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Powerful results from the theory of integer programming have recently led to
substantial advances in parameterized complexity. However, our perception is
that, except for Lenstra’s algorithm for solving integer linear programming in
fixed dimension, there is still little understanding in the parameterized complexity
community of the strengths and limitations of the available tools. This is un-
derstandable: it is often difficult to infer exact runtimes or even the distinction
between FPT and XP algorithms, and some knowledge is simply unwritten folklore
in a different community. We wish to make a step in remedying this situation.

To that end, we first provide an easy to navigate quick reference guide of integer
programming algorithms from the perspective of parameterized complexity. Then,
we show their applications in three case studies, obtaining FPT algorithms with
runtime f(k)poly(n). We focus on:

o Modeling: since the algorithmic results follow by applying existing algorithms
to new models, we shift the focus from the complexity result to the modeling
result, highlighting common patterns and tricks which are used.

e Optimality program: after giving an FPT algorithm, we are interested in
reducing the dependence on the parameter; we show which algorithms and
tricks are often useful for speed-ups.

e Minding the poly(n): reducing f(k) often has the unintended consequence of
increasing poly(n); so we highlight the common trade-offs and show how to
get the best of both worlds.

Specifically, we consider graphs of bounded neighborhood diversity which are
in a sense the simplest of dense graphs, and we show several FPT algorithms for
CAPACITATED DOMINATING SET, SUM COLORING, MAX-¢g-CuUT, and certain other
coloring problems by modeling them as convex programs in fixed dimension, n-fold
integer programs, bounded dual treewidth programs, indefinite quadratic programs

 An extended abstract presenting preliminary results appeared in proceedings of IPEC 2018 [1] (Gavenc¢iak et al (2018)).
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in fixed dimension, parametric integer programs in fixed dimension, and 2-stage

stochastic integer programs.

©2020 The Author(s). Published by Elsevier B.V. This is an open access article under
the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Our focus is on modeling various problems as INTEGER, PROGRAMMING (IP), and then obtaining FPT
algorithms by applying known algorithms for IP. IP is the problem

min{f(x) | x € SNZ",S CR" is convex} . (IP)
We give special attention to two restrictions of IP. First, when S is a polyhedron, we get
min{f(x) | Ax <b,x € Z"}, (LinIP)

where A € Z™*™ and b € Z™; we call this problem linearly-constrained IP, or LINIP. Further restricting f
to be a linear function gives INTEGER LINEAR PROGRAMMING (ILP):

min{wx | Ax < b, x € Z"}, (ILP)

where w € Z™. The function f: Z™ — Z is called the objective function, S is the feasible set (defined by
constraints or various oracles), and x is a vector of (decision) variables. By (-) we denote the binary encoding
length of numbers, vectors and matrices.

In 1983 Lenstra showed that ILP is polynomial in fixed dimension and solvable in time n®™ (A, b, w)
(including later improvements [2-4]). Two decades later this algorithm’s potential for applications in

parameterized complexity was recognized, e.g. by Niedermeier [5]:

[-..] It remains to investigate further examples besides CLOSEST STRING where the described ILP
approach turns out to be applicable. More generally, it would be interesting to discover more connections
between fized-parameter algorithms and (integer) linear programming.

This call has been answered in the following years, for example in the context of graph algorithms [6-9],
scheduling [10-13] or computational social choice [14].

In the meantime, many other powerful algorithms for IP have been devised; however it seemed unclear
exactly how could these tools be used, as Lokshtanov states in his PhD thesis [15], referring to FPT
algorithms for convex IP in fixed dimension:

It would be interesting to see if these even more general results can be useful for showing problems fixed
parameter tractable.

Similarly, Downey and Fellows [16] highlight the FPT algorithm for so called n-fold IP:

Conceivably, [MINIMUM LINEAR ARRANGEMENT] might also be approached by the recent (and deep)
FPT results of Hemmecke, Onn and Romanchuk [17] concerning nonlinear optimization.

Interestingly, MINIMUM LINEAR ARRANGEMENT was shown to be FPT by yet another new algorithm for IP
due to Lokshtanov [18].

In the last 4 years we have seen a surge of interest in, and an increased understanding of, these IP
techniques beyond Lenstra’s algorithm, allowing significant advances in fields such as parameterized schedul-
ing [10,12,13,19,20], computational social choice [21-23], multichoice optimization [24], and stringology [21].
This has increased our understanding of the strengths and limitations of each tool as well as the modeling
patterns and tricks which are typically applicable and used.

Please cite this article as: T. Gavenc¢iak, M. Koutecky and D. Knop, Integer programming in parameterized complexity: Five miniatures, Discrete
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1.1. Our results

We start by giving a quick overview of existing techniques in Section 2, which we hope to be an accessible
reference guide for parameterized complexity researchers. Then, we study the parameterized complexity of
five problems when parameterized by the neighborhood diversity of a graph (we defer the definitions to the
relevant sections). Fig. 1 shows that neighborhood diversity occupies an important place with respect to
other relevant parameters (vertex cover number, treewidth and cliquewidth). Studying the parameterized
complexity of a problem with respect to treewidth can be seen as a stepping stone to understanding its
parameterized complexity with respect to cliquewidth. Since neighborhood diversity is incomparable to
treewidth in this regard, it provides a different step towards cliquewidth and gives different insights. The
next possible step towards cliquewidth is so-called modular width introduced by Gajarsky et al. [25] as a
direct generalization of neighborhood diversity.

However, since our complexity results follow by applying an appropriate algorithm for IP, we also
highlight our modeling results. Moreover, in the spirit of the optimality program (introduced by Marx [26]),
we are not content with obtaining some FPT algorithm, but we attempt to decrease the dependence on
the parameter k as much as possible. This sometimes has the unintended consequence of increasing the
polynomial dependence on the graph size |G|. We note this and, by combining several ideas, get the “best
of both worlds”. Driving down the poly(|G|) factor is in the spirit of “minding the poly(n)” of Lokshtanov
et al. [27].

We denote by |G| the number of vertices of the graph G and by k its neighborhood diversity; graphs of
neighborhood diversity k have a succinct representation (constructible in linear time) with O(k? log |G|) bits
and we assume to have such a representation on input.

Theorem 1. The CAPACITATED DOMINATING SET problem:

(a) has a convex IP model in O(k?) variables and can be solved in time and space £O*?) log |G|,

(b) has an ILP model in O(k?) variables and O(|G|) constraints, and can be solved in time O poly(|G])
and space poly(k,|G]),

(¢) can be solved in time k°®) poly(|G|) using model (a) and a prozimity argument,

(d) has a polynomial OPT + k approximation algorithm by rounding a relazation of (a).

Theorem 2. The SuUM COLORING problem:

(a) has an n-fold IP model in O(k|G|) variables and O(k?|G|) constraints, and can be solved in time
KOUDIG " og? |G,

(b) has a LINIP model in O(2F) variables and k constraints with a non-separable convex objective, and can
be solved in time 2216@(1> log |G|,

(c) has a LINIP model in O(2%) variables and O(2%) constraints whose constraint matriz has dual treewidth
k + 2 and whose objective is separable conver, and can be solved in time JO k%) log|G|.

The MAX-¢-CUT is a natural generalization of the MAX CUT problem from partitioning into 2 parts to
q parts. We show that:

Theorem 3. MAX-¢-CUT has a LINIP model with an indefinite quadratic objective and can be solved in
time g(q, k) log |G| for some computable function g.

Panagopoulu and Spirakis [28] studied a coloring game I'(G) on graphs in which pure Nash equilibria
(PNEs) are proper colorings satisfying many good chromatic number upper bounds. Later in the paper they
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Fig. 1. A map of assumed parameters: vc is the vertex cover number, td is treedepth, tw is treewidth, cw is clique-width, nd is
neighborhood diversity, and mw is modular-width. Black arrow stands for linear upper bounds, while a red arrow stands for exponential
upper bounds. Note that treewidth and neighborhood diversity are incomparable because,
tw(K,)=n—1 nd(K,) =1
tw(P,) =1 nd(P,)=n,
where K,, and P, are the complete graph and path on n vertices, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

define the problem of finding a so-called Stackelberg Strategy for this game, in which we are to precolor
certain vertices, called leaders, so the subgame for the remaining vertices (the followers) has no PNEs which

would require many colors (i.e., even the “worst” PNE does not require too many colors).

Theorem 4. STACKELBERG STRATEGY FOR I'(G) with ¢ colors has a |G|-bounded Parametric ILP model
whose representation can be described in O (2’C + kC) symbols with largest coefficient 1, and can be solved in
time f(kQ) - poly(k + |G|), where f is a computable function.

Finally, in order to demonstrate 2-stage stochastic IP, we introduce a natural precoloring problem called
STOCHASTIC PRECOLORING. Informally, we are given a graph G along with n possible future scenarios
describing a supergraph H of G which will be formed by connecting new vertices to GG, and the goal is to
precolor G such that, whatever scenario happens, the chosen precoloring of G can be extended into a good
coloring of H (cf. Section 6.2).

Theorem 5. STOCHASTIC PRECOLORING has a 2-stage Stochastic IP model in O (22’“71) variables and
O (2kn) constraints with a linear objective, and can be solved in time f(k) - n*lognlog|G|, where f is a

computable function.
1.2. Related work

Graphs of neighborhood diversity constitute an important stepping stone in the design of algorithms for
dense graphs, because they are in a sense the simplest of dense graphs [7,8,29-33]. Studying the complexity
of CAPACITATED DOMINATING SET on graphs of bounded neighborhood diversity is especially interesting
because it was shown to be W[1]-hard parameterized by treewidth by Dom et al. [34]. Sum COLORING
was shown to be FPT parameterized by treewidth [35]; its complexity parameterized by clique-width is
open as far as we know. MAX-¢-CuT is FPT parameterized by ¢ and treewidth (by reduction to CSP),
but W[1]-hard parameterized by clique-width [36]. STACKELBERG STRATEGY FOR I'(G) was introduced by
Panagopoulou and Spirakis [28] in order to study properties of simple to implement approximation routine
for graph coloring. Up to the best of our knowledge it has not been studied from parameterized complexity
perspective until now even though graph coloring is extensively studied problem in this framework (see

e.g. [37,38] and discussion therein).
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1.8. Preliminaries

For positive integers m,n with m < n we set [m,n] = {m,...,n} and [n] = [1,n]. We write vectors in
boldface (e.g., x,y) and their entries in normal font (e.g., the ith entry of x is x;). For an integer a € Z,
we denote by (a) = 1 + log,(|a] + 1) the binary encoding length of a; we extend this notation to vectors,
matrices and tuples of these objects. For example, (4,b) = (4) + (b), and (4) = >_, (ai;). For a graph G
we denote by V(G) its set of vertices, by E(G) the set of its edges, and by Ng(v) = {u € V(G) | uwv € E(G)}
the (open) neighborhood of a vertex v € V(G). For a matrix A we define

e the primal graph Gp(A), which has a vertex for each column and two vertices are connected if there
exists a row such that both columns are non-zero, and,
e the dual graph Gp(A) = Gp(AT), which is the above with rows and columns swapped.

