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Abstract

Solving (mixed) integer (linear) programs, (M)I(L)Ps for short,
is a fundamental optimisation task with a wide range of ap-
plications in artificial intelligence and computer science in
general. While hard in general, recent years have brought
about vast progress for solving structurally restricted, (non-
mixed) ILPs: n-fold, tree-fold, 2-stage stochastic and multi-
stage stochastic programs admit efficient algorithms, and all
of these special cases are subsumed by the class of ILPs of
small treedepth.
In this paper, we extend this line of work to the mixed case, by
showing an algorithm solving MILP in time f(a, d) poly(n),
where a is the largest coefficient of the constraint matrix, d is
its treedepth, and n is the number of variables.
This is enabled by proving bounds on the denominators (frac-
tionality) of the vertices of bounded-treedepth (non-integer)
linear programs. We do so by carefully analysing the inverses
of invertible sub-matrices of the constraint matrix. This allows
us to afford scaling up the mixed program to the integer grid,
and applying the known methods for integer programs.
We then trace the limiting boundary of our “bounded frac-
tionality” approach both in terms of going beyond MILP (by
allowing non-linear objectives) as well as its usefulness for
generalising other important known tractable classes of ILP.
On the positive side, we show that our result can be gener-
alised from MILP to MIP with piece-wise linear separable
convex objectives with integer breakpoints. On the negative
side, we show that going even slightly beyond such objectives
or considering other natural related tractable classes of ILP
leads to unbounded fractionality.
Finally, we show that restricting the structure of only the inte-
gral variables in the constraint matrix does not yield tractable
special cases.

Introduction
Integer Linear Programming (ILP) is a fundamental hard
problem as well as a widely used and highly successful
framework for solving difficult computational problems in
AI, e.g., problems related to planning (van den Briel, Vossen,
and Kambhampati 2005; Vossen et al. 1999), vehicle rout-
ing (Toth and Vigo 2001), process scheduling (Floudas and
Lin 2005), packing (Lodi, Martello, and Monaci 2002), and
network hub location (Alumur and Kara 2008) that can often
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be solved efficiently using a translation to ILP. This natu-
rally motivates the search for tractable classes for ILP. In
the ’80s, Lenstra and Kannan (Kannan 1987; Lenstra 1983)
and Papadimitriou (Papadimitriou 1981) have shown that the
classes of ILPs with few variables or few constraints and
small coefficients, respectively, are polynomially solvable.
A line of research going back almost 20 years (Hemmecke,
Onn, and Romanchuk 2013; Chen and Marx 2018; Eisen-
brand, Hunkenschröder, and Klein 2018; Aschenbrenner and
Hemmecke 2007; Hemmecke, Köppe, and Weismantel 2014;
Ganian, Ordyniak, and Ramanujan 2017; Ganian and Ordy-
niak 2018; Dvorák et al. 2017) has recently culminated with
the discovery of another tractable class of ILPs (Eisenbrand
et al. 2019; Koutecký, Levin, and Onn 2018), namely ILPs
with small treedepth and coefficients. The obtained results
already found various algorithmic applications in areas such
as scheduling (Knop and Koutecký 2018; Chen et al. 2017;
Jansen et al. 2018), stringology and social choice (Knop,
Koutecký, and Mnich 2017a,b), and the travelling salesman
problem (Chen and Marx 2018).

The language of “special tractable cases” has been de-
veloped in the theory of parameterized complexity (Cy-
gan et al. 2015). We say that a problem is fixed-parameter
tractable (FPT) parameterized by k if it has an algorithm
solving every instance I in time f(k) poly(|I|) for some
computable function f , and we call this an FPT algorithm.
Say that the height of a rooted forest is its largest root-leaf
distance. A graph G = (V,E) has treedepth d if d is the
smallest height of a rooted forest F = (V,E′) in which
each edge of G is between an ancestor-descendant pair in
F , and we write td(G) = d. The primal graph GP (A) of
a matrix A ∈ Rm×n has a vertex for each column of A,
and two vertices are connected if an index k ∈ [m] =
{1, . . . ,m} exists such that both columns are non-zero in
row k. The dual graph GD(A) is defined as GD(A) :=
GP (Aᵀ). Define the primal treedepth of A to be tdP (A) =
td(GP (A)), and analogously tdD(A) = td(GD(A)). The
recent results state that there is an algorithm solving ILP in
time f(‖A‖∞,min{tdP (A), tdD(A)}) poly(n), hence ILP
is FPT parameterized by ‖A‖∞ and min{tdP (A), tdD(A)}.
Besides this class, other parameterizations of ILP have been
successfully employed to show tractability results, such as
bounding the treewidth of the primal graph and the largest
variable domain (Jansen and Kratsch 2015), the treewidth of



the incidence graph and the largest solution prefix sum (Ga-
nian, Ordyniak, and Ramanujan 2017), or the signed clique-
width of the incidence graph (Eiben et al. 2018).

