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Yao's 2-Party Model of 1979

Unbounded Unbounded
Computational Computational
Power / / Power
(-

X b, =b; (Va) Y
110111001 3 =a,(X,by) 000111111
<€ > <€ >

1 b, =b(Yay, 4

Alice Bob

. Alice and Bob collaborate to compute f(X,Y).
e Aim to minimize the communication cost.
e Complexity of any f is at most n+1.



Easy Functions
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PARITY(X,Y)=1
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Compute PARITY(X,Y).

. CC(PARITY) = 2.

« CC(MAIJORITY) = O(log n).



Hard Functions

How about EQ(X,Y), i.e. is X=Y?

Intuitively, this should require n bits of
communication!

Needs an argument!



Rectangularity of Protocols
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Observation. Every transcript corresponds to a
rectangle of form R, x C,.




Diagonals are Hard to Cover
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CC(Equality)
>log (2") + 1

=n+1.

Fact: No two 1's on diagonal share the same transcript.



Set-Disjointness

Disj(x,y) = O iff for some i, x, = y. = 1.

Aice | 1101111101110/0/1] pLsn By=o

Bob(1/1/0({1/0(1]1]0|1 CC(Disi)
>n+1

ontradiction!
Then m(a,b?) = =n(b,a) = =(a,ac) =
7(b,b¢)

Conclusion: All 2" inputs of form (x,x¢) have
distinct transcripts.

Suppose 7(a,a¢) = =(b,bc



Inner-Product

IP(X,y) =2, % -y; (mod 2)

Aice(110]1(1/0(1]0(|0]|1 IP(X.Y)=1
Bob|1|1(0(1]0|1|1]|0|0]| Y
R, x C, be 0-monochromatic. x1,-+, X°" Lin. Ind.
‘RX‘ — 204117 ICY‘ — 2'811 yll”'l yﬁn Lin. Ind.

a+B <1 <= xiyi=0
Concl: Size of monochromatic rectangle is at most 2".
CC(IP) > n—o(n)



Can randomization help?

One central theme of theory of computation.



The Power of Randomness
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Alice Bob
Compute
EQUALITY(X,Y).
R1/2 (EQ) = 2.

Randomized protocols can be much more
powerful than deterministic ones.



Limits of Random Protocols

Set-Disjointness:
Disj(x,y) = 0 iff for some i, x.=y, = 1.

Aice|1]0(1]1/0(1/0]0 /1

Disj(A,B)=0
Bob|1|1/0/1/011]1]0]1

R(Set-Disj) = Q(n).
(Kalyanasundaram-Schnitger’87, Razborov’90).
Celebrated Result



Streaming Computation
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Goal: Answer questions about the frequency
distribution on {1,---,n}.

Problem: How much space S is needed to
approximate the maximal frequency?



Application to Streaming

How much space needed to compute max frequency?

\ |/~
/\ S bits X @
Y

110100 001111

Alice Bob

A, 1124 3|4]5/6] B,
Ay UB,|, =2

Concl: |M]| > needs Q(N) space




Many More Applications...

Data Structures.

Circuit complexity.
Pseudo-randomness.
Combinatorial Optimization.
Property Testing.

(Swiss-Army Knife of Computer Scientists)



Multiparty Communication



Number-on-Forehead Model
Chandra-Furst-Lipton’83
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Lower bounds are challenging

Charlie

Bob
Every pair of bits visible to someone.
Overlap of Information

Fewer and fewer information missing
from a player.



Foreheads Make a Difference
EQUALITY is hard for 2 parties!

X 1 Y/
A N

Is X=Y?
Alice y Bob

2-bit protocol

Is EQ(X,Y,Z)? Exploits Information Overlap
Charlie



NOF Lower Bounds Benefits

» Circuit Lower Bounds

« Branching Program Lower Bounds
* Pseudo-random generators

« Lower bounds on length of proofs

« Data-structure lower bounds

 More to be discovered....



