
12

Voting and Bribing in Single-Exponential Time

DUŠAN KNOP, Department of Theoretical Computer Science, Faculty of Information Technology,

Czech Technical University in Prague, Czech Republic

MARTIN KOUTECKÝ, Charles University, Czech Republic

MATTHIAS MNICH, TU Hamburg, Germany

We introduce a general problem about bribery in voting systems. In the R-Multi-Bribery problem, the goal
is to bribe a set of voters at minimum cost such that a desired candidate is a winner in the perturbed election
under the voting rule R. Voters assign prices for withdrawing their vote, for swapping the positions of two
consecutive candidates in their preference order, and for perturbing their approval count to favour candidates.

As our main result, we show that R-Multi-Bribery is fixed-parameter tractable parameterized by the
number of candidates |C | with only a single-exponential dependence on |C |, for many natural voting rules R,
including all natural scoring protocols, maximin rule, Bucklin rule, Fallback rule, SP-AV, and any C1 rule. The
vast majority of previous work done in the setting of few candidates proceeds by grouping voters into at
most |C |! types by their preference, constructing an integer linear program with |C |!2 variables, and solving

it by Lenstra’s algorithm in time |C |! |C |!2 , hence double-exponential in |C |. Note that it is not possible to
encode a large number of different voter costs in this way and still obtain a fixed-parameter algorithm, as
that would increase the number of voter types and hence the dimension. These two obstacles of double-
exponential complexity and restricted costs have been formulated as “Challenges #1 and #2” of the “Nine
Research Challenges in Computational Social Choice” by Bredereck et al.

Hence, our result resolves the parameterized complexity ofR-Swap-Bribery for the aforementioned voting
rules plus Kemeny’s rule, and for all rules except Kemeny brings the dependence on |C | down to single-
exponential. The engine behind our progress is the use of a new integer linear programming formulation,
using so-called “n-fold integer programming.” Since its format is quite rigid, we introduce “extended n-fold
IP,” which allows many useful modeling tricks. Then, we model R-Multi Bribery as an extended n-fold IP
and apply an algorithm of Hemmecke et al. [Math. Prog. 2013].

CCS Concepts: • Theory of computation → Parameterized complexity and exact algorithms;

Additional Key Words and Phrases: Voting system, swap bribery, integer programming

ACM Reference format:

Dušan Knop, Martin Koutecký, and Matthias Mnich. 2020. Voting and Bribing in Single-Exponential Time.
ACM Trans. Econ. Comput. 8, 3, Article 12 (June 2020), 28 pages.
https://doi.org/10.1145/3396855

The work is supported by the European Research Council under Grant No. 306465, the Deutsche Forschungsgemeinschaft
under Grant No. MN 59/4-1, by the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for
Informatics,” by the Charles University project UNCE/SCI/004, and by the project 19-27871X of GA ČR.
Authors’ addresses: D. Knop, Department of Theoretical Computer Science, Faculty of Information Technology, Czech
Technical University, Thákurova 9, 160 00, Prague, Czech Republic; email: dusan.knop@fit.cvut.cz; M. Koutecký, Univerzita
Karlova, Matematicko-fyzikální fakulta, Informatický ústav Univerzity Karlovy, Malostranské nám. 25, 118 00, Prague,
Czech Republic; email: koutecky@iuuk.mff.cuni.cz; M. Mnich, Hamburg University of Technology, Institute for Algorithms
and Complexity, Blohmstr. 15, 21079 Hamburg, Germany; email: mmnich@tuhh.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2167-8375/2020/06-ART12
https://doi.org/10.1145/3396855

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.

https://doi.org/10.1145/3396855
https://doi.org/10.1145/3396855


12:2 D. Knop et al.

1 INTRODUCTION

In this work, we address algorithmic problems from the area of voting and bribing. In these prob-
lems, we are given as input an election, which consists of a setC of candidates and a setV of vot-
ersv , each of which is equipped with a linear order �v indicating their preferences over the setC of
candidates. Further, we have a fixed voting rule R (that is not part of the input), which determines
how the orders of the voters are aggregated to determine the winner(s) of the election among the
candidates. Popular examples of voting rules R include “scoring protocols” like plurality—where
the candidate(s) ranked first by most voters win(s)—or the Borda rule, where each candidate re-
ceives |C | − i points from being ranked ith by a voter and the candidate with most points is a
winner; and the Copeland rule, which orders candidates by their number of pairwise victories (by
majority) minus their number of pairwise defeats.

The goal is to perturb the given election (C,V ) by bribing voters through bribery actions Γ in such
a way that a designated candidate c� ∈ C is a winner in the perturbed election (C,V )Γ under the
voting rule R. Such perturbation problems model various real-life issues, such as actual bribery,
campaign management, or post-election checks, as in destructive bribery (known as “margin of
victory”); for an overview of the many flavors of bribery problems we refer to a recent survey by
Faliszewski and Rothe [35].
R- Multi-Bribery . Perturbation is performed by the actions of swapping the position of two

adjacent candidates in the preference order of some voter, by push actions that perturb the approval
count of a voter1 and control changes that (de)activate some voters. The algorithmic problem is
to achieve the goal by performing the most cost-efficient actions. To measure cost of swaps, we
consider the model introduced by Elkind et al. [25] where each voter may assign different prices
σv (c, c ′) for swapping two consecutive candidates c, c ′ in their preference order; this captures the
notion of small changes and comprises the preferences of the voters. If voterv is involved in a swap
or push action, then a one-time influence cost ιv occurs. We additionally allow voter-individual
cost πv for push actions and voter-individual cost αv and δv for activation and deactivation. Our
model is general enough that we even allow negative costs. Unless explicitly stated, we assume
preference orders are total, with the following exceptions. We assume general partial orders to be
given in the Possible Winner problem. Further, we assume top-truncated orders to be given in
R-Extension-Bribery; with top-truncated orders voters rank only their top candidates and are
indifferent toward the other candidates. Last, we can also handle weak (or bucket) orders, which
are linear orders over partitions of candidates, where a voter is indifferent between candidates
in each part, see Section 2. The topic of Swap Bribery in general partial orders is a non-trivial
and interesting one, and we discuss it later. We call this very general set-up the R-Multi-Bribery
problem.

Various special cases of the R-Multi-Bribery problem have been studied in the literature; see
Table 1 for an overview of which problems are captured by R-Multi-Bribery. For instance, in
R-Swap-Bribery, only swaps are permitted. However, in R-Support-Bribery, only push actions
are allowed. And in the Young Score problem, only control changes are allowed.

The aforementioned many special cases of R-Multi-Bribery have been investigated exten-
sively from an algorithmic viewpoint. As it turns out, most of the cases looked at are NP-hard,
such as R-Swap-Bribery, R-Shift-Bribery, and others. Therefore, we expect algorithms solving
these problem exactly to take superpolynomial time (assuming P � NP). Yet, in many application
scenarios it is reasonable to assume that the number |C | of candidates is small; it has therefore
been of high interest to design algorithms for NP-hard score (winner determination) and bribery

1Here, the approval count of a voter v specifies how many top candidates receive some points from v . See also the de-
scription of SP-AV.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:3

Table 1. R-Multi-Bribery Generalizes Several Studied Bribery Problems,
Whose Formal Definitions We Give in Appendix A

Problem name Specialization of R-Multi-Bribery
R-$Bribery σv ≡ 0,πv ≡ ∞,αv ≡ δv ≡ ∞
R-Manipulation ιv ≡ 0 for v ∈ M , ιv ≡ ∞ for v � M
R-CCAV/R-CCDV ιv ≡ 0,σv ≡ πv ≡ ∞
R-Swap-Bribery πv ≡ ∞, αv ≡ δv ≡ ∞, ιv ≡ 0
R-Shift-Bribery R-Swap-Bribery with σv (c, c ′) = ∞ for c� � {c, c ′}
R-Support Brib. σv ≡ αv ≡ δv ≡ ∞, ιv ≡ 0
R-Mixed-Bribery αv ≡ δv ≡ ∞, ιv ≡ 0
R-Extension-Bribery σv (c, c ′) = 0 if c, c ′ unranked, else σv (c, c ′) = ∞; αv ≡ δv ≡ ∞, ιv = 0
R-Possible Winner reduce to R-Swap-Bribery [25, Thm. 2]
Dodgson Score Condorcet-Swap-Bribery with σv ≡ 1
Young Score Condorcet-CCDV with δv ≡ 1

For R-Manipulation the set of manipulators M ⊆ V is given in the input. If voter v is involved in a swap or push action,
then a one-time influence cost ιv occurs.

problems that exploit this property. In particular, a quest for algorithms that solve instances I
of size n in time f ( |C |) · nO (1) for some computable function f has been made; such algorithms
are called fixed-parameter algorithms. Fixed-parameter algorithms are contrasted with so-called
XP-algorithms that have runtimes of the form nf ( |C |) . Whereas XP-algorithms are generally con-
sidered impractical even for small instances I and few candidates, fixed-parameter algorithms have
the potential to be practical, provided that the function f exhibits moderate growth.

The current situation for manipulation, control and bribery problems is that indeed, a large
number of fixed-parameter algorithms for NP-hard problems in election manipulation, control,
and bribery have been designed, when parameterized by |C |, for a multitude of voting rules [2, 6,
10, 11, 13–15, 22, 30]. For instance, a prototypical algorithm in that direction is due to Dorn and

Schlotter [22], who show how to solve R-Swap-Bribery with uniform costs2 in time 22O ( |C |) · nO (1)

for all so-called linearly describable voting rules R; here, uniform costs means that swapping any
two adjacent candidates always has the same cost for all voters. In the Dorn-Schlotter algorithm, as
well as several other fixed-parameter algorithms designed for few candidates, the function f ( |C |)
typically grows double-exponentially in |C |, which a priori makes these algorithms impractical
even for very few candidates. As the double-exponential dependence on |C | in those algorithms
often stems from solving, as a subroutine, a certain integer linear program (ILP) by means of the
celebrated algorithm of Lenstra [53], Bredereck et al. [9] put forward the following “Challenge #1,”
as part of their “Nine Research Challenges in Computational Social Choice”:

2Bredereck et al. [10] pointed out that the algorithm by Dorn and Schlotter only works for uniform costs.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:4 D. Knop et al.

Another downside of the “ILP-based approach” is that it inherently treats voters not as individ-
uals but as groups that share preferences. This makes it difficult to obtain algorithms where voters
from the same group differ in some way, such as by the cost of bribing them. Their “Challenge #2”
thus reads:

1.1 Our Contribution

Our main result is a fixed-parameter algorithm for R-Multi-Bribery parameterized by the num-
ber of candidates, for many fundamental voting rules R. Our algorithm has a few advantages
over previous works, in that it works for voter-dependent cost functions, and it runs in time
that is only single-exponential in |C |. The algorithm applies to a large number of voting rules R,
such as all natural scoring protocols where each candidate receives at most |C | points from each
voter.

Theorem 1.1. R-Multi-Bribery is fixed-parameter tractable parameterized by the number of

candidates, and can be solved in time

• 2O ( |C |6 log |C |) · n3 when R is any natural scoring protocol, any C1 rule, or sincere-strategy

preference-based approval voting (SP-AV),

• 2O ( |C |6 log |C |) · n4 when R is the maximin, Bucklin, or Fallback rule, and

• 2O ( |C |!6 log |C |) · n3 when R is the Kemeny rule.

