreducible polynomial over Fq such that any root of it in Fqn

generates the multiplicative group of Fqn.

Theorem 66 ([LN96]). The number of primitive polynomials of degree n over Fq

equals ϕ(qn − 1)/n, where ϕ(·) is the Euler ϕ-function.

Let p(z) be a primitive polynomial of degree n over Fq. The elements of
Fqn can be uniquely expressed as a polynomial in z over Fq of degree at most
n − 1. In particular, we can identify an element of Fqn with a vector in Fn

q

that is given by the coefficient vector of the unique polynomial expression of
degree at most n − 1. But, since p(z) is primitive, we also know that Fqn =
{0, 1, z, z2, . . . , zqn−2}. This suggests a particularly nice linear transformation to
consider: left multiplication by z. This is so because the matrix A of the linear
transformation computing the multiplication by z is very sparse. In particular, if
p(z) = zn + cn−1z

n−1 + cn−2z
n−2 + · · ·+ c1z + c0, then A looks as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−cn−1 1 0 · · · 0 0 0
−cn−2 0 1 · · · 0 0 0
−cn−3 0 0 · · · 0 0 0

...
−c2 0 0 · · · 0 1 0
−c1 0 0 · · · 0 0 1
−c0 0 0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, from the proof of Proposition 63, it follows that A can be written as a
product of at most n + 4(n − 1) elementary matrices. (When q is a power of 2,
then the number of elementary matrices in the product is at most n + 3(n− 1).)
Hence, from the discussion above and using Theorem 64, we obtain the following
corollaries. Setting r = ⌈log(4n− 3)⌉ in Theorem 64 gives:

Corollary 67. For any n′ ≥ 2, and n = n′ +⌈log(4n′−3)⌉, there exists a counter
on (Z2)n that misses at most 8n strings and can be implemented by a decision
assignment tree that reads at most 4 + log n bits and writes at most 2 bits.

113

By doubling the number of missed strings and increasing the number of read
bits by one we can construct given counters for any Zn

2 , where n ≥ 15. In the
above corollary the number of missed strings grows linearly with n. One might
wonder if it is possible to keep the number of missing strings o(n), while keeping
the read complexity essentially the same. The next corollary shows that this is
indeed possible, but at the cost of increasing the write complexity.

Corollary 68. For n ≥ 2, there exists a counter on (Z2)n+O(log n) that misses out
at most O(n/⌈log n⌉) strings. Furthermore, it can be implemented by a decision
assignment tree that reads and writes at most O(log n) bits.

Proof. The idea is simply to increase the underlying alphabet size. In particular,
let q = 2⌈log n⌉ in Theorem 64.

We also remark that by taking q to be 2 n
C , where C > 1 is a universal con-

stant, one would get a counter on (Z2)n+O(1) that misses only O(C) strings (i.e.
independent of n). However, the read and write complexity gets worse. They are
at most 2

(
n
C

)
+ O(1).

For the general case, when q is a prime power, we obtain the following corollary
by setting r to ⌈logq(5n− 4)⌉ or 1 + ⌈logq(5n− 4)⌉ in Theorem 64.

Corollary 69 (Generalization of Theorem 51). Let q be any prime power. For
n ≥ 15, there exists a counter on Zn

q that misses at most 5q2n strings and that is
computed by a decision assignment tree with read complexity at most 6 + logq n
and write complexity 2.

9.2 Getting counters for Even m

We can combine the results from Theorem 50 and Theorem 51 to get a counter
over Zn

m for any even m. We have already mentioned in Chapter 7 that if we
have space-optimal quasi-Gray codes over the alphabet Z2 and Zo with o being
odd then we can get a space-optimal quasi-Gray code over the alphabet Zm for
any even m. Unfortunately in Section 9.1.1, instead of space-optimal counters we
were only able to generate a counter over binary alphabet that misses O(n) many
strings. As a consequence we cannot directly apply Theorem 55. The problem is
following. Suppose m = 2ℓo for some ℓ > 0 and odd o. By the argument used in
the proof of Lemma 37 we know that there is a counter over (Z2ℓ)n−1 of the same
length as that over (Z2)ℓ(n−1). Furthermore the length of the counter is of the form
2O(log n)(2n′−1), for some n′ that depends on the value of ℓn (see the construction
in Section 9.1.1). Now to apply Theorem 55 as in the proof of Lemma 36, 2n′ − 1
must be co-prime with o. However that may not always be the case. Nevertheless,
we can choose the parameters in the construction given in Section 9.1.1 to make
n′ such that 2n′ − 1 is co-prime with o. This is always possible because of the
following simple algebraic fact. In the following proposition we use the notation
Z∗

o to denote the multiplicative group modulo o and ordo(e) to denote the order
of any element e ∈ Z∗

o.

