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Abstract11

Linear programs (LPs) can be solved by polynomially many moves along the12

circuit direction improving the objective the most, so-called deepest-descent13

steps. Computing these steps is NP-hard (De Loera et al., arXiv, 2019), a14

consequence of the hardness of deciding the existence of an optimal circuit-15

neighbor (OCNP) on LPs with non-unique optima.16

We prove OCNP is easy under the promise of unique optima, but already17

O(n1−ε)-approximating dd-steps remains hard even for totally unimodular n-18

dimensional 0/1-LPs with a unique optimum. We provide a matching n-approxi-19

mation.20

Keywords: circuits, linear programming, deepest-descent steps, complexity

theory

1. Introduction21

Linear programming is a fundamental tool in both the theory and applica-22

tions of combinatorial optimization: We are given a system Ax = b, Bx ≤ d23

with A ∈ RmA×n, B ∈ RmB×n,b ∈ RmA and d ∈ RmB and a cost vector c ∈ Rn.24

We call an assignment x ∈ Rn to the variables feasible if it satisfies the system25

of equalities and inequalities, and the set of these feasible assignments is a poly-26

hedron, which will be denoted as P throughout. The goal is to find a feasible27
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assignment x ∈ Rn minimizing cTx.28

Linear programming has been known to be solvable in weakly-polynomial129

time since the groundbreaking work of Khachiyan on the ellipsoid method [1]30

and Karmarkar on the interior point method [2]. The existence of a strongly31

polynomial algorithm for linear programming, that is, an algorithm which makes32

poly(n,mA,mB) arithmetic operations and finds an optimal solution, is a major33

open problem. Exploring methods other than the ellipsoid and interior point34

methods is a possible pathway for a resolution of this important open problem.35

One such family of methods are iterative augmentation methods [3] using36

the circuits of the matrix pair A,B, which are defined as follows:37

Definition 1. Given matrices A,B, the set of circuits C(A,B) consists of all38

g ∈ ker(A) \ {0} normalized to coprime integer components for which Bg is39

support-minimal over {Bx | x ∈ ker(A) \ {0}}.40

The set of circuits C(P) of the polyhedron P = {x ∈ Rn | Ax = b, Bx ≤41

d} satisfies C(P) = C(A,B). A generic iterative augmentation method for42

linear programming over P starts from some initial feasible iteration with i =43

0, 1, . . . , finds a circuit gi ∈ C(A,B) and a step-length λi ∈ R+ such that44

xi+1 = xi + λigi is feasible and cTgi < 0.The specific choice of λi and gi45

distinguishes the individual methods. For example, a steepest-descent step is46

one which minimizes cTgi/‖gi‖1, where ‖ · ‖1 is the 1-norm, and a deepest-47

descent step is one which minimizes λicTgi. The set C(A,B) is, for instance,48

the set of all potential edge directions, arising from any polyhedron having A49

and B as their constraint matrices over the varying choices of the right-hand50

sides b and d. This set contains the set of set of actual edge directions appearing51

on P with b and d fixed as a subset. To be precise, by an edge direction, we52

mean any (normalized) vector in a one-dimensional subspace spanned by the set53

of optimal points with respect to some cost vector. This means that considering54

1From here on out, whenever we speak of a problem with instances containing numbers as

inputs as being solvable in polynomial time, we intend this to mean weakly-polynomial time,

unless explicitly stated otherwise.
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all circuits in each iteration gives a potentially larger improvement than by only55

considering the edge directions, as is the case in the Simplex method. This56

gives rise to the circuit diameter conjecture [4], which states that for any d-57

dimensional polyhedron with f facets, the circuit diameter is bounded above58

by f − d; the circuit diameter is the smallest number of feasible circuit steps59

between two points of a polyhedron. The significance of studying the circuit-60

based iterative augmentation methods is also highlighted by recent success of61

Graver bases in the design of integer programming algorithms [5], since a Graver62

basis is essentially the integer programming analogue of the set of circuits.63

Throughout this paper, we consider polyhedra in the general form P =64

{x ∈ Rn | Ax = b, Bx ≤ d}, just as we already did up to this point. We65

assume that P is pointed, i.e., it has a vertex. This is required for some of our66