In summary, our algorithm subsumes, and improves, all previously devised algorithms for the
problems listed in Table 1. For some problems, such as Young-Score, our algorithm yields the first
improvement since 1977; we summarize the comparison in Table 2.

Applications of Theorem 1.1. We argued that R-Multi-Bribery generalizes many well-studied
voting and bribing problems, parameterized by the number of candidates. A direct corollary of
Theorem 1.1 is as follows:

Corollary 1.2. Let R be any natural scoring protocol, a C1 rule, the maximin rule, the Bucklin

rule, the SP-AV rule, the Fallback rule, or Kemeny rule. Then R-Swap-Bribery is fixed-parameter

tractable parameterized by the number |C | of candidates.

This solves “Challenge #2” by Bredereck et al. [9]. In particular, for scoring protocols, maximin
rule, and Bucklin rule, Corollary 1.2 extends and improves an algorithm by Dorn and Schlotter [22]
that is restricted to the uniform cost case of R-Swap-Bribery, and requires double-exponential

runtime 22O ( |C |) · nO (1) .
We remark that it is unclear (see Reference [30, p. 338]) if the Kemeny rule can be described

by linear inequalities as defined by Dorn and Schlotter [22]; even if it does, ours is the first fixed-
parameter algorithm for R-Swap-Bribery under the Kemeny rule, as Dorn and Schlotter’s algo-
rithm only applies to the unit-cost case.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:5

Table 2. Summary of Results from This Paper for R-Multi-Bribery Compared
to Previous Works for Special Cases

Previous best result New result
Problem Runtime/hardness Voting rules R
R-$Bribery 22O ( |C |)

nO (1) Approval [13] 2O ( |C |6 log |C |) · n3

R-Manipulation 22O ( |C |)
nO (1) Borda [7] 2O ( |C |6 log |C |) · n3

R-CCAV/R-CCDV 22O ( |C |)
nO (1) Approval [13] 2O ( |C |6 log |C |) · n3

R-Swap-Bribery 22O ( |C |)
nO (1) , uniform cost Approval [22] 2O ( |C |6 log |C |) · n3

R-Shift-Bribery XP-algor., arbitrary cost, Borda, Cope-land,

FPT-AS, restricted cost Maximin [14] 2O ( |C |6 log |C |) · n4

R-Support Brib. NP-hard Fallback, SP-AV [60] 2O ( |C |6 log |C |) · n4

R-Mixed-Bribery NP-hard SP-AV [25] 2O ( |C |6 log |C |) · n3

R-Extension-Bribery NP-hard Borda, Cope-

land0, Maximin [4] 2O ( |C |6 log |C |) · n4

R-Possible Winner 22O ( |C |)
nO (1) Bucklin, Copeland,

pos. scoring protocols [6] 2O ( |C |6 log |C |) · n3

R-$Bribery XP-algor., arbitrary cost Kemeny [29] 2O ( |C |!6 log |C |) · n4

Dodgson Score 22O ( |C |)
nO (1) [2] 2O ( |C |6 log |C |) · n3

Young Score 22O ( |C |)
nO (1) [63] 2O ( |C |6 log |C |) · n3

In each row corresponding to a problem R-Problem, we state the previously best known dependency on |C | for voting
rules R for which R-Problem is known to be NP-hard. For R-Shift-Bribery, FPT-AS refers to a fixed-parameter ap-

proximation scheme, which is an algorithm that yields a (1 − ε )-approximate solution in time f (1/ε, |C |) · nO (1) for some
superpolynomial function f and any ε > 0; it is thus a weaker result than a fixed-parameter algorithm.

Another corollary of Theorem 1.1 is the following:

Corollary 1.3. R-Shift-Bribery is fixed-parameter tractable parameterized by the number of

candidates, for R being the Borda rule, the maximin rule, and the Copelandα rule.

This way, we simultaneously improve the fixed-parameter algorithm by Dorn and Schlotter [22]
for uniform cost, the XP-algorithm and the fixed-parameter approximation scheme for arbitrary
cost by Bredereck et al. [10]. Further, we have the following:

Corollary 1.4. Approval-$Bribery, Approval-$CCAV, and Approval-$CCDV can be solved in

time 2O ( |C |6 log |C |) · n4.

This improves a recent result by Bredereck et al. [13], who solved these problems in time that
is double-exponential in |C |.

1.2 Our Approach

The runtimes that we achieve in Theorem 1.1 are (except for the Kemeny rule) only single-
exponential in |C |. To achieve this, we avoid using Lenstra’s algorithm for solving fixed-dimension
ILPs [53], which was the method of choice so far (and which led to double-exponential runtimes).
Typically, when using Lenstra’s algorithm one has to “group objects” to be able to bound their
number in terms of the used parameters. Instead, we formulate the R-Multi-Bribery problem
in terms of an n-fold integer program (IP). Unlike fixed-dimension ILPs, n-fold IPs allow variable
dimension at the expense of a more rigid block structure of the constraint matrix. We manage to
encode the R-Multi-Bribery problem for many voting rules R in a constraint matrix that has this

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:6 D. Knop et al.

required structure. The formulations are not straightforward: Rather, we model the problems in
terms of an “extended” n-fold IP that has a more general format than is required by the “standard”
n-fold IP discussed in the literature. Then we show how to efficiently transform any extended
n-fold IP into a standard n-fold IP. The dimension (i.e., the number of variables) of this IP is not
bounded by any function of the number |C | of candidates; however, we bound the dimension of
each block by a polynomial in |C |. Then we solve the standard n-fold IP via an algorithm of Hem-
mecke et al. [44] whose runtime depends exponentially only on the largest dimension of each
of its blocks. That algorithm has a rather combinatorial flavor as it works by iterative augmen-
tation, an approach similar to solving min-cost flow by (fast) cycle cancelation; see Hemmecke
et al. [44]. This way, we substantially contribute toward resolving “Challenge #1” by Bredereck
et al. [9].

Parameterized complexity. A parameterized problem is a decision problem (language) P ⊆ Σ∗

accompanied with a parameter κ : Σ∗ → N mapping instances of P to values of the parameter.
A parameterized problem (P,κ) is fixed-parameter tractable (and is in the class FPT) if there is
an algorithm deciding whether x belongs to P or not with running time f (κ (x )) · |x |O (1) , where
f : N → N is a computable function (independent of |x |). A parameterized problem (P,κ) is in
the class XP if there is an algorithm deciding whether x belongs to P or not with running time
|x |f (κ (x )) , where f : N → N is a computable function. Let (P,κ), (P′,κ ′) be two parameterized
problems. We say that (P′,κ ′) reduces to (P,κ) if there is an algorithm that on input (y,κ ′(y)) in
time f (κ (y)) · |y |O (1) produces an instance x with κ (x ) ≤ f (κ ′(y)) (for some computable function
f : N → N) such that y ∈ P′ if and only if x ∈ P. A parameterized problem (P,κ) is W[1]-hard

if every problem in W[1] can be reduced to it. For background, we refer to the books by Flum and
Grohe [39] or Cygan et al. [18].

1.3 Related Work

Bribery problems in voting systems are well studied [10, 22, 25, 29]. The most important bribery
model for our study—the swap bribery—was introduced and first considered by Elkind et al. [25].
We also continue the study of Faliszewski et al. [30] who, in the control framework of Bartholdi
et al. [2], proposed the study of multiple attacks (i.e., using more control paradigms at the same
time—e.g., deleting a candidate and, simultaneously, adding few so far latent voters). Dorn and
Schlotter [22] used an ILP model of bribery to give fixed-parameter algorithms for the parameter
number of candidates in the given election, e.g., with uniform costs per swap and for R being a
scoring protocol. Bredereck et al. [10] consider parameterized complexity of shift bribery (intro-
duced by Elkind and Faliszewski [24] that, in particular, also focused on the connection between
bribery and campaign management), where candidates can be shifted up a number of positions in
a voter’s preference order; this is a special case of swap bribery. An extension of their model [15]
allows campaign managers to affect the position of the preferred candidate in multiple votes, ei-
ther positively or negatively, with a single bribery action, which applies to large-scale campaigns.
Complexity of bribery of elections admitting for multiple winners, such as when committees are
formed, has been studied by Bredereck et al. [14]. Computational complexity of (swap) bribery in
Bucklin and fallback elections is studied by Faliszewski et al. [34]. Bribery as a manipulation in
iterative voting procedures, i.e., where the candidates are eliminated one by one in rounds, was
studied by Maushagen et al. [55]—here typically NP-hardness of bribery with e.g., the Baldwin or
Nanson rules is established. Dey et al. [21] study the so-called Frugal Bribery, where it is possible
to bribe a voter only if the voter benefits by this, i.e., if the voter prefers the new outcome of the
election to the current one. The same set of authors [20] study the complexity of finding a possible

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:7

set of manipulators (i.e., voters that can if work in a synergy change the outcome of an election).
Their study is mostly focused on classical complexity mainly in the case of small groups of ma-
nipulators (e.g., sets of size O (1)). Also, different cost models have been considered: Faliszewski
et al. [29] require that each voter has their own price that is independent of the changes made to
the bribed vote. The more general models of Faliszewski [27] and Faliszewski et al. [31] allow for
prices that depend on the amount of change the voter is asked for by the briber (in the later case
of the so-called microbribery).

Of a particular interest and motivation for our work are the work that use integer linear pro-
gramming models for solving bribery problems or their relaxations in to obtain approximation
algorithms. We begin with the work of Keller et al. [48] who presented a PTAS for shift bribery
of scoring rules. It is worth mentioning that a factor 2-approximation for the same problem was
presented already by Elkind and Faliszewski [24]. In these results one tries to approximate the
number of manipulators needed. An orthogonal line of research focuses on minimizing the num-
ber of points by which the preferred candidate losses the altered election using a scoring rule [49];
see also Reference [33]. An interesting model of persuasion, which is related to bribery, where in
rounds an agent proposes new preference profiles to other voters (who switch to the suggested
one if they can benefit from this change) is studied by Hazon et al. [43].

The main motivation for studying (destructive) bribery comes from the study of the so-called
margin of victory, or robustness. This paradigm, to the best of our knowledge, was introduced
independently by Magrino et al. [54] and Cary [16]. Later Xia [62] studied various (classical) com-
plexity aspects of computing the margin of victory. It should be noted that these papers only deal
with unit costs, i.e., the cost of bribery is uniform for all the voters. In the same context Shiryaev
et al. [61] study swap bribery as a more fine grained measure. In the multiwinner setting a possible
motivation for studying (constructive) bribery might come from the need to measure the candidate
success (in the case he or she is not in the winning committee) [36]; see also References [12, 42, 46].

For various other bribery models that have been investigated algorithmically, see, e.g.,
Baumeister and Rothe [5, Chapter 4.3.5] or Faliszewski and Rothe [35]; see also, e.g., References
[3, 59].

Regarding ILPs, tractable fragments include ILPs whose defining matrix is totally unimodu-
lar (due to the integrality of the corresponding polyhedra and the polynomiality of linear pro-
gramming), and ILPs in fixed dimension (due to the algorithms of Lenstra [53] and Kannan [47]).
Courcelle’s theorem [17] and Freuder’s algorithm [40] implies that solving ILPs is fixed-parameter
tractable parameterized by the treewidth of the constraint matrix and the maximum domain size
of the variables. Ganian and Ordyniak [41] showed fixed-parameter tractability for the combined
parameter the treedepth and the largest absolute value in the constraint matrix, and contrasted
this with a W[1]-hardness result when treedepth is exchanged for treewidth.

