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Yao’s 2-Party Model of 1979
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• Alice and Bob collaborate to compute f(X,Y).

• Aim to minimize the communication cost.

• Complexity of any f is at most  n+1.
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Easy Functions

110111001

Alice

001111111

0 (Even)

Bob

PARITY(X,Y)=1
YX

Compute PARITY(X,Y).

My Parity is
odd

• CC(PARITY) = 2.
• CC(MAJORITY) = O(log n).



Hard Functions 

How about EQ(X,Y), i.e. is X=Y?

Intuitively, this should require n bits of 
communication!

Needs an argument!



Rectangularity of Protocols

Alice Bob

YX
¼(X,Y)

X’ Y’¼(X’,Y’)

X’

X Y’

Y

¼ (X,Y’)

¼ (X’,Y)

Observation. Every  transcript corresponds to a 
rectangle of form RX £ CY.
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=
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Diagonals are Hard to Cover
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Fact: No two 1’s on diagonal share the same transcript.

CC(Equality)
¸ log (2n) + 1

= n + 1.

X,Y

X’,Y’

X,Y’

X’,Y



Set-Disjointness

1 0 1 1 0 1 0 0 1

1 1 0 1 0 1 1 0 1

Alice

Bob
Disj(A,B)=0

Disj(x,y) = 0 iff for some i, xi = yi = 1.

Suppose ¼(a,ac) =  ¼(b,bc) 

Then ¼(a,bc) =  ¼(b,ac) =  ¼(a,ac) =  
¼(b,bc) 

Contradiction!

Conclusion: All 2n inputs of form (x,xc) have

distinct transcripts.

CC(Disj)
¸ n + 1



Inner-Product

1 0 1 1 0 1 0 0 1

1 1 0 1 0 1 1 0 0

Alice

Bob

IP(x,y) ´ i xi ¢ yi (mod 2)

Rx £ Cy be 0-monochromatic. Lin. Ind.

Concl: Size of monochromatic rectangle is at most 2n. 

CC(IP) ¸ n – o(n)

x

y

x1,, x®n

y1,, y¯n
Lin. Ind.

xi¢yj = 0®+¯ · 1

IP(X,Y)=1



Can randomization help?

One central theme of theory of computation.



The Power of Randomness

1 1 0 1 1 1

Alice

<X,r> mod 2

Bob

0 YX

Compute 
EQUALITY(X,Y).

<Y,r> mod 2 =0

• R1/2 (EQ) = 2. 

1 0 1 1 1 0

0 0 1 010 = r

= 1
X  Y

Randomized protocols can be much more
powerful than deterministic ones.



Limits of Random Protocols 

Set-Disjointness:
Disj(x,y) = 0 iff for some i, xi = yi = 1. 

R(Set-Disj) = (n).

(Kalyanasundaram-Schnitger’87,  Razborov’90).

1 0 1 1 0 1 0 0 1

1 1 0 1 0 1 1 0 1

Alice

Bob
Disj(A,B)=0

Celebrated Result



Streaming Computation

1 2 4 8 1 5 7 4 3 2

0 0 0 0

Goal: Answer questions about the frequency 
distribution on {1,,n}.

Problem: How much space S is needed to 
approximate the maximal frequency?

D[1,,m]

D[i] 2 {1,, n}

0 1 1 11 0 0 11 1 0 1

S



Application to Streaming

110100

Alice

001111

S bits

Bob

0
YX

1 2 4 3 4 5 6

S

|Ax [ By|1 = 2

Ax By

Concl: |M| 1 needs (N) space

How much space needed to compute max frequency?



Many More Applications…

Data Structures.

Circuit complexity.

Pseudo-randomness.

Combinatorial Optimization.

Property Testing.

(Swiss-Army Knife of Computer Scientists)



Multiparty Communication



Number-on-Forehead Model

010001110

Alice

110111001

Bob111000001

Charlie

1101

0111

1101

Chandra-Furst-Lipton’83

• Every pair of bits visible to someone.