We call the treedepth and treewidth of Gp(A) the primal treedepth tdp(A) and primal treewidth twp(A),
and analogously for the dual treedepth tdp(A) and dual treewidth twp(A).

We define a partial order C on R™ as follows: for x,y € R™ we write x C y and say that x is conformal
to y if x;y; > 0 (that is, x and y lie in the same orthant) and |z;| < |y;| for all ¢ € [n]. It is well known that
every subset of Z™ has finitely many C-minimal elements.

Definition 1 (Graver Basis). The Graver basis of A € Z™*™ is the finite set G(A) C Z™ of C-minimal
elements in {x € Z" | Ax =0, x # 0}.

Neighborhood diversity. Two vertices u, v are called twins if N(u)\{v} = N(v)\{u}. The twin equivalence
is the relation on vertices of a graph where two vertices are equivalent if and only if they are twins. An
equivalence class is either an independent set, or a clique.

Definition 2 (Lampis [9]). The neighborhood diversity of a graph G, denoted by nd(G), is the number k of
classes (called types) of the twin equivalence of G.

We denote by V; the classes of twin equivalence on G for i € [k]. A graph G with nd(G) = k can be
described in a compressed way using only O (log |G| - k2) space by its type graph, which is computable in
linear time [9]:

Definition 3. The type graph T(G) of a graph G is a graph on k = nd(G) vertices [k], where each i is
assigned weight |V;|, and where 7, j is an edge or a loop in T'(G) if and only if two distinct vertices of V; and
V; are adjacent.

Modeling. Loosely speaking, by modeling an optimization problem II as a different problem A we mean
encoding the features of I by the features of A, such that the optima of A encode at least some optima of
I1. Modeling differs from reduction by highlighting which features of II are captured by which features of A.

In particular, when modeling II as an integer program, the same feature of II can often be encoded in
several ways by the variables, constraints or the objective. For example, an objective of I may be encoded
as a convex objective of the IP, or as a linear objective which is lower bounded by a convex constraint;
similarly a constraint of II may be modeled as a linear constraint of IP or as minimizing a penalty objective
function expressing how much is the constraint violated. Such choices greatly influence which algorithms are
applicable to solve the resulting model. Specifically, in our models we focus on the parameters #variables
(dimension), #constraints, the largest coefficient in the constraints ||Al|s (abusing the notation slightly
when the constraints are not linear), the largest right hand side ||b||co, the largest domain ||u — 1|, and
the largest coefficient of the objective function ||w|l (linear objectives), ||Q|ls (quadratic objectives) or
fmax = Maxxi<x<u | f(X)] (in general), and noting other relevant features.

Please cite this article as: T. Gavenciak, M. Koutecky and D. Knop, Integer programming in parameterized complexity: Five miniatures, Discrete
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Solution structure. We concur with Downey and Fellows that FPT and structure are essentially one [16].
Here, it typically means restricting our attention to certain structured solutions and showing that neverthe-
less such structured solutions contain optima of the problem at hand. We always discuss these structural
properties before formulating a model.

2. Integer programming toolbox

We give a list of the most relevant algorithms solving IP, highlighting their fastest known runtimes
(marked T), typical use cases and strengths (+), limitations (—), and a list of references to the algorithms
(V) and their most illustrative applications (), both in chronological order. We are deliberately terse here
and defer a more nuanced discussion to Appendix A.

2.1. Small dimension

The following tools generally rely on results from discrete geometry. Consider for example Lenstra’s
theorem: it can be (hugely) simplified as follows. Let S = {x | Ax < b} C R"; then we can decide whether
S NZ" by algorithmic versions of the following existential recursive argument:

1. Either S is “flat” in some direction; then, we can cut S up into few lower-dimensional slices and recurse
into these,
2. or S is not flat in any direction, and must contain an integer point by Minkowski’s first theorem.

Being able to optimize an objective then follows from testing feasibility by binary search.
ILP in small dimension. Problem (ILP) with small n.

T n25"(A b, w) [2,3]

+ Can use large coefficients, which allows encoding logical connectives using Big-M coefficients [39]. Runs
in polynomial space. Most people are familiar with ILP (as compared with e.g. convex IPs etc.)

— Small dimension can be an obstacle in modeling polynomially many “types” of objects [40, Challenge #2].
Models often use exponentially many variables in the parameter, leading to double-exponential runtimes
(applies to all small dimension techniques below). Encoding a convex objective or constraint requires
many constraints (cf. Model 8). Big-M coefficients are impractical.

O Lenstra [4], Kannan [3], Frank and Tardos [2]

> Niedermeier (CLOSEST STRING) [5] Fellows et al. (graph layout problems) [6] Jansen and Solis-Oba
(scheduling; MILP column generation technique) [11], Fiala et al. (graph coloring) [7], Faliszewski et al.
(computational social choice; big-M coefficients to express logical connectives) [41].

Convex IP in small dimension. Problem (IP) with f a convex function; S can be represented by
polynomial inequalities, a first-order oracle, a separation oracle, or as a semialgebraic set.

T n%"<B>, where S is contained in a ball of radius B [42].

+ Strictly stronger than ILP. Representing constraints implicitly by an oracle allows better dependence on
instance size (cf. Model 7).

— Exponential space. Algorithms usually impractical. Proving convexity can be difficult.

© Grotschel, Lovdsz, and Schrijver [43, Theorem 6.7.10] (weak separation oracle), Khachiyan and Porko-
lab [44] (semialgebraic sets), Heinz [45], whose algorithm is superseded by Hildebrand and Képpe [46]
(polynomials), Dadush, Peikert and Vempala [47] randomized and Dadush and Vempala [42] (strong
separation oracle), Oertel, Wagner, and Weismantel [48] reduction to Mixed ILP subproblems (first-order
oracle).

Please cite this article as: T. Gavenc¢iak, M. Koutecky and D. Knop, Integer programming in parameterized complexity: Five miniatures, Discrete
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> Hermelin et al. (multiagent scheduling; convex constraints) [10], Bredereck et al. (bribery; convex
objective) [14], Mnich and Wiese, Knop and Koutecky (scheduling; convex objective) [12,13], Knop et al.
(various problems; convex objectives) [49], Model 7

Indefinite quadratic IP in small dimension. Problem (LinIP) with f(x) = xT@x indefinite (non-convex)
quadratic.

T g, [ Alloos @1l ){b) [50]

+ Currently the only tractable indefinite objective.

— Limiting parameterization.

O Lokshtanov [18], Zemmer [50]

> Lokshtanov (OPTIMAL LINEAR ARRANGEMENT) [18], Model 9

Parametric ILP in small dimension. Given a @ = {b € R™ | Bb < d}, decide
VbeQNZ"IxeZ": Ax<b .

T g(n,m)poly(||4, B,d| ) [51]

+ Models one quantifier alternation. Useful in expressing game-like constraints (e.g., “V moves 3 a counter-
move”). Allows unary big-M coefficients to model logic [23, Theorem 4.5].

— Input has to be given in unary in order to get an FPT algorithm (vs. e.g. Lenstra’s algorithm).

O Eisenbrand and Shmonin [51, Theorem 4.2], Crampton et al. [52, Corollary 1]

> Crampton et al. (resiliency) [52], Knop et al. (Dodgson bribery) [23], Model 22.

2.2. Variable dimension

In this section it will be more natural to consider the following standard form of (LinIP)
min{f(x) | Ax=b,1<x <u,x € Z"}, (SLinIP)

where b € Z™ and 1,u € Z". Let L = (fmax, ||b, 1, u|o). In contrast with the previous section, the following
algorithms typically rely on algebraic arguments and dynamic programming. The large family of algorithms
based on Graver bases (see below) can be described as iterative augmentation methods, where we start with
a feasible integer solution xo and iteratively find a step g € {x € Z" | Ax = 0} such that xog + g is still
feasible and improves the objective. Under a few additional assumptions on g it is possible to prove quick
convergence of such methods.

ILP with few rows. Problem (SLinIP) with small m and a linear objective wx for w € Z".

T O((m]|4]|s)?™)(b) if 1= 0 and u = +oo, and n - (m||AHOO)O(m2)<b,l, u) in general [53]

1L m°™ (A, b) lower bound under ETH [54]

+ Useful for configuration IPs with small coefficients, leading to exponential speed-ups. Best runtime in the
case without upper bounds. Linear dependence on n.

— Limited modeling power. Requires small coefficients.

O Papadimitriou [55], Eisenbrand and Weismantel [56], Jansen and Rohwedder [53]

> Jansen and Rohwedder (scheduling) [53]

A A A4 B, B, 0 -+ 0
%2 X 8 B, 0 By --- 0
Anfold = 2 Astoch = : : —_— :
00 . A B 0 0 - By
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n-fold IP, tree-fold IP, and dual treedepth. n-fold IP is problem (SLinIP) in dimension nt, with
A = Aygoiq for some two blocks Ay € Z™%" and Ay € Z*¥, LLu € Z™, b € Z"™"% and with f a separable
convex function, i.e., f(x) = > 1, 22:1 fi(ah) with each f} : Z — Z convex. Tree-fold IP is a generalization
of n-fold IP where the block Aj is itself replaced by an n-fold matrix, and so on, recursively, 7 times. Tree-fold
IP has bounded tdp(A).

T (HAHOOTS)O“QS“""S?)(nt)2 log(nt) L n-fold TP [57,58] (cf. [59] for a nearly-linear time algorithm when f is
a linear function); (|| A|lec + 1)2th(A) (nt)?log(nt)L for (SLinIP) [60].

+ Variable dimension useful in modeling many “types” of objects [22,23]. Useful for obtaining exponential
speed-ups (not only configuration IPs). Seemingly rigid format is in fact not problematic (blocks can be
different provided coefficients and dimensions are small).

— Requires small coefficients.

© Hemmecke et al. [17], Knop et al. [21], Chen and Marx [19], Eisenbrand et al. [58], Altmanové et al. [57],
Koutecky et al. [60]

> Knop and Koutecky (scheduling with many machine types) [12], Knop et al. (bribery with many voter
types) [21,22], Chen and Marx (scheduling; tree-fold IP) [19], Jansen et al. (scheduling EPTAS) [20],
Model 10

2-stage and multi-stage stochastic IP, and primal treedepth. 2-stage stochastic IP is
problem (SLinIP) with A = Agioch, B1 € Z1X", By € Z'*%, and f a separable convex function; multi-stage
stochastic IP is problem (SLinIP) with a multi-stage stochastic matrix, which is the transpose of a tree-fold
matrix; multi-stage stochastic IP is in turn generalized by IP with small primal treedepth tdp(A).