The present article played an important role as a catalyst for focusing attention on n-fold IP and
related IPs. By close inspection of the algorithm of Hemmecke et al. [44], we were able to obtain
an improved version for the special case of “combinatorial n-fold IPs” that include the presently
studied models for R-Multi Bribery [52]. The technical contribution established above in the
form of an improved dynamic programming approach, has then led to speed-ups for general n-
fold IPs, both in terms of the parameters and the dimension n, culminating in the currently best
algorithms due to Eisenbrand et al. [23]. Also, an initial experimental evaluation was carried out by
Altmanová et al. [1] suggesting that iterative augmentation algorithms have potential for practical
applications, because of certain “adaptivity” properties. The notion of extended n-fold IP was so
far not used elsewhere, but it perhaps popularized some modeling tricks used here, see Falisezwski
et al. [28].

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:8 D. Knop et al.

Organization. In Section 2, we provide the necessary background on the problems that we solve.
Then, in Section 3, we define extended n-fold IPs, which later allow for easier problem modeling.
We do so in Section 4, where we give extended n-fold IP formulations for several instantiations of
the R-Multi-Bribery problem. The complexity lower bounds and hardness results are given in
Section 5. We conclude in Section 6.

2 VOTING AND BRIBING PROBLEMS

We give notions for the problems we deal with; for background, we refer to the surveys of Brams
and Fishburn [8] and Faliszewski and Rothe [35].

Elections. An election (C,V ) consists of a set C of candidates and a set V of voters, who indicate
their preferences over the candidates in C . There are many ways in which a voter’s preferences
can be modeled; throughout this article we use a variant of the ordinal model, where each voter
v’s preferences are represented via a preference order �v , which is a total order over C unless
stated otherwise. In some problems we study voters who indicate their preferences only for their
“top candidates”; we model this with “truncated orders.” For an integer t ∈ N , a preference or-
der �v is t-top-truncated if there is a permutation π over {1, . . . , |C |} such that �v is of the form
cπ (1) �v · · · �v cπ (t ) �v {cπ (t+1), . . . , cπ ( |C |) }; that is, v is indifferent among the members of the
set {cπ (t+1), . . . , cπ ( |C |) }, which we call unranked candidates; we refer to {cπ (1), . . . , cπ (t ) } as to the
ranked candidates. For a ranked candidate c we denote by rank(c,v ) their rank in �v ; then v’s
most preferred candidate has rank 1 and their least preferred candidate has rank |C |. Also, for
t-top-truncated preference orders �v it holds that rank(c,v ) ≤ t for all ranked candidates c ∈ C .
We note here that if �v is a weak order (or bucket order), i.e., when it is a linear order over dis-
joint groups of candidates with the voter having no preference over candidates in one group, we
may replace it with any linear extension of �v and set the cost of swapping two candidates c, c ′

to 0 whenever rank(c,v ) = rank(c ′,v ) in the original order. Independently of voters, for the set
of candidates C we also refer to a linear order �C over C as to a ranking of C (i.e., ranking is a
shorthand for a linear order on candidates). For distinct candidates c, c ′ ∈ C , we write c �v c ′ if
voter v prefers c over c ′. To simplify notation, we sometimes identify the candidate setC with the
set {1, . . . , |C |}, in particular when expressing permutations overC . All studied problems designate
a candidate in C; we always denote it by c�.

Next, we describe the actions by which we perturb a given election (C,V ). Applying a set Γ of
actions to (C,V ) yields a perturbed election that we denote by (C,V )Γ . Performing an action incurs
a cost; we specify these costs by functions that for each voter v ∈ V specify their individual cost
of performing the action.

2.1 Actions for Manipulation

Swaps. Let (C,V ) be an election, let v ∈ V be a voter, and let �v be their preference order. For
candidates c, c ′ ∈ C , a swap s = (c, c ′)v means to exchange the positions of c and c ′ in �v ; denote
the perturbed order by �s

v . A swap (c, c ′)v is admissible in �v if rank(c,v ) = rank(c ′,v ) − 1. A
set S of swaps is admissible in �v if they can be applied sequentially in �v , one after the other, in
some order, such that each one of them is admissible. Note that the perturbed vote, denoted by �S

v ,
is independent from the order in which the swaps of S are applied. We also extend this notation
for applying swaps in several votes and denote it V S . We specify v’s cost of swaps by a function
σv : C ×C → Z. A special case of swaps are “shifts,” where we want to make c� win the perturbed
election by shifting them forward in some of the votes, at an appropriate cost, without exceeding
a given budget. Shifts can be modeled by swaps only involving c�.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:9

Push actions. Let (C,V ) be an election. In certain voting rules, such as SP-AV or Fallback (to
be defined below), each voter v ∈ V additionally has an approval count av ∈ {0, . . . , |C |}. Voter
v’s approval count3 av indicates that they approve the top-ranked av many candidates in their
preference order, and disapprove all others. A “push action” can change a voter’s approval count:
formally, for voterv and t ∈ {−av , . . . , |C | − av }, a push actionpv = t changes their approval count
to av + t . We specify the cost of push actions by a function πv : {−av , . . . , |C | − av } → Z; we
stipulate that πv (0) = 0. If a voter v is involved in a swap or a push action, a one-time influence

cost ιv occurs.

Control changes. Let (C,V ) be an election. We partition the set V into a set Va of active voters
and a set V� of latent voters. Only active voters participate in an election, but through a “control
change” latent voters can become active or active voters can become latent. (If no partition of V
into Va and V� is specified, then we implicitly assume that V = Va .)

Formally, a control change γ activates some latent voters from V� and deactivates some active
voters from Va ; denote the changed set of voters by (V� ∪Va )γ . We denote the cost of activating
voter v ∈ V� by αv and the cost of deactivating voter v ∈ Va by δv .

2.2 Voting Rules

A voting rule R is a function that maps an election (C,V ) to a subsetW ⊆ C , called the winners.
We study the following voting rules:

Scoring protocols. A scoring protocol is defined through a vector s = (s1, . . . , s |C | ) of integers
with s1 ≥ · · · ≥ s |C | ≥ 0. For each position p ∈ {1, . . . , |C |}, the value sp specifies the number of
points that each candidate c receives from each voter that ranks c as pth best. Any candidate with
the maximum number of points is a winner. Examples of scoring protocols include the Plural-
ity rule with s = (1, 0, . . . , 0), the d-Approval rule with s = (1, . . . , 1, 0, . . . , 0) with d ones, and
the Borda rule with s = ( |C | − 1, |C | − 2, . . . , 1, 0). Throughout, we consider only natural scoring
protocols for which s1 ≤ |C |; this is the case for the aforementioned popular rules.

Bucklin. The Bucklin winning round is the (unique) number k such that using the k-approval
rule yields a candidate with more than n

2 points, but the (k − 1)-approval rule does not. A Bucklin

winner is then any candidate with the maximum points (over all candidates) when the k-approval
rule is applied.

Condorcet-consistent rules. A candidate c ∈ C is a Condorcet winner if any other c ′ ∈ C \ {c} sat-
isfies |{v ∈ V | c �v c ′}| > |{v ∈ V | c ′ �v c}|. A voting rule is Condorcet-consistent if it selects the
Condorcet winner in case there is one. Fishburn [37] classified voting rules as C1, C2, or C3, de-
pending on the kind of information needed to determine the winner.4 For candidates c, c ′ ∈ C let
v (c, c ′) be the number of voters who prefer c over c ′, that is,v (c, c ′) = |{v ∈ V | c �v c ′}|; we write
c <M c ′ if c beats c ′ in a head-to-head contest, that is, if v (c, c ′) > v (c ′, c ).

C1: R is C1 if knowing <M suffices to determine the winner, that is, for each pair of candidates
c, c ′ we know whetherv (c, c ′) > v (c ′, c ),v (c, c ′) < v (c ′, c ) orv (c, c ′) = v (c ′, c ). An example
is the Copelandα rule for a rational number α ∈ [0, 1], which specifies that for each head-to-
head contest between two distinct candidates, if some candidate is preferred by a majority
of voters, then they obtain one point and the other candidate obtains zero points, and if a

3See Scoring protocols for the definition.
4Sometimes the classification (C1, C2, C3) applies to Condorcet-consistent rules only, i.e., voting rules that guarantee to
select a Condorcet winner as a winner if such a candidate exists. Here, we follow Reference [64] where this is not required.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:10 D. Knop et al.

tie occurs, then both candidates obtain α points; the candidate with largest sum of points is
a winner.

C2: R is C2 if it is not C1 and knowing the exact value of v (c, c ′) for all c, c ′ ∈ C suffices to
determine the winner. Examples are the Maximin rule, which declares any candidate c ∈ C
a winner who maximizes v∗ (c ) = min{v (c, c ′) | c ′ ∈ C \ {c}}; and the Kemeny rule, which
declares any candidate c ∈ C a winner for whom there exists a ranking �R ofC that ranks c
first and maximizes the total agreement with voters

∑

v ∈V

���{(c ′, c ′′) | ((c ′ �R c ′′) ⇔ (c ′ �v c ′′)) ∀c ′, c ′′ ∈ C}���
among all rankings.

C3: R is C3 if it is neither C1 nor C2. Examples are the Dodgson rule, which declares any can-
didate c ∈ C a winner for whom a minimum number of swaps make them the Condorcet
winner of the manipulated election; and the Young rule, which declares any candidate c ∈ C
a winner for whom removing a minimum number of voters from the election makes c the
Condorcet winner of the perturbed election.

Additionally, if approval counts are given for each voter, other voting rules are possible:

Sincere-strategy preference-based approval voting (SP-AV). Each candidate c receives a point from
every voter v with rank(c,v ) ≤ av . A candidate with maximum number of points is a winner in
the election.

Fallback. Delete, for each voterv ∈ V , their unranked candidates (i.e., all c with rank(c,v ) > av )
from its order. Then, use the Bucklin rule, which might fail to determine a winner due to the
deletion of unranked candidates; in that case, use the SP-AV rule.

At this point we can formally define the R-Multi-Bribery problem:

R-Multi-Bribery Parameter: |C |
Input: An election (C,V ) with active voters Va , latent voters V� and approval counts av for

v ∈ V , a designated candidate c� ∈ C , and swap costs σv for v ∈ V , push action costs
πv for v ∈ V , activation costs αv for v ∈ V� and deactivation costs δv for v ∈ Va , and a
one-time influence cost ιv .

Task: Find a set S of admissible swaps, a set P of push actions, and a control change γ of
minimum cost so that c� is a winner in the election (C, (((Va ∪V� )γ )S )P ) under rule R.

3 EXTENDED N -FOLD INTEGER PROGRAMMING

In this section, we discuss the class of n-fold IPs and show how to enhance them to obtain “ex-
tended” n-fold IPs.

3.1 n-fold Integer Programs

We begin by defining n-fold IPs. For background, we refer to the books of Onn [58] and De Loera
et al. [19].

Let n, r , s, t be positive integers. Given nt-dimensional integer vectors w, b, l, u, an n-fold IP

problem (IP )E (n ),w,b, l,u in variable dimension nt is defined as

min
{
wx | E (n) x = b, l ≤ x ≤ u, x ∈ Znt

}
, (1)

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:11

where

E (n) :=

��������
�

D D · · · D
A 0 · · · 0
0 A · · · 0
...
...
. . .

