Multiparty Communication Complexity (A biased introduction)

> Arkadev Chattopadhyay TIFR, Mumbai

Yao's 2-Party Model of 1979

- Alice and Bob collaborate to compute f(X,Y).
- Aim to minimize the communication cost.
- Complexity of any f is at most n+1.

Easy Functions

Compute PARITY(X,Y).

- CC(PARITY) = 2.
- $CC(MAJORITY) = O(\log n)$.

Hard Functions

How about EQ(X,Y), i.e. is X=Y?

Intuitively, this should require n bits of communication!

Needs an argument!

Rectangularity of Protocols

Observation. Every transcript corresponds to a rectangle of form $R_X \times C_{\gamma}.$

Diagonals are Hard to Cover

Fact: No two 1's on diagonal share the same transcript.

Set-Disjointness

Disj(x,y) = 0 iff for some i, $x_i = y_i = 1$.

Alice	1	0	1	1	0	1	0	0	1
Bob	1	1	0	1	0	1	1	0	1

Disj(A,B)=0 CC(Disj) ≥ n + 1

Suppose $\pi(a,a^c) = \pi(b,b^c)$ Contradiction! Then $\pi(a,b^c) = \pi(b,a^c) = \pi(a,a^c) = \pi(b,b^c)$

Conclusion: All 2ⁿ inputs of form (x,x^c) have distinct transcripts.

Inner-Product

$IP(x,y) \equiv \sum_{i} x_{i} \cdot y_{i} \pmod{2}$

TD(Y V)-1	X	1	0	0	1	0	1	1	0	1	Alice
IP(A , I) = I	У	0	0	1	1	0	1	0	1	1	Bob

$$\begin{split} \mathsf{R}_{\mathsf{x}} \times \mathsf{C}_{\mathsf{y}} \text{ be 0-monochromatic.} & \mathsf{x}^1, \cdots, \, \mathsf{x}^{\alpha \mathsf{n}} \; \; \text{Lin. Ind.} \\ \big| \mathsf{R}_{\mathsf{x}} \big| &= 2^{\alpha \cdot \mathsf{n}}, \; \; \big| \mathsf{C}_{\mathsf{y}} \big| &= 2^{\beta \cdot \mathsf{n}} & \mathsf{y}^1, \cdots, \, \mathsf{y}^{\beta \mathsf{n}} \; \; \text{Lin. Ind.} \\ & \alpha + \beta \leq 1 & \longleftarrow \; \mathsf{x}^{\mathsf{i}} \cdot \mathsf{y}^{\mathsf{j}} = \mathsf{0} \end{split}$$

Concl: Size of monochromatic rectangle is at most 2ⁿ.

 $CC(IP) \ge n - o(n)$

Can randomization help?

One central theme of theory of computation.

The Power of Randomness

Limits of Random Protocols

Set-Disjointness: Disj(x,y) = 0 iff for some i, $x_i = y_i = 1$.

Disj(A,B)=0

 $R(Set-Disj) = \Omega(n).$ (Kalyanasundaram-Schnitger'87, Razborov'90).

Celebrated Result

Streaming Computation

Goal: Answer questions about the frequency distribution on $\{1, \dots, n\}$.

Problem: How much space **S** is needed to approximate the maximal frequency?

Application to Streaming

How much space needed to compute max frequency?

Many More Applications...

Data Structures.

Circuit complexity.

Pseudo-randomness.

Combinatorial Optimization.

Property Testing.

(Swiss-Army Knife of Computer Scientists)

Multiparty Communication

Number-on-Forehead Model

Chandra-Furst-Lipton'83

Foreheads Make a Difference

EQUALITY is hard for 2 parties!

NOF Lower Bounds Benefits

- Circuit Lower Bounds
- Branching Program Lower Bounds
- Pseudo-random generators
- Lower bounds on length of proofs
- Data-structure lower bounds
- More to be discovered....

Constant-Depth Circuits

Conjecture (Smolensky'87): MAJ needs exponential size circuits of constant depth having AND/OR/MOD_m gates.

ACC⁰ \equiv {fns having poly-size ckts with AND/OR/MOD gates}.

Open: Is NP \subseteq ACC⁰ ?

Bounded Depth Circuits

f computed by constant-depth circuits with AND/OR/MOD gates efficiently,

Protocols for Depth 2

Observ: Each AND gate can be computed by one player.

Question: k+1-party NOF complexity of f? Protocol: $k \cdot (\log n)^{O(1)}$

- Players 1,...,k send the number of AND gates they see firing 1, communicating only poly-log bits each.
- Player k+1 announces the answer.