• Overlap of Information

• Fewer and fewer information missing
from a player.

Lower bounds are challenging



Foreheads Make a Difference

X        

Bob

Y       

Z       

Charlie

Alice

1

1

Is EQ(X,Y,Z)?

Is X=Y?

Is Z=X?

2-bit protocol

Exploits Information Overlap 

EQUALITY is hard for 2 parties! 



NOF Lower Bounds Benefits

• Circuit Lower Bounds 

• Branching Program Lower Bounds

• Pseudo-random generators

• Lower bounds on length of proofs

• Data-structure lower bounds

• More to be discovered….



Constant-Depth Circuits

Conjecture (Smolensky’87): MAJ needs exponential 
size circuits of constant depth having AND/OR/MODm

gates.

ACC0 ´ {fns having poly-size ckts with AND/OR/MOD gates}.

Open: Is NP µ ACC0 ?



Bounded Depth Circuits

f computed by constant-depth circuits with 

AND/OR/MOD gates efficiently,

AND ANDAND

SYMM

f Beigel –Tarui’91



Protocols for Depth 2 

AND ANDAND

SYMM

f

Question:  k+1-party NOF complexity of f ?

Observ: Each AND gate can
be computed by one player.

Protocol:

• Players 1,,k  send the number of AND gates they see firing 1, 

communicating only poly-log bits each.

• Player k+1  announces the answer. 



NOF Attack on ACC

Theorem: Every f 2 ACC0 has  poly-log(n) simultaneous k-

party communication complexity for some k = poly-log(n), 
under every input partition.

Corollary of Beigel-Tarui’91

Major Goal: Find f that is hard for large number of players. 



A Conjecture

f:{0,1}n ! {0,1} 

¡
(n

2)

¢

0 1 1 1 1 1 1

1 1 0 1 1 0 1

0 1 1 1 1 0 0

. . . . . . .

. . . . . . .

1 1 1 1 1 1 0

X1

X2 

X3 

Xk

(f±q) (X1,X2,,Xk) =

) MAJ ± MAJ  ACC0

1 1 01 000

f(q(C1),q(C2),…,q(Cn))

n

Question: Complexity of (MAJ ± MAJ)?

Observation: 

a la Beigel-Tarui’91

) MAJ  ACC0

Proposed by Babai-Kimmel-Lokam’95

q:{0,1}k ! {0,1} .



Examples of Composition

PARITY ± AND

Remark 1: Argument for Set-Disj spawned many new techniques.

´ IP

Popular Names

NOR ± AND ´ Set-Disj

Complexity ?

Complexity ?

Deterministic

Chor-Goldreich’85

KS’87,  Razborov’90
BJKS’02

£(n).

£(n).

£(n).

£(n).

Folklore

Folklore

k=2

Randomized

Discrepancy

Very influential

Remark 2: Has many diverse applications. 



NOF Lower Bounds

PARITY ± AND ´ GIP

Popular Names

NOR ± AND ´ Set-Disj

Deterministic/Randomized

 (n/4k).

 ((log n)/k).

Babai-Nisan-Szegedy’89

Tesson’05

k ¸ 3

Seminal Paper

Lee-Shraibman’08, C-Ada’08

Sherstov’12

Sherstov’13

Rao-Yehudayoff’14

Deterministic

Apology: SKIPPED other attempts

Improvement Beame-Huynh-Ngoc’09



NOF Lower Bounds

PARITY ± AND ´ GIP

Popular Names
Deterministic/Randomized

 (n/4k).

Babai-Nisan-Szegedy’89

k ¸ 3

Seminal Paper

Remark 1: There is no separate, easier argument for deterministic case. 

Remark 2: All strong bounds on (interactive) k-complexity use  variations of the 
BNS argument. 

Remark 3: All known bounds decay exponentially in k, are trivial for k= !(log n). 

Remark 4: By contrast, for k=2 several methods are known. 