...
0 0 · · · A

�							



is an (r + ns ) × nt-matrix, D ∈ Zr×t is an r × t-matrix, and A ∈ Zs×t is an s × t-matrix. For num-
bers, vectors and matrices, we denote by 〈•〉 the binary encoding length of an object.

Hemmecke et al. [44] developed an iterative augmentation scheme combined with a dynamic
program to show the following:

Proposition 3.1 ([44, Thm. 6.2]). There is an algorithm that, given (IP )E (n ),w,b, l,u with a =

max{‖D‖∞, ‖A‖∞}, in time aO (tr s+t 2s ) ·O (n3〈w, b, l, u〉) either

(1) declares the program infeasible or unbounded or

(2) finds a minimizer of it.

The structure of E (n) allows us to divide the nt variables into n bricks of size t . We use subscripts
to index within a brick and superscripts to denote the index of the brick, i.e., x i

j is the jth variable
of the ith brick with j ∈ {1, . . . , t } and i ∈ {1, . . . ,n}.

3.2 Extended n-fold Integer Programs

We now introduce a class of IPs that we call “extended n-fold IPs.” Our motivation for this is to
enhance n-fold IPs with “integer programming tricks” that are well known for general IPs; we
want to show how to implement them while preserving the structure of n-fold IPs. These tricks
will make the application of n-fold IPs more convenient; they include introducing inequalities
using slack variables, implementing logical connectives or the bool operation (see below).

That leads us to the following definition.

Definition 3.2. Let x = (x1
1 , . . . ,x

1
t , . . . ,x

n
1 , . . . ,x

n
t ) be an nt-dimensional vector of integer vari-

ables. Let B ∈ Z, (b1, . . . ,bn ) ∈ Zn , and (a1, . . . ,at ) ∈ Zt . We say that

n∑

i=1

t∑

j=1

ajx
i
j = B

is a globally uniform constraint and that

t∑

j=1

ajx
i
j = b

i , i = 1, . . . ,n

is a locally uniform constraint. We stress that (in both cases) the coefficients aj are the same regard-
less of the index i . To be more precise: For each locally uniform constraint there are n invocations

(i.e., one per a brick) that have exactly the same coefficients of the left-hand side (i.e., ai
j = ak

j for
i,k ∈ {1, . . . ,n} and j ∈ {1, . . . , t }) but may differ in their right-hand sides, that is, we can have
bi � bk for i,k ∈ {1, . . . ,n}.

Observe that everyn-fold IP consists of box constraints (i.e., lower and upper bounds represented
by vectors l and u), a weight vector w, and collections of globally and locally uniform constraints.
From now on we call the problem (1) an n-fold IP in standard form.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:12 D. Knop et al.

Definition 3.3. An extended n-fold IP is a collection of locally and globally uniform constraints
that are additionally allowed to contain

• inequalities <, ≤, >, ≥,
• negation (¬) and logical disjunction ∨ with standard interpretation if applied to binary

arguments, and undefined otherwise.

Additionally, we introduce two collections of operations boolm , signm for every positive inte-
germ:

boolm (x ) =

⎧⎪⎪⎨⎪⎪⎩
0, if x = 0,
1, if x � 0 and −m ≤ x ≤ m,
undefined, otherwise;

signm (x ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if x = 0,
1, if 1 ≤ x ≤ m,
−1, if −m ≤ x ≤ −1,
undefined, otherwise.

Note that the constraints are still required to be uniform. Formally, define an expression recursively
as follows: an atomic expression (or, an atom) is a linear combination of variables

∑
j ajx j or a

constant b, and an expression is formed by taking a negation, boolm , or signm of an expression, or
by taking a disjunction, or ♥ ∈ {=, <, ≤, ≥, >} of two expressions. A constraint is of the form f ♥д
where ♥ ∈ {=, <, ≤, ≥, >} and f ,д are expressions. (Hence, note that x < y can be viewed both as
an expression and a constraint; if it appears as a constraint, then it enforces x < y, whereas if it is an
expression, then it appears as a part of some constraint, e.g., x < y ∨ x > y + 2.) A globally uniform

expression is one whose atoms have the form
∑n

i=1

∑t
j=1 ajx

i
j , and a locally uniform expression is

one whose atoms have the form
∑t

j=1 ajx
i
j , for all i = 1, . . . ,n (as before, each locally uniform

expression hasn invocations). For technical reasons that will become clear later, for an expression x
of the form x = f ♥д (where ♥ ∈ {<, ≤,=, ≥, >}) it holds that x ≤ m if and only if f − д ≤ m; note
that both f and д may be composed in a similar way and here we measure the domain of the fully
expanded expression. An expression is valid if no expression used during the construction results
in undefined). For example, if f is not a binary expression, then f ∨ д is undefined, and if f may
attain values larger thanm, then boolm ( f ) is undefined.

An extended n-fold IP is valid if the results of all of its constraints are valid. The two important
parameters of a valid extended n-fold IP are

extended width is the number of inequalities, logical operations, boolm , and signm opera-
tions (counting them only once for all n invocations of each locally uniform constraint or
expression); and

height is the maximum integerm occurring in any of its boolm and signm operations.

The notion of height applies naturally also to expressions and constraints: the height of an ex-

pression is the maximum m appearing in any boolm or signm operation contained in it, and the
height of a constraint is the height of the expression on the left-hand side. Observe that if boolm (e )
is defined for a given expression e (i.e., −m ≤ e ≤ m), then boolm+1 (e ) is defined; note that the
same holds for signm and signm+1 as well. Thus, we may actually require all parametersm in the
above definition to be the same value.

For any integer m ∈ N , the expression x �m y is a shorthand for boolm (x − y), and the con-
straint x �m y is a shorthand for boolm (x − y) = 1; the equivalence is clear. The distinction be-
tween f ♥д being a constraint or an expression will always be clear from the context.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:13

Observation 1 (Folklore; see, e.g., Enderton [26]). It is possible to use all logical connectives

(i.e., {∧, . . .}) with binary expressions in an extended n-fold IP.

The following theorem deals with how many auxiliary variables and constraints are needed to
convert an extended n-fold IP into standard form.

Theorem 3.4. Let I be a valid extended n-fold IP with nt variables, r globally uniform constraints,

s locally uniform constraints, largest absolute coefficient value a, extended width w , and height M .

There is an algorithm that, given I , in time O (ntw (r + s )) constructs a standard n-fold IP I ′ with

nt ′ variables, r ′ globally uniform constraints, s ′ locally uniform constraints, and largest absolute

coefficient value a′ such that

• t ′ = t +O (w ),
• r ′ = r ,

• s ′ = s +O (w ), and

• a′ = max(a,M ).

Thus, I can be solved, using the algorithm of Proposition 3.1, in time (a′)ω · n3〈 w, b, l, u〉, where

ω = O ((t +w ) (s +w )r + (t +w )2 (s +w )).

Before we move to the proof of Theorem 3.4, we would like to present a rather simple example
of its use.

An example of an extended n-fold IP. We focus on a single brick, that is, we work with variables
x1, . . . ,xm instead of x i

1, . . . ,x
i
m . We wantm variables x1, . . . ,xm (in each brick) describing a per-

mutation π of {1, . . . ,m}. We do this in such a way that x j = π (j ). That is equivalent to requiring
x j � xk for all j � k and x j ∈ {1, . . . ,m} for all j ∈ [m]. Note that to use a non-equality expression
“e � f ” we need to determine the largest possible difference |e − f |. In this case it is m, and thus

we express the aforementioned conditions by the following
(
m
2

)
locally uniform constraints

x j �m xk for all j,k ∈ [m], j < k (2)

andm box constraints

1 ≤ x j ≤ m for all j ∈ [m]. (3)

Note that the above expression x j �m xk is valid, since we have −m ≤ x j − xk ≤ m due to the box
constrains (3).

To take the advantage of handling locally uniform expression(s) we now switch our view. As-
sume we are given n permutations π 1, . . . ,πn : [m]→ [m], one for each brick. Now we want to
compare the ith brick permutation x i

1, . . . x
i
m with π i (1), . . . ,π i (m) and determine which indices

are inverted, that is, when it happens that x i
j < x i

k
and π i (j ) > π i (k ). In other words, we want to

determine when the sign of (x i
j − x i

k
) equals the sign of (π i (k ) − π i (j )). So, for each j < k we add

a new binary indicator variable yi
j,k

as follows:

yi
j,k = bool2

(
signm

(
x i

j − x i
k

)
= signm

(
π i (k ) − π i (j )

))
. (4)

Notice that signm (π i (k ) − π i (j )) is a constant, we denote it π i
k, j

, so the right-hand side of Equa-

tion (4) translates to

bool2
(
signm (x i

j − x i
k ) − π i

k, j

)
;

assuming that an expression is locally uniform if it only differs across bricks in its constants (as
we will show later), this is indeed a locally uniform expression.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:14 D. Knop et al.

3.3 Proof of Theorem 3.4

Proof of Theorem 3.4. We will prove Theorem 3.4 by exhaustively applying a set of rewriting
rules. These rewriting rules are applied to expressions and constraints containing logical oper-
ations, the boolm and the signm operations, and inequalities. We will use the letters e, f , and д
for expressions, and analogously f ♥д with ♥ ∈ {=, <, ≤, >, ≥} for expressions. Furthermore, we
always create an auxiliary variable xe and assign to it the value an expression e takes by adding
an auxiliary locally uniform constraint “xe = e .” A rewriting rule can be applied anytime all its
operands are already represented by such a variable.

To determine the parameters r ′, s ′, and t ′ of the resultingn-fold IP in standard form, we consider
the “s-increase” Δs (e ) of an expression e , which is the number of auxiliary equations required to
rewrite e into the standard form. Similarly, the “t-increase” Δt (e ) of e is the number of auxiliary
variables needed to express e , and analogously for globally uniform constraints and Δr (e ). We note
the s- and t-increase of each rule after defining it.

Rewriting a locally uniform expression e to the standard format. Rewriting a locally
uniform expression e in some locally uniform constraint(s) means replacing it with a new vari-
able xe and adding auxiliary locally uniform constraints (and possibly some new auxiliary vari-
ables). These constraints assure that the variable xe will carry the desired meaning (i.e., the value
of e). The result is that every expression e is rewritten to the standard format. In this phase we
may still be adding constraints that are not in the standard format (e.g., contain inequalities) as
they will be dealt with by subsequent applications of the rewriting rules.

• e ::= f ∨ д: We assume (since I is valid) that we have two binary variables xf and xд such
that xf = 1 if the expression f holds (i.e., if it evaluates to true) and xf = 0 otherwise; the
same holds for the variable xд and the expression д. Now, we introduce a new auxiliary
binary variable ye (i.e., 0 ≤ ye ≤ 1) and the constraint

2xe = xf + xд + ye . (5)

We claim that Equation (5) ensures that xe = 1 if and only if xf = 1 or xд = 1 or equiva-
lently that xe = 1 if and only if xf + xд ≥ 1. Assume that xf + xд ∈ {1, 2} and define ye =

2 − xf − xд ; note that in this case 0 ≤ ye ≤ 1, i.e.,ye fulfills its box constraints. It is straight-
forward to verify that in this case xe = 1. However, if xf + xд = 0, then, since both xe andye

are binary variables, to satisfy Equation (5) we must set xe = ye = 0.
Dealing with uniformity. Note that in the above discussion we focused solely on a single

brick. Formally, we should have discussed that, since the expression e ::= f ∨ д is locally
uniform, we have binary variables x i

f
and x i

д for every i = 1, . . . ,n. We introduce auxiliary

binary variablesy1
e , . . . ,y

n
e and binary variables x1

e , . . . ,x
n
e (i.e., pair of these for each brick).