problem statements to be well-defined. A check whether P is pointed can be67

done efficiently through elementary linear algebra.68

Let us formally define a deepest-descent step:69

Definition 2. Let P = {x ∈ Rn | Ax = b, Bx ≤ d}, let c ∈ Rn and x0 ∈ P ,70

and consider the LP min{cTx : x ∈ P}. A c-deepest-descent step y from x0 is71

a vector y = α · g for some circuit g ∈ C(A,B) that maximizes the objective72

function improvement −cT (αg) among all circuits g ∈ C(A,B) and all α > 073

with x0 + αg ∈ P .74

When the context is clear, we simply refer to a deepest-descent step y75

(dd-step), dropping information about c, P , or x0. We call the term cy =76

−cTy the deepest-descent improvement (dd-improvement). It is known that77

repeatedly taking deepest-descent steps converges to an optimal solution in78

O(n log(b, c,d)) iterations [3]. A k-approximate dd-step z is a circuit step whose79

improvement is at least 1/k of the improvement of a dd-step, as measured by80

the objective value cy of a dd-step versus cT z. It is known [6] that iteratively81

augmenting k-approximate dd-steps takes at most k-times more iterations to82

converge to an optimum. Thus, we are interested in exact and approximate83

computations of a deepest-descent step. We formally denote this search as fol-84
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lows.85

86

Input: c ∈ Rn, polyhedron P ⊂ Rn, x0 ∈ P

Find: c-deepest-descent circuit step y in P from x0.

Deepest-Descent Step Problem (dd-SP)

87

The natural question leading to our results is then: How hard is it to compute88

a dd-step?89

1.1. Our Contribution90

Our first positive result with respect to this question pertains to the efficient91

approximability of dd-SP:92

Theorem 1. dd-SP can be approximated within a factor of n in polynomial93

time.94

This follows by an averaging argument on well-behaved decompositions of95

the difference of two solutions to an LP as a set of (scaled) circuits.96

The obvious follow-up question is whether an n-approximation can be signif-97

icantly improved. We answer this negatively, even for a fairly restricted family98

of LPs:99

Theorem 2. Even for LPs over 0/1-polytopes defined by a totally unimodular100

matrix and with unique optima, dd-SP cannot be approximated within O(n1−ε)101

for any ε > 0 in polynomial time, unless P = NP.102

In particular, this demonstrates that to obtain a better approximation ra-103

tio or even polynomial tractability, one would need to consider an even more104

restricted family of LPs.105

Further, we turn to the complexity of computing dd-steps exactly. De Loera106

et al. [7] have recently shown that dd-SP is NP-hard. However, a closer look at107

their construction reveals that they in fact show hardness of detecting whether108

it is possible to get to some optimum in one circuit step from a given initial109

point x0. We call this problem OCNP:110

111

4



Input: c ∈ Rn, polyhedron P ⊂ Rn, x0 ∈ P

Decide: Is there an optimum x∗ with respect to min{cTx : x ∈ P} such

that x∗ − x0 is a circuit direction?

Optimal Circuit-Neighbor Problem (OCNP)

112

Somewhat surprisingly, we show:113

Theorem 3. OCNP is solvable in polynomial time for LPs with a unique opti-114

mum.115

The standard trick of slightly perturbing the objective c of an LP makes116

some optimum unique, and the set of objectives with non-unique optima has117

volume 0, so in a sense OCNP is easy “almost always.” This is contrasted by118

De Loera et al. [7] showing the NP-hardness of general OCNP.119

This raises the following question: What is the complexity of dd-SP for120

LPs with a unique optimum, given that OCNP is easy? Despite the encourag-121

ing polynomial-time solvability of OCNP for this special case, we obtain as a122

byproduct of Theorem 2 that, unlike OCNP, dd-SP remains hard, even for the123

same, restricted family of LPs:124

Theorem 4. dd-SP is NP-hard, even for LPs over 0/1-polytopes defined by a125

totally unimodular matrix and with unique optima.126

1.2. Connections to Previous Work127

There are two papers in the literature with an especially strong connection128

to ours. We detail this connection separately, and discuss other related work129

hereafter.130

Firstly, and most importantly, an inspiration for this note is the recent paper131

of De Loera et al. [7]. Our polynomial-time algorithm for OCNP (Theorem 3)132

stands in contrast to the results of De Loera et al. [7], where it is shown that133

finding optimal circuit-neighbors is NP-hard in general. Hence, the hardness of134