T g(tdp(A),||Allsc)n?lognL, g computable [60]

+ Similar to Parametric ILP in fixed dimension, but quantification Yb € Q N Z"™ is now over a polynomial
sized but possibly non-convex set of explicitly given right hand sides.

— Not clear which problems are captured. Requires small coefficients. Parameter dependence g is possibly
non-elementary; no upper bounds on g are known, only computability.

O Hemmecke and Schultz [61], Aschenbrenner and Hemmecke [62], Koutecky et al. [60], Klein [63]

> Model 23

Small treewidth and Graver norms. Let go(A) = maxgeg(a) ||gllc and g1(A) = maxgeg(a) llgll1 be
maximum norms of elements of G(A).

T min{ g (A)CrA) g, (A)OtD(Ap2 log nL [60]

+ Captures IPs beyond the classes defined above (cf. Section 5.3).
— Bounding g1 (A) and g (A) is often hard or impossible.

© Koutecky et al. [60]

> Knop and Koutecky [64], Model 14

3. Convex constraints: capacitated dominating set

In this section we consider the CAPACITATED DOMINATING SET problem.

CAPACITATED DOMINATING SET
Input: A graph G = (V, E) and a capacity function ¢: V' — N>;.
Task: Find a smallest possible set D C V and a mapping §: V' \ D — D such that for each v € D,
1671 (v)] < ¢(v) and {u,v} € E for all u € 6=1(v).

Please cite this article as: T. Gavenc¢iak, M. Koutecky and D. Knop, Integer programming in parameterized complexity: Five miniatures, Discrete
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Ty + ZyeN () Yuv = ||

“ueN(v) You < f(,T,;)

Fig. 2. Interpretation of variables of Model 7.

Solution structure. Let <. be a linear extension of ordering of V by vertex capacities, i.e., u <, v if
c(u) < ¢(v). For i € T(G) and ¢ € [|V;]] let V;[1 : €] be the set of the first £ vertices of V; in the ordering <,
and let f;(£) = X, cy 1. c(v); for £ > |Vi| let fi(¢) = fi(|Vi]). Let D be a solution and D; = D N V.
We call the functions f; the domination capacity functions. Intuitively, f;(¢) is the maximum number of
vertices dominated by V;[1 : £]. Observe that since f;(¢) is a partial sum of a non-increasing sequence of
numbers, it is a piece-wise linear concave function. We say that D is capacity-ordered if, for each i € T(G),
D; = V;[1 : |D,|]. The following observation allows us to restrict our attention to such solutions; the proof
goes by a simple exchange argument.

Lemma 6. There is a capacity-ordered optimal solution.

Proof. Consider any solution D together with a mapping § : V' \ D — D witnessing that D is a solution.
Our goal is to construct a capacity-ordered solution D which is at least as good as D. If D itself is capacity-
ordered, we are done. Assume the contrary; thus, there exists an index ¢ € [k] and a vertex v € D, such that
v & Vi[1:|D;|], and consequently there exists a vertex u € V;[1 : |D;|] such that v & D;.

Let D' C V be defined by setting D; = (D; U {u}) \ {v} and D, = D; for each j # i. We shall define
a mapping 0’ witnessing that D’ is again a solution. Let ¢’(z) = y if and only if é(x) = y and = # u and
y # v, let §’(z) = u whenever §(z) = v and let §'(v) = y if §(u) = y. Clearly |(6")~(z)| < ¢(z) for each
x € D because |(6') " (z)| = |6~ (z)| when x & {u,v}, and |(§") " (u)| = |6~ 1(v)| and c(u) > c(v).

If D’ itself is not yet a capacity-ordered solution, we repeat the same swapping argument. Observe that
1. Zle |D;AV;[1 2| Dy|] > Zle |D;AV;[1 : |Dj|], i-e., D" is closer than D to being capacity-ordered, and,
2. the size of D’ compared to D does not increase. Finally, when Zle |DIAV;[L 2 |Dy|] = 0, D' is our desired
capacity-ordered solution D. O

Observe that a capacity-ordered solution is fully determined by the sizes |D;| and <. rather than the
actual sets D;, which allows modeling CDS in small dimension.

Model 7 (CAPACITATED DOMINATING SET as Convex IP in Fized Dimension).
Variables & notation:

o x; =|Dy e yij =[071(D;) N Dy, see Fig. 2
e fi(z;) = maximum #vertices dominated by D; if |D;| = z;
Objective & Constraints:

min Z x; min |D| = Z |D;| (cds:cds-obj)
i€T(G) i€T(G)

Please cite this article as: T. Gavenciak, M. Koutecky and D. Knop, Integer programming in parameterized complexity: Five miniatures, Discrete
Optimization (2020) 100596, https://doi.org/10.1016/j.disopt.2020.100596.
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Jilw:)
321
gs(@i) = cws)(wi —2)+28 I,
gri) = clw)(zi -1 +12 /7 -
28 g1(xi) = c(vn)a; S
b g3 o
164
L g2 7
s'/
} } — ;
0 1 2 3

Fig. 3. The linearization (cds:cap-lin) of a piecewise linear convex constraint (cds:cap) in Model 8.

Z vij < fi(z;) Vi e T(Q) respect capacities (cds:cap)
JENT(G)(?)

Z vij > |V — Vi e T(G) every v € V; \ D; dominated (cds:dom)
i€NT(G) (7)

0<a; <V Vi e T(G) (cds:bounds)

Parameters & Notes:

#vars  Fconstraints  ||Alle  |Iblloo L ullee  ||W]loo

O(k?) O(k) G| G| G| 1

e constraint (cds:cap) is convex, since it bounds the area under a concave function, and is piece-wise linear,
see Fig. 3. O

Proof of Theorem 1(a). Apply for example Dadush’s algorithm [47] to Model 7. O

Proof of Theorem 1(b). We can trade the non-linearity of the previous model for an increase in the
number of constraints and the largest coefficient (Model 8). That, combined with Kannan’s algorithm, yields

Theorem 1(b), where we get a larger dependence on |G|, but require only poly(k, |G|) space. O

Proof of Theorem 1(d) (Additive Approzimation). Let (x,y) € RE+F be an optimal solution to the
continuous relazation of Model 7, i.e., we relax the requirement that (x,y) is integral; note that such (x,y)
can be computed in polynomial time using the ellipsoid method [43], or by applying a polynomial LP
algorithm to Model 8. We would like to round (x,y) up to an integral (%X,¥) to obtain a feasible integer
solution which would be an approximation of an integer optimum. Let us take X = [x] and show how to

compute a corresponding ¥ so that (%X,y) is a feasible solution.

Please cite this article as: T. Gavenc¢iak, M. Koutecky and D. Knop, Integer programming in parameterized complexity: Five miniatures, Discrete
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Model 8 (CAPACITATED DOMINATING SET as ILP in Fized Dimension).
Exactly as Model 7 but replace constraints (cds:cap) with the following equivalent set of |G| linear constraints
(denoted g; in Fig. 3), where v! is the £th vertex of V; in <.:

Z Yij < fi(0—1) +c(vi) (@, —L+1) Vi T(G)VL e [|Vi]] (cds:cap-lin)
iJeE(T(Q))

#vars  Fconstraints  [|Alle Bl LUl ||W]loo

O
O(?*) Ok+|G) |G |G| G| 1

The parameters then become:

Take a set D corresponding to X by taking a union of D; := Vj[1: [z;]] for each j € [k]. We construct an
auxiliary bipartite graph H as follows. The first partite contains c(v) copies for every v € D, and the second
is V'\ D. We have an edge wz € E(H) if w is a copy of v and vz € E(G). Our goal is to show that H has a
matching which covers the second part V' \ D, which will then correspond to a mapping 0 testifying to the
fact that D is a CDS, and inferring y from ¢ is straightforward.

We show the existence of such a matching by Hall’s theorem: there is a matching covering V' \ D if and
only if for every A C V' \ D, |A| < |[Ng(A)|. Consider such a set A. Without loss of generality, we assume
that A is maximal with Ny (A) fixed, i.e., there is no vertex in V' \ D which could be added to A without
changing its neighborhood. Observe that this implies A must be a union of V; \ D for some subset of types
J < [k]vi'e'7A:UJ‘eJ Yij = |Vj|_|D]|
Summing up these constraints over the types in J, we obtain

Yoo wz) (Vil-IDih =14l .

jE€J i€ NT (g (D) jed

V; \ D. For each type j, the constraint (cds:dom) enforces ZieNT(G)

On the other hand, Ny (A) contains vertices which are copies of vertices from D; for each type ¢ €
Nrp(c)(J) = I. Now, summing constraints (cds:cap) over I gives:

ST <> filw) <> ful[wi]) = INu(A)],

i€l jENT (G (3) iel iel

and since we also have J C Np(g) (1), we have

Z Z yz‘jZZ Z Yij

icl jENT(G)(Z) jGJ’LGNT(G)(j)

combining the above inequalities yields |A| < |Ng(A)| as desired. The matching can be constructed in
polynomial time, e.g., O(y/n - m) by the Hopcroft-Karp algorithm. O

Proof of Theorem 1(c) (Speed Trade-Offs). Notice that on our way to proving Theorem 1(d) we have
shown that Model 7 has integrality gap at most k, i.e., the value of the continuous optimum is at most &
less than the value of the integer optimum. This implies that an integer optimum (x*,y*) satisfies, for each
i € [k], max{0, |z; — k|} < zf < min{|Vi|,2; + [k]}.

We can exploit this to improve Theorem 1(a) in terms of the parameter dependence at the cost of the
dependence on |G|. Computing a maximum cardinality matching in the auxiliary graph H from the proof of
Theorem 1(d) gives a way to test, for a given integer %X, whether it models a capacity-ordered solution, that
is, whether there exists a capacitated dominating set with D; = V;[1 : &;] for each i. Then we can simply go
over all possible (2k + 2)* choices of % which are in the £,.-ball of radius k centered around the fractional
optimum x and choose the best. [

Please cite this article as: T. Gavenciak, M. Koutecky and D. Knop, Integer programming in parameterized complexity: Five miniatures, Discrete
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4. Indefinite quadratics: Max g-Cut

Max-g-Cut
Input: A graph G = (V, E).
Task: A partition W7U---UW, = V maximizing the number of edges between distinct W, and W3,
ie., {uv € E(G) |ue W,,veWs,a#B}.

Solution structure. As before, it is enough to describe how many vertices from type i € T(G) belong to
W, for « € [g], and their specific choice does not matter; this gives us a small dimensional encoding of the

solutions.