Then, we add the locally uniform constraint

2x i
e = x i

f + x
i
д + y

i
e , i = 1, . . . ,n.

Now, it is straightforward to verify that we have maintained the local uniformity, since all
the constraints “look the same.” The key property here is that we have a uniform approach
to every brick; thus, it is sufficient if all our rewriting rules do not depend on a particular
brick. We believe that the first rewriting approach is easier to follow and, since the later can
be obtained in a straightforward way from it, we only present the first for all the remaining
rewriting rules.

Parameter changes. Consider the parameters Δs (e ) and Δt (e ). We added one
auxiliary variable ye , and the variable xe to store the result of f ∨ д. Hence,
Δt (e ) = Δt ( f ) + Δt (д) + 2. Similarly, Δs (e ) = Δs ( f ) + Δs (д) + 1, as the only new condition

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:15

is condition (5), since 0 ≤ ye ≤ 1 is a box constraint and thus we do not count it here (same
for 0 ≤ xe ≤ 1).

• e ::= ¬f is an expression equivalent to the locally uniform constraint xe = 1 − xf , where xe

is a new binary variable; note that we again use the binary variable xf .
Then Δs (e ) = Δs ( f ) + 1, as there is one new constraint xe = 1 − xf , and Δt (e ) = Δt ( f ) + 1,
as we have added a new variable xe .

• e ::= boolm ( f ) and e ::= signm ( f ) (see also a demonstration in Section 3.4 below): We first
compute the smallest possible positive integers L,U ∈ N such that −L < f < U holds. Note
that we have max{L,U } ≤ m, since the given instance I is valid. The subscriptm in boolm ( f )
signifies that we need to introduce coefficients (upperbounded bym) into the (new) system.
Let ye , ze ∈ {0, 1} be two new auxiliary binary variables. We first add some constraints so
that ye = 1 if and only if xf ≥ 0, and ze = 1 if and only if xf ≤ 0 (note thatm is a constant
and thus all constraints below are linear and remain uniform):

1 + xf ≤ m · ye ≤ m + xf , (6)

1 − xf ≤ m · ze ≤ m − xf . (7)

Note that Equations (6) and (7) do not depend on L,U , and thus we again obtain locally
uniform constraints. To see that the above holds we distinguish two cases; first for ye :
xf ≥ 0 From the definition ofm it follows that 1 ≤ 1 + xf ≤ U ≤ m. Thus, to satisfy the first

(i.e., the leftmost) inequality in Equation (6) we must set ye = 1. Furthermore, we have
thatm + xf ≥ m =m · ye and thus Equation (6) is satisfied.

xf < 0 From the definition ofm it follows that 0 ≥ 1 + xf > −m; thus if ye ∈ {0, 1}, then the
first inequality of Equation (6) is satisfied. Thus, to satisfy the second inequality in (6)
we must set ye = 0, since m + xf < m; furthermore, we have m + xf > 0 =m · ye and
thus this setting is valid. All in all ye = 0 is the only solution to Equation (6).

Now, we again distinguish two cases for ze :
xf ≤ 0 We have 1 − xf ≥ 1. Thus, to satisfy the first inequality in Equation (7) we have to

set ze = 1. Now, sincem − xf ≥ m =m · ze , we have satisfied (the second inequality in)
Equation (7).

xf > 0 We have 1 − xf ≤ 0 and thus the first inequality holds for any ze ∈ {0, 1}. However,
we have m − xf < m, and thus only ze = 1 satisfies the second inequality in (7); note
thatm − xf > 0.

Now if e ::= boolm ( f ), then we additionally to the above locally uniform constraints add
the locally uniform expression xe = ¬(ye ∧ ze ). Note that this additional locally uniform
expression can be directly rewritten to the standard form using the above rules. If e ::=
signm ( f ), then we additionally to the above locally uniform constraints add the locally
uniform constraint xe = ye − ze .
Then (in both cases) we have Δs (e ) = Δ( f ) +O (1) and Δt (e ) = Δt ( f ) +O (1), as we only
add constantly many new (and auxiliary) variables and constraints.

• e ::= boolm ( f ♥д) ⇒
—♥ is “=”: xe = ¬boolm (xf − xд ) (which can be rewritten using the above rewriting rules).

Clearly, boolm (xf − xд ) = 1 if and only if (xf − xд ) = 0 if and only if xf = xд . Since I is
valid, we have −m < xf − xд < m and thus the expression xe = ¬boolm (xf − xд ) is valid.

—♥ is “>”: xe = bool2 (signm (xf − xд ) = 1), which, using similar arguments as above, is
equivalent and valid.

—♥ is “≥”: xe = boolm (xf > xд ) ∨ boolm (xf = xд ); which follows directly from the above.
And analogously when ♥ is “<” or “≤”.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:16 D. Knop et al.

Then Δs (e ) = Δs ( f ) + Δs (д) +O (1) and Δt (e ) = Δt ( f ) + Δt (д) +O (1), since the overhead
of the used operations is only O (1).

Rewriting a locally uniform constraint e ::= f♥д to standard format.

• when ♥ is “=”: f = д ⇒ xf − xд = 0.
Then Δs (e ) = Δs ( f = д) = Δs ( f ) + Δs (д) and Δt (e ) = Δt ( f = д) = Δt ( f ) + Δt (д).

• when ♥ is not “=”, intuitively we want to add a slack variable and rewrite f ♥д ⇒ into a
locally uniform constraint xf − xд + ye = 0 with the variable ye having an upper bound uys

and a lower bound lys
set as follows:

—lys
= 0 and uys

= Qe when ♥ is “≤”,
—lys

= 1 and uys
= Qe when ♥ is “<”,

—lys
= −Qe and uys

= 0 when ♥ is “≥”, and
—lys

= −Qe and uys
= −1 when ♥ is “>”;

where Qe = max{‖ l‖∞, ‖ u‖∞} · a · nt stands for a sufficiently large number.
Then, Δs (e ) = Δs ( f ) + Δs (д) and Δt (e ) = Δt ( f ) + Δt (д) + 1.

Rewriting a globally uniform constraint e ::= f♥д to standard format. First, we rewrite
any logical operations and boolm and signm operations in e and f using the same rules as above,
that is, by adding auxiliary variables and locally uniform constraints. Then, what remains is to deal
with the inequalities ♥ ∈ {<, ≤, >, ≥}. We use slack variables as before, but since we cannot add
just one variable without breaking the n-fold format, we instead add n new variables and “disable”
all but one of them using the lower and upper bounds:
e ::= f ♥д ⇒ xf − xд +

∑n
i=1 s

i
e = 0 with si

e for i = 1, . . . ,n being n new auxiliary vari-
ables with lower and upper bounds ls i

e
= us i

e
= 0 for 1 < i ≤ n and with

• ls1
e
= 0 and us1

e
= ∞ when ♥ is “≤”,

• ls1
e
= 1 and us1

e
= ∞ when ♥ is “<”,

• ls1
e
= −∞ and us1

e
= 0 when ♥ is “≥”, and

• ls1
e
= −∞ and us1

e
= −1 when ♥ is “>”.

Then, Δt (e ) = Δt ( f ) + Δt (д) if ♥ is “=” (since clearly this can be done even without introducing
the auxiliary variables) and Δt (e ) = Δt ( f ) + Δt (д) + 1, otherwise.

Finishing the proof. It remains to compute the parameters r ′, s ′, t ′, and a′ of the instance I ′

we have created by exhaustive application of rewriting rules to the given instance I . Let L be the
set of locally uniform constraints of I ′ and G be the set of globally uniform constraints of I ′. Then

• t ′ = t +
∑

e ∈L Δt (e ) +
∑

e ∈G Δt (e ) = t +O (w ),
• s ′ = s +

∑
e ∈L Δs (e ) = s +O (w ),

• r ′ = r , since we have merely added slack variables into globally uniform constraint of I ,
• all coefficients are bounded in absolute value by a′ = max{a,M }, since we have only intro-

duced new large coefficients via the locally uniform expressions boolm and signm and those
are upper bounded by M .

This concludes the proof of Theorem 3.4. �

3.4 A Demonstration of the Rewriting Process

In this section, we demonstrate the rewriting process as presented in the proof of Theorem 3.4
on the constraints (2) (while keeping the box constraints (3) in mind). To that end, our goal is to
rewrite

x j �m xk for all j,k ∈ [m], j < k,

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:17

Fig. 1. An illustration of the rewriting process for Equation (3). The thick box x j �m xk represents the start of
the rewriting process. The dashed boxes represent the result of the rewriting process, i.e., the locally uniform
condition.

which, as we have already seen, is equivalent to

boolm (x j − xk ) = 1 for all j,k ∈ [m], j < k .

We refer to Figure 1 for an illustration. We fix j andk and apply the rewriting rules (i.e., follow the
above proof). The resulting standard n-fold IP will contain the following constraints5 (for brevity
we omit rewriting inequalities by slack variables as this is standard):

xx j−xk
= x j − xk

1 + xx j−xk
≤ m · yx j−xk

≤ m + xx j−xk

1 − xx j−xk
≤ m · zx j−xk

≤ m − xx j−xk

0 ≤ yx j−xk
, zx j−xk

≤ 1

2xboolm (x j−xk ) = yx j−xk
+ zx j−xk

− yboolm (x j−xk )=1

xboolm (x j−xk ) = 1.

Remark. Naturally, we ask if the bool() operation can be implemented without introducing
a number a depending on the lower and upper bounds, as a becomes the base of the run-
time in Theorem 3.1. One can show that such dependence is necessary (the proof is deferred to
Section 5.1):

Lemma 3.5. Unless FPT =W[1], the bool() operation cannot be expressed in n-fold IP format

by introducing only f (k ) new variables and numbers bounded by f (k ), for any computable func-

tion f and k = max{r , s, t }. Moreover, binary n-fold IP is weakly NP-hard even when r = t = 1 and

s = 0.

5Note that the fourth line of inequalities represents box constrains for the newly added variables.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:18 D. Knop et al.

4 SINGLE-EXPONENTIAL ALGORITHMS FOR VOTING AND BRIBING

We now establish a formulation of R-Multi-Bribery as an n-fold IP, for various rules R. To this
end, we first describe the part of the IP that is common to all such rules, in Section 4.1. Thereafter,
in Section 4.2 we add the parts of the formulation that depend on R.

4.1 General Setup

Given an instance (C,V ) of R-Multi-Bribery, we construct an n-fold IP whose variables describe
the situation after bribery actions (swaps, push actions, control changes; if allowed) were per-
formed. From these variables we also derive new variables to express the cost function. In the
following we always describe the variables and constraints added per voter, and there is one brick
per voter. So in what follows we fix a voter v ∈ V .