Proposition 70. For any n ∈ N and odd o ∈ N, consider the set S = {n, n +
1, · · · , n + ordo(2) − 1}. Then there always exists an element n′ ∈ S such that
2n′ − 1 is co-prime to o.

114

Proof. Inside Z∗
o, consider the cyclic subgroup G generated by 2, i.e., G =

{1, 2, · · · , 2ordo(2)}. Clearly, {2s (mod o) | s ∈ S} = G. Hence there exists an
element n′ ∈ S such that 2n′−1 (mod o) = 1. It is clear that if gcd(2n′−1, o) = 1
then we are done. Now the proposition follows from the following easily verifiable
fact: for any a, b, c ∈ N, if a ≡ b (mod c) then gcd(a, c) = gcd(b, c).

So for any n ∈ N, in the proof of Lemma 36 we take the first coordinate to
be Zi

m for some suitably chosen i ≥ 1 instead of just Zm. The choice of i will be
such that the length of the counter over (Z2ℓ)n−i will become co-prime with o.
The above proposition guarantees the existence of such an i ∈ [ordo(2)]. Hence
we can conclude the following.

Theorem 71. For any even m ∈ N so that m = 2ℓo where o is odd, there
is a quasi-Gray code C over Zn

m of length at least mn − O(non), that can be
implemented using a decision assignment tree which reads at most O(logm n +
ordo(2)) coordinates and writes at most 3 coordinates.

9.3 Bibliographical Notes
We comment that the algorithm given for constructing codes over binary al-
phabets can be made uniform. To achieve that we need to obtain a primitive
polynomial of degree n over Fq uniformly. To this end, we can use a number of
algorithms (deterministic or probabilistic); for example, [Sho92, Shpb, Shp96].
For a thorough treatment, we refer to Chapter 2 in [Shpa].

115

10. Conclusion
In our construction of quasi-Gray codes we have only talked about implementing
next(·, ·) function for any counter. However we can similarly define complexity
of computing prev(·, ·) function in the decision assignment tree model. We would
like to emphasize that all our techniques can also be carried over to do that.
To extend the result of Section 9.1.1 of Chapter 9, we take the inverse of the
linear transformation matrix A and follow exactly the same proof to get the
implementation of prev(·, ·). As a consequence we achieve exactly the same bound
on read and write complexity. Now for the quasi-Gray code over Zm for any odd
m, instead of α in the Step 1 (in of Chapter 8), we simply consider the α−1

which is equal to α−1
1 ◦α−1

2 ◦ · · · ◦α−1
n′ . Then we follow an analogous technique to

decompose α−1
i ’s and finally invoke Lemma 38. Thus we get the same bound on

read and write complexity.

Open problem. Our work clearly provides a hardness separation of quasi-Gray
codes over odd and even sized alphabet domain. The fact that odd permutations
are hard to generate seems to be the real bottleneck and for binary Gray-code the
best read-complexity upper bound known so far is n − 1 [Fre16]. It is believed
that, this is probably the best that can be achieved. Hence, improving Raskin’s
lower bound from n/2 to n− 1 is a nice open question.

116

Bibliography
[AB16] Amir Abboud and Greg Bodwin. The 4/3 additive spanner expo-

nent is tight. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, pages 351–361,
2016.

[AB17] Amir Abboud and Arturs Backurs. Towards hardness of approxima-
tion for polynomial time problems. In 8th Innovations in Theoretical
Computer Science Conference, ITCS 2017, pages 11:1–11:26, 2017.

[ABP17] Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of
lower bounds for sublinear additive spanners. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2017, pages 568–576, 2017.

[Abr87] Karl Abrahamson. Generalized string matching. SIAM J. Comput.,
16(6):1039–1051, 1987.

[ABW15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams.
Tight hardness results for LCS and other sequence similarity mea-
sures. In IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, pages 59–78, 2015.

[ACIM99] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Mot-
wani. Fast estimation of diameter and shortest paths (without ma-
trix multiplication). SIAM J. Comput., 28(4):1167–1181, 1999.

[ADD+93] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and
José Soares. On sparse spanners of weighted graphs. Discrete &
Computational Geometry, 9:81–100, 1993.

[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska
Williams, and Ryan Williams. Simulating branching programs with
edit distance and friends: or: a polylog shaved is a lower bound
made. In Proceedings of the 48th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2016, pages 375–388, 2016.

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Poly-
logarithmic approximation for edit distance and the asymmetric
query complexity. In 51th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2010, pages 377–386, 2010.