Model 9 (MaX-¢g-CuT as LINIP with Indefinite Quadratic Objective).
Variables & Notation:

o I =|ViNnW,] o 1, -xjp = #edges between V;NW, and V;NWjp
if ij € B(T(G)).
Objective & Constraints:

max Z Z Tia " TjB max #edges across partites (mc:obj)
a,B€ld]: ijeE(T(G))
a<f
Z Tio = |Vi] Vi e T(G) (Vi N Wa) ey Partitions V; (mc:part)
a€lq]

Parameters & Notes:
#vars  Fconstraints |4l |Iblleec L ullee  1Qlco
kq k 1 |G| |G| 1
e objective (mc:obj) is indefinite quadratic. O

Proof of Theorem 3. Applying Lokshtanov’s [18] or Zemmer’s [50] algorithm to Model 9 yields the
theorem. Note that since we do not know anything about the objective except that it is quadratic, we have
to make sure that ||Q|l and ||Al|s are small. O

5. Convex Objective: SUM COLORING

SuMm COLORING
Input: A graph G = (V, E).
Task: A proper coloring c: V' — N minimizing ) ., c(v).

In the following we first give a single-exponential algorithm for SuM COLORING with a polynomial
dependence on |G|, then a double-exponential algorithm with a logarithmic dependence on |G|, and finally
show how to combine the two ideas together to obtain a single-exponential algorithm with a logarithmic

dependence on |G]|.
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5.1. SUM COLORING wvia n-fold IP

Solution structure. The following observation was made by Lampis [9] for the (ordinary) COLORING
problem (where the task is to minimize the total number of colors used), and it holds also for the Sum
COLORING problem. In both coloring problems there always exists an optimal coloring in which every color
C C V(G) intersects each clique type in at most one vertex, and (more importantly) each independent type
in either none or all of its vertices. The first follows simply by the fact that it is a clique. The second by
the fact that if both colors «a, 8 with a@ < 8 are used for an independent type, then recoloring all vertices of
color § to be of color a remains a valid coloring and decreases its cost (clearly, in the COLORING problem
we can “merge” the color « into 5 as well). We call a coloring with this structure an essential coloring.

Model 10 (Sum COLORING as n-fold IP).
Variables & Notation:

o 1z =1if a color « intersects V; o -2 = cost of color a at a clique type @
o o|Vi| - z% = cost of color a at an independent type V;

i SﬂfOld(X) = Zlaazll ((chique 1€T(G) Oél’?) + (Eindep‘ 1€T(G) a"/llm;x)) = total cost of x
Objective & Constraints:

min Spfold (X) (sc:nf:obj)
|G|
Z x = Vi Vi € T(G),V; is clique V; is colored (sc:nficliques)
a=1
|G|
Z xd =1 Vi € T(G),V; is independent V; is colored (sc:nf:indeps)
a=1
g+ i <1 Va € [|G|] Vij € E(T(GQ)) x® is independent set (sc:nfixi-indep)

Parameters & Notes:
#vars  Fconstraints |4l [Pl L ullee [[Wlleo T s t n
k|G| k+ k%G| 1 |G| 1 |G| kK k|G|
e Constraints have an n-fold format: (sc:nf:cliques) and (sc:nf:indeps) form the (A;---A;) block and
(sc:nfixi-indep) form the As blocks; see parameters , s, t above. Observe that the matrix A; is the k x k
identity matrix and the matrix As is the incidence matrix of T'(G) transposed. O

Proof of Theorem 2(a). Apply the algorithm of Altmanové et al. [57] to Model 10. O

Model 10 is a typical use case of n-fold IP: we have a vector of multiplicities b (modeling (|Vi],...,|Vk|))
and we optimize over its decompositions into independent sets of T'(G). A clever objective function models
the objective of SUM COLORING. The main drawback is large number of bricks in this model.

5.2. SuM COLORING wvia convex minimization in fized dimension

Solution structure. The previous observations also allow us to encode a solution in a different way. Let
T = {I,...,Ix} be the set of all independent sets of T'(G); note that K < 2*. Then we can encode an
essential coloring of G' by a vector of multiplicities x = (xp,,...,27, ) of elements of Z such that there

Please cite this article as: T. Gavenciak, M. Koutecky and D. Knop, Integer programming in parameterized complexity: Five miniatures, Discrete
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are colors which color exactly the types contained in I;. The difficulty with SUM COLORING lies in the
formulation of its objective function. Observe that given an I; € Z, the number of vertices every color class of
this type will contain is independent of the actual multiplicity ;. Define the size of a color class 0: 7 — N
as 0 (1) = > lique ier 1T indep. ics |Vil- The following lemma justifies the fact that independent sets (colors)
in an optimal solution are sorted according to their sizes.

Lemma 11. Let G = (V, E) be a graph and let c: V — N be a proper coloring of G minimizing ), oy c(v).
Let pu(p) denote the quantity |{v € V' | c¢(v) = p}|. Then u(p) > u(q) for every p < q.

Proof. Suppose for contradiction that we have p < ¢ with u(p) < w(¢). We now construct a proper
coloring ¢’ of G as follows

p  ife(v) =g¢,

g  ifc(v) =p,

c(v) otherwise.

d(v) =
Clearly ¢’ is a proper coloring. Now we have

> e(v) = (Z C'(v)> — () — ap(p) + pr(p) + ap(q) =

veV veV

(Z C’(v)> —p(ulq) — u(p)) + a(p(q) — p(p)) =

veV
(Z Cl(”)> + (lq) — @) g —p) > Y (v).
vev veV

Here the last inequality holds, since both the factors following the sum are positive due to our assumptions.
Thus we arrive at a contradiction that ¢ is a coloring minimizing the first sum. O

Our goal now is to show that the objective function can be expressed as a convex function in terms of
the variables x;, for j € [K]. Let us assume it holds that o(l1) < o(l2) < --- < o(Ik) and observe that
without loss of generality we may assume that in the essential coloring we first use xr,-times the color I,
then x,-times color I, and so forth up to color Ix. Now it is not hard to verify that

K

wli K
Slo) | lznd = |+ Do =S o) | |2 Y +<x21> (1)

=1 i<t i=1 j<i

is the value of the objective; we stress that (g) = 0. In order to see this observe that the “cost” of every

vertex in pth use of color I; is p+ > ._.x 1; and that there are o(1I;) such vertices. We now have to argue

j<i
that the above is a convex function. ’
In what follows we refer to Fig. 4 which demonstrates the change of perspective we are going to describe
now. We will get help from auxiliary variables y1,. ..,y ,) which are a linear projection of variables x;
note that we do not actually introduce these variables into the model and only use them for the sake

of proving convexity. Namely, y; indicates how many color classes contain at least j vertices, i.e., y; =

o(l1) (yj)

> te[Kio(1)>5 T1,- Then, the objective function (1) can be expressed as Sconvex(x) = >_721" ().

Lemma 12. S.onyex(X) is equivalent to (the right-hand side of) (1).
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= 5 Figure 4: An illustra-
§ 4 Ts tion of the cost decom-
o) | : position to the individ-
© 3 T3 ual classes. Note that

‘ i-th row (color %) has
2 T2 cost @ per vertex.
1 T R
Y1 Y2 Y3 Ya Ys Yo Y7 Ys Yq

Number of vertices in a color class (o)

Fig. 4. An illustration of the cost decomposition to the individual classes. Note that ith row (color %) has cost i per vertex.

Proof. Let us, for the sake of this proof, define

Yji = Z LIp-
Observe that we have y; = y; k. Now, our goal is to prove that for i = 1,..., K the following holds

- a(l1) i a(l1) it
o(I;) - inZij + ( 211) — Z (;z) _ Z (J;)

J<i Jj=1 Jj=1

Notice that if this is that case, then we are done, since if we sum the left-hand sides for i = 1,..., K, we get
(the right hand side of) (1) while if we sum the right-hand sides we get > jiff) (VisK).

Note that, by the definition of y;;, we have that y;; = y;;—1 for all 0(I;) < j < o(I1). Furthermore, we
have that y;,; — yji—1 = «y, for all j =1,...,0(I;), importantly for us this difference is the same. Now, we

can compute

o(I1) o(I1)
Z Yjyi _ Yji—1
2 — 2

Jj=1 Jj=
o(I;) Yis a(ly) Yia a(1;) i i1 o(I1) i i1
_ Jri jii . ji— jyi—
> (5)+ 2 ()5 2 ()
j=1 j=o(I;)+1 Jj=1 j=o(l;)+1
(aun o(I;)
_ (yjﬂ') i (y],zl)
- 2 . 2
Jj=1 Jj=1
Yi,i Y1,i—1
=o(l;)- i) ;
- (%) - ("))

Thus, we are left to verify that

Tr,\ (Y14 Yi,i—1
w3 )+ (3)-(5) - (")

j<i
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We have
" Y1,i 22:1 zr, " Uit 22:1 I,
() =r="5 " wa (4)-(")= X »
p=1 p=1

i—1

PR 1 @1y
since the first ZZ: x, terms of the two sums are the same. We compute
Ty, i—1 zr; i—1 i—1 1
Yi,i Y1,i-1
p=1 (=1 p=1 (=1 (=1 p=1

and the lemma follows. O

Finally, Sconvex 18 convex with respect to x because,

e all z;; are linear (thus affine) functions,

oy = ZjE[K]:a(Ij)Zi zy; is a sum of affine functions, thus affine,

e y;(y; —1)/2 is convex: it is a basic fact that h(z) = g(f(x)) is convex if f is affine and ¢ is convex. Here
f = y; is affine by the previous point and g = f(f — 1)/2 is convex.

® Sconvex 18 the sum of y;(y; — 1)/2, which are convex by the previous point.

Proof of Theorem 2(b). Apply the algorithm of Dadush [47] to Model 13. O

Notice that we could not apply Lokshtanov’s algorithm because the objective has large coefficients. Also

notice that we do not need separability of Sconvex Or any structure of A.

Model 13 (SuM COLORING as LINIP in Fized Dimension with Convex Objective).
Variables & Notation:

e 17, = #fof color class e y; = #of color classes I; with o([;) <1

e (%) cost of column y; (Fig. 4) o Sionvex = Zﬁ'l (%) = cost of all columns

Objective & Constraints:

min Sconvex (X) (sc:convex:obj)

Z zr; = |V Velique @ € T(G) clique V; gets |V;] colors (sc:convex:cliques)
1€l

Z zr, =1 Vindep. i € T(G) indep. V; gets 1 color (sc:convex:indeps)
I;:5€l;

Parameters & Notes:
#vars  Fconstraints  [|Alle  |[Plloo I ulloc fiax
2* k O .
e Objective Sconvex is non-separable convex, and can be computed in time 2¥ log |G| by noticing that there

are at most 2% different y;’s (see below). [
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5.3. SuUM COLORING and Graver bases

Consider Model 13. The fact that the number of rows and the largest coefficient || A||« is small, and that
we can formulate Sconvex as a separable convex objective in terms of the y; variables gives us some hope that
Graver basis techniques would be applicable.