Swaps. We describe the preference order with swaps S applied by variables xv
c for c ∈ C with

the intended meaning xv
c = rank(c,v )S . We stress here that the ranking according to values of xv

c

is the one in the altered elections. Recall that constraints (2) and (3) enforce that (xv
1 , . . . ,x

v
|C | ) is

a permutation of C; we add them to the program (we setm = |C |).
To express the swaps performed by S , for each pair of candidates c, c ′ ∈ C we introduce binary

variables sv
{c,c ′ } so that sv

{c,c ′ } = 1 if and only if c and c ′ are swapped. We need an observation that
follows from a result of Elkind et al. [25, Proposition 1].

Observation 2. For complete preference orders �,�′, the admissible set S of swaps such that

�′=�S is uniquely given as the set of pairs (c, c ′) for which either c � c ′ ∧ c ′ �′ c , or c ′ � c ∧ c �′ c ′.

Thus, we only need to set constraint (4) from Section 3.2 with πv
c = rank(c,v ). Further, for

each pair c, c ′ ∈ C of candidates we introduce a variable xv
(c,c ′)

that takes value 1 if c �S
v c ′, and

value 0 otherwise. To that end, we add the following local uniform expressions (i.e., for each
v ∈ V )

xv
(c,c ′) = bool |C |

(
xv

c < xv
c ′

)
, c, c ′ ∈ C, (8)

sv
{c,c ′ } = bool2

(
xv

(c,c ′) = πv
(c,c ′)

)
, ∀c, c ′ ∈ C, (9)

where πv
(c,c ′)

is a constant equal to 1 if and only if c �v c ′; and both are 0, otherwise. Observe that

the above conditions are equivalent to the intended meaning of the variables xv
(c,c ′)

and sv
{c,c ′ } . Note

that the above is locally uniform expression, since all the above differ only in the right-hand sides
of the local uniform constraints

xv
xv

(c,c′)=π v
(c,c′)
= xv

(c,c ′) − π
v
(c,c ′)

needed to compute the above values. Furthermore, both Equations (8) and (9) are valid. To see this
observe that −|C | < xv

c − xv
c ′ < |C |, since we have 1 ≤ xv

c ,x
v
c ′ ≤ |C |, and −2 < xv

(c,c ′)
− πv

(c,c ′)
< 2,

since xv
(c,c ′)

is a binary variable and πv
(c,c ′)

∈ {0, 1}, i.e., xv
xv

(c,c′) π
v
(c,c′)
∈ {−1, 0, 1}.

Push actions. To indicate push actions, we introduce binary variables pv
−|C |, . . . ,p

v
|C | , where

pv
0 = 1 means no change, pv

j = 1 means push action pv = j. We set the lower and upper bounds
to ensure that pv

j = 0 for all j � {−av , |C | − av }. Finally, we introduce a variable xv
α ∈ {1, . . . , |C |}

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:19

indicating v’s approval count after the push action:

|C |∑

j=−|C |
pv

j = 1,

xv
α = av +

|C |∑

j=−|C |
jpv

j .

Influence bit. To model certain variants of the problem, such as R-Manipulation, we need an
auxiliary “influence bit.” We introduce a binary variable xι taking value 1 if a swap or a push action
is performed, and value 0 otherwise:

xv
ι = bool |C |2

��
�
∑

c,c ′ ∈C
sv
{c,c ′ } +

∑

j�0

pv
j
�	

 .

The above condition is valid for nontrivial instances with |C | ≥ 2, since
∑

c,c ′ ∈C sv
{c,c ′ } ≤

|C |( |C | − 1),
∑

j�0 p
v
j ≤
∑ |C |

j=−|C | p
v
j = 1 and |C |( |C | − 1) + 1 < |C |2 (if |C | ≥ 2).

Control changes. We introduce two binary variables xv
a and xv

�
such that xv

a = 1 and xv
�
= 0 if

voter v is active, and xv
a = 0 and xv

�
= 1 if voter v latent:

xv
a + x

v
� = 1.

We will also frequently use the following variable-splitting trick:

Lemma 4.1. Let x be an integral variable with lower bound � and upper bound u and let z be a

binary variable. Then one can introduce a variable xz , an auxiliary variable, and three locally uniform

constraints of height at mostm = u − � such that xz = x if z = 1 and xz = 0 if z = 0.

Proof. Assume, without loss of generality, that x is normalized, that is, � = 0. If this is not
the case, we replace x with (x̃ + �) in all constraints and set box constraints for x̃ to 0 ≤ x̃ ≤ u − �.
Clearly, this substitution yields an equivalent integer program (and maintains uniformity of the IP).

We first add constrains 0 ≤ xz ≤ uz (note that the later condition is not a box condition, since z
is a variable). Now, if z = 0, then xz = 0, and otherwise (z = 1) we have � ≤ xz ≤ u. We now es-
sentially repeat this trick with a negation of z for a new variable x¬z , that is, we add constraints
0 ≤ x¬z ≤ u (1 − z). Finally, we add the constraint xz + x¬z = x , which finishes the construction,
since by the above discussion we know one of the variables xz or x¬z must be set to 0 and thus
the other must be set to the same value as x . �

Objective function. Finally, collectively for all voters the linear objective function is as follows:

w ( x, s, p) =
∑

v ∈V

⎡⎢⎢⎢⎢⎢⎣
��
�
∑

c,c ′ ∈C
σv (c, c ′)sv

(c,c ′)
�	

 +

��
�
|C |∑

j=−|C |
πv (j )pv

j
�	

 + ι

vxv
ι + α

vxv
a + δ

vxv
�

⎤⎥⎥⎥⎥⎥⎦
.

Observe that the maximum coefficient of the objective function, i.e., ‖w‖∞, is the maximum of all
the cost functions σv , πv , ιv , αv , and δv across all their arguments. So far we have introduced
O ( |C |2) variables and imposed O ( |C |2) constraints on them (per brick). The largest coefficient in-
troduced in a constraint is |C |, and we have already used the boolM operation with M = |C |2.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:20 D. Knop et al.

4.2 Voting Rules

Now we describe the part specific to the voting rules. A voting rule R is incorporated in the IP
in two steps. First, optionally, new variables are derived using locally uniform constraints. Then,
globally uniform constraints are imposed.

Often we can only set up the IP knowing certain facts about how the winning condition is
satisfied. We guess those facts, construct the IP, solve it and remember the objective value. Finally,
we choose the minimum over all guesses.

(R1) Scoring protocol s = (s1, . . . , s |C | ). We introduce variables τv
c for the number of points that

voter v gives candidate c:

τv
c =

|C |∑

k=1

sk bool |C | (x
v
c = k ).

Again, the above is valid, since |C | < xv
c − k < |C | as we have 1 ≤ xv

c ,k ≤ m. Then, an “active”
copy τva

c of each variable τv
c is created such that we can disregard the contribution of latent voters.

To do this we use Lemma 4.1 with x := τv
c , z := xa , and xz := τva

c for every c ∈ C . Then we add
the following globally uniform constraints specifying that the score received by c� is greater than
the score received by any other candidate:

∑

v ∈V
τva

c <
∑

v ∈V
τva

c� for c ∈ C \ {c�}.

(R2) Any C1 rule R. We guess the resulting <M such that c� is a winner with respect to R;
there areO (3 |C |

2
) guesses. From <M we can infer for any pair c, c ′ of distinct candidates, whether

v (c, c ′) > v (c ′, c ),v (c ′, c ) > v (c, c ′), orv (c, c ′) = v (c ′, c ′). With this knowledge, we add the follow-
ing constraints, where again variables with an a in the superscript stand for the active parts:

∑

v ∈V
xva

(c,c ′) >
∑

v ∈V
xva

(c ′,c ) if c <M c ′,

∑

v ∈V
xva

(c,c ′) =
∑

v ∈V
xva

(c ′,c ) if v (c, c ′) = v (c ′, c ).

(R3) Maximin rule. For c� to be a winner with the maximin rule means that there is a num-
ber B ∈ {0, 1, . . . , |V |} such that v∗ (c�) = B, while for all c ∈ C \ {c�}, v∗ (c ) < B. That, in turn,
means, that for every candidate c � c� there is a candidate c ′ such that v (c, c ′) < B. (Recall that
v∗ (c ) = min{v (c, c ′) | c ′ ∈ C \ {c}}.) Guess B and c ′ for every c; there are at most n · |C |2 guesses.
This implies that for every candidate c � c� there is a candidate d (c ) (the defeater of c) such
that v (c,d (c )) < B. All in all B and d (c ) for every c ∈ C \ {c�}, that is, we guess a mapping
d : C \ {c�} → C; there are at most n · ( |C | − 1) |C | guesses. Then add the following constraints:

∑

v ∈V
xva

(c�,c ) ≥ B c ∈ C \ {c�},
∑

v ∈V
xva

(c,d (c )) < B c ∈ C \ {c�}.

(R4) Bucklin. To determine the control actionγ , we guess the number ���V γ
a
��� ∈ {1, . . . , |V |} of active

voters and set ∑

v ∈V
xv

a =
���V γ

a
��� .

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:21

Then, we guess the winning round k and observe that the winning score will be larger than |V γ
a |/2.

Altogether, there are O ( |C | |V |) guesses. Similarly to scoring protocols, we introduce variables τv
c

(number of points for a candidate c in k-approval) and τ̃v
c (number of points for a candidate c in

(k − 1)-approval). Again, we consider only the active parts τva
c of τv

c and τ̃va
c of τ̃v

c :

τv
c = bool |C |

(
xv

c < k
)

c ∈ C,
τ̃v

c = bool |C |
(
xv

c < k − 1
)

c ∈ C .

As before, the validity of this expression follows directly from 1 ≤ xv
c ,k ≤ |C |. Then, the winning

condition is expressed as:
∑

v ∈V
τva

c� >
���V γ

a
��� /2

∑

v ∈V
τva

c ≤
∑

v ∈V
τva

c� c ∈ C \ {c�}
∑

v ∈V
τ̃va

c ≤ ���V γ
a
��� /2 c ∈ C .

(R5) SP-AV. In SP-AV, each candidate c receives a point if it ranks above the approval count. As
before, we introduce variables τv

c for points received by a candidate c and split them into active
and latent (again using Lemma 4.1). We add the following constraints:

τv
c = bool |C | (x

v
c ≤ xv

α ), c ∈ C,
∑

v ∈V
τva

c ≤
∑

v ∈V
τva

c� c ∈ C \ {c�}.

Those expressions are valid, as 1 ≤ xv
c ,x

v
α ≤ |C |.

(R6) Fallback. In the Fallback rule, the non-approved candidates are discarded, the Bucklin rule
is applied and if it fails to select a winner, the SP-AV rule is applied. We guess the Bucklin winning
round k or if SP-AV is used and the number |V γ

a | of active voters; there are O ( |V | · |C |) guesses.
(SP-AV is used exactly when the winning score is less than |V γ

a |/2.) If Bucklin is used, then we
need a slight modification to take push actions into account. Instead of τva

c = bool |C | (xc < k ) we
have

τv
c = bool |C | (x

v
c < k ) ∧ bool |C | (k ≤ xv

α );

and similarly for τ̃va
c . Observe that both conditions are valid.