It is therefore natural to ask whether these tractability
results can be generalised to more general settings than ILP.
In this paper we ask this question for Mixed ILP (MILP),
where both integer and non-integer variables are allowed:

min {cx | Ax = b, l ≤ x ≤ u ,x ∈ Zz ×Qq} , (1)

with A ∈ Zm×z+q , l,u, c ∈ Zz+q and b ∈ Zm.
MILP is a prominent modelling tool widely used in prac-

tice. For example, Bixby (Bixby 2002) says in his famous
analysis of LP solver speed-ups, “[I]nteger programming,
and most particularly the mixed-integer variant, is the domi-
nant application of linear programming in practice.” Already
Lenstra has shown that MILP with few integer variables is
polynomially solvable, naturally extending his result on ILPs
with few variables. Analogously, we seek to extend the recent
tractability results from ILP to MILP, most importantly for
the parameterization by treedepth and largest coefficient. Our
main result is as follows:

Theorem 1. MILP is FPT parameterized by ‖A‖∞ and
min{tdP (A), tdD(A)}.

We note that our result also extends to the inequality form
of MILP with constraints of the form Ax ≤ b by the fact
that introducing slack variables does not increase treedepth
too much (Eisenbrand et al. 2019, Lemma 56).

The proof goes by reducing an MILP instance to an ILP
instance whose parameters do not increase too much, and
then applying the existing algorithms for ILP. A key technical
result concerns the fractionality of an MILP instance, which
is the minimum of the maxima of the denominators in optimal
solutions. For example, it is well-known that the natural LP
for the VERTEX COVER problem has half-integral optima,
that is, there exists an optimum with all values in {0, 1

2 , 1}.
The usual way to go about proving fractionality bounds

is via Cramer’s rule and a sufficiently good bound on the
determinant. As witnessed by any proper integer multiple of
the identity, determinants can grow large even for matrices
of very benign structure. Instead, we need to analyse much
more carefully the structure of the inverse of the appearing
invertible sub-matrices, allowing us to show:

Theorem 2. A MILP instance with a constraint matrixA has
an optimal solution x whose largest denominator is bounded
by (‖A‖∞)d!(d!)d!/2, where d = min{tdP (A), tdD(A)}.

We are not aware of any prior work which lifts a positive
result for ILP to a result for MILP in this way.

We also explore the limits of approaching the problem by
bounding the fractionality of inverses: Other ILP classes with
parameterized algorithms involve constraint matrices with
small primal treewidth (Jansen and Kratsch 2015), small in-
cidence treewidth (Ganian, Ordyniak, and Ramanujan 2017),
small signed clique-width (Eiben et al. 2018) and 4-block
n-fold matrices (Hemmecke, Köppe, and Weismantel 2014).
Here, we obtain a negative answer: For each of these param-
eters, there exist families of MILP-instances with constant
parameters, but unbounded fractionality. This is detailed in

Lemma 18 below. The produced families also show that The-
orem 2 is almost optimal:

Corollary 3. There is a MILP instance with
tdP (A), tdD(A) = d, ‖A‖∞ = 2, and fractionality
22d

.

Compare this with our upper bound 22d+log d+log log d

. Next,
we consider extending the positive result of Theorem 1 to
separable convex functions, which is the regime considered
in (Eisenbrand et al. 2019). We show that merely bounding
the fractionality will unfortunately not suffice, which is de-
tailed in Lemma 20 below. However, we show that for one
important class of separable convex objectives, the fractional-
ity does not increase, specifically: piece-wise linear functions
with integer breakpoints. Let f be any separable convex func-
tion, and define f ′ to agree with f on integer points, and to
be linear between them. In a sense, f ′ is an approximation of
f which has a simpler structure. Using f ′ as a proxy for f is
thus common in practice (Bazaraa, Sherali, and Shetty 2013;
Lin et al. 2013). Moreover, functions of this form appear in
applications of IPs with small treedepth (Knop, Koutecký,
and Mnich 2017a; Bredereck et al. 2020).

Theorem 4. MIP is FPT parameterized by ‖A‖∞ and
min{tdP (A), tdD(A)} if the objective function is piece-wise
linear separable convex with integer breakpoints.

By appropriate scaling, the integrality of breakpoints in
the preceding theorem can be relaxed to requiring only break-
points with fractionality bounded in the parameters.

Finally, we consider a different way to extend tractable
ILP classes to MILP. Divide the constraint matrix A of an
MILP instance in two parts corresponding to the integer
and continuous variables as A = (AZ AQ). What structural
restrictions have to be placed onAZ andAQ in order to obtain
tractability of MILP? We show a general hardness result in
this direction, which is made precise in Lemma 21. Note that
the main reason for intractability is that we allow arbitrary
interactions between the integer and the non-integer variables
of the instance. Thus, Lemma 21 implies that this interaction
between integral and fractional variables has to be restricted
in some way in order to obtain a tractable fragment of MILP.