OCNP hinges on the existence of multiple optima. At this point, a flawed line135

of reasoning might become appealing:136
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The reduction in [7] comes from the directed Hamiltonian path problem.137

By introducing a negligible probability for one-sided error through the Isolation138

Lemma [8], we may assume that the reduction source instance D = (N,F, s, t)139

on n = |N | nodes, has a unique solution—that is, a unique Hamiltonian path140

from s to t. It is tempting to apply the reduction of [7], and use the above141

algorithm for OCNP to solve the produced instance. This is an optimization142

problem on the matching polytope PM (H) of some undirected bipartite graph143

H on 2n + 1 vertices. We then have also solved the original instance of the144

(unique) Hamiltonian path problem in polynomial time. This fails, however,145

since the optima of the instance of OCNP are not in one-to-one correspondence146

with Hamiltonian paths in the input instance. Namely, the set of optima in147

the instance of OCNP is the set of matchings of size n − 1 in a graph H ′148

obtained from H through the deletion of some edges. In particular, this set is149

not necessarily a singleton if the original graph D had a unique Hamiltonian150

path.151

To save this approach, one might apply a perturbation to the cost vector of152

the produced LP on PM (H), to ensure uniqueness of solutions nonetheless (as153

remarked, uniqueness holds with probability 1). This perturbation, however,154

would have to retain precisely all optimal circuit neighbors, and not one of the155

other optima. Producing this perturbation would therefore require us to have156

at hand an optimal circuit neighbor in the first place.157

To avoid confusion, we stress that “uniqueness” refers not to the solutions of158

OCNP itself, but to the LP that constitutes part of the input of OCNP (which159

implies uniqueness of the solution for OCNP). In other words, there might be a160

unique optimal circuit neighbor, while the LP has several optima.161

Also note that while [7] discusses approximability, it does not concern dd-162

SP but a different problem: deciding what is the shortest path between two163

vertices of a polytope, either using the edges of the 1-skeleton, or using circuit164

steps. It is not clear to us whether any inapproximability of dd-SP follows from165

their construction.166

Secondly, we make use of [9] for our positive results on OCNP and the n-167
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approximability of dd-SP. Most importantly, the set of circuit directions appear168

as a subset of the extreme rays of a polyhedral cone constructed from the original169

input [9, Theorem 3]. Recall that extreme rays are those not in the conic hull170

of any other rays in the object at hand.171

Proposition 1. Let P = {x ∈ Rn | Ax = b, Bx ≤ d} be a pointed polyhedron.

The pointed cone

CA,B = {(x,y+,y−) ∈ Rn+2mB | Ax = 0, Bx = y+ − y−, y+,y− ≥ 0}

is generated by the set of extreme rays S ∪ T ′, where:172

1. The set S := {(g,y+,y−) | g ∈ C(A,B), y+i = max{(Bg)i, 0}, y−i =173

max{−(Bg)i, 0}} gives the circuits of P .174

2. The set T ′ ⊆ T := {(0,y+,y−) | y+i = y−i = 1 for some i ≤ mB , y
+
j =175

y−j = 0 for j 6= i} has size at most mB.176

Informally, all circuits of P can be found as extreme rays of CA,B : a projec-177

tion of a vector in the set S onto its first n components gives the corresponding178

circuit g. The ‘non-circuits’ in the set T are trivial to identify, and the cor-179

responding projection just returns 0. Note further that the length of a bit180

encoding of CA,B is (in the order of) at most twice the bit encoding length of181

