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Abstract. Consider a hypergraph nd where the vertices are points of
the d-dimensional cube [n]d and the edges are all sets of n points such
that they are in one line. We study the structure of the group of auto-
morphisms of nd, i.e., permutations of points of [n]d preserving the edges.
In this paper we provide a complete characterization. Moreover, we con-
sider the Colored Cube Isomorphism problem of deciding whether for
two colorings of the vertices of nd there exists an automorphism of nd

preserving the colors. We show that this problem is GI-complete. 3

1 Introduction

Let us denote [n] = {1, . . . , n}. Let [n]d be the set of all points (p1, . . . , pd) such
that pi ∈ [n] for every 1 ≤ i ≤ d. Let s = (s1, . . . , sn) be a sequence of n distinct
points of [n]d. Let si = [si1, . . . , s

i
d] for every 1 ≤ i ≤ n. We say that s is linear

if for every 1 ≤ j ≤ d a sequence s̃j = (s1j , . . . , s
n
j ) is strictly increasing, strictly

decreasing or constant. Note that at least one sequence s̃j is nonconstant as s

is a sequence of n distinct points. A set of points {p1, p2, . . . , pn} ⊆ nd is a line

if it can be ordered into a linear sequence (q1, q2, . . . , qn). We denote the set of
all lines of [n]d by L(nd). A combinatorial cube nd is a hypergraph

(
[n]d,L(nd)

)
.

Note that there is a fundamental difference between the combinatorial cube
nd and another well-studied structure, the hypercube Qd, defined as the graph
Qd =

(
{0, 1}d, E

)
where {u, v} ∈ E if and only if the vectors u, v differ in exactly

one coordinate.
We denote the group of all permutations on n elements by Sn. A permutation

S ∈ Snd is an automorphism of the cube nd if ℓ = {v1, . . . , vn} ∈ L(nd) implies
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S(ℓ) =
{
S(v1), . . . , S(vn)

}
∈ L(nd). Informally, an automorphism of the cube

nd is a permutation of the cube points which preserves the lines. We denote
the set of all automorphisms of nd by T d

n . Note that all automorphisms of nd

with a composition ◦ form a group Td
n = (T d

n , ◦, Id). Our main result is the
characterization of the generators of the group Td

n and computing the order of
Td
n. Surprisingly, the structure of Td

n is richer than only the obvious rotations
and symmetries. We use two groups of automorphisms for characterization of
the group Td

n as follows.
The first is a group Gd

n which is isomorphic to the hypercube automorphism
group Qd [10]. Generators of Qd are

1. Translations Ta by a ∈ {0, 1}d, Ta

(
[x1, . . . , xd]

)
=

[
x1 + a1, . . . , xd + ad

]

where the sum is modulo 2.
2. Rotations Rπ by π ∈ Sd, Rπ

(
[x1, . . . , xd]

)
= [xπ(1), . . . , xπ(d)].

It is known that every automorphism of the hypercube can be composed as
T ◦R for a translation T and a rotation R. To use automorphisms in Qd for the
combinatorial cube, we need to change the definition of the translations. The
rotations can be used immediately. Thus, the group Gd

n is generated by

1. Translations Ta by a ∈ {0, 1}d, Ta

(
[x1, . . . , xd]

)
=

[
flip(x1, a1), . . . ,flip(xd, ad)

]

where

flip(i, b) =

{

i b = 0,

n− i+ 1 b = 1.

2. Rotations Rπ by π ∈ Sd, Rπ

(
[x1, . . . , xd]

)
= [xπ(1), . . . , xπ(d)].

It is clear that groups Gd
n and Qd are isomorphic and thus every automorphism

in Gd
n can be composed as T ◦R for a translation T and a rotation R.
The second group is a group of permutation automorphisms Fn that contains

mappings Fρ

(
[x1, . . . , xd]

)
=

[
ρ(x1), . . . , ρ(xd)

]
where ρ ∈ Sn such that it has a

symmetry property: if ρ(i) = j then ρ(n− i+ 1) = n− j + 1.
Our main result is summarized in the following theorem. For the proof we

use and generalize some ideas of Silver [12], who characterized the group of
automorphisms of the cube 43.

Theorem 1. Let n > 2. The group Td
n is generated by the elements of Gd

n ∪Fn.