Related Work
We have already mentioned related work on structural pa-
rameterizations of ILP. The closest work to ours was done
by Hemmecke (Hemmecke 2000) in 2000 when he studied a
mixed-integer test set related to the Graver basis, which is the
engine behind all recent progress on ILPs of small treedepth.
It is unclear how to apply his approach, however, because
it requires bounding the norm of elements of the mixed-
integer test set, where the bound obtained by (a strength-
ening of) (Hemmecke 2000, Lemma 6.2),(Hemmecke 2001,
Lemma 2.7.2), is polynomial in n, too much to obtain an FPT
algorithm. Kotnyek (Kotnyek 2002) characterised k-integral
matrices, i.e., matrices whose solutions have fractionality
bounded by k, however it is unclear how his characterisation
could be used to show Theorem 2, so we take a different
route. Lenstra (Lenstra 1983) showed how to solve MILPs
with few integer variables using the fact that a projection



of a polytope is again a polytope; applying this approach to
our case would require us to show that if P is a polytope de-
scribed by inequalities with small treedepth, then a projection
of P also has an inequality description of small treedepth.
This is unclear. In a vein somewhat similar to our bounded-
fractionality approach, ideas related to half-integrality have
recently led to improved FPT algorithms (Iwata, Wahlstrom,
and Yoshida 2016; Iwata, Yamaguchi, and Yoshida 2018;
Guillemot 2011), some of which have been experimentally
evaluated (Pilipczuk and Ziobro 2018). More fundamentally,
half-integrality of two-commodity flow (Hu 1963; Karzanov
1998) and VERTEX COVER (Nemhauser and Trotter 1974)
has been known and made use of for half a century.

Preliminaries
We consider zero a natural number, i.e., 0 ∈ N. We write
vectors in boldface (e.g., x,y) and their entries in normal font
(e.g., the i-th entry of x is xi). For positive integersm ≤ nwe
set [m,n] := {m, . . . , n} and [n] := [1, n]. The following
proposition now follows immediately from Cramer’s rule
together with Hadamard’s bound on determinants.

Proposition 5. Let A ∈ Zn×n be a full rank square matrix.
Then, frac(A−1) ≤ (‖A‖∞)nnn/2.

Reducing MILP to ILP
Assume that an MILP instance is given and that some opti-
mum x = (xZ,xQ) exists whose set of denominators is D,
and we know M = maxD. Recall lcm(D) is the least com-
mon multiple of the elements ofD, and lcm(D) ≤M ! =: M̃ .
Then lcm(D)xQ is an integral vector. Our idea here is to re-
strict our search among all optima of (1) to search among
those optima with small fractionality, that is, with small de-
nominators. Consider the integralized MILP instance:

min{(M̃cZ cQ)z : z ∈ Zz+q, (M̃ ·AZ AQ)z = M̃ · b,
(lZ, M̃ lQ) ≤ (zZ, zQ) ≤ (uZM̃uQ)}

(2)

We claim that the optimum of (1) can be recovered from the
optimum of (2):

Lemma 6. Let M be the fractionality of (1) and (zZ zQ) ∈
Zz+q be an optimum of (2). Then x = (zZ

1
M̃
zQ) is an

optimum of (1).

Proof. It is clear that there is a bijection between solutions
x of (1) where xQ has all entries with a denominator M̃ and
solutions z of (2). The optimality of x then follows from M
being the fractionality of (1) and M ! always being divisible
by lcm(D).

The Graphs of A and Treedepth
We assume thatGP (A) andGD(A) are connected, otherwise
A has (up to row and column permutations) a block diago-
nal structure and solving (1) amounts to solving smaller (1)
instances (for each block) independently.

Definition 7 (Treedepth). The closure cl(F ) of a rooted tree
F is the graph obtained from F by making every vertex

adjacent to all of its ancestors. The height of a tree F denoted
ht(F ) is the maximum number of vertices on any root-leaf
path. We denote by dtF (v) the depth of vertex v in F , i.e.,
the number of vertices on the path from v to the root of F .
A td-decomposition of G is a tree F such that G ⊆ cl(F ).
The treedepth td(G) of a connected graph G is the minimum
height of its td-decompositions.

To facilitate the analysis of our results we use two parame-
ters called topological height (introduced by Eisenbrand et
al. (Eisenbrand et al. 2019)) and topological length:

Definition 8 (Topological height and Topological length). A
vertex of a rooted tree F is degenerate if it has exactly one
child, and non-degenerate otherwise (i.e., if it is a leaf or has
at least two children). The topological height of F , denoted
th(F ), is the maximum number of non-degenerate vertices on
any root-leaf path in F . The topological length of F , denoted
tl(F ), is the maximum number of consecutive degenerate
vertices on any root-leaf path in F . Clearly, th(F ), tl(F ) ≤
ht(F ).

We also need a lemma from (Eisenbrand et al. 2019).