P . This implies that one can efficiently optimize linear objective functions over182

the set of (one-normed) circuits. Further, this allows the efficient computation183

of a conformal sum.184

1.3. Related Work185

Apart from the directly related papers mentioned in the previous subsection,186

there is vast literature revolving around pivoting rules for circuit augmentation187

algorithms, and circuits of linear programs in general. Without any pretense188

of being comprehensive, let us point to a couple of seminal works (below) and189

refer to [9] with respect to circuits, and to [7] for circuit augmentation and the190

references therein for a more extensive treatment.191
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The idea of performing augmenting steps in the direction of circuits instead192

of only edges during an execution of the simplex algorithm goes back at least to193

Bland’s thesis [10] and is explored in detail in [3] and implemented, for example,194

in [11]. The notion of a circuit itself in turn was conceived only slightly before195

that by Rockafellar [12], and quite fruitfully [13, 14, 15] adapted to the integral196

case by Graver [16].197

1.4. Outline198

Our main contribution is a proof of the inapproximability of the computation199

of a dd-step within a factor of O(n1−ε), even when restricted to special classes200

of polyhedra. We begin by connecting to and generalizing previous results in201

the literature, in Sections 2 and 3. In Section 4, we prove our main result. In202

Section 5, we conclude with some open questions.203

2. Efficiency of OCNP for LPs with unique optima204

We begin by discussing the OCNP problem. De Loera et al. [7] showed205

that OCNP is NP-hard, and this implies that computing an optimal dd-step is206

NP-hard. (We call an optimization problem NP-hard if a corresponding decision207

version—is it possible to meet or exceed a given objective function value?—is208

NP-hard.) Recall the discussion in Section 1.2.209

The proof in [7] is based on the underlying LP having multiple optima.210

While showing the claim under this assumption clearly is sufficient, note that211

for a given polyhedron P , the set Cmulti ⊂ Rn of c for which there exist multiple212

optima has volume 0 in Rn. Informally, it is enough to slightly perturb the213

objective function to create a unique optimum. We now show that this hardness214

does not hold if the underlying LP has a unique optimum.215

Lemma 1. Let min{cTx : x ∈ P} be an LP over a polyhedron P with a unique216

optimum x∗ (that may not be known), and let x0 ∈ P . In polynomial time, it217

can be verified whether x∗ − x0 is a circuit direction.218
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Proof. Generally, LPs are solvable in polynomial time. As the LP at hand has a219

unique optimum x∗, this x∗ can be found in polynomial time. Let d = x∗−x0.220

If d = 0, there is nothing to prove: x0 itself already is optimal and we were able221

to verify so efficiently. Thus d 6= 0 in the following.222

Recall that the circuit directions of a polyhedron P appear as a subset S223

of the extreme rays of a polyhedral cone CA,B , as in Proposition 1 [9]. We224

construct dS := (d,y+,y−), where y±i = max{±(Bd)i, 0} as in the definition225

of S. The construction of dS is efficient: d is copied over and y± is derived from226

a matrix-vector product on the original input and component-wise comparisons.227

Note that dS ∈ CA,B , as x∗,x0 ∈ P , and that dS /∈ T (as d 6= 0). Thus,228

if dS is an extreme ray of CA,B , it can only be a member of S, which would229

imply that d is a circuit. A check whether a given dS ∈ CA,B is an extreme230

ray is possible in polynomial time: first, identify the set of active constraints231

of dS with respect to CA,B , i.e., check which constraints in the formulation232

of CA,B given in Proposition 1 are satisfied with equality, and construct the233

associated row submatrix of all active constraints; then perform a rank check234

for this submatrix – if its rank is precisely (n + 2mB) − 1, then dS lies in a235

one-dimensional face of CA,B , i.e., in an extreme ray. These steps are possible236

in polynomial time because the bit encoding length of CA,B is at most twice the237

bit encoding length of P .238

Summing up, x∗ can be found efficiently, dS can be constructed efficiently,239

and dS is an extreme ray of CA,B if and only if x∗ − x0 is a circuit direction,240

and the required check is efficient, too. This proves the claim.241

As an immediate consequence, we obtain the following theorem.242

Theorem 3. OCNP is sovlable in polynomial time for LPs with a unique opti-243

mum.244

Because the set of objective functions for which there exist multiple optima245

for a given polyhedron has volume 0, Theorem 3 tells us that OCNP “almost246

always” can be decided efficiently.247
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3. n-Approximability of dd-SP248