Since |Z| < 2%, we can replace the y;’s by a smaller set of variables z; for a set of “critical sizes”
r={j€[lG|]| 3 € [K] : ol;) = j}. For each i € I' let succ(é) = min{j € I' | j§ > i} (and let
succ(max I') = max I"), we define z; = Zje[K]:a(lj)zisz, and let ¢; = (succ(i) — i) be the size difference
between a color class of size i and the smallest larger color class (recall (1)). Then,

G|

Seme) = Y- () = S 6(5 ) = Smeamen(a)

i=1 iel’

Now we want to construct a system of inequalities of bounded dual treewidth twp(A); however, adding
the z; variables as we have defined them amounts to adding many inequalities containing some variable
(recall that for I; we have o(I;) = max I'), thus increasing the dual treewidth to k + 2¥. To avoid this, let

us define z; equivalently as z; = Zguce(i) + 2 (j'-)i[xg}.»_ Tr; = Zsuee(i) T 2o S T The last equality
follows from the definition of I" which implies there are no independent sets with size strictly between ¢ and

(Ij)=i

succ(?) in G.

Model 14 (SuM COLORING as LINIP with Small twp(A) and Small g1(A)).
Variables & Notation:

e 17, = #fof color class e z; = Fof color classes I; with o(I;) > i
e (; = size difference between I; with o(I;) =4 and closest larger I, € T
o (; (221) cost of all columns between y; and ysyee(iy (Fig. 4)

e [ = set of critical sizes ® Ssepconvex(2) = Y icr Gi (221) = total cost

Objective & Constraints: constraints (sc:convex:cliques) and (sc:convex:indeps), and:

min Ssepconvex (Z) (sc:graver:obj)

2 = Zsuce(i) T+ Z T, Viel (sc:graver:sep)
JEIK]:o(Ij)=1

Parameters & Notes:

#vars  #constraints  ||[Allee  ||Pllec L ullec  fmax 91(A)  twp(A)
O (2%) O (2%) 1 G| Gl |G oK) k+2
e Bounds on g1(A) and twp(A) by Lemmas 16 and 15, respectively.

e Objective Ssepconvex 1S separable convex. [

Proof of Theorem 2(c). Apply the algorithm of Koutecky et al. [60] to Model 14. O

Let us denote the matrix encoding the constraints (sc:convex:cliques) and (sc:convex:indeps) as F €

zkx22" (notice that we also add the empty columns for the z; variables), and the matrix encoding the

ks g0k
constraints (sc:graver:sep) by L € Z2 22" thus A = (¥).
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Lemma 15. In Model 14 it holds that twp(A) < k + 1.

Proof. We shall construct a tree decomposition of Gp(A) of width k4 2. The decomposition is a path and
has |I'| — 1 nodes, one for each except the largest ¢ € I, in increasing order. We put all k rows of F' in the
bag of every node. In addition to that the bag of the ith node contains the ith and (i + 1)-st row of L. It is
not difficult now to check that this indeed satisfies the definition of a tree decomposition. [

Lemma 16. In Model 14 it holds that g, (A) < EOK)

The idea behind the proof is as follows. Since A = (1) is a matrix obtained by stacking the two blocks F
and L, the bound on ¢;(A), the largest coefficient in an element of the Graver basis of A, can be estimated
using the following lemma for stacked matrices.

Lemma 17 (Stacking Lemma [65, Lemma 3.7.6)). g1 ((¥)) = g1(F - G(L)) - g1(L)

Here, G(L) is a matrix whose columns are vectors from the Graver basis of L. Thus, we need to determine
91(L) and gy (F - G(L)). For the first bound we provide the following technical lemma.

Lemma 18. g¢i(L) <|I'| + 1. Moreover, for every vector (ii) € G(L) we have ||g*||1 < 2.

The rest is a quite straightforward application of the stacking lemma.

Proof of Lemma 16. Consider the matrix F - G(L): it is a matrix with k& rows with entries bounded by
the maximum of fTg taking f to be a row of F' and g € G(L). Trivially, ||f|lc < 1 and Lemma 18 yields that
lglly < || < 2%, so we have |[F-G(L)||s < 2*. However, if we split f naturally into two parts corresponding
e

the latter part of Lemma 18 into auccgunt7 we arrive at ||F - G(L)|lo < 2.

Eisenbrand et al. [58, Lemma 2] show that, for a matrix E € Z™*¥ a bound of g1 (E) < (2m||E||s +1)™
holds. Plugging in, we obtain ¢;(F - G(L)) < 2k -2+ 1)* = O (kk), and using the stacking lemma,
g1(A) <O (kKF) - 2k = 00 O

to the two groups of variables f = ( ), we observe that f* = 0 for every row f of F'. By taking this and

Proof of Lemma 18. We first simplify the structure of L. It is known [65, Lemma 3.7.2] that repeating
columns of a matrix B does not increase g1 (B); thus, it is enough to bound g1 (L’), where L’ is obtained from
L by deleting duplicitous columns. Note that the columns corresponding to variables zy,, z1; are duplicitous
whenever o(I;) = o(I;). So we may assume that L’ has the following form, obtained by keeping only one
column for x for every i € I':

oy = 3 (2)
a; = a1 + B Vie [2,|I]. (3)

First we are going to show that any integer vector h with L’h = 0 can be written as a sum of integer
vectors gl,...,gM for some M € N, which satisfy L'g? = 0, g' C h, and ||g’||; < |I'| + 1, for all i € [M].
This is sufficient because while the g*’s might not be elements of G(L’) themselves, their maximum ¢;-norm
upper bounds g;(L’). To see this, observe that each such vector can be decomposed further into a C-sum of
vectors from a Graver basis of L’ and notice further that if g’ C g, then ||g'||1 < ||g]|1-

The rest of the proof is by induction on ||h|;. If ||hl; = 0, the claim clearly follows. Otherwise let
h = (EZ) with ||h|l; > 0 and L'h = 0. We have to find a nonzero vector g = (22) with |lg|l < ||+ 1
and L'g = 0 such that g C h and ||h — g||; < ||h]|;.
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To see this, first observe that if h # 0, then h® £ 0. Let ¢ € [|I'|] be such that hf = --- = h? ; = 0 and
h$ # 0. Now, using (2) and (3), we observe the following.

Claim 1. We have b = --- = hP_| = 0 and sign(h?) = sign(h?).

Proof. Since h¢ = --- = h? |, we have h = ... = h? | Now (3) together with h® | = 0 results in h¥ = A’
and the claim follows. <

Now there are two cases: either sign(hfﬂ) = —sign(h) or sign(hfﬂ) € {sign(h),0}.

Suppose sign(th) = —sign(h$). Let g = sign(h®) - e; and let g = sign(h$) - (e; — €;11), where e;
is the ith unit vector, i.e., a vector with zeros everywhere except of the ith coordinate, which is 1. Observe
that now g affects solely variable a; and thus we have to care for the only two conditions containing «;
(recall a;—1 = 0):

o = B and Qi1 = o + Big1.

This leaves us with a matrix with columns corresponding to «;, a;+1, 5i, and B;41

1 0 -1 0
-11 0 -1)°

The vector g, defined above, now corresponds to a vector (1,0,1,1)T. It is easy to see that this vector is in
kernel of the matrix and, since «; is the only affected a-variable, we get L'g = 0 and we are done in this
case. Notice that in this case we have ||g||; = 3.

Now suppose sign(th) € {sign(h$),0}. We observe that this affects sign of a41.

Claim 2. If sign(h?_H) € {sign(h{*),0}, then sign(h$) = sign(h ;).

Proof. Suppose sign(h$*) = 1, the other case follows by a symmetric argument. Then h? 1 is nonnegative
and by (3) we obtain that h{,, is a sum of a positive and a nonnegative number, thus a positive number as
claimed. «

We are about to design a vector g for which
Qi1 = @ + Bita

holds. Since sign(hfﬂ) € {sign(h$), 0}, we cannot use 9f+1 to fulfill the above condition and thus if g # 0,
then sign(gf, ) = sign(gf*). Now if we set gf = ggg = gi".1 = sign(g{*) we fulfill all conditions (3) (recall
a;—1 = 0). But now the condition

Qito = i1 + Bito

is not satisfied. However, we have essentially carried the difficulty from «; to a;41. Since now either
sign(hfﬂ) = —sign(h) or sign(hfﬂ) € {sign(h$),0}, we arrive at the following.

Claim 3. FEither

1. there exists j with i < j < |I'| such that Sign(hf),...,sign(h?_l) € {sign(h$),0} and sign(hf) =
—sign(h$) or

2. it holds that Sign(h?), .. ,sign(h‘ﬁm) € {sign(h$),0}.

Let j = |I'| in the second case then we have sign(h() = - - - = sign(h{).
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Proof. By repeated applications of Claim 2 we get sign(hy) = sign(th) for all i < k < j — 1. Initially
the premise of Claim 2 is what we suppose for this case and each application yields the premise of Claim 2
for the next application. <

Let j be defined as in the above claim. Now, we finish the construction of g by setting g* = i:l ex. In
the first case of the above claim we let g = e; + e; while in the second we have g? = e;. It is not hard to
verify that L'g = 0. Indeed in the first case at index j we essentially arrive to the situation described above
when we argued about sign(hfﬂ) = —sign(h$). While if j = |I'|, there is no carry, as there are no further
rows of L'. The claimed bound on g;(L) follows by observing that we have ||g|l1 < |I'| + 1 in both of the
just described cases. As for the latter part of the Lemma, observe that in every case we have Hgﬂ Hl < 2and
notice that these variables correspond to the x;, variables of the given model. [

6. Quantifiers: Parametric ILP and 2-stage stochastic IP

In this section we shall demonstrate the use of tools related to quantified formulas of linear constraints
over integer variables, namely Parametric ILP and 2-stage stochastic IP, on additional coloring problems on
graphs of bounded neighborhood diversity.

6.1. Stackelberg strategy: Parametric ILP

Panagopoulu and Spirakis [28] define a coloring game on graphs and show that a pure Nash equilibrium of
this game can be computed in polynomial time and satisfies many known coloring lower bounds. Eventually
they pose a computational problem of computing a so-called Stackelberg strategy, which is essentially a
precoloring of a subset of vertices called the leaders in such a way that even the worst pure Nash equilibrium
of the resulting game is not too far from an optimal coloring.