Lemma 9 (Primal Decomposition (Eisenbrand et al. 2019,
Lemma 19)). Let A ∈ Zm×n, GP (A), and a td-
decomposition F of GP (A) be given, where n,m ≥ 1. Then
there exists an algorithm computing in time O(n) a decom-
position of A

A =

 Ā1 A1

...
. . .

Ād Ad

 , (block-structure)

and td-decompositions F1, . . . , Fd of
GP (A1), . . . , GP (Ad), respectively, where d ∈ N,
Āi ∈ Zmi×k, Ai ∈ Zmi×ni , th(Fi) ≤ th(F ) − 1,
ht(Fi) ≤ ht(F ) − k, k ≤ tl(F ), for i ∈ [d],
n1, . . . , nd,m1, . . . ,md ∈ N.

Fractionality of Bounded-Treedepth Matrices
This section is devoted to a proof of our main tractability
result stated in Theorem 1, i.e., showing that MILP (like
ILP) is fixed-parameter tractable parameterized by ‖A‖∞
and d = min{tdP (A), tdD(A)}. The main ingredient for
the proof is Theorem 2 providing a bound on the fractionality
of an optimal solution for MILP:

Theorem 2. A MILP instance with a constraint matrix A
has an optimal solution x whose largest denominator (frac-
tionality) is bounded by (‖A‖∞)d!(d!)d!/2.

We start by observing that the fractionality of an optimal
solution of a MILP instance can be obtained from the frac-
tionality of the inverse of some full rank square sub-matrix
of the non-integer part of the constraint matrix A. Consider
any optimal solution (x∗Z,x

∗
Q) of (1). The fractional part x∗Q

is necessarily an optimal solution of the linear program

min{cxQ : AQxQ = b−AZx
∗
Z,

lQ ≤ xQ ≤ uQ,xQ ∈ Qq} . (3)



To bound the fractionality of (1), it therefore suffices to
consider the fractionality of (3), and we shall hence assume
that A = AQ.

Let us now recall some basic facts about vertices of poly-
topes adapted to the specifics of our situation. Consider a
vertex of the polytope described by the solutions of the sys-
tem of

Ax = b, l ≤ x ≤ u , (4)

withA,b,x, l,u as usual. Let x be any solution of (4). Being
a vertex means satisfying n linearly independent constraints
with equality. Without loss of generality (Eisenbrand et al.
2019, Proposition 4), A has full rank.

Since these first m equations necessarily hold for any so-
lution x, we have m linearly independent constraints sat-
isfied, and there remain n − m of the in total 2n upper
and lower bounds to be satisfied. Without loss of gener-
ality, we may assume that it is indeed the first n − m
lower bound constraints that are met with equality, that is,
x1 = l1, . . . , xn−m = ln−m holds. Let

xN = (x1, . . . , xn−m) ∈ Qn−m,

xB = (xn−m+1, . . . , xn) ∈ Qm ,

and partition accordingly the n columns of A as A =
(AN AB). Letting b′ = b − ANxN , the solution x =
(xN ,xB) satisfies

ABxB = b′. (5)

Observe that AB ∈ Zm×m is a square matrix with trivial
kernel (that is, Ax = 0 only for x = 0), thus invertible.
Therefore, xB = A−1

B b′. (Otherwise, there is a direction
y in the kernel such that both x + εy and x − εy are fea-
sible, hence x was not a vertex.) Hence, in order to bound
the fractionality of the vertex x, it is enough to bound the
fractionalities of the entries of A−1

B . Therefore, to bound the
fractionality of (1), it is sufficient to bound the fractional-
ity of the inverse of any full rank square sub-matrix of the
constraint matrix A. We will denote with frac(A) the frac-
tionality ofA, meaning the maximum denominator appearing
over all entries, represented as fractions in lowest terms, of
A. We will start by showing Theorem 2 for the case of primal
treedepth, i.e., taking into account the discussion thus far
(together with the fact that the treedepth of any sub-matrix of
A is bounded by the treedepth of A) it is sufficient to show
that:
Lemma 10. Let A be a square matrix with full
rank having a td-decomposition F of GP (A).
Then, frac(A−1) is at most (‖A‖∞)bbb/2, where
b = min{tl(F )th(F )+1(th(F )!),ht(F )!}.
Remark 11. Note that to show the bound stated in Theo-
rem 2, it is sufficient to show the lemma for b = (ht(F )!).
However, the bound given in Lemma 10 allows us to ob-
tain better bounds for important special cases. For instance,
for the case of 2-stage stochastic and n-fold ILP, we obtain
that frac(A−1) ≤ (‖A‖∞)2t3(2t3)t

3

since th(F ) = 2 and
t = tl(F ) is the block size.