[AMS12] Noga Alon, Ankur Moitra, and Benny Sudakov. Nearly complete
graphs decomposable into large induced matchings and their appli-
cations. In Proceedings of the 44th Symposium on Theory of Com-
puting Conference, STOC 2012, pages 1079–1090, 2012.

[AN10] Alexandr Andoni and Huy L. Nguyen. Near-optimal sublinear time
algorithms for Ulam distance. In Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, pages 76–86, 2010.

117

[Ang76] Dana Angluin. The four russians’ algorithm for boolean matrix
multiplication is optimal in its class. In ACM SIGACT News, pages
19–33, 1976.

[AO09] Alexandr Andoni and Krzysztof Onak. Approximating edit distance
in near-linear time. In Proceedings of the Forty-first Annual ACM
Symposium on Theory of Computing, STOC ’09, pages 199–204,
2009.

[AR18] Amir Abboud and Aviad Rubinstein. Fast and deterministic con-
stant factor approximation algorithms for LCS imply new circuit
lower bounds. In 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, pages 35:1–35:14, 2018.

[ASD90] D. J. Amalraj, N. Sundararajan, and Goutam Dhar. Data structure
based on Gray code encoding for graphics and image processing. In
Proceedings of the SPIE: International Society for Optical Engineer-
ing, pages 65–76, 1990.

[BC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas
using a constant number of registers. SIAM J. Comput., 21(1):54–
58, 1992.

[BCJ+10] Prosenjit Bose, Paz Carmi, Dana Jansens, Anil Maheshwari, Pat
Morin, and Michiel H. M. Smid. Improved methods for generating
quasi-Gray codes. In Algorithm Theory - SWAT 2010, 12th Scan-
dinavian Symposium and Workshops on Algorithm Theory, pages
224–235, 2010.

[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and
Florian Speelman. Computing with a full memory: catalytic space.
In Symposium on Theory of Computing, STOC 2014, pages 857–
866, 2014.

[BCPS15] Gilad Braunschvig, Shiri Chechik, David Peleg, and Adam Sealfon.
Fault tolerant additive and (µ, α)-spanners. Theor. Comput. Sci.,
580:94–100, 2015.

[BCR16] Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tol-
erant subgraph for single source reachability: generic and optimal.
In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, pages 509–518, 2016.

[BCR17] Surender Baswana, Keerti Choudhary, and Liam Roditty. An effi-
cient strongly connected components algorithm in the fault tolerant
model. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, pages 72:1–72:15, 2017.

[BEG+18a] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Moham-
mad Taghi Hajiaghayi, and Saeed Seddighin. Approximating edit
distance in truly subquadratic time: Quantum and MapReduce. In

118

Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, pages 1170–1189, 2018.

[BEG+18b] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Moham-
mad Taghi Hajiaghayi, and Saeed Seddighin. Approximating edit
distance in truly subquadratic time: Quantum and MapReduce (ex-
tended version of [BEG+18a]). 2018.

[BEK+03] Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya
Raskhodnikova, Ronitt Rubinfeld, and Rahul Sami. A sublinear
algorithm for weakly approximating edit distance. In Proceedings of
the Thirty-fifth Annual ACM Symposium on Theory of Computing,
STOC ’03, pages 316–324, 2003.

[Bel58] Richard Bellman. On a routing problem. Quart. Appl. Math., 16:87–
90, 1958.

[BES06] Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string
embeddings and edit distance approximations. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm,
SODA ’06, pages 792–801, 2006.

[BGG+15] Davide Bilò, Fabrizio Grandoni, Luciano Gualà, Stefano Leucci, and
Guido Proietti. Improved purely additive fault-tolerant spanners. In
Algorithms - ESA 2015 - 23rd Annual European Symposium, Pro-
ceedings, pages 167–178, 2015.

[BGPS14] Gerth Stølting Brodal, Mark Greve, Vineet Pandey, and Srini-
vasa Rao Satti. Integer representations towards efficient counting in
the bit probe model. J. Discrete Algorithms, 26:34–44, 2014.

[BGPW17] Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vas-
silevska Williams. Preserving distances in very faulty graphs. In
44th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2017, pages 73:1–73:14, 2017.

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed
in strongly subquadratic time (unless SETH is false). In Proceed-
ings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC ’15, pages 51–58, 2015.

[BK13] Surender Baswana and Neelesh Khanna. Approximate shortest
paths avoiding a failed vertex: Near optimal data structures for
undirected unweighted graphs. Algorithmica, 66(1):18–50, 2013.

[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional
lower bounds for string problems and dynamic time warping. In
IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, pages 79–97, 2015.

119

[BKMP05] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth
Pettie. New constructions of (alpha, beta)-spanners and purely ad-
ditive spanners. In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2005, pages 672–681,
2005.

