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Abstract

Motivated by a concept studied in [1], we consider a property of matrices over finite

fields that generalizes triangular totally nonsingular matrices to block matrices. We

show that (1) matrices with this property suffice to construct asymptotically good tree

codes and (2) a random block-triangular matrix over a field of quadratic size satisfies

this property. We will also show that a generalization of this randomized construction

yields codes over quadratic size fields for which the sum of the rate and minimum

relative distance gets arbitrarily close to 1.

1 Introduction

The problem of an explicit construction of good tree codes is an interesting longstanding

open problem. In [5] we showed that a good tree code can be constructed from a triangular

totally nonsingular matrix over a filed of polynomial size. A triangular totally nonsingular

matrix 1 is a matrix M such that every square submatrix of M whose main diagonal is in

the lower triangle (we call such submatrices admissible) is nonsingular. Note that only those

minors can be nonzero. Whether or not such matrices exist over polynomial size fields is

an open problem. In contrast, examples of such matrices over exponentially large fields

and fields of characteristic zero are well-known. The triangular Pascal matrix is triangular

totally nonsingular over rationals, in fact it is triangular totally positive. Since the minors

are at most exponentially large, one can take the Pascal matrix modulo an exponentially

large prime a get a triangular totally nonsingular matrix over the corresponding prime field.

∗Institute of Mathematics, Czech Academy of Sciences, Prague. The author is supported by the project

EPAC, funded by the Grant Agency of the Czech Republic under the grant agreement no. 19-27871X, and

the institute grant RVO: 67985840.
1Throughout this note triangular means lower triangular.
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These matrices have been used in the so far best construction of tree codes [3]. In [1]

Ben Yaakov, Cohen and Narayanan report on computer experiments that strongly suggest

that subexponential primes do not suffice, which is also conjectured in [4]. Therefore Ben

Yaacov et al. [1] considered a weaker property that Pascal matrices over small finite fields

could satisfy and proved that this property is sufficient for constructing good tree codes.

They conjectured that Pascal matrices have this property over polynomial size fields and

supported the conjecture by computing the smallest prime for several small instances of the

Pascal matrix.

Our aim in this note is, first, to show that a property slightly weaker than the one

considered in [1] suffices for constructing good tree codes and, second, to prove that a random

matrix having a certain pattern of zero and nonzero elements over a field of quadratic size

satisfies this property. Our point is that one should not focus only on the Pascal matrix.

The Pascal matrix may have the required property but it may be very difficult to prove it.

Once we know that there are other matrices that satisfy our weaker property, we can look for

different constructions. E.g., constructions of totally nonsingular matrices over linear size

fields are well-known and we may try to use them to construct matrices with the property

that we propose here.

The concept that we propose in this note is a natural generalization of triangular totally

nonsingular matrices to block matrices. We only need matrices consisting of blocks that

are 2× 1 matrices (or, if you prefer, column vectors of length 2). So (2, 1)-block triangular

matrices have dimensions 2n × n. The property that we need is that all admissible (2, 1)-

block submatrices have full rank. Admissible (2, 1)-block submatrices of a (2, 1) block matrix

M are submatrices whose main block diagonal is in the lower triangle of (2, 1) blocks of M .

In this note we only show how to construct from these matrices tree codes with rate 1/3 and

minimum relative distance 1/2 with polynomial size input and output alphabets, but it is

well-known that from any such code one can construct a linear tree code with constant size

alphabet and positive rate and minimum distance (cf. [5]).

The property studied in [1] can also be stated in terms of (2, 1)-block triangular matrices.

Ben Yaacov et al. take the matrix of odd columns of the triangular Pascal matrix. This

matrix can be viewed as a (2, 1)-block triangular matrix. They conjecture that in this matrix

all admissible (2, 1)-block triangular submatrices have a slightly stronger property than full

rank, possibly with some small exceptions.

In Section 4 we generalize the construction and show that there are linear codes over

quadratic fields such that the sum of the rate and relative minimum distance is arbitrarily

close to 1 (the Singleton bound). Whether or not one can actually achieve the bound 1 with

2



codes over subexponential size fields remains an open problem.