The main idea for the proof of Lemma 10 is to show that
the matrix A contains a small sub-matrix A′ with at most
b columns and rows such that the fractionality of A−1 is
at most the fractionality of (A′)−1, which can be bounded
using Proposition 5. Towards showing this, we will employ a
pruning procedure that works along the td-decomposition F
of GP (A) in a bottom-up manner. The crucial ingredient of
this procedure is given in Lemma 13 that in essence allows
us to remove all but at most dtF (v) many children (together
with the columns and rows induced by the variables contained
in the sub-trees below those children) of any non-degenerate
vertex v of F . The following lemma shows a general property
for the fractionality of the inverse of a matrix that makes this
pruning step possible.
Lemma 12. Let A ∈ Zn×n be a square matrix with full rank

of the form
(
B 0
R AD

)
, whereAD is a block diagonal matrix.

Then, there is a block AB in AD such that frac(A−1) ≤
frac(A−1

R ), where AR is obtained from A after removing all
columns and rows from A that are in AD but not in AB .

Proof. Note that bothB andAD are full rank square matrices
because AD is a square matrix and A is a full rank square
matrix. By elementary matrix calculus, the inverse of A is

given by
(
B−1 0
R′ A−1

D

)
, where R′ = −A−1

D ·R ·B−1.

Let e be an entry of A−1 with the maximum fractionality
(among all entries in A−1). If e is contained in B−1, then
setting AB to an arbitrary block of AD satisfies the claim of
the lemma. If e is in A−1

D , then setting AB to be the block in
AD containing e satisfies the lemma. This is because AD is
block diagonal, and therefore the inverse of AD is the block
diagonal matrix of the inverses of the blocks. Finally, if e is
contained in R′, then because R′ = −A−1

D · R · B−1, the
entry e of R′ is obtained by multiplying a row r of A−1

D with
a column of R · B−1. Therefore and because R has only
integer entries, setting AB to be the block of AD having a
non-zero entry at row r satisfies the claim of the lemma.

For a set of variables V , the sub-matrix of A induced on
V contains all columns that correspond to a variable in V
projected onto all rows of A that have a non-zero entry in at
least one column in V .
Lemma 13. Let A ∈ Zn×n be a square matrix with full
rank having a td-decomposition F of GP (A), let v be a non-
degenerate vertex of F and let Cv be the set of all children of
v in F . Then there is a setC of at most dtF (v) children of v in
F such that the sub-matrix AP of A obtained after removing
all rows and columns in the sub-matrix of A induced on the
set of all variables occurring in any sub-tree of F rooted at a
child in Cv \ C, satisfies:

• AP is a square matrix with full rank,
• frac(A−1) ≤ frac(A−1

P ).

Proof. Let Av be the sub-matrix of A induced on all vari-
ables occurring in the sub-tree of F rooted at v. Then A

is of the form
(
B 0
R Av

)
, since all rows not in Av only



have zero entries at all columns in Av. Let r be the num-
ber of non-zero columns in R. Note that r ≤ dtF (v) − 1
and because of Lemma 9, we obtain that Av is of the form
(block-structure), with d = |C|, and where Āj only con-
tains the column corresponding to the variable v. Consider a
block Aj with dimensions mj × nj . Since A has full rank,
mj ≥ nj . Otherwise, the columns of Aj would not be lin-
early independent in A. Because A has full rank, we also
obtain that r + 1 +

∑|C|
j=1 nj =

∑|C|
j=1mj . Therefore, the

number r′ of different values for j such that mj > nj is at
most r + 1. W.l.o.g., we can assume that the first r′ inequali-

ties are strict and consequently Av has the form
(
B′ 0
R′ AD

)
,

whereAD is a block diagonal square matrix (consisting of the
blocks Ar′+1, . . . , A|C|) and B′ consists only of the blocks

A1, . . . , Ar′ . Note that A now has the form
(
B 0
R AD

)
and

satisfies the conditions in Lemma 12. Let Ak be the block
of AD, whose existence is ensured by Lemma 12. We claim
that setting C to the children corresponding to the blocks
A1, . . . , Ar′ , Ak satisfies the statement of the lemma. Indeed,
|C| ≤ r′ + 1 ≤ dtF (v). Moreover, AP is a square matrix
with full rank because so is A and the removed blocks Aj are
squares. Finally, frac(A−1) ≤ frac(A−1

P ) by Lemma 12.

The following lemma now shows how to apply the reduc-
tion given in Lemma 13 along the td-decomposition F , to
obtain a sub-matrix of A with at most b columns and rows.

Lemma 14. Let A ∈ Zn×n be a square matrix with
full rank having a td-decomposition F of GP (A). Then
there exists a sub-matrix AP of A having at most b =
min{tl(F )th(F )+1(th(F )!),ht(F )!} columns and rows such
that frac(A−1) ≤ frac(A−1

P ).

Proof. Note that Lemma 13 allows us to reduce the size
of A while not decreasing the fractionality of its inverse as
long as F contains a non-degenerate vertex v with more than
dtF (v) children. To see this let AP be the sub-matrix of A
obtained after applying the lemma for some non-degenerate
vertex v of F . Then AP together with the td-decomposition
obtained from F after removing the sub-trees rooted by a
child in Cv \ C again satisfy the conditions in the state-
ment of the lemma and moreover frac(A−1) ≤ frac(A−1

P ).
Let AP be the sub-matrix obtained from A after apply-
ing the reduction rule given by Lemma 13 exhaustively
and let FP be the td-decomposition of GP (AP ). Then
frac(A−1) ≤ frac(A−1

P ) and moreover every vertex v in
FP has at most dtF (v) children, which implies that FP has
at most b = min{tl(F )th(F )+1(th(F )!),ht(F )!} vertices.
Therefore, AP has at most b columns (and rows) and satisfies
the statement of the lemma.