NOF Attack on ACC

Theorem: Every $f \in ACC^0$ has poly-log(n) simultaneous kparty communication complexity for some k = poly-log(n), under every input partition.

Corollary of Beigel-Tarui'91

Major Goal: Find f that is hard for large number of players.

A Conjecture

 $\mathsf{f:}\{0,1\}^n o \{0,1\}$ $q:\{0,1\}^k o \{0,1\}$.

(foq) $(X_1, X_2, \dots, X_k) = f(q(C_1), q(C_2), \dots, q(C_n))$

Question: Complexity of (MAJ \circ MAJ)?

Observation:

 \Rightarrow MAJ \notin ACC⁰

Let
$$D_k^{sim} (MAJ \circ MAJ) = (\log n)^{\omega(1)}$$

 $\Rightarrow MAJ \circ MAJ \notin ACC^0$
a la Beigel-Tarui'91

n

Proposed by Babai-Kimmel-Lokam'95 ←

Exa	mples of	Compos	ition
PARITY o AND	Popular Names	Deterministic $\Theta(n)$.	Randomized O (n).
	Complexity ?	Folklore	Chor-Goldreich'85 Discrepancy
NOR \circ AND	Set-Disj Complexity ?	⊖(n). Folklore	<mark>⊖(n)</mark> . KS'87, Razborov'90 BJKS'02
			Very influential

Remark 1: Argument for Set-Disj spawned many new techniques.

Remark 2: Has many diverse applications.

NOF Lower Popular Names PARITY \circ AND \equiv GIP	Bounds k Deterministic/Rando Ω (n/4 ^k). Babai-Nisan-Szege Seminal Paper	≥ 3 omized dy′89
NOR \circ AND \equiv Set-Disj	Ω ((log n)/k).	Tesson'05
Apology: SKIPPED other attempts	$\Omega\!\left(\frac{n}{2^{k2^{2k}}}\right)^{\frac{1}{k+1}}$	Lee-Shraibman'08, C-Ada'08
	Improvement	Beame-Huynh-Ngoc'09
Deterministic	$\Omega\!\left(\frac{n}{4^k}\right)^{1/4}$	Sherstov'12
$\Omega\left(rac{n}{4^k} ight)$ \leftarrow Rao-Yehudayoff'14	$- \Omega\left(\frac{\sqrt{n}}{k2^k}\right)$	Sherstov'13

NOF Lower Bounds $k \ge 3$

Popular Names

 $\mathsf{PARITY} \circ \mathsf{AND} \equiv \mathsf{GIP}$

Deterministic/Randomized Ω (n/4^k).

Babai-Nisan-Szegedy'89

Seminal Paper

Remark 1: There is no separate, easier argument for deterministic case.

Remark 2: All strong bounds on (interactive) k-complexity use variations of the BNS argument.

Remark 3: All known bounds decay exponentially in k, are trivial for $k = \omega(\log n)$.

Remark 4: By contrast, for k=2 several methods are known.

Discrepancy Chor-Goldreich'85 Corruption Razborov'89

Fourier-analytic Raz'95 Information Theory BJKS'02 and many more

Su	rprising Upp	er Bounds
	Popular Names	κ ≥ 3 Deterministic
SYM o AND	{GIP, Disj,}	O (n/2 ^k + k· log n).
		Grolmusz'91, Pudlak Almost- Simultaneous
SYM ∘ g	{GIP, MAJ ∘ MAJ, Disj}	O(k.(log n) ²), k \ge log n + 2.
g: compressible		Babai-Gal-Kimmel-Lokam'
		Simultaneous
		$O(k.(\log n)^2), k \ge \log n + 4.$
STM 0 ANT		Ada-C-Fawzi-Nguyen'12 Simultaneous
SYM ○ ANY ₋		poly-log(n), $k \ge 2\log n$
$s \approx \log \log n$		C-Saks'14 Almost- Simultaneous

Cylinder Intersections

Rectangles , i.e. $C_1(X) \times C_2(Y) \times C_3(Z)$, are **very** special.

 $C_Z \equiv C_Z(X,Y)$ $C_Y \equiv C_Y(X,Z)$ $C_X \equiv C_X(Y,Z)$

 $C = C_X \cap C_Y \cap C_Z$ is a cylinder intersection.

Fact: A c-bit deterministic protocol partitions inputs into at most 2^c monochromatic cylinder intersections.