Constant-Depth Circuits

Conjecture (Smolensky’87): MAJ needs exponential
size circuits of constant depth having AND/OR/MOD,,
gates.

ACCP? = {fns having poly-size ckts with AND/OR/MOD gates}.

Open: Is NP € ACCO ?



Bounded Depth Circuits

f computed by constant-depth circuits with
AND/OR/MOQOD gates efficiently,

poly-log = (logn)°™)

vV ./
qpoly(n) = n%s™”"”
f Beigel —Tarui’'91



Protocols for Depth 2

k = (log -n)o(l)

Observ: Each AND gate can
be computed by one player.
v ',

log n)©

qpoly

f
Question: k+1-party NOF complexity of f?
Protocol: k - (1og n>o(1)

« Players 1,---,k send the number of AND gates they see firing 1,
communicating only poly-log bits each.

« Player k+1 announces the answer.



NOF Attack on ACC

Theorem: Every f ¢ ACCY has poly-log(n) simultaneous k-

party communication complexity for some k = poly-log(n),
under every input partition.
Corollary of Beigel-Tarui’91

Major Goal: Find f that is hard for large number of players.



A Conjecture

(fOC|) (XllXZI' ) le) = f(q(cl)lq(CZ)llq(Cn))

Question: Complexity of (MAJ o MAJ)? (011111
Observation: X1 0
Let D™ (MAJ o MAJ) = (log n)w(l) X3 1 0

= MAJ o MA] ¢ ACCO

a la Beigel-Tarui'91

= MAJ e ACC" x [11]1]1]1]1

Proposed by Babai-Kimmel-Lokam’95 < n



Examples of Compok§2ition

Popular Names

Deterministic Randomized
PARITY o AND = IP on). o). |
Complexity ? Folklore Chor-Goldreich’85
Discrepancy
NOR o AND = Set-Disj o(n). a(n).
. KS'87, Razborov'90
Complexity ? Folklore BIKS'02

Very influential

Remark 1: Argument for Set-Disj spawned many new techniques.
Remark 2: Has many diverse applications.



NOF Lower Bounds

k>3

Popular Names L :
Deterministic/Randomized

PARITY o AND = GIP Q (n/49).
Babai-Nisan-Szegedy’'89

Seminal Paper

NOR o AND = Set-Disj Q ((log n)/k). Tesson’05

ok22k

0 (L) o Lee-Shraibman’08, C-Ada’08
Apology: SKIPPED other attempts

Improvement Beame-Huynh-Ngoc'09

1/4
n ’
Deterministic () (4*»‘ ) Sherstov'12
Ol n
o < 0 (%) Sherstov’13
Rao-Yehudayoff'14



NOF Lower Bounds

k>3
Popular Names Deterministic/Randomized
PARITY 0 AND = GIP —

Babai-Nisan-Szegedy’'89
Seminal Paper

Remark 1: There is no separate, easier argument for deterministic case.

Remark 2: All strong bounds on (interactive) k-complexity use variations of the
BNS argument.

Remark 3: All known bounds decay exponentially in k, are trivial for k= w(log n).

Remark 4: By contrast, for k=2 several methods are known.

i i i ; Information
Discrepancy Corruption Fourier-analytic Theory

Chor-Goldreich’85 Razborov’'89 Raz’95
Zhorov BJKS'02 and many more



Surprising Upper Bounds

SYM o AND

SYMo g
g: compressible

SYM o ANY

SYM o ANY,
s ~loglogn

Popular Names

{GIP, Disj,...}

{GIP, MAJ o MAJ, Disj...}

k>3

Deterministic

O (n/2¥+ k- log n).

Grolmusz’91, Pudlak
Almost- Simultaneous

O(k.(log n)3), k > log n + 2.
Babai-Gal-Kimmel-Lokam’

Simultaneous

O(k.(log n)?), k > log n + 4.
Ada-C-Fawzi-Nguyen’'12
Simultaneous

poly-log(n), k > 2log n
C-Saks'14
Almost- Simultaneous



Cylinder Intersections

Rectangles , i.e. C;(X) x C5(Y) x C5(Z), are very special.