We are now ready to show Lemma 10.

Proof of Lemma 10. Let AP be the sub-matrix of A, whose
existence is ensured by Lemma 14. Because frac(A−1) ≤
frac(A−1

P ), it suffices to provide the bound for frac(A−1
P ).

Recall that AP has at most b columns and rows. Therefore,

by Proposition 5, the fractionality of the inverse of AP is at
most (‖A‖∞)bbb/2, as required.

The following corollary shows that the fractionality can be
bounded in the same manner in terms of the treedepth of the
dual graph.
Corollary 15. Let A be a square matrix with full
rank having a td-decomposition F of GD(A).
Then, frac(A−1) is at most (‖A‖∞)bbb/2, where
b = min{tl(F )th(F )+1(th(F )!),ht(F )!}.

Proof. Because GP (Aᵀ) = GD(A), we obtain that F is a
td-decomposition of GP (Aᵀ). Therefore, Lemma 10 implies
that frac((Aᵀ)−1) is at most (‖A‖∞)bbb/2. The corollary
now follows because (A−1)ᵀ = (Aᵀ)−1.

Theorem 2 now follows immediately from Lemma 10 and
Corollary 15, which allows us to conclude with the proof of
our main tractability result of this section.

Proof of Theorem 1. Theorem 2 gives us an exact bound M ′
on the largest coefficient of the (2) instance, and it is clear
that the structure of non-zeroes (hence the primal and dual
graphs) of the constraint matrix of (2) is identical to that of
A.

Hence, by Lemma 6, (1) can be solved by solv-
ing (2), which can be done (by the results of (Eisenbrand
et al. 2019)) in FPT time parameterized by ‖A‖∞ and
min{tdP (A), tdD(A)}). (To be precise, we need to solve (2)
for every 1 ≤ M̃ ≤M ′.)

Piece-wise Linear Separable Convex
Objectives

A generalisation of (1) to non-linear objectives is

min {f(x) | Ax = b, l ≤ x ≤ u ,x ∈ Zz ×Qq} , (6)

and here we focus on the case when f is separable convex,
meaning f(x) =

∑n
i=1 fi(xi) with fi : R → R univariate

convex for each i ∈ [n]. Moreover, we assume that f is piece-
wise linear with breakpoints at integer points, i.e., for every
a ∈ R and i ∈ [n], fi(a) = {a}fi(bac) + (1−{a})fi(dae),
where {a} = a− bac.

We adapt a variable transformation of Hochbaum and Shan-
tikumar (Hochbaum and Shantikumar 1990) to show that (6)
admits a linearization that retains the fractionality of the orig-
inal linear instance. This transformation was originally used
to show that integer separable convex minimisation can be
reduced to integer linear minimisation when A has small
sub-determinants, but our use differs in three aspects: our
variables are mixed integer, the matrix A may have large sub-
determinants, and most importantly, we only use it to obtain
a fractionality bound; we never need to solve the newly con-
structed instance. Specifically, we will transform an input (6)
into a (1) whose parameters we define next:

min
{
cy | Ây = b̂, 0 ≤ y ≤ 1, y ∈ Zẑ ×Qq̂

}
(7)

The hatted data are obtained as follows: For each i ∈
[z + q], replace the variable xi with ui − li variables yji ,



j ∈ [ui − li]. Hence, in (7), and the number of integer vari-
ables is ẑ =

∑z
i=1 ui−li, the number of continuous variables

is q̂ =
∑z+q

i=z+1 ui − li. We define the column of Â corre-
sponding to the variable yji , i ∈ [1, z + q] and j ∈ [ui − li],
as Ai. The lower and upper bound for all variables is 0 and
1, respectively. Let the right-hand side b̂ be b̂ = b− Al =∑z+q

i=1 Aili . Finally, the objective function c for variable xji
is intuitively the slope of fi between points li + (j − 1)

and li + j. Specifically, cji = fi(li + j) − fi(li + (j − 1)).
Define a mapping ϕ : Zz × Qq → Zẑ × Qq̂, as follows:
given x ∈ Zz ×Qq, ϕ(x) = y, where for each i ∈ [z + q],
j ∈ [ui − li], yji = max{0,min{1, xi − li − (j − 1)}}.
Lemma 16. 1. A vector x is feasible in (6) iff ϕ(x) is feasi-

ble in (7).
2. If l ≤ x ≤ u, then f(x) = cϕ(x) +

∑z+q
i=1 fi(li).