In [4] Karingula and Lovett studied a somewhat related topic. They estimated the prob-

ability that a random integer matrix with entries in {−m, . . . ,m} is singular. They conjec-

tured that for m bounded from below by a sufficiently large polynomial in the dimension of

the matrix, a random triangular integer matrix is triangular totally nonsingular. In the last

section we propose a conjecture about certain random matrices that implies the conjecture

of Karingula and Lovett.2

Acknowledgment. I would like to thank to Shachar Lovett for suggesting to look at the

problem whether the Singleton bound holds true for tree codes and to the referees for their

remarks.

2 Definitions and basic facts

2.1 Patterns

We will call a pattern any matrix with entries 0 and ∗. We say that a matrix M over a field

is consistent with a pattern P , if M and P have the same dimensions and M has nonzero

elements only where P has stars. We will only consider left-bottom patterns (abbreviated by

lb-patterns) which are patterns in which every entry before or below an occurrence of ∗ is

also ∗. E.g., lower triangular matrices are matrices that are consistent with the triangular

lb-patterns, which are the lb-patterns consisting of a triangle of stars delimited by the main

diagonal with the rest filled with zeros. Triangular lb-patterns are, by definition, square

matrices. We will denote by Tn the n × n triangular lb-pattern. Two more important

examples are all-star patterns and all-zero patterns which are matrices where all entries are

stars, respectively zeros

A subpattern P ′ of a pattern P is a submatrix of P ; if P is an lb-pattern, then, clearly,

P ′ is also an lb-pattern. We call an lb-pattern P admissible, if it is a square matrix and has

stars on the main diagonal.

Fact 1 Let P be a triangular lb-pattern and P ′ = P [i1, . . . , ik|j1, . . . , jk] be the subpattern

given by rows i1, . . . , ik and columns j1, . . . , jk. Then P ′ is admissible iff i1 ≥ j1, . . . , ik ≥ jk.

2After we finished a draft of this note we learned that Karingula and Lovett tried a similar approach.
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Fact 2 Let P be a square lb-pattern with ∗ in the upper left corner. Then either P is

admissible, or P can be decomposed into blocks

P =

 A O

Z


where A is an admissible pattern and O is a zero pattern.

Proof. Let P be an n × n lb-pattern with P1,1 = ∗. If P is not admissible, take the largest

m such that P [1, . . . ,m|1, . . . ,m] is admissible. Such an m exists, because the P1,1 = ∗. For

this m, Pm+1,m+1 = 0, hence P [1, . . . ,m + 1|m + 1, . . . , n] is a zero matrix (which is a little

bit more than what is stated in Fact).

2.2 Matrices

Given a matrix M and a pattern P defined on rows i1, . . . , ik and columns j1, . . . , jl, we will

denote by M [P ] := M [i1, . . . , ik|j1, . . . , jl].
We say that an n× n matrix M is triangular totally nonsingular, if for every admissible

subpattern of the Tn the corresponding submatrix of M is nonsingular. Since only those

square matrices that are induced by admissible patterns can be nonsingular, one often says

“all submatrices of M that can be nonsingular are nonsingular”.

We will now generalize the introduced concepts to block matrices. An (a, b)-block matrix

is a matrix M whose entries are a× b matrices. If M is an m×n (a, b)-block matrix, we can

forget the blocks and view M as an am× bn ordinary matrix; we will denote this matrix by

M [. We will say that the block dimensions of M are m× n.

We say that a block matrix is consistent with a pattern P , if all blocks corresponding

to zeros of P are zero matrices. E.g., a lower triangular block matrix of dimension n is a

matrix is matrix consistent with Tn.

We want to generalize triangular totally nonsingular matrices to block matrices. In this

note we only need it for matrices with blocks 2 × 1. The generalization is straightforward

except that we have to decide what to use instead of nonsingularity. We will use full rank.

Definition 1 We say that a triangular (2, 1)-block matrix M is a totally full rank block

matrix, if for every admissible (2, 1)-block submatrix N , N [ is a full rank matrix.