Next, we show that an efficient approximation of dd-SP with an error equiv-249

alent to the dimension of the underlying polyhedron is possible.250

Lemma 2. Let P = {x ∈ Rn | Ax = b, Bx ≤ d}, let c ∈ Rn and x0 ∈ P , and251

consider the LP min{cTx : x ∈ P}. Then an (n− rank(A))-approximation of a252

c-deepest-descent circuit step in P from x0 can be computed in polynomial time.253

Proof. Let y be a c-deepest-descent step y in P from x0 and let x∗ be an254

optimum of min{cTx : x ∈ P}. LPs generally are polynomial-time solvable, so255

an optimal x∗ can be computed efficiently.256

The vector x∗ − x0 can be written as a so-called conformal sum x∗ − x0 =257 ∑n′

i=1 αigi, where n′ = n− rank(A), αi > 0 and gi is a circuit of P for all i ≤ n′,258

and all the circuits gi are sign-compatible with each other (and with x∗ − x0)259

[16, 17]. Such a conformal sum can be computed in polynomial time, see e.g.260

Algorithm 4 in [9].261

Next, note that cTy ≥ cT (x∗ − x0) =
∑n′

i=1 cT (αigi). (Recall that cTy262

is negative, as LP is a minimization problem.) Thus, at least one of the αigi263

satisfies cT (αigi) ≤ 1
n′ c

T (x∗ − x0) ≤ 1
n′ c

Ty. For a given conformal sum, it is264

efficient to find an αigi with smallest value cT (αigi).265

By sign-compatibility of the gi, for any index set I ⊂ {1, . . . , n}, x0 +266 ∑
i∈I αigi lies in P . In particular, this holds for |I| = 1: each of the gi allows267

for a (maximal-length) circuit step βigi from x0 that stays in P , and where268

βi ≥ αi. Note cT (βigi) ≤ cT (αigi)269

For a given gi, it is efficient to compute the maximal βi such that x0+βigi ∈270

P : each facet of the polyhedron provides an upper bound on βi and one picks271

the smallest from them. Thus a βigi with cT (βigi) ≤ 1
n′ c

Ty can be computed272

in polynomial time. This proves the claim.273

As an immediate consequence, we obtain the following corollary.274

Theorem 1. dd-SP can be efficiently approximated within a factor of n.275
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4. O(n1−ε)-Inapproximability of dd-SP276

The efficiency of OCNP for LPs with a unique optimum (Section 2) is one277

of the reasons for our interest in a proof for the inapproximability (and implied278

NP-hardness) of dd-SP that does not rely on this restriction. In Section 3, we279

saw that there is an efficient n-approximation. In this section, we show that280

this is essentially the best one can expect.281

We will provide a proof for the claimed inapproximability of dd-SP that282

holds even when restricted to special classes of polyhedra. We call a polyhedron283

P = {x ∈ Rn | Ax = b, Bx ≤ d} with totally unimodular constraint matrices284

A and B and integral right-hand sides a TU-polyhedron.285

To this end, we will perform a reduction from the following problem.286

287

Input: Directed graph G = (V,E, c) with arc costs c ∈ Q|E|

Find: Directed cycle of maximal cost

Directed Weighted Longest Cycle Problem (DWLCP)

288

DWLCP is a generalization of the Directed (Unweighted) Longest Cycle289

Problem (DLCP), where the number of arcs of a cycle is counted, i.e., cij = 1290

for all (i, j) ∈ E. Note that |V | is the largest possible cost of a simple cycle for291

any instance of DLCP. For a graph G = (V,E, c), DLCP cannot be polynomial-292

time approximated within |V |1−ε for any ε > 0, unless P = NP [18]. This293

hardness transfers immediately to DWLCP: the cost cx = cTx of a longest294

cycle x cannot be polynomial-time approximated within |cx|1−ε for any ε > 0.295

Through a reduction from DWLCP, we will prove that a dd-step y also296

cannot be polynomial-time approximated within |cy|1−ε for any ε > 0. In our297

construction, we will guarantee that the underlying LP has a unique solution298

(and, even stronger, that this fact is known), which allows us to obtain inap-299