The Discrepancy Method

Discrepancy: For a probability distr μ ,

 $disc_{\mu}(f,C) = | \mu$ -wt of $f^{-1}(1)$ in $C - \mu$ -wt of $f^{-1}(-1)$ in C |

 $disc_{\mu}(f) = \max_{C} disc_{\mu}(f,C).$

$$\begin{split} \varPi &\equiv \mathsf{C}_1 \cup \mathsf{C}_2 \cup \cdots \cup \mathsf{C}_{\mathsf{t}} & \text{Adv in } \mathsf{C}_{\mathsf{i}} = \mathsf{disc}_{\mu}(\mathsf{f},\mathsf{C}_{\mathsf{i}}) \\ & \text{Total } \mathsf{Adv} = 2\epsilon \\ & \bigvee \\ & \bigvee \\ \mathsf{Union \ bound} \\ \mathsf{Discrepancy \ Method:} \ R_k^\epsilon(f) \geq D_k^{\mu,\epsilon}(f) \geq \log\left(\frac{2\epsilon}{\operatorname{disc}_{\mu}(f)}\right) \\ & \mathsf{Yao's} \\ & \mathsf{method} \\ \end{split}$$

Question: How do we compute discrepancy?

An inductive Cauchy-Schwarz argument.

Cauchy-Schwarz Magic

$$\begin{aligned} \operatorname{disc}(f,C)^{2\times2} &= \left| \mathbb{E}_{X,Y,Z} \left[f(X,Y,Z)C_{Z}(X,Y)C_{Y}(X,Z)C_{X}(Y,Z) \right]_{2\times2}^{2\times2} \right|^{2\times2} \\ &\leq \left| \mathbb{E}_{X,Y} \left[\left(C_{Z}(X,Y) \right) \cdot \left| \mathbb{E}_{Z} \left[f(X,Y,Z)C_{Y}(X,Z)C_{X}(Y,Z) \right] \right] \right] \right] \\ &\overset{(\mathsf{red} \mathsf{Cauchy-Schwarz}}{\leq} \mathbb{E}_{X,Y} \left[\left(\mathbb{E}_{Z} \left[f(X,Y,Z)C_{Y}(X,Z)C_{X}(Y,Z) \right] \right)^{2} \right]_{2} \\ &\leq \mathbb{E}_{Z^{0},Z^{1},X,Y} \left[f(X,Y,Z^{0})f(X,Y,Z^{1})C_{Y}^{Z^{0}}(X)C_{Y}^{Z^{1}}(X)C_{X}^{Z^{0}}(Y)C_{X}^{Z^{1}}(Y) \right] \\ &\overset{(\mathsf{disc}(f^{Z^{0},Z^{1}}, R^{Z^{0},Z^{1}})^{2}}{\leq} \mathbb{E}_{Z^{0},Z^{1}} \left[\mathbb{E}_{X} \left[f^{Z^{0},Z^{1},Y^{0},Y^{1}}(X)R_{b}^{Z^{0},Z^{1}}(X) - R_{b}^{Z^{0},Z^{1}}(Y) \right] \\ &\overset{(\mathsf{disc}(f,C)^{2^{2}} \leq \mathbb{E}_{Z^{0},Z^{1},Y^{0},Y^{1}} \left| \mathbb{E}_{X} \left[f^{Z^{0},Z^{1},Y^{0},Y^{1}}(X) \right] \right| \overset{(\mathsf{nd} \mathsf{of} X}{=} \mathbb{E}_{Z^{0},Z^{1},Y^{0},Y^{1}} \left| \mathbb{E}_{X} \left[\Pi_{u \in \{0,1\}^{2}} f(X,Y^{u_{1}},Z^{u_{2}}) \right] \end{aligned}$$

The BNS-Chung Criterion

Theorem (Raz'00):

$$\left(\operatorname{disc}_{\mu}(f)\right)^{2^{k}} \leq \underset{Y^{1,0},Y^{1,1},\ldots,Y^{k,0},Y^{k,1}}{\mathbb{E}} \left| \mathbb{E}_{X} \left[\prod_{u \in \{0,1\}^{k}} f(X,Y^{1,u_{1}},\ldots,Y^{k,u_{k}}) \right] \right|$$

Cube Measure/Gower's norm
$$\mathcal{E}_{\mu,k}(f)$$

Application to GIP

$$\left(\operatorname{disc}(\operatorname{GIP}_{k+1})\right)^{2^{k}} \leq \underset{\dots,Y^{j,0},Y^{j,1},\dots}{\mathbb{E}} \left| \mathbb{E}_{X} \left[\left(-1\right)^{\sum_{i=1}^{n} X_{i}(Y_{i}^{10}+Y_{i}^{11})\cdots(Y_{i}^{k0}+Y_{i}^{k1})} \right] \right|$$