[BW12] Nikhil Bansal and Ryan Williams. Regularity lemmas and combi-
natorial algorithms. Theory of Computing, 8(1):69–94, 2012.

[BYTKK04] Ziv Bar-Yossef, Jayram S. Thathachar, Robert Krauthgamer, and
Ravi Kumar. Approximating edit distance efficiently. In Founda-
tions of Computer Science, 2004. Proceedings. 45th Annual IEEE
Symposium on, pages 550–559, 2004.

[CCC92] C. C. Chang, H. Y. Chen, and C. Y. Chen. Symbolic Gray code
as a data allocation scheme for two-disc systems. The Computer
Journal, 35(3):299–305, 1992.

[CD18] Diptarka Chakraborty and Debarati Das. Sparse weight tolerant
subgraph for single source shortest path. In 16th Scandinavian Sym-
posium and Workshops on Algorithm Theory, SWAT 2018, pages
15:1–15:15, 2018.

[CDG+18] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal
Koucký, and Michael E. Saks. Approximating edit distance within
constant factor in truly sub-quadratic time. In 59th IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2018,
pages 979–990, 2018.

[CDK18] Diptarka Chakraborty, Debarati Das, and Michal Koucký. Ap-
proximate online pattern matching in sub-linear time. CoRR,
abs/1810.03551, 2018.

[CDKS18] Diptarka Chakraborty, Debarati Das, Michal Koucký, and Nitin
Saurabh. Space-optimal quasi-gray codes with logarithmic read
complexity. In 26th Annual European Symposium on Algorithms,
ESA 2018, pages 12:1–12:15, 2018.

[CEPP08] Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat. A
black box for online approximate pattern matching. In Combinato-
rial Pattern Matching, 19th Annual Symposium, CPM 2008, pages
143–151, 2008.

[CG75] Don Coppersmith and Edna Grossman. Generators for certain al-
ternating groups with applications to cryptography. SIAM J. Appl.
Math., 29(4):624–627, 1975.

[CGK16] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký.
Streaming algorithms for embedding and computing edit distance
in the low distance regime. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, pages
712–725, 2016.

120

[CGPR95] Maxime Crochemore, Leszek Gasieniec, Wojciech Plandowski, and
Wojciech Rytter. Two-dimensional pattern matching in linear time
and small space. In STACS, pages 181–192, 1995.

[CH98] Richard Cole and Ramesh Hariharan. Approximate string matching:
a simpler faster algorithm. In In Proc. ACM-SIAM SODA’98, pages
463–472, 1998.

[Cha15] Timothy M. Chan. Speeding up the four russians algorithm by about
one more logarithmic factor. In Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
pages 212–217, 2015.

[Cho16] Keerti Choudhary. An optimal dual fault tolerant reachability ora-
cle. In 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, pages 130:1–130:13, 2016.

[CJS15] Raphaël Clifford, Markus Jalsenius, and Benjamin Sach. Cell-probe
bounds for online edit distance and other pattern matching prob-
lems. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2015, pages 552–561, 2015.

[Cle89] Richard Cleve. Methodologies for Designing Block Ciphers and
Cryptographic Protocols. PhD thesis, University of Toronto, April
1989.

[CLPR09] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty.
Fault-tolerant spanners for general graphs. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009,
pages 435–444, 2009.

[Coh63] Martin Cohn. Affine m-ary Gray codes. Information and Control,
6(1):70–78, 1963.

[Cro92] Maxime Crochemore. String-matching on ordered alphabets. Theor.
Comput. Sci., 92(1):33–47, 1992.

[CS90] Ming Syan Chen and Kang G. Shin. Subcube allocation and task mi-
gration in hypercube multiprocessors. IEEE Transactions on Com-
puters, 39(9):1146–1155, 1990.

[CS09] Raphaël Clifford and Benjamin Sach. Online approximate matching
with non-local distances. In Combinatorial Pattern Matching, 20th
Annual Symposium, CPM 2009, pages 142–153, 2009.

[CS10] Raphaël Clifford and Benjamin Sach. Pseudo-realtime pattern
matching: Closing the gap. In Combinatorial Pattern Matching,
21st Annual Symposium, CPM 2010, pages 101–111, 2010.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via
arithmetic progressions. J. Symb. Comput., 9(3):251–280, 1990.

121

[CZ04] Artur Czumaj and Hairong Zhao. Fault-tolerant geometric spanners.
Discrete & Computational Geometry, 32(2):207–230, 2004.

[DF04] David S. Dummit and Richard M. Foote. Abstract Algebra. John
Wiley & Sons, 2004.

[DK11] Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners:
better and simpler. In Proceedings of the 30th Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 2011, pages
169–178, 2011.