The order of the group Td
n is 2d−1+kd!k! where k = ⌊n

2 ⌋.

An isomorphism of two hypergraphs H1 = (V1, E1), H2 = (V2, E2) is a
bijection f : V1 → V2 such that for each {v1, . . . , vr} ⊆ V1, {v1, . . . , vr} ∈ E1 ⇔
{f(v1), . . . , f(vr)} ∈ E2. A coloring of a hypergraph H = (V,E) by k colors is a
function s : V → [k]. The following problem is well studied.

PROBLEM: Colored Hypergraph Isomorphism (CHI)
Instance: Hypergraphs H1 = (V1, E1), H2 = (V2, E2), colorings

s1 : V1 → [k], s2 : V2 → [k].
Question: Is there an isomorphism f : V1 → V2 of H1 and H2 such that

it preserves the colors? I.e., it holds s1(v) = s2
(
f(v)

)
for every

vertex v in V1.
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There are several FPT algorithms4 for CHI—see Arvind et. al. [3, 2]. The
problem Colored Cube Isomorphism is defined as the problem CHI where
both H1, H2 = nd. Since we know the structure of the group Td

n, it is natural
to ask if Colored Cube Isomorphism is an easier problem than CHI. We
prove that the answer is negative. The class of decision problems GI contains all
problems with a polynomial reduction to the problem Graph Isomorphism.

PROBLEM: Graph Isomorphism
Instance: Graphs G1, G2.
Question: Are the graphs G1 and G2 isomorphic?

It is well known that CHI is GI-complete, see Booth and Colbourn [6]. We
prove the same result for Colored Cube Isomorphism.

Theorem 2. The problem Colored Cube Isomorphism is GI-complete even

if both input colorings has a form n2 → [2].

The paper is organized as follows. In Section 2 we present some basic prop-
erties of the combinatorial cube nd, prove that Gd

n and Fn are automorphism
groups and also we count the order of the group Td

2, which structure is different
from other automorphism groups. Next in Sections 3 and 4, we characterize the
generators for Td

n. In Section 5 we count the order of the group Td
n. In the last

section we study the complexity of Colored Cube Isomorphism and prove
Theorem 2.

1.1 Motivation

A natural motivation for this problem comes from the game of Tic-Tac-Toe. It
is usually played on a 2-dimensional square grid and each player puts his tokens
(usually crosses for the first player and rings for the second) at the points on the
grid. A player wins if he occupies a line with his token vertically, horizontally or
diagonally (with the same length as the grid size) faster than his opponent. Tic-
Tac-Toe is a member of a large class of games called strong positional games. For
an extraordinary reference see Beck [5]. The size of a basic Tic-Tac-Toe board
is 3× 3 and it is easy to show by case analysis that the game is a draw if both
players play optimally. However, the game can be generalized to a larger grid
and more dimensions. The d-dimensional Tic-Tac-Toe is played on the points
of a d-dimensional combinatorial cube and it is often called the game nd. With
larger boards the case analysis becomes unbearable even using computer search
and clever algorithms have to be devised.

The only (as far as we know) non-trivial solved 3-dimensional Tic-Tac-Toe is
the game 43, which is called Qubic. Qubic is a win for the first player, which was
shown by Patashnik [11] in 1980. It was one of the first examples of computer-
assisted proofs based on a brute-force algorithm, which utilized several clever
techniques for pruning the game tree. Another remarkable approach for solving
Qubic was made by Allis [1] in 1994, who introduced several new methods. How-
ever, one technique is common for both authors: the detection of isomorphisms

4 The parameter is the maximum number of vertices colored by the same color.
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of game configurations. As the game of Qubic is highly symmetric, this detection
substantially reduces the size of the game tree.

For the game nd, theoretical results are usually achieved for large n or large
d. For example, by the famous Hales and Jewett theorem [9], for any n there
is (an enormously large) d such that the hypergraph nd is not 2-colorable, that
means, the game nd cannot end in a draw. Using the standard Strategy Stealing
argument, nd is thus a first player’s win. In two dimensions, each game n2, n > 2,
is a draw (see Beck [5]). Also, several other small nd are solved.