C_i

Observation:

$$\Pr_{\dots,Y^{j,0},Y^{j,1},\dots}\left[\forall i:c_i=0\right] \le \left(1-\frac{1}{2^k}\right)^n \le \exp\left(-n/2^k\right)$$

Conclusion: disc(GIP_{k+1}) $\leq \exp(-n/4^k)$ Discrepancy Method: $R_{\epsilon}(\text{GIP}_{k+1}) = \Omega\left(\frac{n}{4^k}\right)$

Limitations of Discrepancy

 L^{-} = set of non-disjoint inputs L^{+} = set of disjoint inputs.

Fact: $L^- = C_1 \cup \cdots \cup C_n$. Fact: Each C_i is a rectangle. Conclusion 1: L^- has a small *cover*.

Conclusion 2: For every distribution μ , disc_{μ}(DISJ) $\geq \frac{1}{2n} - \frac{1}{2n^2}$.

 C_i = set of inputs that have an all-one ith column

Corollary: Impossible to get $\omega(\log n)$ bounds for DISJ by direct DM.

Generalized Discrepancy

Lemma (Generalized Discrepancy): Denote $X = Y_1 \times \cdots \times Y_k$. Let f: $X \rightarrow \{1,-1\}$ and g: $X \rightarrow \{1,-1\}$ be such that $Corr_{\mu}$ (f,g) $\geq \delta$, for some distribution μ .

$$R_k^{\epsilon}(f) \ge \log\left(\frac{\delta + 2\epsilon - 1}{disc_{k,\mu}(g)}\right)$$

$$\operatorname{disc}(g) < \operatorname{disc}(f)$$

Remark: The classical discrepancy method follows by putting g=f and hence $\delta=1$.

```
Klauck'01 applied to f = MAJ \circ AND.
```

Composed Functions

Question: Given f, how to find g?

Answer: No general technique known.

For f o q, Sherstov'08 and Shi-Zhu'08 gave techniques for 2-party.

Polynomial Representation

Let $V \equiv \{f \mid f: \{0,1\}^n \rightarrow \mathbb{R}\}.$

Observation: V is a vector space of dimension 2ⁿ.

Defn: For each $S \subseteq \{1, \dots, n\}$, $\chi_S = (-1)^{\sum_{i \in S} x_i}.$

Fact: The set $M \equiv \{\chi_S \mid S \subseteq [\{1, \dots, n\} \text{ forms a basis of V,} called the Fourier basis.$

Definition: Let $f = \sum_{S} c_{S} \chi_{S}$. The degree of f is the cardinality of a maximal S such that $c_{S} \neq 0$.

Approximation of Functions

Fundamental: How closely can $f:\{0, 1\}^n \to \mathbb{R}$ be approximated by low degree functions?

Definition: The δ -approximate degree of f, deg_{δ}(f), is the minimum integer d such that there exists $\phi \in$ span({ $\chi_S : |S| \leq d$ }) and

$$\max_{x \in \{0,1\}^n} \left| f(x) - \phi(x) \right| \le \delta$$

Degree of Functions

- AND(X) = $X_1 X_2 \cdots X_n$
- $OR(X) = 1 (1 X_1)(1 X_2) \cdots (1 X_n)$
- PARITY(X)
- MAJORITY(X)

Exact degree $\Theta(n)$

Approx degree?

Fact (Nisan-Szegedy'92): $Deg_{1/3}(OR) = \Theta(\sqrt{n})$

Pattern Matrix Method

Let **f** have high approximation degree **d**.

Let $q:\{0,1\}^s \rightarrow \{0,1\}$ have IN as a sub-(partial)function.

For **f** o **q**, Sherstov'08 applied Generalized-Discrepancy :

$$R_2^{\epsilon}(f \circ g) = \Omega(d)$$

Pattern Tensor Method $IN_k^t : X \times Y_1 \times \cdots \times Y_k \rightarrow \{0, 1\}$

$$\begin{split} & \prod_{k} : X \times Y_{1} \times \cdots \times Y_{k} \to \{0, 1\} \\ & {}^{\{0, 1\}^{t^{k}}} & {}^{[k]} & {}^{[k]} & X[y_{1}, \dots, y_{k}] \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & &$$

f: $\{0,1\}^m \rightarrow \{0,1\}$, approximation degree d.

q: $\{0,1\}^{sk} \rightarrow \{0,1\}$, contains IN_k^t .