[DKS18] Debarati Das, Michal Koucký, and Michael Saks. Lower bounds for
combinatorial algorithms for boolean matrix multiplication. In 35th
Symposium on Theoretical Aspects of Computer Science (STACS
2018), pages 23:1–23:14, 2018.

[DPS96] C. Ding, D. Pei, and A. Salomaa. Chinese Remainder Theorem:
Applications in Computing, Coding, Cryptography. World Scientific
Publishing Co., Inc., 1996.

[DTCR08] Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and
Vijaya Ramachandran. Oracles for distances avoiding a failed node
or link. SIAM J. Comput., 37(5):1299–1318, 2008.

[Erd] Paul Erdös. Extremal problems in graph theory. In IN THE-
ORY OF GRAPHS AND ITS APPLICATIONS, PROC. SYMPOS.
SMOLENICE, pages 29–36.

[FF] Lester R. Ford and Delbert Ray Fulkerson. Flows in Networks.
Princeton University Press.

[Flo56] Ivan Flores. Reflected number systems. IRE Transactions on Elec-
tronic Computers, EC-5(2):79–82, 1956.

[FM71] Michael J Fischer and Albert R Meyer. Boolean matrix multiplica-
tion and transitive closure. pages 129–131, 1971.

[FMS97] Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven
Skyum. Dynamic word problems. J. ACM, 44(2):257–271, 1997.

[For56] Lester R. Ford Jr. Network Flow Theory. Santa Monica, California:
RAND Corporation, pages P–923, 1956.

[Fre78] Michael L. Fredman. Observations on the complexity of generating
quasi-Gray codes. SIAM J. Comput., 7(2):134–146, 1978.

[Fre16] Zachary Frenette. Towards the efficient generation of Gray codes in
the bitprobe model. Master’s thesis, University of Waterloo, Wa-
terloo, Ontario, Canada, 2016.

[Fur70] M. E. Furman. Application of a method of fast multiplication of
matrices in the problem of finding the transitive closure of a graph.
page 11(5):1252, 1970.

122

[Gal14] François Le Gall. Powers of tensors and fast matrix multiplication.
In International Symposium on Symbolic and Algebraic Computa-
tion, ISSAC 2014, pages 296–303, 2014.

[GG88] Zvi Galil and Raffaeles Giancarlo. Data structures and algorithms
for approximate string matching. Journal of Complexity, pages 4:33–
72, 1988.

[GLSB11] Eyal En Gad, Michael Langberg, Moshe Schwartz, and Jehoshua
Bruck. Constant-weight Gray codes for local rank modulation. IEEE
Transactions on Information Theory, 57(11):7431–7442, 2011.

[GP90] Zvi Galil and Kunsoo Park. An improved algorithm for approximate
string matching. SIAM Journal on Computing, 19(6):989–999, 1990.

[GPR95] Leszek Gasieniec, Wojciech Plandowski, and Wojciech Rytter. The
zooming method: A recursive approach to time-space efficient
string-matching. Theor. Comput. Sci., 147(1&2):19–30, 1995.

[Gra53] Frank Gray. Pulse code communication, 1953.

[Gra16] Szymon Grabowski. New tabulation and sparse dynamic program-
ming based techniques for sequence similarity problems. Discrete
Applied Mathematics, 212:96–103, 2016.

[GS81] Zvi Galil and Joel Seiferas. Time-space-optimal string matching
(preliminary report). In Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, STOC ’81, pages 106–113,
1981.

[GST17] Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pBWT:
Achieving succinct data structures for parameterized pattern match-
ing and related problems. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
pages 397–407, 2017.

[GW12] Fabrizio Grandoni and Virginia Vassilevska Williams. Improved dis-
tance sensitivity oracles via fast single-source replacement paths. In
53rd Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2012, pages 748–757, 2012.

[HR16] Felix Herter and Günter Rote. Loopless Gray code enumeration
and the tower of bucharest. In 8th International Conference on Fun
with Algorithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy,
pages 19:1–19:19, 2016.

[Ind98] Piotr Indyk. Faster algorithms for string matching problems:
Matching the convolution bound. In 39th Annual Symposium on
Foundations of Computer Science, FOCS ’98,, pages 166–173, 1998.

[Ita77] Alon Itai. Finding a minimum circuit in a graph. In Proceedings
of the 9th Annual ACM Symposium on Theory of Computing, pages
1–10, 1977.

123

[JMSB09] Anxiao Jiang, Robert Mateescu, Moshe Schwartz, and Jehoshua
Bruck. Rank modulation for flash memories. IEEE Transactions on
Information Theory, 55(6):2659–2673, 2009.

[JWW80] James T. Joichi, Dennis E. White, and S. G. Williamson. Combi-
natorial Gray codes. SIAM J. Comput., 9(1):130–141, 1980.