Chor-Goldreich’85

Discrepancy

Razborov’89

Corruption

Raz’95

Fourier-analytic

BJKS’02 and many more

Information
Theory



Surprising Upper Bounds

SYM ± AND {GIP, Disj,…}

Popular Names

SYM ± g {GIP, MAJ ± MAJ, Disj…} 

Deterministic

O (n/2k + k¢ log n ).

O(k.(log n)2), k ¸ log n + 2.

Grolmusz’91, Pudlak

Babai-Gal-Kimmel-Lokam’

k ¸ 3

Ada-C-Fawzi-Nguyen’12

g: compressible  

SYM ± ANY 

SYM ± ANYs

Simultaneous

Simultaneous

s ¼ log log n
C-Saks’14

Almost- Simultaneous

Almost- Simultaneous

O(k.(log n)2), k ¸ log n + 4.

poly-log(n), k ¸ 2log n 



Cylinder Intersections

X

Y

Z

CZ ´ CZ(X,Y)

CY ´ CY(X,Z)

CX ´ CX(Y,Z)

C= CX Å CY Å CZ is a cylinder intersection.

Rectangles , i.e. C1(X) £ C2(Y) £ C3(Z), are very special.

Fact: A c-bit deterministic protocol partitions inputs into at most 2c

monochromatic cylinder intersections.



The Discrepancy Method
Discrepancy: For a probability distr ¹,

| ¹-wt of f-1(1) in C – ¹-wt of f-1(-1) in C |disc¹(f,C) = 

disc¹(f) = maxC disc¹(f,C). 

Discrepancy Method: 

¦ ´ C1 [ C2 [  [ Ct Adv in Ci = disc¹(f,Ci)

Total Adv = 2²

Union bound

Yao’s
method 



Question: How do we compute discrepancy?

An inductive Cauchy-Schwarz argument.



Cauchy-Schwarz Magic

0/1 valued

2

2

2

2

Cauchy-Schwarz

f Z 0 ;Z 1 ¡
X ; Y

¢

£2
£2

2

2

£2

ind of X



The BNS-Chung Criterion

Theorem (Raz’00):  

Cube Measure/Gower’s norm



Application to GIP
ci

Observation:  

Conclusion:  

Discrepancy Method: 



Limitations of Discrepancy

L- = set of non-disjoint inputs
L+ = set of disjoint inputs.

. . . . . .

. . . . . .

. . . . . .

. . . . .

. . . . .1

1

1

1

1

ith column

Ci = set of inputs that have an 
all-one ith column 

Fact: L- = C1 [  [ Cn.

Fact: Each Ci is  a rectangle.

Conclusion 1: L- has a small cover.

Conclusion 2: For every distribution ¹, 

Corollary: Impossible to get !(log n) bounds for DISJ 
by direct DM.



Generalized Discrepancy

Lemma (Generalized Discrepancy): Denote X = Y1 £  £

Yk. Let f: X  {1,-1} and g: X  {1,-1} be such that Corr¹
(f,g) ¸ ±, for some distribution ¹.

Remark: The classical discrepancy method follows by putting 
g=f and hence ±=1.

disc(g) << disc(f)

Klauck’01 applied to f = MAJ ± AND.



Composed Functions

Question: Given f, how to find g? 

Answer: No general technique known. 

For f ± q, Sherstov’08 and Shi-Zhu’08 gave techniques for 

2-party. 



Polynomial Representation 

Let V ´ {f | f:{0,1}n  R}.

Observation: V is a vector space of dimension 2n.

Defn: For each S µ {1,,n},

Fact: The set M ´ {ÂS | S µ[{1,,n} forms a basis of V, 
called the Fourier basis.

Definition: Let f= S cS ÂS. The degree of f is the cardinality 
of a maximal S such that cS  0. 



Approximation of Functions

Fundamental: How closely can f:{0, 1}n ! R be 

approximated by low degree functions?