For each of the rules (R1)–(R6), as argued, we have constructed an extended n-fold IP with
O ( |C |2) variables and locally uniform constraints per brick, and O ( |C |2) globally uniform con-
straints. The largest coefficient is |C |, the height isO ( |C |2), and the extended width is alsoO ( |C |2).
Thus, by Theorem 3.4 we can compute an n-fold matrix with parameters r = s = t = a = O ( |C |2).
Proposition 3.1 is then used to solve this n-fold IP in time 2O ( |C |6 log |C |)n3〈 w〉. Also, O (3 |C |

2
)

guesses suffice for each rule except Maximin, Bucklin, and Fallback, where O ( |C |2 |V |) guesses
suffice.

An exception to this runtime is the Kemeny rule:

(R7) Kemeny. For c� to be a Kemeny winner, there has to be a ranking �R∗ of the candidates that
ranks c� first and maximizes the total agreement with voters

∑

v ∈V

���{(c, c ′) ∈ C ×C | ((c �R∗ c
′) ⇔ (c �v c ′))

}���
ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:22 D. Knop et al.

among all rankings. In other words, the number of swaps sufficient to transform all �i into �R∗ is
smaller than the number of swaps needed to transform all �v into any other �R′ , where c� is not
first.

We guess the ranking �R∗ over all rankings ofC; then we introduce variables xv
R

for R ∈ {R∗} ∪
{R′ | c� is not first in R′} so that xv

R
is the number of swaps needed to transform �S

v into �R (recall
that S is the bribery described by the variables xv

c ). We again split variables xv
R

and in the score
comparison consider their active parts xav

R
only. Then, we introduce the necessary constraints:

xv
R =

∑

c,c ′ ∈C,c�c ′
bool2

(
sign |C |

(
xv

c − xv
c ′

)
= sign |C | (rank(c ′,R) − rank(c,R)

)
for all R,

∑

v ∈V
xav

R >
∑

v ∈V
xav

R∗ , R � R∗.

Those are valid, as we have 1 ≤ xv
c ,x

v
c ′, rank(c ′,R), rank(c,R) ≤ |C | and because the result of

the sign operation is guaranteed to be in {0, 1}. This solves Kemeny-Multi-Bribery in time
|C |O ( |C |!6 )n3, and completes the proof of Theorem 1.1.

5 LOWER BOUNDS AND HARDNESS FOR N -FOLD IPS

Here we provide the proof of Lemma 3.5, which shows that the bool() operation cannot be imple-
mented in n-fold IPs without introducing large numbers into the system and that solving n-fold
IPs becomes W[1]-hard when parameterized only by (r , s, t ).

5.1 bool() Inexpressibility: Unary Bin Packing

The Unary Bin Packing problem takes as input n items of integer sizes o1, . . . ,on as well as two
integers k,B, and asks if the items can be packed into k bins each of which has capacity B. Here by
packing we mean an assignment of items to bins σ : {1, . . . ,n} → {1, . . . ,k } such that the packing
is admissible, that is,

∑
i ∈σ −1 (j ) oi ≤ B for every j ∈ {1, . . . ,k }.

Unary Bin Packing Parameter: k
Input: Positive integers k,B encoded in unary and item sizes o1, . . . ,on for every i ∈ {1, . . . ,n}.
Task: Find an admissible packing of the items to k bins.

Jansen et al. [45] prove that this problem, parameterized by k , is W[1]-hard.

Lemma 5.1. Unless FPT =W[1], the bool() operation cannot be expressed in n-fold IP format by

introducing only f (k ) new variables and numbers bounded by f (k ), for any computable function f
and k = max{r , s, t }.

Proof. Given an instance (o1, . . . ,on ,k,B) of Unary Bin Packing, we create an n-fold IP as
follows. We create a brick for each item oi , and introduce k variables x i

1, . . . ,x
i
k

for i = 1, . . . ,n
and the following locally uniform constraints:

k∑

j=1

x i
j = oi , (AssignItem)

k∑

j=1

booln (x i
j ) = 1. (OneBin)

Clearly, (AssignItem) and (OneBin) together force x i
j = oi for exactly one j, which we then de-

note j (i ), and x i
j′ = 0 for all j ′ � j (i ). Intuitively, this means that an item i belongs to the bin j (i ).

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:23

Using globally uniform constraints we enforce that no bin overflows:
∑

i

x i
j ≤ B, j = 1, . . . ,k .

It is clear that this IP is feasible if and only if (o1, . . . ,on ,k,B) is a “yes” instance.
Now suppose it is possible to express the booln using f (k ) additional local variables and f (k )

locally uniform constraints all of which use numbers bounded by f (k ) in absolute value. Replacing
the condition (OneBin) with this expression and invoking Theorem 3.4 on the thus altered IP
model we obtain ann-fold IP with r , s, t , a = f (k ). Finally, this would yield an f ′(k )nO (1)BO (1)-time
algorithm for the Unary Bin Packing problem, where f ′ is a computable function independent
of n. Consequently, FPT =W[1]. �

5.2 Largest Coefficient Matters: Subset Sum

The Subset Sum problem is a well-known (weakly) NP-hard problem and is defined as follows.
Given n positive integers w1, . . . ,wn and the target value T the task is to find a set I ⊆ {1, . . . ,n}
such that

∑
i ∈I wi = T .

Lemma 5.2. Unless P = NP, there is no algorithm solving n-fold IPs of encoding length L in time

f (r , s, t ) · (nL)O (1) for any computable function f .

Proof. We formulate the Subset Sum problem straightforwardly as an n-fold IP with n bricks
and exactly one global condition:

n∑

i=1

wix
i
1 = T , (10)

where x i
1 ∈ {0, 1} are binary variables. Observe that the parameters of the above n-fold IP are r =

t = 1 and s = 0.
Suppose now we have an algorithm that solves n-fold IP in the claimed time f (r , s, t ) · (nL)O (1) .

Since all of r , s, t are bounded by a constant, it follows that f (r , s, t ) is a constant. Let c = f (1, 0, 1).
Using such a hypothetical algorithm we can decide Subset Sum in time c · (nL)O (1) , where L is the
length of binary encoding of the vector (w1, . . . ,wn ,T ). Consequently, P = NP. �

Proof of Lemma 3.5. The lemma is a direct consequence of Lemma 5.1 and Lemma 5.2. �

6 CONCLUSIONS AND OPEN PROBLEMS

We introduced a general voting and bribing problem, R-Multi-Bribery, which allows for swaps,
push actions, and control changes. For several classical voting rules R, we provided formulations
of R-Multi-Bribery in terms of (extended) n-fold integer programs; those formulations lead

• to the first fixed-parameter algorithms for some of those problems and
• to the first single-exponential algorithms for others.

Our approach is also natural in handling situations where each voter has different pricing func-
tions, which was previously not possible in most cases. In particular, we provide the first fixed-
parameter algorithm for R-Swap-Bribery with arbitrary cost functions, for many natural voting
rules R.

While our result covers many classical and well-studied voting rules, we are convinced that
many other rules are covered by our framework. What would be highly desirable though is to
obtain sufficient conditions on easy-to-check properties of rules R for which R-Multi-Bribery
is fixed-parameter tractable parameterized by the number of candidates, or for which it admits a
single-exponential time algorithm.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:24 D. Knop et al.

It would also be desirable to complement our algorithmic upper bounds with matching lower
bounds based on the Exponential Time Hypothesis, by either improving the runtimes of the pro-
vided algorithms or providing appropriate hardness results.

Partial orders. For simplicity, we have focused our attention on handling elections in which votes
are given as total orders. Some generalizations are clearly possible: for example, the Possible Win-
ner problem, where voters are given as partial orders, reduces to Swap Bribery. If voters are given
as weak orders (or bucket orders), the situation becomes somewhat less clear: It is obvious that
there should be no cost of swapping candidates in the same group, but it is not clear how winner
determination should work in such a setting; for example, it seems counter-intuitive if the Borda
rule would give different numbers of points to candidates in a single group. This means that our
outlined approach of defining swap costs to be zero within groups corresponds to a bribery action
that first extends a weak order to a total order arbitrarily for free, and then performs “regular”
swap bribery. We can imagine different models that would also make sense. Last, we have consid-
ered truncated orders and shown some results for them. Some work has been already done toward
answering related questions, see References [38, 56, 57].

We believe it is interesting to study in more detail how Swap Bribery can be sensibly generalized
to partial orders. However, we are confident that essentially any possible generalization will be
captured by the Minimum Move framework [51] in which one defines voter types and arbitrary
costs for moving a voter from one type to another. Specifically, one can define a type for each
possible partial order over |C | candidates, of which there is at most 2 |C |

2
many, then define the

cost of bribing a voter to move from one type to another, and then define how each type interacts
with the voting rule.

APPENDIX

A PROBLEM DEFINITIONS

We provide the formal definitions of the voting and bribing problems covered by our result for
R-Multi-Bribery. In these definitions, for each problem R-Problem, by “such that c� is a winner
in the election” we mean that c� is a winner in the election under voting rule R.

The R-$Bribery problem was introduced by Faliszewski et al. [29], and further studied by Bred-
ereck et al. [13]:

The R-Manipulation problem was introduced by Faliszewski et al. [32], who studied it for the
Copelandα rule:

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:25

The R-Swap-Bribery problem was introduced by Elkind et al. [25] (therein referred to as E-
Swap-Bribery):

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



12:26 D. Knop et al.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers of a preliminary version of our article, which appeared
in the proceedings of STACS 2017 [50], for their helpful comments, which led to a considerably
improved presentation of our results here. We also express our gratitude to Ildikó Schlotter and
Piotr Faliszewski for many helpful remarks and discussion. Last, we thank the anonymous review-
ers of TEAC whose work led to further improvements in presentation as well as to more coherent
write-up.

REFERENCES

[1] Kateřina Altmanová, Dušan Knop, and Martin Koutecký. 2019. Evaluating and tuning n-fold integer programming.
ACM J. Exp. Algor. 24, 1 (2019), 1–22.

[2] John J. Bartholdi III, Craig A. Tovey, and Michael A. Trick. 1989. Voting schemes for which it can be difficult to tell
who won the election. Soc. Choice Welf. 6, 2 (1989), 157–165.

[3] Dorothea Baumeister, Gábor Erdélyi, Olivia Johanna Erdélyi, and Jörg Rothe. 2015. Complexity of manipulation and
bribery in judgment aggregation for uniform premise-based quota rules. Math. Social Sci. 76 (2015), 19–30.

[4] Dorothea Baumeister, Piotr Faliszewski, Jérôme Lang, and Jörg Rothe. 2012. Campaigns for lazy voters: Truncated
ballots. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS’12).
577–584.

[5] Dorothea Baumeister and Jörg Rothe. 2016. Preference aggregation by voting. In Economics and Computation. An

Introduction to Algorithmic Game Theory, Computational Social Choice, and Fair Division, Jörg Rothe (Ed.). Springer,
197–326.

[6] Nadja Betzler, Susanne Hemmann, and Rolf Niedermeier. 2009. A multivariate complexity analysis of determining
possible winners given incomplete votes. In Proceedings of the International Joint Conferences on Artificial Intelligence

(IJCAI’09). 53–58.
[7] Nadja Betzler, Rolf Niedermeier, and Gerhard Woeginger. 2011. Unweighted coalitional manipulation under the Borda

rule is NP-hard. In Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI’11). 55–60.
[8] Steven J. Brams and Peter C. Fishburn. 2002. Voting procedures. In Handbook of Social Choice and Welfare, Katora

Suzumura Kenneth J. Arrow, Armatya K. Sen (Ed.). Handbooks in Economics, Vol. 19. Elsevier, 173–236.
[9] Robert Bredereck, Jiehua Chen, Piotr Faliszewski, Jiong Guo, Rolf Niedermeier, and Gerhard J. Woeginger. 2014.