C, = C,(X,Y)
¢y = C(X,2)
¢, = C(Y,2)

X
C= Cy N Cy N G, is a cylinder intersection.

Fact: A c-bit deterministic protocol partitions inputs into at most 2¢
monochromatic cylinder intersections.



The Discrepancy Method
Discrepancy: For a probability distr p,
disc,(f,C) = | p-wtof f1(1)in C — p-wtof f1(-1)inC |

disc,(f) = maXq disc,(f,C).

nmH=CcuGu---ucC Adv in G = disc,(f,C)
Total Adv = 2¢

\Union bound

Discrepancy Method: RS (f) > Di°(f) > log (d_ 26(1’))

Yao's
method



Question: How do we compute discrepancy?

An inductive Cauchy-Schwarz argument.



Cauchy-Schwarz Magic

72 2x2
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The BNS-Chung Criterion

Theorem (Raz'00):

(discu( f))2k < E

Y10 yLl | ykoO Ykl

Cube Measure/Gower’s norm

Epnk (f)



Application to GIP

G
|
[ \
ok n (Y10 y 1l y kO |y k1
(diSC(GIP’fH)) - o IEx[(—l)Z“lX%m FYI) - (VEOHY ‘
"'an’O;Yj’l,...
Observation:
— . .
by ien=0] < (1 B Q_k) < exp(—n/2")

Conclusion: disc(GIPg41) < exp( — n/4%)

l Discrepancy Method:

R (GIPgy1) =9 (4%)



Limitations of Discrepancy

- = set of non-disjoint inputs C. = set of inputs that have an
L+ = set of disjoint inputs. all-one ith column

Fact: L =C,uUu---uUC,

Fact: Each C, is a rectangle ith column
Conclusion 1: L has a small cover l
Conclusion 2: For every distribution g, -
disc,, (DISJ) > % — # SRE RN
1
1
1

Corollary: Impossible to get w(log n) bounds for DISJ]
by direct DM.



Generalized Discrepancy

Lemma (Generalized Discrepancy): Denote X = Y; x --- X
Y,. Let f: X - {1,-1} and g: X — {1,-1} be such that Corr,
(f,g) > ¢, for some distribution .

R (f) > log (dfsti;@)

\ J

Y
disc(g) << disc(f)

Remark: The classical discrepancy method follows by putting
g=f and hence §=1.

Klauck’01 applied to f = MAJ o AND.



Composed Functions

Question: Given f, how to find g2

Answer: No general technique known.

For f o g, Sherstov’08 and Shi-Zhu'08 gave techniques for
2-party.



Polynomial Representation

Let V = {f | f:{0,1}" > R}.
Observation: V is a vector space of dimension 2",

Defn: For each S C {1,---,n},
X5 = (—1)%ies @i,

Fact: The set M = {x | S C[{1,---,n} forms a basis of V,
called the Fourier basis.

Definition: Let f= > ¢ x5 The degree of f is the cardinality
of a maximal S such that c, = 0.



Approximation of Functions

Fundamental: How closely can f:{0, 1} — R be
approximated by low degree functions?

Definition: The §-approximate degree of f, deg,(f),
is the minimum integer d such that there exists ¢ <

span({xs : |S| < d}) and

oma [f(x) — ¢(x)| <0



Degree of Functions

—

« AND(X) = X; X, X,

+ OR(X) = 1 = (1-X)(1K,)-(1X,)

. PARITY(X)

. MAJORITY(X) Exact degree ©(n)

Approx degree?

Fact (Nisan-Szegedy'92): Deg;,5(OR) = ©(y/n)



Pattern Matrix Method

— X

> Xy

Let f have high approximation degree d.

Let g:{0,1}°x{0,1}s — {0,1} have IN as a sub-(partial)function.