In [1] the authors considered a stronger condition: from each pair of consecutive rows

(odd and even) of N [ one can choose one row so that the resulting matrix is nonsingular.
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2.3 Linear tree codes

We consider truncated tree codes, which means that the code-words have some fixed finite

length called the length of the code. We will omit the specification “truncated” in the sequel.

Linear tree codes have generating matrices that are of the form M [ for some (a, b)-block

triangular matrix M with a > b, see [5]. Here we consider lower triangular matrices, so the

code is generated by the columns of M [. In Section 3 we will use (3, 1)-block triangular

generating matrices which define codes of rate 1/3. We will view the code-words also as

(3, 1)-block matrices, or more precisely, (3, 1)-block column vectors. The block length of

these vectors is the number of blocks.

Let C be a code of block-length n. The minimum relative distance is defined as follows.

Take a nonzero vector ~c ∈ C and let k be the index of the first nonzero block. The relative

weight of C is

min
0≤l≤n−k

the number of nonzero blocks between k and k + l

l + 1
.

The minimum relative distance of C is the minimum of the relative weights of nonzero

code-words.

3 Two observations

Proposition 3.1 Given a triangular totally full rank (2, 1)-block matrix M of block-dimension

n over a field F , one can construct a linear tree code C over F such that

1. C has block length n;

2. the blocks of code-words have length 3, thus the rate of the code is 1/3;

3. the minimum relative distance is > 1/2.

Proof. The proof uses an idea of [2] by which Bhandari and Harsha proved that triangular

totally nonsingular matrices can be used to construct tree codes that match the Singleton

bound.3

Let M be given. Let N be a (3, 1)-block triangular matrix obtained from M by inter-

leaving M with the identity matrix. This means that we extend every (2, 1)-block of M to

3Our original proof in [5] was different and gave a stronger result. The difference is that we proved a

bound on the relative number of nonzero entries in a nonzero code word, which in general may be much

smaller than the relative number of nonzero blocks.
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a (3, 1)-block by adding a 0 or 1 at the top as follows. We add 1s to blocks on the main

diagonal and 0s elsewhere. Consider the tree code generated by the columns of N .

The added 0s and 1s ensure that the coding function is 1-1. We only need to show

the lower bound on the minimum distance. Let ~cj1 , . . . ,~cjk be columns of N generating a

nonzero code-word ~c (a column vector) using some nonzero coefficients. The condition that

we have to verify depends on principal submatrices of N which have the same properties

as N . Therefore we may assume w.l.o.g. that j1 = 1, i.e., ~cj1 is the first column of N and

consider how many nonzero elements has the entire vector ~c.

We will consider two cases:

1. k > n/2. Then we are done—the 1s of the identity matrix produce the k nonzero

blocks in ~c.

2. k ≤ n/2. Let S be the indices of the (3 × 1)-blocks of ~c that are zero. We need

to show |S| < n/2. So suppose this is not the case. Then |S| ≥ n/2 ≥ k. Consider the

block submatrix N [S|i1 . . . ik]. Let K be this matrix with rows corresponding to the identity

matrix omitted. Let K ′ be the submatrix of K with only the first 2k rows. So K ′ is a

(2× 1)-block square submatrix of M . K ′ itself may not be admissible, but we know that the

elements in the first column are nonzero and thus we may use Fact 2. According to this fact

some left upper part of K ′ is an admissible submatrix K ′′ and there are zeros to the right of

it. The columns of K ′′ sum to a zero vector, because the columns of N [S|i1 . . . ik] sum to a

zero vector. But this is in contradiction with the assumption that M is a triangular totally

full rank (2, 1)-block matrix. Hence |S| < n/2, which is the number of zero blocks in ~c.

Proposition 3.2 For every n ≥ 1 and every field F , if |F | ≥ 2n2, then there exists a (2, 1)-

block-triangular totally full rank matrix M over F of block-dimension n. Moreover, for finite

fields, if |F | ≥ ω(n2), then the probability that a random matrix has this property tends to 1

with n→∞.