For a simple undirected graph G, the graph coloring game I' () is defined as follows. There are n := |V(G)|
players and a set of actions A = {ay,...,an} corresponding to the n available colors. A configuration is a
tuple ¢ = (cy)vev (@) € A", where ¢, is the color chosen by a vertex v € V(G). For a configuration ¢ € A"
and a € A, we define ny(c) .= [{v € V(G) | ¢, = a}|, i.e., ng(c) is the number of vertices which have color a
in the configuration c. The payoff of a vertex v € V(G) in a configuration ¢ € A™ is given by

Ay(€) =

0 if Ju € N(v) such that ¢, = ¢,
ne,(c) otherwise.

A pure Nash equilibrium (PNE) is a configuration ¢ € A™ in which no vertex can increase its profit by
unilaterally deviating, i.e., if for every vertex v € V(G) and each color a € A it holds that A, (a,c_,) < A, (c),
where (a,c_,) is the configuration in which v chooses a instead of ¢, and the remaining vertices follow
the strategy c. The cost of ¢, denoted cost(c), is the number of distinct colors of ¢, i.e., cost(c) :=
{ew [0 e V(G)}.

Stackelberg game. Given the coloring game I'(G), we may define a corresponding Stackelberg game. In it,
first at most B of vertices from a subset V' C V of leaders choose their color, and then the remaining
followers V '\ VE choose their colors. The process in which the followers choose their colors is the subgame
induced by the choice of the leaders, and a PNE of this subgame is such a configuration ¢ in which no vertex
can unilaterally increase its payoff. The computational task is to compute a strategy, which is the choice of
colors for the leaders, such that every PNE of the subgame uses at most some specified number x’ € [n] of
colors. Two interesting special cases of this game are where just B or just V' are specified, which correspond
to the tuples (V, B) and (VL |V1]).
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STACKELBERG STRATEGY FOR [I'(G)
Input: A graph G = (V, E), a set of colors A = [n] a number ’ € [n], VL C V(G), and B € N.
Task: A subset of vertices V'’ which satisfies V/ C VI and |V’| < B, and a proper coloring v: V' — A
such that any PNE ¢” of the subgame satisfies cost((c’,c”)) < x’, where ¢’ is the configuration
corresponding to .

Our plan is to formulate a sentence of the form IxVy : &(x,y), where x represents a Stackelberg strategy,
y represents an essential coloring, and @(x,y) is a formula encoding “if y is consistent with x and no selfish
step exists, then y uses at most x’ colors”. Knop et al. [23] show that sentences like these can be solved using
the FPT algorithm for Parametric ILP due to Eisenbrand and Shmonin [51]. More accurately, we can phrase
the main tool developed by Knop et al. as follows:

Theorem 19 (/23, Theorem 4.5]). Let ¥ = 3x € ZNVy € Z% . &(x,y) where ¢(x,y) is a quantifier free
formaula obtained by standard logical connectives from a collection of linear inequalities of the form a(x,y) < b,
where a € ZNt2 b € 7. Let L be the total number of symbols describing ¥ and let o be the largest value of
lla, bl|oo over all atoms of @. Let 3 be such that W' = Ix € [-f3,8]4Vy € [-8,0]% : &(x,y) is equivalent
to ¥ (we say that ¥ is f-bounded). Then ¥ can be decided in time’ f(L)poly(8 + ).

Solution structure. First, Panagopoulu and Spirakis observe that every PNE of I'(G) is a proper
coloring [28, Lemma 1], simply because in any improper coloring, there is some vertex which can selfishly
increase its payoff by using a so far unused color. Clearly the same holds for PNEs of any subgame induced
by some Stackelberg strategy. However, Panagopoulu and Spirakis [28] do not prove the existence of PNEs
in the Stackelberg subgames, yet we may reuse one of their constructions to that end.

Lemma 20. Given any configuration ¢’ of a subset of vertices V' C V, the coloring subgame induced by c’
has a PNE.

Proof. Define a potential function P(c) = 1> .y ne,(c). Panagopoulu and Spirakis show [28, Proof of
na(G)

2 b
largest independent set in G, and that it is lower bounded by . Moreover, any selfish step increases P(c)

Theorem 2] that for any proper coloring ¢, P(c) is upper bounded by where a(QG) is size of the
by at least 1. This immediately implies that I'(G) has a PNE. However, it also shows that for any ¢’ the
corresponding subgame has a PNE: choose a proper coloring ¢” of V' \ V¥ consistent with ¢’ such that
P((c’,c")) is maximized and note that it cannot contain any vertex which may selfishly improve its payoff,
since this would increase the potential. [

Lemma 21. In any subgame PNE and any independent type V;, all followers in V; have the same color.

Proof. The proof is again by a swapping argument: assume for contradiction that V; has a follower colored
red and a follower colored blue. Without loss of generality assume there are at least as many red vertices as
blue vertices. Then a blue vertex can improve its payoff by switching to red. O

Our inspiration for the following modeling approach comes from Ganian’s model for the PRECOLORING
EXTENSION problem [8]. Notice that a partial proper coloring is a proper coloring of a subgraph of G and
thus can be encoded using the previously explained approach (see Section 5.2) of counting the occurrences

3 In fact, the time bound proven but not stated in [23] is f(L)(8 + @)°Y) but here we present the theorem in the same way
it is presented therein.
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of independent sets of T'(G), denoted Z. Thus, we can encode a subgame PNE ¢”, which is a proper coloring
of G[V \ V'], using this approach.

However, we currently have little insight into the structure of Stackelberg strategies ¢’. It would be helpful
to show that, for example, they use at most one color in each independent type, or, on the other hand, that
colors are distributed evenly in each independent type. Since we do not know this, we resort to expressing
the Stackelberg strategy using the approach from Section 5.1, where we encode explicitly how many vertices
from each type a color uses.

In order to encode a formula @ as described above we will proceed gradually. First, we need to enforce
that x is a coloring of V/ C V¥ with |V’| < B, and x uses ¢ colors. The form of x is x = (x!,...,x¢), where
for each j € [¢], x7 = (z7,... ,xfﬁ) describes one color used in the precoloring of leaders. Hence, we have a
predicate

color(zy,...,x,) = /\ ; <1|A /\ z <|Vi| | A /\ —(x; > 1Az > 1),
V; clique V; independent iJEE(T(Q))

encoding the constraint that for (x1,...,x) to be a color, it needs to take at most 1 vertex from a clique
type, at most |V;| vertices from an independent type V;, and never a positive number of vertices from two
neighboring types. Next, we express that x is a feasible precoloring of G[U] for some U C V; we will reuse
this formula for different U C V. As usual, we denote U; = U NV;.

¢ k¢
feasible-precoloring(x, U) = (/\ color(xi)> A /\ (Z xf <|U;))
i=1 j

A potential strategy is a precoloring of G[V] using at most B vertices:
potential-strategy(x) = (||x||1 < B) A feasible-precoloring(x, VL) .

Next, we will introduce variables x expressing how the ¢ colors of a potential strategy x are extended in
some subgame PNE. Enforcing this is simply stating that X is again a feasible-precoloring which moreover
dominates x:

extension(x, X) = (x < x) A feasible-precoloring(x, V') .

Next, we will use variables y to describe the new colors appearing in the subgame PNE, so we need to express

that y is an essential coloring of the vertices which remain uncolored by x. We will use the encoding of an
essential coloring by multiplicities of independent sets of T'(G):

K ¢

remainder-coloring(X,y) = /\ (Z yr,) < Vil = (Z zt)

(=

V; clique j=1 1

K ¢
A A Q) <min{L, Vi - (D)}
=1

V; independent j=1

The remaining task is to formulate that (x,y) is a subgame PNE. To that end, we need to be able to encode
that there is no vertex which can be recolored to a color of larger size. Notice that even though the number
of colors can be large, it is enough to check for each color ¢ = 1,...,¢ and each I; € T with yr; = 1, and
there is only parameter-many (i.e., g(k, () for a computable function g) of those colors. (In other words, all
colors corresponding to a set I € Z behave identically, so it suffices to check one of them.) With an obvious
overloading of notation, we define

Size(& X, y) EHienl
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¢

size(I,X,y) = Z 1]+ Z Vil = (Z ;)

i€1:V; clique i€1:V; independent (=1
It is easy now to express that X,y is a Stackelberg strategy:
strategy(x, X,y) =potential-strategy(x) A extension(x,X) A remainder-coloring(X,y)
_‘E’c,c’G[C]UIHiG[k]:iec,c’u{i}GISize(cv X, Y) < SiZe(C/, X, y) :

(Again, we overload notation by saying ¢’ U{i} € Z, which means that either i is already a part of the color
¢/, or it can be added to it while keeping it a coloring. This is clearly also expressible, but would further
complicate the formulas.)

Model 22 (STACKELBERG STRATEGY FOR I'(G) as a Parametric ILP in Fized Dimension).
Variables & notation:

° xf = #vertices from V; colored ¢ in ¢’ . :Ef #vertices from V; colored ¢ in (c¢’,c’)

e yi; = #of color classes I; € Z in the subgame PNE

Constraints:

K
decide ¥ = 3IxV(x,y) : strategy(x,X,y) = ((+ Zylj) <x' . (4)
j=1

Parameters & Notes:
L « I}
O +¢ k) 1 V(G
e The fact that 8 < |V(G)] follows because the largest constants in the definitions of the subformulas are
the terms |V;|. O

Proof of Theorem 4. Apply Theorem 19 to Model 22. [

6.2. Stochastic precoloring: 2-stage stochastic IP

In the following we try to demonstrate the similarities and differences of Parametric ILP and 2-stage
stochastic IP. For a proper coloring v of G, and H a supergraph of G, let x-(H) be the smallest number such
that H has a proper coloring by x~(H) colors which is an extension of . Consider the following (artificial)
problem:

STOCHASTIC PRECOLORING
Input: A graph G = (V, E), n pairs (p;, H;) where, for all j € [n], G is an induced subgraph of H;,
pj>0,and 327 p; = 1.
Task: A proper coloring v of G minimizing Z?:I DX~ (Hj).

In plain speech, we are given a graph G and we are expecting some new vertices to arrive, eventually forming

a supergraph H of G. However, there is uncertainty with respect to how will these new vertices connect to
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G. The possible options are represented by n scenarios, each occurring with a given probability. The goal is
to minimize the expected value of x., (H).

Solution structure. Our parameter is k := max;nd(H;). Because taking induced subgraphs does not
increase the neighborhood diversity, we know that nd(G) < k. Denote by Z the independent sets of T'(G)
and by Z; the independent sets of T'(H;). Let V7 be the ith type of T(H;).