[KJP77] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast
pattern matching in strings. SIAM J. Comput., 6(2):323–350, 1977.

[Knu11] Donald E. Knuth. The Art of Computer Programming. Volume 4A:
Combinatorial Algorithms, Part 1. Addison-Wesley Professional,
2011.

[KP18] Tsvi Kopelowitz and Ely Porat. A simple algorithm for approxi-
mating the text-to-pattern hamming distance. In 1st Symposium
on Simplicity in Algorithms, SOSA 2018, pages 10:1–10:5, 2018.

[LAAA75] Arlazarov Vladimir Lvovich, Dinitz Yefim A, Kronrod M A, and
Faradzhev I. Aleksandrovich. On economic construction of the tran-
sitive closure of a directed graph. pages 11:1209–1210, 1975.

[Lan87] Serge Lang. Linear Algebra. Undergraduate Texts in Mathematics.
Springer New York, 1987.

[Lev66] VI Levenshtein. Binary Codes Capable of Correcting Deletions,
Insertions and Reversals. Soviet Physics Doklady, 10:707, 1966.

[LMS98] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incre-
mental string comparison. SIAM J. Comput., 27(2):557–582, 1998.

[LN96] Rudolf Lidl and Harald Niederreiter. Finite Fields. Encyclopedia of
Mathematics and its Applications. 1996.

[LNS02] Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid.
Improved algorithms for constructing fault-tolerant spanners. Algo-
rithmica, 32(1):144–156, 2002.

[LT79] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for
finding dominators in a flowgraph. ACM Trans. Program. Lang.
Syst., 1(1):121–141, 1979.

[Luc59] Harold M. Lucal. Arithmetic operations for digital computers using
a modified reflected binary code. IRE Transactions on Electronic
Computers, EC-8(4):449–458, 1959.

[Lud81] J. Ludman. Gray code generation for mpsk signals. IEEE Transac-
tions on Communications, 29(10):1519–1522, 1981.

[Luk99] Tamás Lukovszki. New results of fault tolerant geometric span-
ners. In Algorithms and Data Structures, 6th International Work-
shop, WADS ’99, Proceedings, pages 193–204, 1999.

124

[LV89] Gad M. Landau and Uzi Vishkin. Fast parallel and serial approxi-
mate string matching. Journal of Algorithms, 10(2):157–169, 1989.

[MP80] William J. Masek and Michael S. Paterson. A faster algorithm
computing string edit distances. Journal of Computer and System
Sciences, 20(1):18 – 31, 1980.

[Mun71] Ian Munro. Efficient determination of the transitive closure of a
directed graph. pages 1(2):56–58, 1971.

[Mye86] Eugene W Myers. Incremental alignment algorithms and their ap-
plications. Technical Report, 1986.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31–88, 2001.

[NRR13] Patrick K. Nicholson, Venkatesh Raman, and S. Srinivasa Rao. A
survey of data structures in the bitprobe model. In Space-Efficient
Data Structures, Streams, and Algorithms - Papers in Honor of J.
Ian Munro on the Occasion of His 66th Birthday, pages 303–318,
2013.

[NSS17] Timothy Naumovitz, Michael E. Saks, and C. Seshadhri. Accurate
and nearly optimal sublinear approximations to Ulam distance. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, pages 2012–2031, 2017.

[NW78] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms.
Academic Press, 1978.

[Par14] Merav Parter. Vertex fault tolerant additive spanners. In Distributed
Computing - 28th International Symposium, DISC 2014, Proceed-
ings, pages 167–181, 2014.

[Par15] Merav Parter. Dual failure resilient BFS structure. In Proceedings of
the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, pages 481–490, 2015.

[Pat08] Mihai Patrascu. Succincter. In 49th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2008, pages 305–313,
2008.

[PP13] Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In
Algorithms - ESA 2013 - 21st Annual European Symposium, Pro-
ceedings, pages 779–790, 2013.

[PP14] Merav Parter and David Peleg. Fault tolerant approximate BFS
structures. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, pages 1073–1092,
2014.

125

[Ras17] Mikhail Raskin. A linear lower bound for incrementing a space-
optimal integer representation in the bit-probe model. In 44th Inter-
national Colloquium on Automata, Languages, and Programming,
ICALP 2017, pages 88:1–88:12, 2017.

[RC81] John P. Robinson and Martin Cohn. Counting sequences. IEEE
Transactions on Computers, C-30(1):17–23, 1981.

[Ric86] Dana S. Richards. Data compression and Gray-code sorting. Inf.
Process. Lett., 22(4):201–205, 1986.

[RM10] Mohammed Ziaur Rahman and J. Ian Munro. Integer representation
and counting in the bit probe model. Algorithmica, 56(1):105–127,
2010.