proximability and hardness even for such LPs. To this end, we begin with the300

polynomial construction of an instance of DWLCP from DWLP where all cycles301

have different costs while retaining the original “hierarchy” of costs. We denote302

the length of a bit encoding of a weighted graph G as IG.303
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Lemma 3. Let G = (V,E) be a directed graph. It is possible to construct a set304

of arc costs c ∈ Q|E| in polynomial time such that all cycles in G′ = (V,E, c)305

have different cost, and the cost of a cycle exceeds the number of arcs by strictly306

less than one. Further, the bit encoding length of G′ is polynomial in the bit307

encoding length of G.308

Proof. Let G = (V,E) be an unweighted directed graph. Let n = |V | and309

m = |E|. First, we complement G to a weighted graph G′ = (V,E, c′), where310

c′ij = 1 for all (i, j) ∈ E. In this graph, the cost of a cycle is measured through311

the number of arcs. Cycles with the same number of arcs have the same cost.312

To simplify notation, we will refer to a cycle interchangeably either as a subset313

of E or as a 0/1-vector x with components 1 precisely for the arcs on the cycle (a314

unit flow along the cycle); e.g., for two cycles C1, C2 ⊆ E represented by vectors315

x1,x2, by x1 \ x2 we mean the arc set C1 \ C2. Note that IG′ is polynomial in316

IG: for each arc, only a (constant-size/single-bit) encoding of the number 1 is317

needed.318

We will prove the claim through a simple perturbation on c′ to resolve any319

ties between cycles. The new, perturbed costs are called c. We are going to320

show that the perturbation is efficient and changes IG′ only polynomially.321

Let c = c′ + δ, where δ = (δ1, . . . , δm)T and δi = 2−i. Informally δ1 = 1
2 ,322

δ2 = 1
4 , δ3 = 1

8 , and so on. Each δi can be encoded in at most m + 1 bits, due323

to being the inverses of powers of 2. Thus, each ci = c′i + δi can be encoded in324

at most m+ 2 digits and IG′ ≤ (m+ 2)IG. As IG ≥ m, the change in encoding325

length is polynomial. Further, c can be constructed in polynomial time.326

It remains to prove that all cycles in G′ are of different cost with respect327

to c and that the cost of cycles has increased by less than one. The latter is328

immediately clear from
∑m
i=1 δi < 1. Note that the number of arcs of a cycle329

is c′Tx and the cost with respect to c is cTx. Let x1, x2 be two cycles and330

assume c′Tx1 > c′Tx2, which in particular implies c′Tx1 ≥ c′Tx2 + 1. As331

cTx2 < c′Tx2 +
∑m
i=1 δi and

∑m
i=1 δi < 1, we have cTx1 ≥ c′Tx1 > cTx2.332

Finally, consider two cycles x1 6= x2 with c′Tx1 = c′Tx2. The cycles have333
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the same number of arcs, so x1\x2 6= ∅ and x2\x1 6= ∅. Let index k be smallest334

among all arcs in x1\x2, and let l be smallest among all arcs used in x2\x1.335

Without loss of generality, assume k < l. Note δk >
∑m
i=k+1 δi. Thus cTx1 −336

cTx2 ≥ δk − (
∑m
i=k+1 δi) > 0, i.e., cTx1 > cTx2. This proves the claim.337

Remark 1. It is natural to ask whether it is necessary to introduce numbers of338

exponential size into c in the Lemma above. In other words, does every integer339

vector c which preserves exactly one optimum of c′ and does not introduce any340

new optima have some entry of order 2n? This is open, but observe that if we341

require something stronger, the answer is “yes.”342

We show that every integer c which breaks all ties between cycles of the same343

length must have exponential entries. Clearly the number of cycles of length344

n can be Ω(2n). Denote cmax = ‖c‖∞. In order to get a distinct value cTx345

for every cycle x of length n, cmax ∈ Ω(2n), as otherwise there are not enough346