3. Let x∗ be an optimum of (6). Then ϕ(x∗) is an optimum
of (7).

Proof. Part 1. We need to check feasibility with respect to
the equality constraints and the lower and upper bounds. As
for the equality constraints, the contribution of a variable xi
to the constraints is Aixi. Since by definition of ϕ(x) we
have

∑ui−li
j=1 yji = xi − li, and because the column of Â

corresponding to yji is exactly Ai, the contribution of the
variables yji is exactly Aixi −Aili. Recall that the term Aili
is subtracted from b in the definition of b̂. As for the bounds,
this again follows by xi = li +

∑ui−li
j=1 yji and the fact that

the number of variables yji for fixed i is ui − li. Hence,
0 ≤

∑ui−li
j=1 yji ≤ ui − li.

Part 2. If x = l, then ϕ(x) = 0 and cϕ(x) = 0, so the
values of x in (6) is exactly f(l) more than the value of ϕ(x)
in (7). Now consider any l ≤ x ≤ u. For each i ∈ [z+q], the
contribution of the yji variables is

∑ui−li
i=1 (fi(li +j)−fi(li +

(j − 1)))yji = f(xi) − f(li), where the equality holds by
xi = li +

∑ui−li
j=1 yji and the linearity of f between integers.

Part 3. It is enough to show that there is an optimum
y∗ of (7) which is left-justified, meaning that for each
i ∈ [n], the vector (y1

i , y
2
i , . . . , y

ui−li
i ) has the form

(1, 1, 1, . . . , 1, a, 0, . . . , 0) for some a ∈ R. By definition,
the image of ϕ is comprised of left-justified vectors y, and is
invertible on its image. The reason why some optimum is left-
justified is that the sequence c1i , . . . , c

ui−li
i is non-decreasing,

so having fixed the sum
∑ui−li

j=1 yji , a left-shifted assignment
is optimal, and the only way to obtain an optimal but not left-
justified assignment is if cji = cj+1

i holds for some j.

Lemma 17. Every square sub-matrix A′ of Â of full rank
has tdP (A′) ≤ tdP (A) and tdD(A′) ≤ tdD(A).

Proof. For A′ to have full rank, it cannot contain duplicate
columns. Hence, A′ is also a square sub-matrix of A, a case
in which we have already shown the claim to hold.

Proof of Theorem 4. By this lemma, the fractionality M
of (7) is bounded by frac(A), and by Lemma 16 and the
definition of ϕ, frac(A) is also a fractionality bound on (1)
when f is separable convex piece-wise linear with integer
breakpoints. Let f̂ be defined component-wise from f as
follows: for i ∈ [1, z], let f̂i = fi, and for i ∈ [z + 1, z + q],
let f̂i(xi) = fi(xi/M). Then, to solve (1) in this regime, it
is enough to optimise f̂ over (2).

Limits of the “Bounded Fractionality”
Approach

In this section, we show the limits of our “bounded frac-
tionality” approach. We start by showing its limits for vari-
ous important known tractable classes of ILP, i.e., the class
of small primal treewidth and domain (Jansen and Kratsch
2015), small incidence treewidth and largest solution prefix
sum (Ganian, Ordyniak, and Ramanujan 2017), small signed
clique-width of the incidence graph (Eiben et al. 2018), and
the class of 4-block n-fold matrices (Hemmecke, Köppe, and
Weismantel 2014). We show that all these classes exhibit
unbounded fractionality.
Lemma 18. For every n ∈ N, there are MILP instances I1
and I2 with constraint matrices A1 and A2, such that A1 has
constant primal, dual, and incidence treewidth and signed
incidence clique-width and ‖A1‖∞ = 2, and A2 is 4-block
n-fold with all blocks being just (1), and the fractionality is
2Ω(n) for I1 and Ω(n) for I2.

Proof. Consider the n× n matrix

A1 =


2 −1 0 · · · 0
0 2 −1 · · · 0
...

. . .
...

0 0 · · · 2

 ,

It is easy to verify that the matrix B with Bij = 2i−j−1 for
i ≤ j and Bij = 0 otherwise is the inverse of A1. Moreover,
the primal, dual, incidence treewidth of A1 is at most 1,
the signed incidence clique-width of A1 is at most 2, and
‖A1‖∞ = 2.

It is again easy to verify that below are A2 and its inverse,
both n × n, with n′ = n − 2, and A2 is a 4-block n-fold
matrix with all blocks of size 1:

A2 =


1 1 1 · · · 1
1 1 0 · · · 0
1 0 1 · · · 0
...

. . .
1 0 0 · · · 1

 ,

A−1
2 =


− 1

n′
1
n′

1
n′ · · · 1

n′
1
n′

n′−1
n − 1

n′ · · · − 1
n′

1
n′ − 1

n′
n′−1
n · · · − 1

n′

...
. . .

1
n′ − 1

n′ − 1
n′ · · · n′−1

n

 .