[RS78] Imre Z. Ruzsá and Endre Szemerédi. Triple systems with no six
points carrying three triangles. In Colloquia Mathematica Societatis
János Bolyai, pages 939–945, 1978.

[RZ12] Liam Roditty and Uri Zwick. Replacement paths and k simple short-
est paths in unweighted directed graphs. ACM Trans. Algorithms,
8(4):33:1–33:11, 2012.

[Sah14] Barna Saha. The dyck language edit distance problem in near-linear
time. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS , 2014, pages 611–620, 2014.

[Sav97] Carla Savage. A survey of combinatorial Gray codes. SIAM review,
39(4):605–629, 1997.

[Sel80] Peter H. Sellers. The theory and computation of evolutionary dis-
tances: pattern recognition. Journal of Algorithms, pages 1:359–373,
1980.

[Sho92] Victor Shoup. Searching for primitive roots in finite fields. Mathe-
matics of Computation, 58:369 – 380, 1992.

[Shpa] Igor Shparlinski. Finite Fields: Theory and Computation, volume
477 of Mathematics and its Applications. Springer Netherlands.

[Shpb] Igor E. Shparlinski. Finding irreducible and primitive polynomials.
Applicable Algebra in Engineering, Communication and Computing,
4(4):263–268.

[Shp96] Igor Shparlinski. On finding primitive roots in finite fields. Theo-
retical Computer Science, 157(2):273 – 275, 1996.

[Sta17] Tatiana A. Starikovskaya. Communication and streaming complex-
ity of approximate pattern matching. In 28th Annual Symposium
on Combinatorial Pattern Matching, CPM 2017, pages 13:1–13:11,
2017.

126

[Str69] Volker Strassen. Gaussian elimination is not optimal. In Numer.
Math, pages 13:354–356, 1969.

[Ukk85] Esko Ukkonen. Algorithms for approximate string matching. Inf.
Control, 64:100–118, 1985.

[UW93] Esko Ukkonen and Derick Wood. Approximate string matching with
suffix automata. Algorithmica, 10(5):353–364, 1993.

[Val75] Leslie G. Valiant. General context-free recognition in less than cubic
time. pages 10(2):308–315, 1975.

[VZA70] M. A. Kronrod V. Z. Arlazarov, E. A. Dinic. On economical
construction of the transitive closure of a directed graph. pages
11(5):1209–1210, 1970.

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string
correction problem. J. ACM, 21(1):168–173, 1974.

[Wil11] Virginia Vassilevska Williams. Faster replacement paths. In Pro-
ceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, pages 1337–1346, 2011.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than
coppersmith-winograd. In Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, pages 887–898, 2012.

[Woo10] David P. Woodruff. Additive spanners in nearly quadratic time. In
Automata, Languages and Programming, 37th International Collo-
quium, ICALP 2010, pages 463–474, 2010.

[WY13] Oren Weimann and Raphael Yuster. Replacement paths and dis-
tance sensitivity oracles via fast matrix multiplication. ACM Trans.
Algorithms, 9(2):14:1–14:13, 2013.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? J. ACM,
28(3):615–628, 1981.

[YS12] Yonatan Yehezkeally and Moshe Schwartz. Snake-in-the-box codes
for rank modulation. IEEE Transactions on Information Theory,
58(8):5471–5483, 2012.

[Yu15] Huacheng Yu. An improved combinatorial algorithm for boolean
matrix multiplication. In Automata, Languages, and Programming
- 42nd International Colloquium, ICALP 2015, pages 1094–1105,
2015.

127

List of Figures

2.1 V(xI1 , ϵ) and V(xI3 , ϵ) are disjoint. 20
2.2 Illustration of the Covering Algorithm: Blue boxes are low cost

boxes in dense w1-strips, while the yellow ones are in sparse w1-
strips. The red line corresponds to the path τ that we are trying
to cover. In each w2-strip, τ is covered by either a collection of
many w1-boxes or it is covered by a diagonal extension of a low
cost w1-box. The various boxes might overlap vertically which is
not shown in the picture. 23

2.3 Illustration of a path that crosses a grid: Solid blue edges are the
edges of a given path τ . Dotted blue edges are the edges of path
τI′ that crosses the dashed strip G′. 28