All automorphisms for Qubic were characterized by Rolland Silver [12] in
1967. As in the field of positional games the game nd is intensively studied
and many open problems regarding nd are posed, the characterization of the
automorphism group of nd is a natural task.

The need to characterize the automorphism group came from our real effort
to devise an algorithm and computer program that would be able to solve the
game 53, which is the smallest unsolved Tic-Tac-Toe game. While our effort of
solving 53 is currently not yet successful, we were able to come up with the
complete characterization of the automorphism group nd, giving an algorithm
for detection of isomorphic positions not only in the game 53, but also in nd in
general.

A game configuration can be viewed as a coloring s of nd by crosses, rings and
empty points, i.e., s : nd → [3]. Since we know the structure of the group Td

n, this
characterization yields an algorithm for detecting isomorphic game positions by
simply trying all combinations of the generators (the number of the combinations
is given by the order of the group Td

n). A natural question arises: can one obtain
a faster algorithm? Note that the hypergraph nd has polynomially many edges
in the number of vertices. Therefore, from a point of view of polynomial-time
algorithms it does not matter if there are hypergraphs nd with colorings or only
colorings on the input of Colored Cube Isomorphism. Due to Theorem 2 we
conclude that deciding if two game configurations are isomorphic is as hard as
deciding if two graphs are isomorphic.

Although our primary motivation came from the game of Tic-Tac-Toe, we
believe our result has much broader interest as it presents an analogy of auto-
morphism characterization results of hypercubes (see e.g. [7, 10]).

2 Preliminaries

Beck [5] in his work defined lines to be ordered (the linear sequences in our
case). However, for us it is more convenient to have unordered lines because
some automorphisms will change the order of points in the line.

Let ℓ be a line and q = (q1, . . . , qn) be an ordering of ℓ into a linear sequence.
Note that every line in L(nd) has two such orderings. Another ordering of ℓ into
a linear sequence is (qn, . . . , q1). We define a type of a sequence q̃j = (q1j , . . . , q

n
j )

as + if q̃j is strictly increasing, − if q̃j is strictly decreasing, c if q̃j is constant
and qij = c for every 1 ≤ i ≤ n. A type of q is type(q) =

(
type(q̃1), . . . , type(q̃n)

)
.
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Type of a line ℓ is a type of an ordering q of ℓ into a linear sequence such
that the first non-constant entry of type(q) is +. For example, let

ℓ =
{
[1, 1, 4], [1, 2, 3], [1, 3, 2], [1, 4, 1]

}
∈ L(43)

and q1 and q2 be distinct orderings of ℓ into a linear sequence. Then, type(q1) =
(1,+,−) and type(q2) = (1,−,+). By definition type(ℓ) = type(q1) = (1,+,−).

Let us now define several terms we use in the rest of the paper. A dimension

dim(ℓ) of a line ℓ ∈ L(nd) is dim(ℓ) =
∣
∣
{
i ∈ {1, . . . , d}|type(ℓ)i ∈ {+,−}

}∣
∣.

A degree deg(p) of a point p ∈ [n]d is a number of incident lines, formally
deg(p) =

∣
∣{ℓ ∈ L(nd)|p ∈ ℓ}

∣
∣. Two points p1, p2 ∈ [n]d are collinear, if there

exists a line ℓ ∈ L(nd), such that p1 ∈ ℓ and p2 ∈ ℓ. A point p ∈ [n]d is called a
corner if p has coordinates only 1 and n. A point p = [x1, . . . , xd] ∈ [n]d is an
outer point if there exists at least one i ∈ {1, . . . , d} such that xi ∈ {1, n}. If a
point p ∈ [n]d is not an outer point then p is called an inner point.

A line ℓ ∈ L(nd) is called an edge if dim(ℓ) = 1 and ℓ contains two corners.
Two corners are neighbors if they are connected by an edge. A line ℓ ∈ L(nd) with
dim(ℓ) = d is called a main diagonal. We denote the set of all main diagonals by
Lm(nd). For better understanding the notions see Figure 1 with some examples
in the cube 43.

e e e e

m

m

m

m

d d d d

z = 4z = 1 z = 2 z = 3

y = 3

y = 2

y = 1

y = 4

x : 41 2 3 41 2 3 41 2 3 41 2 3

Fig. 1. The cube 43 with some examples of lines. An edge e has a type (+, 1, 1), a line
d has a dimension 2 and a type (+, 4,−) and a main diagonal m has a type (+,−,+).