Proof. It is well-known that the triangular Pascal matrix is triangular totally nonsingular

in R. From this, we get the desired matrix M for fields of characteristic 0 by omitting even

columns. So we only need to consider finite fields.

Let F be a finite field and q = |F |. We need to estimate probabilities of random ma-

trices consistent with (2, 1)-block-admissible patterns. These are patterns that arise from

admissible patterns by duplicating the entries to get (2, 1)-blocks. In the rest of the proof,

we will omit the specification (2, 1) and simply say “block-admissible patterns”. The reader

should keep in mind that these patterns and matrices are now 2k × k for some k. We will

denote by E the elementary admissible pattern
[

∗
∗

]
. For a block-admissible pattern P larger
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than E, we will denote by P− the pattern P with the first two rows and the first column

omitted; thus P− has the block-dimension one less than P . The pattern P− is, clearly, also

block-admissible. We will denote by φ the property that a matrix has full rank.

For a block-admissible pattern P with some zeros, the probability that a random matrix

consistent with P does not have full rank may not be exponentially small; in fact, it may be

as high as q−2. Therefore we will use conditional probabilities.

Claim 1 Let P be a block-admissible pattern larger than E. The probability that a random

2k × k matrix M consistent with P does not have full rank under the condition that M [P−]

has full rank is q−k−1.

Proof. If the last k− 1 columns are independent, then the matrix does not have full rank iff

the first column is dependent on the last ones. This probability is equal to the probability

that the first column is in the linear space spanned by the last ones, which is qk−1/q2k.

Claim 2 Let T 2
n be the 2n × n block-triangular pattern. Let M be a random matrix over

a finite field F consistent with T 2
n . Then the probability that for some block admissible

subpattern P of T 2
n , the matrix M [P ] does not have full rank is bounded by

≤
∑
E

Prob[¬φ(M [E])] +
∑
P

Prob[¬φ(M [P ]) ∧ φ(M [P−])], (1)

where the first sum is over all elementary admissible subpatterns E of T 2
n and the second

sum is over all block-admissible subpatterns P larger than E.

Proof. Suppose that there exists an admissible subpattern P of T 2
n such that M [P ] does not

have full rank. Consider such a P with the least dimension. Then P is either E, or P is

larger than E and M [P−] does not have full rank. Hence the bound follows by the union

bound.

To prove the proposition, we need to show that for a finite field F with |F | ≥ 2n2, the

probability that for some block admissible pattern P , the matrix M [P ] is not full rank is

less than 1. We observe that Prob[¬φ(M [P ]) ∧ φ(M [P ′])] ≤ Prob[¬φ(M [P ])|φ(M [P ′])]. By

Claim 1, the latter probability is q−k−1. We also have Prob[¬φ(M [E])] = q−2. To bound the

sum in (1), we will estimate the number of block-admissible patterns of dimensions 2k × k
by ≤

(
n
k

)2
and use the assumption q ≥ 2n2. Thus we get

≤
n∑
k=1

(
n

k

)2

· q−k−1 ≤
n∑
k=1

(
n2

q

)−k
≤

n∑
k=1

2−k < 1.

Clearly, the estimate goes to 0 when q ≥ ω(n2).
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Remarks. 1. The bound |F | ≥ 2n2 is, certainly, not optimal. We have used a very

crude estimate on the number of admissible patterns. Since the bound is mostly influenced

by terms with small k, it would suffice to count more precisely the number of admissible

patterns for small ks in order to get a constant smaller than 2. But we do not see a way to

prove the theorem with a subquadratic bound.

2. It is possible that the stronger property considered in Ben Yaacov et al. [1] is also

satisfied by random matrices over polynomial size fields, but we were not able to prove it.

4 A generalization

We will now generalize the randomized construction from the previous section and show that

the sum of the rate and relative minimum distance may be arbitrarily close to 1 for fields of

quadratic size. To this end we need to consider more general linear codes.