distinct values cTx since clearly 0 ≤ cTx ≤ n · cmax.347

We are now ready to prove our main claim.348

Theorem 2. Let P = {x ∈ Rn | Ax = b, Bx ≤ d} with A,B ∈ Rm×n, let349

c ∈ Rn and x0 ∈ P , and consider the LP min{cTx : x ∈ P}. A deepest-descent350

circuit step y in P from x0 cannot be approximated within O(n1−ε) for any351

ε > 0 in polynomial time, unless P = NP. The hardness holds for LPs with352

unique optima, over 0/1-polytopes, TU-polyhedra, or any combination thereof.353

Proof. We will prove the claim through a reduction from the Directed Longest354

Cycle Problem (DLCP), for which it was shown in [18] that no |V |1−ε-approximation355

can be computed for any ε > 0 in polynomial time, unless P = NP, even in356

graphs of constant maximum out-degree ∆+. By Lemma 3, for a given graph357

G = (V,E) it is possible to efficiently construct a weighted graph G′ = (V,E, c)358

in which all cycles have a different cost and their cost lies strictly between the359

number of arcs of the cycle and that number plus one. The graph G′ can be360

used as input for a Directed Weighted Longest Cycle Problem (DWLCP) and361

also has constant maximum out-degree ∆+. If there was an efficient |V |1−ε-362
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approximation for DWLCP on G′, then there would be an efficient |V |1−ε-363

approximation for DLCP on G. We will show that if there exists an algo-364

rithm to efficiently O(n1−ε)-approximate dd-SP, then there exists an efficient365

|V |1−ε-approximation for DWLCP, and in turn DLCP – a contradiction unless366

P = NP . Further, the move from G to G′ will allow us to show that we retain367

this hardness even for LPs with unique optima.368

Let G = (V,E) be a directed graph underlying an instance of DLCP and369

G′ = (V,E, c) the corresponding weighted directed graph with perturbed costs370

constructed as in Lemma 3, in turn an instance of DWLCP. Next, specify ca-371

pacities uij = 1 for each (i, j) ∈ E to obtain a network G′′ = (V,E, c,u). The372

costs cij remain unchanged for all (i, j) ∈ E, i.e., they are the same as in G′.373

This input can be used to specify a circulation problem. Recall that a

circulation problem is a special case of a minimum-cost-flow problem and has

a natural representation as an LP. Using the negative costs −cij (recall the cij

are positive), we obtain

min − cTx

s.t. Ax = 0

0 ≤ x ≤ 1,

(LP)

where A is the node-arc incidence matrix of G′, and 0 and 1 are vectors of all-374

zeros and all-ones of appropriate dimensions, respectively. The all-ones vector375

gives the capacity constraints. Let P refer to the polyhedron forming the feasible376

region of (LP). As node-arc incidence matrices are totally unimodular, and as377

the right-hand side vectors are the integral 0 and 1, P is a 0/1-polytope in Rn,378

with n = |E|. There always exists an optimal vertex to an LP on a bounded379

polytope, so an optimal objective function value for (LP) is defined through380

a selection of arcs forming a circulation in G′. By the same argument as in381

Lemma 3, any subset of arcs sums up to a different total cost. Thus (LP) has382

a unique optimal solution.383

Next, consider a trivial feasible flow x0 defined by x0ij = 0 for each (i, j) ∈ E.384

We are going to show that an efficient approximation of the dd-step in P from385
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x0 would imply an efficient approximation of DLCP.386

Recall that the set of circuits of a node-arc incidence matrix A corresponds387

precisely to the simple undirected cycles underlying the network; a corresponding388

vector g ∈ {−1, 0, 1} would have entry 1 for each directed arc used in the389

‘correct’ direction and −1 for each directed arc used in the ‘wrong’, opposite390

direction. The same holds for the circuits of P = {x ∈ Rn | Ax = 0,0 ≤ x ≤ 1},391

as the inequality constraints 0 ≤ x ≤ 1 are represented through a constraint392

matrix B =
(
I
−I
)
, where I is the identity matrix; recall Definition 1. Since we393

have x0ij = 0 and uij = 1 for each (i, j) ∈ E, the step length α can always be394

set to 1 for any valid circuit, i.e., if there exists α > 0 with x0 + αg ∈ P for a395

circuit g, then x0 + g ∈ P and x0 + βg 6∈ P for any β > 1. Further, any circuit396

g with x0 + g ∈ P can only have 0, 1 entries, as x0ij = 0 for each (i, j) ∈ E.397