2.4 An illustration of δ-aligned interval. Here interval J ′′ is δ-aligned
but J ′ is not. 29

2.5 Illustration of diagonal extension: Given a w-box I ′ × J ′ its true
diagonal extension is the grey box I × Ĵ 30

2.6 (a) The shortcut edge ei is added for box Ii × Ji. (b) An example
of a path τ (in solid) passing through a box Ih × Jh. The dashed
path τ ′

h is an approximation of τ between ph and ph+1. Here
sh = (min(Ih), min(J ′

h)) and th = (max(Ih), max(J ′
h)). 37

5.1 Suppose the yellow colored region represents Gshort. The edges
of C1 and C2 are colored with blue and red respectively. Brown
colored edges are the edges added in the auxiliary graph G′ and the
edges colored with green constitute the set E(t). Paths represented
by the thick edges are the 3 edge disjoint paths in G′ when r = 2. 78

5.2 Region shaded with green color represents Gσ for σ = (1,−1, · · · ,−1)
whereas yellow colored region is the shortest path subgraph of G.
The edges of C(−1,··· ,−1),1 and C(−1,··· ,−1),2 are colored with blue and
red respectively. Gσ is obtained by removing red colored edges. . . 81

9.1 Elementary matrices . 112

128

List of Tables

6.1 Taxonomy of construction of Gray/quasi-Gray codes over Zn
m . . . 92

129

List of publications

[CDGKS 18] Approximating Edit Distance within Constant
Factor in Truly Sub-Quadratic Time
with Diptarka Chakraborty, Elazar Goldenberg,
Michal Koucký, Michael Saks
59th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), 2018

[DKS 18] Lower Bounds for Combinatorial Algorithms for
Boolean Matrix Multiplication
with Michal Koucký, Michael Saks
35th Symposium on Theoretical Aspects of Computer
Science (STACS), 2018

[CD 18] Sparse Weight Tolerant Subgraph for Single
Source Shortest Path
with Diptarka Chakraborty
16th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT), 2018

[CDKS 18] Space-Optimal Quasi-Gray Codes with
Logarithmic Read Complexity
with Diptarka Chakraborty, Michal Koucký,
Nitin Saurabh
26th Annual European Symposium on Algorithms
(ESA), 2018

Unpublished Manuscripts

[CDK 18] Approximate Online Pattern Matching in
Sub-linear Time
with Diptarka Chakraborty, Michal Koucký
CoRR abs/1810.03551, 2018

130

	Preface
	I. Combinatorial Lower Bounds & Efficient String and Graph Algorithms
	Introduction
	Problem Catalogue
	Edit Distance
	Approximate Pattern Matching
	Boolean Matrix Multiplication
	Weight Tolerant Subgraph for Single Source Shortest Path

	Organisation

	Constant approximation of Edit Distance
	Preliminaries
	Reduction to the gap problem
	Formal framework of the algorithm

	Warm up: A detailed overview of the Covering algorithm
	Covering Algorithm: pseudo-code and analysis
	Pseudo-code
	Analysis and correctness of CA
	Time complexity of CA

	Min-cost Paths in Shortcut Graphs
	Conclusion and Bibliographical Notes

	Approximate Pattern Matching
	Preliminaries
	Offline Approximate Pattern Matching
	Technique Overview
	Covering phase
	Correctness of the covering algorithm
	Time complexity of the covering algorithm

	Min-cost Path in a Grid Graph with Shortcuts
	Online Approximate Pattern Matching
	 The online algorithm

	Conclusion and Bibliographical Notes

	Combinatorial Lower Bounds of Boolean Matrix Multiplication
	Combinatorial Models
	Technique Overview
	Notation and Preliminaries
	Matrices
	Model
	(r,t)-graphs: The hard instance
	Diverse and unhelpful graphs

	Union Circuits
	Circuits with Partitions
	The cost of chargeable gates in a partition
	Large number of partitions
	Density lemma
	The main proof

	Conclusion and Open Problems

	Weight Tolerant Subgraph for Single Source Shortest Path
	Preliminaries
	Definitions
	Max-flow and farthest min-cut
	Overview of the construction

	Farthest Min-cut of Shortest Path Sub- graph
	Computing farthest min-cut of shortest path subgraph
	Disjoint shortest path lemma

	Construction of k-WTSS and Locality Lemma
	Construction of k-WTSS(t)
	Description of the algorithm
	Analysis

	Lower Bound on the Size of k-WTSS
	Conclusion and Bibliographical Notes

	II. Efficient Construction of Quasi-Gray Codes
	Introduction
	Organisation

	Preliminaries and Overview
	Preliminaries
	Construction of Gray codes

	Overview of the construction
	The Key Tools
	Chinese Remainder Theorem for Counters
	Permutation Group and Decomposition of Counters

	Space-optimal Quasi-Gray Codes Over Odd Sized Alphabets
	Construction of the Counter

	Quasi-Gray Codes Over Even Sized Alphabets
	Quasi-Gray Codes over Binary Alphabet
	Counters via Linear Transformation
	Construction of the counter

	Getting counters for Even m
	Bibliographical Notes

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of publications