Let F be a field and let s > t ≥ 1 be fixed constants. Let N be an (s, t)-block triangular

matrix of block dimension n (thus N [, which is N with blocks forgotten, has dimensions

sn× tn). If N satisfies a certain condition, we can use N to define a tree code C : (F t)n →
(F s)n as follows. For an input ~x ∈ (F t)n we take ~x[ (which is ~x with blocks forgotten),

multiply it by N [, and then we introduce blocks of length s on the vector N [~x[. Deleting

and introducing blocks may look as an unnecessary complication, but the point is that the

input alphabet are vectors of length t and the output alphabet are vectors of length s.

For the mapping C to be a tree code, it is necessary and sufficient that the blocks on

the diagonal of N are full rank matrices. Further, one can always put the matrix into the

normal form in which blocks on the main diagonal are matrices starting with the s × s

identity matrix and the blocks outside are matrices starting with s× s zero matrix. Thus in

order to define such a code we only need a suitable (s − t, t)-block triangular matrix. The

minimum distance will depend on the properties of this matrix; the rate is always t/s. We

will call codes defined above (s, t)-codes.

Proposition 4.1 For every numbers t and n and every field F , |F | ≥ 2n2, there exists a

linear (2t+ 1, t)-code with rate t
2t+1

and minimum relative distance ≥ 1/2. Thus the sum of

the rate and relative minimum distance is ≥ 1− 1
4t+2

.

The bound on the size of the field does not depend on t, but note that the sizes of the input

and output alphabets increase with t.

Proof. The proof follows the lines of of the proof of Proposition 3.2 with appropriate changes.
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First we will show that a random (t+ 1, t)-block triangular matrix over a field F , |F | ≥ 2n2

is totally full rank with high probability. To this end we need to estimate:

1. the probability that a random (t+ 1)× t matrix is nonsingular, and

2. for random (t+ 1)k × tk matrices M , where k > 1, the conditional probability

Prob[M nonsingular | M [t+ 2, . . . , (t+ 1)k|t+ 1, . . . , tk] nonsingular ].

One can show using elementary calculations that the first probability is < q−1 and the second

one is < q−k, where q = |F |. Hence the same computation as in the proof of Proposition 3.2

shows that M is (t+ 1, t)-block triangular totally nonsingular with positive probability.

From M we get a generating matrix in the normal form by extending the (t+ 1, t)-blocks

with zero and identity t× t matrices. The resulting (2t+ 1, t)-block matrix generates a tree

code with rate t/(2t+1). It remains to show that the minimum relative distance of this code

is ≥ 1/2. The proof of this bound is a literal translation of the proof of Proposition 3.1.

In order to see that the bound on the sum of the rate and minimum relative distance

approaches the best possible value, we will check the Singleton bound for linear tree codes.

It does not hold exactly, only asymptotically.

Proposition 4.2 For every s > t > 0, there exists cs,t > 0 such that for every n and

every linear (s, t)-code of length n the sum of the rate r and the minimum relative distance

δ satisfies

r + δ ≤ 1 + 1/cs,tn.

Proof. Let M be a (s, t) block matrix generating a code of block length n. Assume that M

is in the normal form defined above. Take the first k block columns of M , where k will be

determined later, and k + l block rows where l the largest integer such that (s − t)l < kt.

From this k + l× k matrix we only take the bottom l block rows and denote this matrix by

N . If we forget the block structure, the resulting matrix N [ has dimensions sl × tk. In N

every (s, t)-block is off-diagonal, hence starts with t rows of zeros. Thus N [ has tl rows of

zeros and (s − t)l possibly nonzero rows. For we assume that (s − t)l < kt, there exists a

nonzero vector ~x such that N [~x = ~0. Let ~y [ := M [~x and let ~y be the s-block vector obtained

from ~y [ by introducing the blocks. Since ~x is nonzero, at least one of the first k blocks of ~y

are nonzero. On the other hand, the last l blocks are zero. Hence the relative weight δ~y of

~y is at most k/(k + l). The condition (s− t)l < kt is equivalent to (s− t)l ≤ kt− 1. Thus

we have

δ~y ≤
k

k + kt−1
s−t

=
1

1 +
t− 1

k

s−t

=
s− t
s− 1

k

.