Because for each vertex x of a polyhedron there exists an
objective vector c such that (1) is uniquely optimal in x, and
the fact that we have demonstrated inverses with high frac-
tionality, there must exist vertices of high fractionality and
corresponding objectives, which give the desired instances I1
and I2.

Remark 19. The Ω(n) fractionality lower bound in part 2
of Lemma 18 may be seen as mild given that for 4-block
n-fold we would seek an algorithm running in time nf(k),
for f some function and k largest block size, and that (the
more permissive) n-fold IP problem has such an algorithm
even when its entries are polynomial in n. However, this
is not true for the 2-stage stochastic IP problem, which is
NP-hard with polynomially bounded coefficients already with
constant-size blocks (Dvorák et al. 2017). Because 4-block
n-fold IP is at least as hard as 2-stage stochastic IP, the
bounded fractionality approach cannot work for giving an
nf(k) algorithm for 4-block n-fold MILP.

We now show the limits of our approach for generalising
our results from MILP to MIP for certain types of separable
convex functions.

Lemma 20. There are MIP instances with the following
properties:

1. A = (1 · · · 1), b = 1, f(x) =
∑

i(xi)
2, tdD(A) = 1,

fractionality n,
2. dimension 1, no constraints, f(x) = (x− 1

k )2, fractionality
k,

3. dimension 1, no equality constraints, 0 ≤ x ≤ 1, f(x) =
x3 + 2x2 − x univariate cubic convex, unbounded frac-
tionality (minimum is

√
7

3 −
2
3 ).

Proof. All instances have unique optima, and it is straight-
forward to verify that in part 1 of the Lemma, it is the point
x = ( 1

n , . . . ,
1
n ), in part 2 it is x = 1

k , for any k, and in part
3, the minimum is irrational x =

√
7

3 −
2
3 , hence fractionality

is unbounded. The objective f(x) = x3 + 2x2 − x is not
convex on R, but it is between 0 and 1.

The Limits of Tractability for Structured
MILPs

It is well-known that MILP is fixed-parameter tractable pa-
rameterized by the number of integer variables. It is therefore
natural to ask, whether for our Theorem 1 it could be suffi-
cient to only put restrictions on the integer part of the instance.
Here, we show that this is not the case. We show hardness for
the feasibility version of MILP, which is deciding the non-
emptiness of the set {x ∈ Zz ×Qq | Ax = b, l ≤ x ≤ u}.
Lemma 21. Let C be a class of ILP instances for which the
feasibility problem is NP-hard. Then there exists a class of
MILP instances C′ whose feasibility problem is NP-hard and

whose constraint matrix is A =

(
0 AQ
I −I

)
, where I is the

identity matrix and AQ is a constraint matrix of an instance
from C.

Proof. We provide a polynomial-time reduction from ILP-
feasibility. Let I := {x ∈ Zn | Ax = b, l ≤ x ≤ u} be
an instance of ILP-FEASIBILITY. Informally, we obtain the
equivalent instance I ′ of MILP by putting the variables of I
into the non-integer part and then making an (integer) copy
of every variable in I, which ensures (by forcing the copy to
be equal to its original) that the original variables can only
take integer values. Formally, I ′ is given by:{

x′ ∈ Zn ×Qn |
(

A
I −I

)
x′ =

(
b
0

)
,(

l
l

)
≤ x′ ≤

(
u
u

)}
,

(8)

where I is the n×n identity matrix and 0 is the n dimensional
all zero vector. Note that the sub-instance induced by all
integer variables of I ′ has no constraints and the sub-instance
induced by all non-integer variables is equal to I. (Here, by
an induced sub-instance we mean one obtained by retaining
only constraints not containing any of the remaining variables,
as those constraints would be arguably meaningless in the
induced sub-instance.)

Remark 22. It is an interesting question for future work
whether we can generalise our results for MILP if we put
additional restrictions on the interactions between integer
and non-integer variables. A similar approach has recently
been explored for generalising the tractability result for ILP
based on primal treedepth to MILP (Ganian, Ordyniak, and
Ramanujan 2017) using a hybrid decompositional parameter
called torso-width.

Open Problems
We close with three open problems motivating future research.
First, what is the complexity of general MIP for matrices with
bounded primal and dual treedepth? Our Lemma 20 shows
that a different approach is needed. Second, is 4-block n-fold
MILP in XP? At first sight, it may seem that to get an XP algo-
rithm, it should suffice to bound the fractionality by poly(n)
(and nothing better is possible by Lemma 18). However, the
current XP algorithm for the pure integer case depends expo-
nentially on the largest coefficient of the constraint matrix,
so solving (2) would be too slow. Third, Lemma 21 suggests
that new tractable fragments of MILP may be characterized
by having bounded interaction between the integer and con-
tinuous variables. Hence, we ask: what is the complexity of
MILP where AZ comes from an ILP tractable fragment, AQ
is arbitrary, and the number of rows which are nonzero in
both the integer and continuous variables is small? If this
is hard, what restraints need to be placed on AQ to obtain a
tractable fragment?
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