For f o g, Sherstov'08 applied Generalized-Discrepancy :

R5(fog) =Q(d)



Pattern Tensor Method
INL: X XY x---x Y, = {0,1}
K] -

{0,1}¢" \ K] |
Y

Indices into tensor

| X_yla"'ayk]

f:40,1}™ — {0,1}, approximation degree d.
q: {0,1}« — {0,1}, contains INZ.
Lee-Shraibman’08 and C-Ada’08 applied Generalized-Discrepancy :

Ri(foaq) =0(f) —o(zx)"

k
. o 22 km
provided t &~ =—;

Q(1)
doubly exp in k constant k’ n



Block-Composition

Introduced by Shi-Zhu'08 for 2-party.

f:{0,1}m — {0,1}, approximation degree d. } same property

as before

g - {O,I}SX{O,].}S —> {0,1}. } spectral (analytic) property

f o g: Generalized-Discrepancy gives strong 2-party bounds.

How to extend to k > 3 parties?



Discrepancy Amplification

q : {0,1}{+Dxt — {0,1}.

v . qis v-balanced.
Defn: qis (v,v)-amplifiable if for all S C [m]:

disc,is1 (xs 0 q) <AF



Multiparty Block Composition

f:{0,13m — {0,1}, approximation degree d. } same property

as before

q: {0,1}k+)xs 5 £0 1}, } q is v-balanced and (v,v)-amplifiable

d

Kem 1

R;.(f oq) = Q(d)

Theorem(C'08): If v <



Proof

» Approximation-Orthogonality

» Simple Fourier Analysis



Approximation-Orthogonality

Lemma (Sherstov08, Shi-Zhu08): Let
f{0,1}m — {-1, 1} have deg,(f) = d > 1.
Then, there exists a ¢:{0,1}™ — {-1,1}
and a distribution p such that

Corr,(f,9) =E,u, f(z)g(x) > 6

and g is (u,d)-orthogonal, i.e.

Corr,(g,xs) = 0,V|S]| < d.



Block Communication Strategy

Approx-degree= d

- foq
block g
(Ml5)_ (>\I5)_
Correlated Correlated dise,(goq)
18C,\(go
g . 9og HEENTR
(11, d)- block q s low.

Hardness-Amplification

Discrepancy-Method

Approximation/Orthogonality
Lemma

R.¢(foq) is high R;(goq) is high

Fact (NS'92): Deg, 5(OR) = Q(vm).



The Inner Function

Question: How do we find such nice g?

1/2"

Try bounding &, x(q)

Theorem (C'08):
disc, 51 pq1 (x5 ©q) < (& x()™?

Theorem (C'08):
Eue(IN}) < §



Two-Party Communication



Multiparty Block Composition

f:{0,13m — {0,1}, approximation degree d. } same property

as before

} small cube-measure
g,u,k (g) < fi
g is u-balanced

g : {0,1}* —{0,1}.

Theorem(C'08): If v < (Seim)Zk,

R (f o g) = Q(d)



Disjointness as Inner Function

NOR : {0,1}™ — {0,1}, approximation degree d =,/m .
UDISI. : {0,1}k+Dxs 5 {0,1}.

Iy s = uniform distrbn on k x s matrices with exactly one all-1 column
U, : uniform distrbn on {0,1}°
Us

Xl X2 M XI " XS

0

o

st Us X i s

NON-Prod distrbn Mk, —

_(.].10
1/4
Theorem(Sherstov’'12): R;(NOR o UDISJ) = (4&)

n = sm




Recent Breakthrough

Theorem(Sherstov’13): Using more analytic technique:

R, (NOR o UDISJ) = Q (g_;.)

Rao-Yehudayoff'14: Simplify above. Show further

i ¢ Mool
Dy NOR+UDIS] = - Z?k‘ :|>Tight!



Conclusion

Did not cover MANY developments.

Several open directions to pursue.

Thanks!