We will construct a 2-stage stochastic IP with n blocks, whose variables are naturally partitioned into
n + 1 bricks. The 0-th brick corresponds to so-called global or first stage variables, which will encode an
essential precoloring ~ (i.e., an essential coloring of G) and we will denote it x. The remaining n bricks are
so called local or second stage variables and will be denoted y’ and z’/. The variables y?]é for J, € Z;, will
encode an essential coloring of H;, and variables xj, for I}, € Z, will encode a precoloring of G. What remains
to do is encode a certificate that y7 is consistent with the precoloring of G encoded by x. This certificate is
a vector of variables z/, where we have z;h, Jp for every pair J, € Z;, I, C J; (we stress that this includes
() C J;) which encodes how many color classes whose precoloring induces Ij, in T(G) have been extended
into a color class inducing J; in T'(H;).

Specifically, for a given vector x encoding a precoloring of G, we say that a vector y encoding a coloring
of G is x-consistent if y is an extension of the coloring x. For a precoloring x, a coloring y, and a certificate
z, we say that z is consistent with x if ZI@GI]- 21,5, = oy, for all I, € Z, and we say that z is consistent
with y if Zlhel' 21,0, = YJ, for all J, € Z. For a coloring y? of H; we overload the cost operator to be

COSt(yj) = Z]@€Ij y;]]e'

Model 23 (STOCHASTIC PRECOLORING as a 2-stage Stochastic IP).
Variables & notation:

e x5, = #of color classes Ij, in a coloring v of G
. y?}e = #of color classes J; in an optimal extension of v in H;

° th’JZ = #of color classes Ij, extended into Jy in H;

Constraints:
miny p; [ D v, > pix,(H;) (sp:obj)
j=1 JEGI]' j=1
Z xr, =n; Vi e T(G) all G colored by x (sp:V)
IL€THE],
Z y?']é = |V/| Vj € [n]Vi e T(H;)  all H; colored by y’ (sp:Vj)
Jp€LjiEdy
Z z}h’.]z =xy, Vi, el z’ is x-consistent (sp:zx)
Jo:dp S Jg
Z z}h’JZ = yJJ.e VJ € I; z’ is y’-consistent (sp:zy)
In:1,CJy
0<x,y,...,.y"2z" ..., 2" < |V(H)|]1 bounds (sp:bounds)
Parameters & Notes:
, 7Hvars  ffconstraints Allco  IIPlloc Lulleo  [Wllee s t n
0O(2%n) O(2%n) 1 \V(H)| |V(H)| pla. 2F 22428 0@2F) n

e Here and in (sp:bounds), |V (H)| := max; e[, |V (H;)| and 0 and 1 are the all-zeros and all-ones vectors
of appropriate dimensions.
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o The objective function needs to be integral, which can be achieved by scaling as follows. Let* p; = r,/qg;,
take as g the least common multiple of all g;, and let p; := qp;. Let pl,,, == max;c(, pj. Then, w' := qw
is integral and clearly we have not changed the set of optima.

e The constraints have a 2-stage stochastic format with n blocks: the variables x are the first-stage
variables, and the variables y7,z7 form the jth block of the second stage variables. The fact that
the matrix By of the jth block does not overlap with any other blocks follows from the fact that
constraints (sp:Vj)—(sp:zy) only contain variables of the jth block or the first-stage variables. [

Proof of Theorem 5. Apply the algorithm of Koutecky et al. [60] to Model 23. O

Appendix A. Convex integer programming and parameterized complexity

In this section we overview existing results regarding minimization of convex (Appendix A.1), concave
(Appendix A.2) and indefinite (Appendix A.3) objectives in small dimension, and them move on to the
rapidly growing area of IP in variable dimension (Appendix A.4). The outline is inspired by Chapter 15 of the
book 50 Years of Integer Programming [66], omitting some parts but including many recent developments.

A.1. Convex integer minimization in small dimension

Lenstra’s result from 1983 shows that solving integer linear programming (ILP) is polynomial when the
integer dimension is small [4]. His result extends to the case where there are few integer variables but
polynomially many continuous variables, called mixed ILP:

min{wx | Ax < b, x € Z" x R"'} . (MILP)

Lenstra’s algorithm was subsequently improved by Kannan [3] and Frank and Tardos [2] in two ways. First,
the required space was reduced from exponential to polynomial in the dimension, and second, running time

9227 {5 n©™M) | The main procedure in all of these

dependency on the dimension n was reduced from
algorithms is deciding feasibility, i.e., is {x | Ax < b} N (Z" x R"') nonempty? In order to optimize one
does binary search over the objective, as described by Fellows et al. [6]. We would like to point out that

while Lenstra’s result is old, we are aware of only a few [11,14] applications which involve mized ILPs.

Theorem 24 (Frank and Tardos [2], Fellows et al. [6]). It is possible to solve (MILP) wusing
o (n2'5" -poly(n') - (A, b, w>) arithmetic operations and space polynomial in (n +n') - (A, b, w).

This result was later generalized to minimizing a quasiconvex function over a convex set, i.e., problem (IP)
with f quasiconvex. A function f: R"™ — R is called quasiconvez if for every a € R, the level set
{x € R"| f(x) < a} is a convex subset of R™. The first to show this was Grotschel, Lovdsz and Schrijver in
their famous book [43, Theorem 6.7.10]. Unlike above, all of the following results require space exponential
in the dimension. Also, none of the cited results explicitly deals with the mixed integer case; however it is
folklore that this is FPT as well.

The subsequent research diverged in several directions. The main difference between the papers we discuss
is in the assumptions on the representation of the convex set S. Since there is, strictly speaking, no “better”
or “worse” assumption, choosing one is a matter of preference with respect to the specific scenario. Another
difference is in the motivation: some authors seek to achieve better time complexity while others contribute
by simplifying existing proofs. Our list is categorized according to the assumptions on the representation
of S.

4 The input of the ROBUST PRECOLORING problem need not even be rational, but an equivalent rational objective can be
computed using the algorithm of Frank and Tardos [2]. Thus, for simplicity we just assume that all p; are rational.
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Semialgebraic convezr set. Khachiyan and Porkolab [44] state their result for minimizing a quasiconvex
function over a semialgebraic convex set; without going into techmical details, let us say that these are
closely related to spectrahedra, the solution spaces of semidefinite programs. Independently, convex sets and
semialgebraic sets have been studied for a long time, but together they have been studied only in the past
ten years as Convex Algebraic Geometry; cf. a book on the topic by Blekherman, Parillo and Thomas [67]. A
drawback of this result is an exponential dependence on the number of polynomials defining the semialgebraic
convex set.

Theorem 25 (Khachiyan and Porkolab [}4]). Problem (IP) with f quasiconvex and S a semialgebraic convex
set defined by k polynomials is FPT with respect to k and n.

Quasiconvex polynomials. Heinz [45] studied a more specific case of minimizing a quasiconvex polynomial
over a convex set given by a system of quasiconvex polynomials, that is, polynomials that are quasiconvex
functions. His result improves over Khachiyan and Porkolab in terms of time complexity, dropping the
exponential dependence on the number of polynomials. The dependence on the dimension n is O (2™ ),
which was further improved by Hildebrand and Koppe [46] to n®™) . The latter result can be stated as
follows. Let F', Fy,...,Fy, € Z[x] = Z[z1,. .., x,] be polynomials with integer coefficients. Then we get the
ConVEX POLYNOMIAL IP problem

min{F(x) | F;(x) <0Vi € [m], x € Z"} . (CPIP)

Theorem 26 (Hildebrand and Képpe [/6]). Given a (CPIP) instance with F = {13’, Fy, ... ,Fm}. Letd > 2
be the upper bound on the degree of each F' € F, M is the maxzimum number of monomials in each F € F
and £ bounds the binary length of the coefficients of F'. Then it can be solved in time:

o n0() -m(MMd)O(l), thus FPT with respect to the dimension n, if the feasible region is bounded such that
7 is the binary encoding length of that bound with r < £d°®),

o d°Mn2n . O thus FPT with respect to the dimension n and the mazimum degree d, if the feasible
region is unbounded.

Note that, in particular, the running time is polynomial with respect to the number of polynomials m.
We also note that the quantities r and ¢ are natural and effectively appear in the (A, b, w) runtime term of
Theorem 24.

An advantage of representing S and f by polynomials is that the representation is “explicit”, in contrast
to representing them by an oracle. Polynomial objectives appear for example in scheduling [12,13] where
models of small dimension represent jobs by multiplicities, and an objective such as ) w;C; (sum of weighted
completion times) becomes quadratic in this encoding. The drawback of representing S or f by polynomials
is that it is sometimes unnatural, with piece-wise linear convex constraints (Model 7) or objectives [24].

Oracles. Further research lead to splitting convex IP (i.e., problem (IP) with f convex) in two indepen-
dent parts to allow more focus on each of them. The first part is showing that a certain problem formulation
(such as quasiconvex polynomial inequalities, semialgebraic set etc.) can be used to give a set of geometric
oracles. The second part is to show that, given these oracles, solving a convex IP can be done in a certain
time.

This approach is taken by Dadush, Peikert and Vempala [47] who further improve the time complexity
of Hildebrand and Képpe [46] when the convex set is given by three oracles: a so-called weak membership,
strong separation and weak distance oracles. Observe that the running time of Theorem 26 can be rewritten
as OF (n2"); Dadush et al. improve it to O* (n%”) Moreover, Dadush claims in his PhD thesis [68] a
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randomized O* (n™) algorithm; for derandomization cf. [42]. (Here and in the following we use the O*
notation which suppresses polynomial factors.)

This sequence of results can be seen as a part of a race for the best running time. Dadush [68] classifies
existing algorithms as Lenstra-type and Kannan-type, depending on the space decomposition they use
(hyperplane and subspace, respectively). The type of algorithm determines the best possible running time
— Lenstra-type algorithms depend on a so-called flatness theorem, which gives a lower-bound O* (n").
The best known Lenstra-type algorithm is the O* nin algorithm of Dadush et al. [47]. Note that both
Theorems 25 and 26 are Lenstra-type algorithms. On the other hand, Kannan-type algorithms could run as
fast as O* ((logn)™) if a certain conjecture of Kannan and Lovész holds [68, Theorem 7.1.3]. The O* (n")
algorithm given in Dadush’s thesis [68] is Kannan-type. It is also worth noting that the only known lower
bound for convex IP in general is the trivial one of O* (2™) (by encoding SAT as binary ILP).

The oracle approach is also taken by Oertel, Wagner and Weismantel [48]. They show that a convex
IP given by a so-called first order evaluation oracle can be reduced to several MILP subproblems, which
are readily solved by existing solvers (implementing for example Theorem 24). In an earlier version of this
paper [48] the authors take a more generic approach requiring a set of oracles to solve a minimization
problem, and discuss how to construct these oracles specifically for the (CPIP) problem.