Parameterized algorithmics for computational social choice: Nine research challenges. Tsinghua Sci. Tech. 19, 4 (2014),
358–373.

[10] Robert Bredereck, Jiehua Chen, Piotr Faliszewski, André Nichterlein, and Rolf Niedermeier. 2014. Prices matter for
the parameterized complexity of shift bribery. In Proceedings of the Association for the Advancement of Artificial

Intelligence (AAAI’14). 552–558.
[11] Robert Bredereck, Jiehua Chen, Sepp Hartung, Stefan Kratsch, Rolf Niedermeier, Ondřej Suchý, and Gerhard J. Woeg-

inger. 2014. A multivariate complexity analysis of lobbying in multiple referenda. J. Artif. Intell. Res. 50 (2014), 409–
446.

[12] Robert Bredereck, Piotr Faliszewski, Andrzej Kaczmarczyk, Rolf Niedermeier, Piotr Skowron, and Nimrod Talmon.
2017. Robustness among multiwinner voting rules. In Proceedings of the International Symposium on Algorithmic Game

Theory (SAGT’17), Lecture Notes Computer Science, Vol. 10504. 80–92.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.



Voting and Bribing in Single-Exponential Time 12:27

[13] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, Piotr Skowron, and Nimrod Talmon. 2015. Elections with few
candidates: Prices, weights, and covering problems. In Proceedings of the Conference on Algorithmic Decision Theory

(ADT’15), Lecture Notes Computer Science, Vol. 9346. 414–431.
[14] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, Piotr Skowron, and Nimrod Talmon. 2016. Complexity of

shift bribery in committee elections. In Proceedings of the Association for the Advancement of Artificial Intelligence

(AAAI’16). 2452–2458.
[15] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon. 2016. Large-scale election campaigns:

Combinatorial shift bribery. J. Artif. Intell. Res. 55 (2016), 603–652.
[16] David Cary. 2011. Estimating the margin of victory for instant-runoff voting. In Proceedings of the 2011 Electronic

Voting Technology Workshop / Workshop on Trustworthy Elections.
[17] Bruno Courcelle. 1990. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform. Com-

put. 85, 1 (1990), 12–75.
[18] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk,

and Saket Saurabh. 2015. Parameterized Algorithms. Springer.
[19] Jesús A. De Loera, Raymond Hemmecke, and Matthias Köppe. 2013. Algebraic and Geometric Ideas in the Theory of

Discrete Optimization. MOS-SIAM Series on Optimization, Vol. 14. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA.

[20] Palash Dey, Neeldhara Misra, and Y. Narahari. 2015. Detecting possible manipulators in elections. In Proceedings of

the International Conference on Autonomous Agents and Multiagent Systems (AAMAS’15). 1441–1450.
[21] Palash Dey, Neeldhara Misra, and Y. Narahari. 2017. Frugal bribery in voting. Theoret. Comput. Sci. 676 (2017), 15–32.
[22] Britta Dorn and Ildikó Schlotter. 2012. Multivariate complexity analysis of swap bribery. Algorithmica 64, 1 (2012),

126–151.
[23] Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký, Asaf Levin, and Shmuel Onn.

2019. An Algorithmic Theory of Integer Programming. Technical Report. https://arxiv.org/abs/1904.01361.
[24] Edith Elkind and Piotr Faliszewski. 2010. Approximation algorithms for campaign management. In Proceedings of the

Conference on Web and Internet Economics (WINE’10), Lecture Notes Computer Science, Vol. 6484. 473–482.
[25] Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. 2009. Swap bribery. In Proceedings of the International Symposium

on Algorithmic Game Theory (SAGT’09), Lecture Notes Computer Science, Vol. 5814. 299–310.
[26] Herbert B. Enderton. 2001. A Mathematical Introduction to Logic (2nd ed.). Harcourt/Academic Press, Burlington, MA.
[27] Piotr Faliszewski. 2008. Nonuniform bribery. In Proceedings of the International Conference on Autonomous Agents and

Multiagent Systems (AAMAS’08). 1569–1572.
[28] Piotr Faliszewski, Rica Gonen, Martin Koutecký, and Nimrod Talmon. 2018. Opinion diffusion and campaigning on

society graphs. In Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI’18). 219–225.
[29] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. 2009. How hard is bribery in elections?J. Artif.

Intell. Res. 40 (2009), 485–532.
[30] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. 2011. Multimode control attacks on elections. J.

Artif. Intell. Res. 40, 1 (2011), 305–351.
[31] Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. 2009. Llull and Copeland voting

computationally resist bribery and constructive control. J. Artif. Intell. Res. 35 (2009), 275–341.
[32] Piotr Faliszewski, Edith Hemaspaandra, and Henning Schnoor. 2008. Copeland voting: Ties matter. In Proceedings of

the International Conference on Autonomous Agents and Multiagent Systems (AAMAS’08). 983–990.
[33] Piotr Faliszewski, Pasin Manurangsi, and Krzysztof Sornat. 2019. Approximation and hardness of shift-bribery. In

Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI’19). 1901–1908.
[34] Piotr Faliszewski, Yannick Reisch, Jörg Rothe, and Lena Schend. 2015. Complexity of manipulation, bribery, and

campaign management in Bucklin and fallback voting. Auton. Agent Multi-Agent Syst. 29, 6 (2015), 1091–1124.
[35] Piotr Faliszewski and Jörg Rothe. 2016. Control and bribery in voting. In Handbook of Computational Social Choice,

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia (Eds.). Cambridge University Press,
146–168.

[36] Piotr Faliszewski, Piotr Skowron, and Nimrod Talmon. 2017. Bribery as a measure of candidate success: Complexity
results for approval-based multiwinner rules. In Proceedings of the International Conference on Autonomous Agents

and Multiagent Systems (AAMAS’17). 6–14.
[37] Peter C. Fishburn. 1977. Condorcet social choice functions. SIAM J. Appl. Math. 33, 3 (1977), 469–489.
[38] Zack Fitzsimmons and Edith Hemaspaandra. 2015. Complexity of manipulative actions when voting with ties. In

Proceedings of the Conference on Algorithmic Decision Theory (ADT’15), Lecture Notes Computer Science, Vol. 9346.
103–119.

[39] J. Flum and M. Grohe. 2006. Parameterized Complexity Theory. Springer-Verlag, Berlin.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.

https://arxiv.org/abs/1904.01361


12:28 D. Knop et al.

[40] Eugene C. Freuder. 1990. Complexity of K -tree structured constraint satisfaction problems. In Proceedings of the

Association for the Advancement of Artificial Intelligence (AAAI’90). 4–9.
[41] Robert Ganian and Sebastian Ordyniak. 2016. The complexity landscape of decompositional parameters for ILP. In

Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI’16). 710–716.
[42] Grzegorz Gawron and Piotr Faliszewski. 2019. Robustness of approval-based multiwinner voting rules. In Proceedings

of the Conference on Algorithmic Decision Theory (ADT’19), Lecture Notes Computer Science, Vol. 11834. 17–31.
[43] Noam Hazon, Raz Lin, and Sarit Kraus. 2013. How to change a group’s collective decision? In Proceedings of the

International Joint Conferences on Artificial Intelligence (IJCAI’13). 198–205.
[44] Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk. 2013. n-fold integer programming in cubic time. Math.

Program. 137, 1-2, Ser. A (2013), 325–341.
[45] Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. 2013. Bin packing with fixed number of bins revisited.

J. Comput. System Sci. 79, 1 (2013), 39–49.
[46] Andrzej Kaczmarczyk and Piotr Faliszewski. 2019. Algorithms for destructive shift bribery. Auton. Agent Multi-Agent

Syst. 33, 3 (2019), 275–297.
[47] Ravi Kannan. 1983. Improved algorithms for integer programming and related lattice problems. In Proceedings of the

Annual ACM Symposium on Theory of Computing (STOC’83). 193–206.
[48] Orgad Keller, Avinatan Hassidim, and Noam Hazon. 2019. Approximating weighted and priced bribery in scoring

rules. J. Artif. Intell. Res. 66 (2019), 1057–1098.
[49] Orgad Keller, Avinatan Hassidim, and Noam Hazon. 2019. New approximations for coalitional manipulation in scor-

ing rules. J. Artif. Intell. Res. 64 (2019), 109–145.
[50] Dušan Knop, Martin Koutecký, and Matthias Mnich. 2017. Voting and bribing in single-exponential time. In Proceed-

ings of the Symposium on Theoretical Aspects of Computer Science (STACS’17), Leibniz Int. Proc. Informatics, Vol. 66.
46:1–46:14.

[51] Dušan Knop, Martin Koutecký, and Matthias Mnich. 2018. A unifying framework for manipulation problems. In
Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS’18). 256–264.

[52] Dusan Knop, Martin Koutecký, and Matthias Mnich. 2019. Combinatorial n-fold integer programming and applica-
tions. Mathematical Programmin. https://doi.org/10.1007/s10107-019-01402-2.

[53] Hendrik W. Lenstra, Jr. 1983. Integer programming with a fixed number of variables. Math. Operat. Res. 8, 4 (1983),
538–548.

[54] Thomas R. Magrino, Ronald L. Rivest, and Emily Shen. 2011. Computing the margin of victory in IRV elections. In
Proceedings of the 2011 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections.

[55] Cynthia Maushagen, Marc Neveling, Jörg Rothe, and Ann-Kathrin Selker. 2018. Complexity of shift bribery in
iterative elections. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS’18). 1567–1575.
[56] Vijay Menon and Kate Larson. 2017. Computational aspects of strategic behaviour in elections with top-truncated

ballots. Auton. Agents Multi-Agent Syst. 31, 6 (2017), 1506–1547.
[57] Nina Narodytska and Toby Walsh. 2014. The computational impact of partial votes on strategic voting. In Proceedings

of the European Conference on Artificial Intelligence (ECAI’14), Frontiers Artificial Intelligence Appl., Vol. 263. 657–662.
[58] Shmuel Onn. 2010. Nonlinear Discrete Optimization. European Mathematical Society. 147 pages.
[59] Anja Rey, Jörg Rothe, and Adrian Marple. 2017. Path-disruption games: Bribery and a probabilistic model. Theory

Comput. Syst. 60, 2 (2017), 222–252.
[60] Ildikó Schlotter, Piotr Faliszewski, and Edith Elkind. 2017. Campaign management under approval-driven voting

rules. Algorithmica 77, 1 (2017), 84–115.
[61] Dmitry Shiryaev, Lan Yu, and Edith Elkind. 2013. On elections with robust winners. In Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems (AAMAS’13). 415–422.
[62] Lirong Xia. 2012. Computing the margin of victory for various voting rules. In Proceedings of the ACM Conference on

Economics and Computation (EC’12). 982–999.
[63] Hobart P. Young. 1977. Extending Condorcet’s rule. J. Econ. Theory 16, 2 (1977), 335–353.
[64] William S. Zwicker. 2016. Introduction to the theory of voting. In Handbook of Computational Social Choice, Felix

Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia (Eds.). Cambridge University Press, 23–
56.

Received November 2018; revised March 2020; accepted March 2020

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 12. Publication date: June 2020.

https://doi.org/10.1007/s10107-019-01402-2