Lee-Shraibman'08 and C-Ada'08 applied Generalized-Discrepancy :

$$R_{k}^{\epsilon}(f \circ q) = \Omega\left(\frac{d}{2^{k}}\right) \longrightarrow \Omega\left(\frac{n}{2^{k2^{2k}}}\right)^{k+1}$$
provided $t \approx \frac{2^{2^{k}} km}{d}$
constant k, $\Pi^{\Omega(1)}$

Block-Composition

Introduced by Shi-Zhu'08 for 2-party.

- **f**: $\{0,1\}^m \rightarrow \{0,1\}$, approximation degree **d**. same property as before
- q: $\{0,1\}^s \times \{0,1\}^s \rightarrow \{0,1\}$. spectral (analytic) property

- f o q: Generalized-Discrepancy gives strong 2-party bounds.
- How to extend to $k \ge 3$ parties?

Discrepancy Amplification

- $\mathsf{q}:\{\mathsf{0},\mathsf{1}\}^{(k+1)\times t}\to\{\mathsf{0},\mathsf{1}\}.$
- ν : q is ν -balanced.

Defn: q is (γ, ν) -amplifiable if for all $S \subseteq [m]$: $\operatorname{disc}_{\nu^{|S|}} (\chi_S \circ q) \leq \gamma^{|S|}$

Multiparty Block Composition

f: $\{0,1\}^m \rightarrow \{0,1\}$, approximation degree d. $\begin{array}{|c|c|c|c|c|c|c|c|c|} & \text{same property} \\ & \text{as before} \end{array}$

q: $\{0,1\}^{(k+1)\times s} \rightarrow \{0,1\}$. q is ν -balanced and (γ,ν) -amplifiable

Theorem(C'08): If
$$\ \gamma \leq rac{d}{8em}$$
 ,

$$R_k^\epsilon(f \circ q) = \Omega(d)$$

Approximation-Orthogonality

• Simple Fourier Analysis

Approximation-Orthogonality

Lemma (Sherstov08, Shi-Zhu08): Let $f:\{0,1\}^m \rightarrow \{-1,1\}$ have $\deg_{\delta}(f) = d \ge 1$. Then, there exists a $g:\{0,1\}^m \rightarrow \{-1,1\}$ and a distribution μ such that

$$\operatorname{Corr}_{\mu}(f,g) = \mathbb{E}_{x \sim \mu} f(x) g(x) > \delta$$

and g is (μ ,d)-orthogonal, i.e.

$$\operatorname{Corr}_{\mu}(g, \chi_S) = 0, \forall |S| < d.$$

Block Communication Strategy

The Inner Function

Question: How do we find such nice q?

Try bounding $\mathcal{E}_{\nu,k}(q)^{1/2^k}$

Theorem (C'08):

$$\operatorname{disc}_{\nu^{|S|},k+1}(\chi_S \circ q) \leq \left(\mathcal{E}_{\nu,k}(q)\right)^{|S|/2^k}$$

Theorem (C'08): $\mathcal{E}_{\mathcal{U},k}(\mathrm{IN}_k^t) \leq \frac{k}{t}$

Two-Party Communication

Multiparty Block Composition

f: $\{0,1\}^m \rightarrow \{0,1\}$, approximation degree d. \downarrow same property as before

small cube-measure $\mathcal{E}_{\mu,k}(g) \leq \gamma$ **g** : {0,1}^{k×s} → {0,1}.

g is μ -balanced

Theorem(C'08): If
$$\gamma \leq \left(rac{d}{8em}
ight)^{2^k}$$
 ,

$$R_k^\epsilon (f \circ g) = \Omega(d)$$

Disjointness as Inner Function

NOR : $\{0,1\}^m \rightarrow \{0,1\}$, approximation degree d = \sqrt{m} .

 $\mathsf{UDISJ}_{\mathsf{s}}: \{0,1\}^{(\mathsf{k}+1)\times\mathsf{s}} \to \{0,1\}.$

 $\mu_{k,s}$: uniform distrbn on k × s matrices with exactly one all-1 column \mathcal{U}_{s} : uniform distrbn on {0,1}^s

Recent Breakthrough

Theorem(Sherstov'13): Using more analytic technique:

$$R_k^{\epsilon} \left(\text{NOR} \circ \text{UDISJ} \right) = \Omega \left(\frac{\sqrt{n}}{k2^k} \right)$$

Rao-Yehudayoff'14: Simplify above. Show further

$$D_k^{i} NOR \pm UDISU^{c} = - \frac{n}{4^{k}}$$
 Tight!

Conclusion

Did not cover MANY developments.

Several open directions to pursue.

Thanks!