A.2. Concave integer minimization in small dimension

When we make the step from a linear to a general quasiconvex objective function, we have to distinguish
carefully between convex minimization and maximization, or equivalently, between minimizing a convex and
a concave function. Here we mention one result that can be applied in the concave minimization case.

Del Pia [69] has recently shown an approximation scheme for separable quadratic concave minimization
when the subdeterminants of the constraint matrix and the dimension are bounded.

Vertex enumeration. Provided bounds on the encoding length and number of inequalities, there is a good
bound on the number of vertices of the integer hull of a polyhedron:

Theorem 27 (Cook et al. [70]). Let P = {x € R" | Ax < b} be a rational polyhedron with A € Q™*™ and
let ¢ be the largest binary encoding size of any of the rows of the system Ax < b. Let P! = conv(P NZ") be
the integer hull of P. Then the number of vertices of P! is at most 2m™(6n%¢)"~1.

Since Hartmann [71] also gave an algorithm for enumerating all the vertices running in polynomial time
in small dimension, it is possible to evaluate the concave objective function on each of them and pick the
best. The crucial observation which makes this sufficient is that any concave objective is minimized on
the boundary, which will be a vertex. Moreover, in parameterized complexity we are often dealing with
combinatorial problems whose ILP description only contains numbers encoded in unary, implying that the
encoding length ¢ is logarithmic in the size of the instance |I|. Since (log|I|)* for fixed k is order o(|I])
[72, Lemma 6.1], convex integer maximization is FPT in all such cases.

A.3. Indefinite optimization in small dimension

Results regarding optimizing indefinite polynomials in fixed dimension are few, indicating this area merits
much attention. De Loera et al. [73] show that optimizing an indefinite non-negative polynomial over the
mixed-integer points in small dimensional polytopes admits a fully-polynomial time approximation scheme
(FPTAS); however, the runtime of this algorithm is XP from the perspective of parameterized complexity,
and it has not yet found applications.
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Hildebrand et al. [74] recently also provided an FPTAS, however, their results are incomparable to the
previous one. On one hand, their results are stronger because they use a different notion of approximation,
and because they do not require the non-negativity of the objective function. On the other hand, there are
additional requirements on the polynomial, namely that it is quadratic and has at most one negative or at
most one positive eigenvalue.

The most significant contribution from the perspective of parameterized complexity is an FPT algo-
rithm for QUADRATIC INTEGER PROGRAMMING by Lokshtanov [18], independently also discovered by
Zemmer [50]:

Theorem 28 (Lokshtanov [18], Zemmer [50]). Let Q € Z"*™ and f(x) = xTQx. Then problem (LinlP) is
FPT parameterized by n, ||Al|co, and ||@Q]co-

While this parameterization may seem very restrictive, it leads to the resolution of a major open problem
regarding the parameterized complexity of MINIMUM LINEAR ARRANGEMENT parameterized by the vertex

cover number.

A.4. Integer linear programming in variable dimension

Two major well-known cases of linear programs (LPs) that can be solved integrally in polynomial time
are LPs in small dimension (as discussed above) and LPs given by totally unimodular matrices (such as flow
polytopes). Totally unimodular matrices are generalized by matrices with minors bounded by k, i.e., when
every square submatrix has its determinant bounded by k in absolute value. A major conjecture states
that ILP is FPT in k. Recently Paat, Schléter, and Weismantel showed that the conjecture is true for most
IPs, which means for every A and ¢ and a randomly chosen right hand side b, with probability 1 the IP
mincx : Ax < b, x € Z" is solvable in FPT time in the largest minor of A. The conjecture is also true for
bimodular ILPs with k& = 2 [75].

A large stream of research of the past 20 years has very recently converged on a result largely explaining
the parameterized complexity of IP in terms of the structural complexity of the matrix A. We are interested
in the parameterizations of three graphs associated to the constraint matrix A:

1. The primal graph Gp(A), which has a vertex for every column, and two vertices share an edge if a row
exists where both corresponding entries are non-zero.

2. The dual graph Gp(A) = Gp(AT), which is the primal graph of the transpose of a matrix.

3. The incidence graph G(A), which has a vertex for every row and every column, and two vertices share
an edge if they correspond to a row-column coordinate which is non-zero.

Specifically, we are interested in the treedepth and treewidth of these graphs, yielding six parameters:
primal/incidence/dual treedepth/treewidth, denoted tdp(A), twp(A), td;(A), tw;(A), tdp(A) and twp(A).
The fundamental result can be phrased as follows:

Theorem 29 (/60, Theorems 5 and 6]). There are computable functions hp and hp such that prob-
lem (SLinlP) with f a separable convex function can be solved in time:

o hp(||Alloo, tdp(A))n3{ fimax, L, u, b), and

* hp([[A]lso, tdp (A))n? (fmax, 1, u, b).

In the case of ILP (linear objective), these results can even be made strongly polynomial, i.e., not
depending on the encoding lengths (w, 1, u, b). Let us discuss in more detail how these results are obtained.
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Graver basis optimization. A key notion is that of iterative augmentation. Most readers will be familiar
that the MAX FLOW problem can be solved by starting from a zero flow, and iteratively augmenting it with
paths; when no augmenting path exists, the flow is optimal. The notion of a Graver basis (cf. Definition 1) lets
us extend this approach to (SLinIP) as follows. Starting from some initial feasible point xo € Z", there either
exists a g € G(A) such that xq+ g is feasible (i.e., 1 < xg+g < u) and augmenting (i.e., f(x0+g) < f(X0)),
or Xq is guaranteed to be optimal. This is not yet enough to ensure quick convergence to an optimal point
x*, but always augmenting with a Graver-best step g then also guarantees this. Thus the question becomes
in which cases it is possible to efficiently compute such Graver-best steps. This turns out to depend on the
primal and dual treewidth and the norms of elements of G(A); recall that go.(A) = maxgega) [/l and
analogously g;(A) = maxgeg(a) (18|l

Lemma 30 (Primal and Dual Lemma [60, (roughly) Lemmas 22 and 25]). A Graver-best step can be found
i time

o §oo (AP P(A) . (n 4m), and,

° g (A)O(tWD(A)) . (n + m)

The proof of this lemma uses two dynamic programs; the first is well known and goes back to Freuder
[76,77], the second was only recently described by Ganian et al. [78].

Graver basis norms. The next obvious question is: what IPs satisfy the assumptions of Lemma 307
Hemmecke and Schultz [61] show (though not in those terms) that 2-stage stochastic matrices have small
Joo(A), and it is not hard to see that they have small tdp(A) < twp(A). This result was later extended
by Aschenbrenner and Hemmecke [62] to multi-stage stochastic matrices, which are in turn generalized
(and simultaneously generalize) matrices with small primal treedepth tdp(A), so we have that g.(A) <
h(||A|loo, tdp(A)) for some computable function h.

Similarly, it was shown [79] that n-fold matrices have small g;(A) and they also have small tdp(A). Those
are generalized by tree-fold matrices introduced by Chen and Marx [19] who generalize (and are generalized
by) matrices with small dual treedepth tdp(A).

Theorem 29 (and its previous versions) has found use for example in parameterized scheduling
[12,19], computational social choice and stringology [21,22], and the design of efficient polynomial time
approximation schemes (EPTASes) [20].

Incidence treedepth. We note that the classification result of Theorem 29 cannot be improved in any
direction: allowing unary-sized coefficients || A||» gives W[1]-hardness, and relaxing treedepth to treewidth
leads to NP-hardness [60].

The complexity of parameterizing by td;(A) and ||A||s was open until Eiben et al. [80] showed that
already for constant td;(A) and ||A||ec, ILP is NP-hard. So-called 4-block n-fold programs, which combine
the structure of 2-stage stochastic and n-fold matrices, are known to be XP parameterized by the block
dimensions [66], and FPT membership is an important open problem. Recently, Chen et al. [81] gave some
indication that the problem might in fact be W[1]-hard. Interestingly, the hard instance of Eiben et al. [80]
has so-called topological height 3 (see Eisenbrand et al. [82]), while all 4-block n-folds have topological height
2, so FPT membership of 4-block n-fold can be rephrased as FPT membership of ILPs parameterized by
tdr(A) and ||Al|s with topological height 2.

ILP with few rows. Restricting our attention to a simpler case then the one handled by Theorem 29 leads
us to considering ILPs with few rows. Papadimitriou showed that ILP is FPT parameterized by || 4|~ and
m [55]. His algorithm was recently sped up by Eisenbrand and Weismantel [56] and in the special case without
upper bounds also by Jansen and Rohwedder [53]. Many approximation algorithms (especially EPTASes)
contain a subroutine using Lenstra’s algorithm to solve a certain configuration IP. Provided that this IP has
small coeflicients, this step can be exponentially sped up by applying one of the aforementioned algorithms.
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A good example is the algorithm of Lampis for COLORING on graphs of bounded neighborhood diversity [9],

which can be improved from 22k0(1) log |G| to k9®) 1og |G| simply by replacing Lenstra’s algorithm.

Miscellaneous results. We highlight that we are not aware of any uses of multi-stage stochastic IP in
parameterized complexity, and it would be interesting to see what kind of problems it can model. Another
interesting result from this area which has not yet found applications is due to Lee et al. [83]. It states that
minimizing even certain non-convex objectives is polynomial-time solvable provided the objective falls in the
so-called quadratic Graver cone.

One way how to view the results based on Graver bases is via the parameter fracture number: a graph has
a small fracture number if there exists a small subset of vertices whose deletion decomposes the graph into
(possibly many) small components; note that the treedepth is always at most the fracture number. Dvotrdk
et al. [84] show that ILP parameterized by the largest coefficient and the constraint or variable fracture
number of the primal graph is FPT. In the case of constraint fracture number, one must delete small set
of vertices corresponding only to constraints of the ILP at hand. The variable fracture number is defined
accordingly. They provide an equivalent instance of either n-fold IP or 2-stage stochastic IP. These results
are subsumed by Theorem 29, but the parameter mixed fracture number (allowing the deletion of both rows
and columns of A) is interesting because it is equivalent to 4-block n-fold and could be useful to understand
its complexity.

Jansen and Kratsch [77] studied the kernelizability of ILP and show that instances with bounded domains
and bounded primal treewidth are efficiently kernelizable. Moreover, they introduce so-called r-boundaried
ILPs which generalize totally unimodular ILPs and ILPs of bounded treewidth, and they give an FPT result
regarding r-boundaried ILPs.

Finally, Ganian et al. [78] show that ILP parameterized by incidence treewidth and the largest constraint
partial sum of any feasible solution is FPT. They also combine primal treewidth with Lenstra’s algorithm to
obtain a new structural parameter called torso-width, and give an FPT algorithm for this parameterization.
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