9



This gives the upper bound

r + δ ≤ t

s
+
s− t
s− 1

k

= 1 +
1− t

s

sk − 1
.

One can easily check that the largest k that we can take, which is the largest k such that

k + l ≤ n, is a positive fraction of n.

5 Integer triangular totally nonsingular matrices

While probabilistic arguments seem to fail to prove the existence of triangular totally non-

singular matrices over polynomially large fields, it is possible that they may be used for tri-

angular totally nonsingular matrices over integers with polynomially large entries. Karingula

and Lovett [4] conjectured that for a sufficiently large polynomial p(n), a random triangular

integer matrix with entries in [−m,m], m ≥ p(n), is with high probability totally nonsingu-

lar. (High probability only means ≥ 1− 1/mα for some constant α > 0.) In this section we

will state a conjecture that implies the conjecture of Karingula and Lovett.

An n × n lb-pattern P is called reducible if for some k, 1 ≤ k ≤ n, the subpattern

P [1, 2, . . . , k|k+1, k+2, . . . , n] is an all-zero pattern; otherwise it is called irreducible. Equiv-

alently, an lb-pattern P is irreducible iff Pi,i+1 = ∗ for all i = 1, . . . , n− 1.

Conjecture 1 There exists an ε > 0 and c such that for every n, every m ≥ nc, and every

n × n irreducible lb-pattern P , random matrices M with entries in [−m,m] consistent with

P satisfy

Prob[M is singular | M [1, 2, . . . , n− 1|2, 3, . . . , n] is nonsingular ] < m−εn.

If the conjecture is not true, it will most likely fail on the minimal irreducible lb-patterns.

These are the patterns P such that Pij = 0 iff i + 1 < j. For a matrix M consistent with

such a pattern, the condition that M [1, 2, . . . , n − 1|2, 3, . . . , n] is nonsingular is equivalent

to the condition that Mi,i+1 6= 0 for all 1 ≤ i ≤ n − 1, because then the subpattern

P [1, 2, . . . , n− 1|2, 3, . . . , n] is triangular.

For an n × n pattern P , we will denote by P ∗ := P [1, 2, . . . , n − 1|2, 3, . . . , n]. If P is

irreducible, then P ∗ is admissible. If P is admissible, then the main diagonal can be covered

by disjoint irreducible principal subpatterns P1, . . . , Pm (we allow m = 1). We will call

P1, . . . , Pm the decomposition of P . We will use the following fact.

Fact 3 Let P be an admissible pattern and P1, . . . , Pm its decomposition. Then a matrix M

consistent with P is nonsingular iff all submatrices M [P1], . . . ,M [Pm] are nonsingular.
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Proposition 5.1 If the conjecture above holds true, then for some c, there exist n × n

triangular totally nonsingular integer matrices with entries in [−nc, nc] for every n ≥ 1.

Moreover, if c is sufficiently large, the probability that a random triangular matrix is totally

nonsingular tends to 1 with n→∞.

Proof. The proof is based on the same idea as the one of Proposition 3.2.

By Fact 3, a triangular matrix M is totally nonsingular iff for every irreducible subpattern

P of Tn, M [P ] is nonsingular. Suppose M not totally nonsingular and let P be an irreducible

subpattern of Tn of the smallest dimension such that M [P ] is singular. Then we there are

two cases.

1. P is a pattern with a single entry, and M [P ] = 0, or

2. P is larger. In this case let P ∗1 , . . . , P
∗
m be the decomposition of P ∗ into irreducible

patterns. Since P ∗1 , . . . , P
∗
m are smaller than P , M [P ∗i ] are nonsingular. Hence P ∗ is

also nonsingular.

Thus we can bound the probability that M is not totally nonsingular by∑
i≥j

Prob[Mi,j = 0] +
∑
P

Prob[M [P ] is singular ∧ M [P ∗] is nonsingular ],

where the second sum is over all irreducible subpatterns of Tn of dimensions ≥ 2. The rest

of the proof is a computation similar to the one in the proof of Proposition 3.2, so we leave

it to the reader.
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