Definition: The ±-approximate degree of f, deg±(f), 
is the minimum integer d such that there exists Á 2
span({ÂS : |S| · d}) and

max
x2{0,1}n



Degree of Functions

• AND(X) = X1 X2 Xn

• OR(X) = 1 – (1-X1)(1-X2)(1-Xn)

• PARITY(X)

• MAJORITY(X)
Exact degree £(n)

Fact (Nisan-Szegedy’92): Deg1/3(OR) = 

Approx degree?



Pattern Matrix Method

1 0

X1 X2

0 1

X1 X2

X

Y

X1

IN :

X2

Let q:{0,1}s£{0,1}s  {0,1} have IN as a sub-(partial)function. 

Let f have high approximation degree d.

For f ± q, Sherstov’08 applied Generalized-Discrepancy : 

2

2



Pattern Tensor Method

q: {0,1}sk  {0,1}, contains . 

f : {0,1}m  {0,1}, approximation degree d.

Lee-Shraibman’08 and C-Ada’08 applied Generalized-Discrepancy : 

Indices into tensor 

doubly exp in k  
constant k, n(1)



Block-Composition

Introduced by Shi-Zhu’08 for 2-party. 

f : {0,1}m  {0,1}, approximation degree d.

q : {0,1}s£{0,1}s  {0,1}. 

same property
as before

spectral (analytic) property

f ± q: Generalized-Discrepancy gives strong 2-party bounds. 

How to extend to k ¸ 3 parties? 



Discrepancy Amplification

q : {0,1}(k+1)£t  {0,1}. 

º :  q is º-balanced. 

Defn:  q is (°,º)-amplifiable if for all S µ [m]: 



Multiparty Block Composition

f : {0,1}m  {0,1}, approximation degree d.

q : {0,1}(k+1)£s  {0,1}. 

same property
as before

q is º-balanced and (°,º)-amplifiable  

Theorem(C’08): If                 ,



Proof

• Approximation-Orthogonality 

• Simple Fourier Analysis 



Approximation-Orthogonality

Lemma (Sherstov08, Shi-Zhu08): Let 
f:{0,1}m ! {-1, 1} have deg±(f) = d ¸ 1. 
Then, there exists a g:{0,1}m ! {-1,1} 
and a distribution ¹ such that

and g is (¹,d)-orthogonal, i.e.



Block Communication Strategy

Fact (NS’92): Deg1/3(OR) = (     ).

f

disc¸(g±q)

is low.

Rk
²(g±q) is highRk

²(f±q) is high

(¹,d)-

orthogonal Discrepancy-Method

g

(¹,±)-

Correlated

block q
g±q

(¸,±)-

Correlated

Hardness-Amplification
Lemma

block q

Approximation/Orthogonality
Lemma

Approx-degree= d
f±q



The Inner Function 

Question: How do we find such nice q?

Try bounding 

Theorem (C’08): 

Theorem (C’08): 



Two-Party Communication



Multiparty Block Composition

f : {0,1}m  {0,1}, approximation degree d.

g : {0,1}k£s  {0,1}. 

same property
as before

small cube-measure  

Theorem(C’08): If                   ,

g is ¹-balanced 



Disjointness as Inner Function

NOR : {0,1}m  {0,1}, approximation degree d = .

UDISJs : {0,1}(k+1)£s  {0,1}. 

Theorem(Sherstov’12): 

¹k,s : uniform distrbn on k £ s matrices with exactly one all-1 column 

Us : uniform distrbn on {0,1}s

¸k,s : Us £ ¹k,s 

n = sm

¡
(n

2)

¢

. .

0 . . 1 . .

. . . 1 . 0

. 0 . 1 0 .

. . 0 1 . .

x1 xi
x2 xsUs

¹k,sNON-Prod distrbn



Recent Breakthrough

Theorem(Sherstov’13): Using more analytic technique:                

Rao-Yehudayoff’14: Simplify above. Show further                

Dk

¡
NOR ± UDISJ

¢
= ­

µ
n
4k

¶

Tight!



Conclusion

Did not cover MANY developments.              

Several open directions to pursue.               

Thanks!