This means that edges can only be used in the correct direction. Therefore, an398

optimal dd-step y for (LP) from x0 is in one-to-one correspondence to a simple399

directed cycle of maximum length (as (LP) minimizes over negative arc costs).400

Recall that by the hardness result in [18], we may assume that the maxi-401

mum out-degree of G′ is some fixed constant ∆+, so in particular |E| ≤ ∆+|V |.402

Assume we had an algorithm that for a given ε > 0 finds an (n/∆+)1−ε-403

approximate dd-step yε of the best dd-step y, with dd-improvement cyε and cy,404

respectively. Then we have that
cy
cyε
≤ (n/∆+)1−ε = (|E|/∆+)1−ε ≤ |V |1−ε.405

We know that cy = −cTy = −cTg and cyε = −cTyε = −cT (αgε) for some406

α ∈ (0, 1] and some circuits g and gε. By the above, we may assume that407

α = 1, so cyε = −cT (gε). Since −cT g
−cT gε

=
cy
cyε
≤ |V |1−ε, gε corresponds to a cy-408

cle in G′′ that approximates the longest cycle within a factor of |V |1−ε (since by409

construction of the cost vector c, a cycle has maximum cost if and only if it has410

maximum length). This would imply a polynomial-time |V |1−ε-approximation411

algorithm for general DLCP.412

The polytope we used in this construction is a 0/1-polytope with a TU-413

matrix, and the LP at hand has a unique optimum and this fact is known414

apriori; see above. This shows that the hardness of approximation holds even415

for LPs adhering to all these restrictions. This proves the claim.416
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As an immediate consequence, we obtain NP-hardness of dd-SP from this417

inapproximability result.418

Theorem 4. dd-SP is NP-hard, even for LPs over 0/1-polytopes defined by a419

TU matrix and with a unique optimum.420

A direct proof of the NP-hardness of dd-SP would be possible through a421

reduction from Hamiltonian cycle instead of DWLCP, following a similar line of422

arguments as in the proof of Theorem 2. A perturbation of the arc costs would423

not be necessary, and neither would be the careful connection of |V | and |E|424

through the inapproximability of DWLCP for graphs with fixed maximum out-425

degree. However, to obtain the final part of Theorem 4 – that hardness persists426

even for LPs with unique optima – one would have to reduce from a variant of427

Hamiltonian cycle where the underlying graph has a unique circulation with a428

maximal number of arcs and one has the apriori information that there exists429

such a circulation. (This property is what would guarantee the existence of a430

unique optimum in (LP), and apriori knowledge thereof.) To the best of the431

authors’ knowledge, hardness of this variant has not been studied yet in the432

literature.433

5. Open Problems434

We conclude with two open problems related to our results. First, Theo-435

rem 1 shows how to n-approximate dd-SP. However, for the purposes of solv-436

ing an LP using dd-steps, this is irrelevant, as the first step of the algorithm437

is to completely solve the LP itself. Is there a combinatorial n-approximation438

of dd-SP, i.e., an algorithm, which does not use the polynomial solvability of439

an LP as a black-box? Actually, this would yield a new algorithm for linear440

programming, so to make the question well-posed, we ask whether there is a441

combinatorial n-approximation of dd-SP for some non-trivial class of constraint442

matrices? Secondly, we have shown strong inapproximability of dd-SP. What443

are (natural) classes of LP instances for which dd-SP admits, e.g., log(n)- or444

even c-approximation, for some constant c ∈ R+? Potential candidate classes445
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include uni– or bimodular LPs, and more generally, LPs with minors of bounded446

absolute value. Also, structurally restricted classes of LPs might be of interest.447

In particular, for n-fold LPs, which have a special block-structure, an approxi-448

mation ratio for dd-SP polynomially depending only on the parameters (that449

is, block size) would be desirable, and would break below the barrier proved in450

this paper.451
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