A k-dimensional face F of the cube nd is a maximal set of points of nd, such
that there exist two index sets I, J ⊆ {1, . . . , d}, I ∩ J = ∅, |I|+ |J | = d− k and
for each point [x1, . . . , xd] in F holds that xi = 1 for each i ∈ I and, xj = n for
each j ∈ J . For example,

{
[x, y, 1, n]|x, y ∈ [n]

}
is a 2-dimensional face of the

cube n4. Note that an edge is an 1-dimensional face.

A point p ∈ [n]d is fixed by an automorphism S if S(p) = p. A set of points
{p1, . . . , pk} is fixed by an automorphism S if {p1, . . . , pk} =

{
S(p1), . . . , S(pk)

}
.

Note that if a set B is fixed it does not necessarily mean every point of B is
fixed.

For n odd, we denote γ = n+1
2 and the center of the cube nd is the point

c = [γ, . . . , γ].
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2.1 Order of Td

2

The combinatorial cube 2d is different from the other cubes because every two
points are collinear. Thus, we have the following proposition.

Proposition 1. The order of the group Td
2 is (2d)!.

Proof. Every permutation of the points of the cube 2d is an automorphism, as
the graph 2d is the complete graph on 2d vertices. �

We further assume that n > 2.

2.2 Basic Groups

In this subsection we prove that the basic groups Fn and Gd
n are groups of

automorphisms of the combinatorial cube nd. In the following proofs we use ℓ as
an arbitrary line and q = (q1, . . . , qn) as an ordering of ℓ into a linear sequence.

Lemma 1. Every Fρ ∈ Fn is an automorphism of the combinatorial cube nd.

Proof. We recall that Fρ

(
[x1, . . . , xd]

)
=

[
ρ(x1), . . . , ρ(xd)

]
where ρ ∈ Sn. Let

σ = ρ−1 and

p =
([

ρ
(
q
σ(1)
1

)
, . . . , ρ

(
q
σ(1)
d

)]
, . . . ,

[
ρ
(
q
σ(n)
1

)
, . . . , ρ

(
q
σ(n)
d

)])

.

We claim that p is an ordering of Fρ(ℓ) into a linear sequence. Consider sequences
of the j-th coordinations of q and p. Thus,

q̃j =
(
q1j , . . . , q

n
j

)
,

p̃j =
(

ρ
(
q
σ(1)
j

)
, . . . , ρ

(
q
σ(n)
j

))

.

If type(q̃j) = c then clearly type(p̃j) = ρ(c). If type(q̃j) = + then qij = i and

(

ρ
(
q
σ(1)
j

)
, . . . , ρ

(
q
σ(n)
j

))

=
(

ρ
(
σ(1)

)
, . . . , ρ

(
σ(n)

))

= (1, . . . , n).

Thus, type(p̃j) = +. In the last case, if type(q̃j) = − then qij = n− i+ 1. In this

case we use that ρ has the symmetry property
(
ρ(n− i+1) = n− ρ(i) + 1

)
. For

all i ∈ [n] holds that

ρ
(
q
σ(i)
j

)
= ρ

(
n− σ(i) + 1

)
= n− i+ 1.

Thus,
(
ρ
(
q
σ(1)
j

)
, . . . , ρ

(
q
σ(n)
j

))
= (n, . . . , 1) and type(p̃j) = −. Therefore, we prove

that Fρ(ℓ) is a line. �

Lemma 2. Every translation Ta ∈ Gd
n is an automorphism of the combinatorial

cube nd.
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Proof. We recall that Ta

(
[x1 . . . , xd]

)
=

[
flip(x1, a1), . . . ,flip(xd, ad)

]
, where

flip(i, b) =

{

i b = 0,

n− i+ 1 b = 1.

Let p =
(
Ta(q

1), . . . , Ta(q
n)
)
. We prove that p is an ordering of Ta(ℓ) into a

linear sequence. Consider a sequence q̃j (or p̃j) of the j-th coordinates of q (or
p). If type(q̃j) = c then type(p̃j) = c if aj = 0 or type(p̃j) = n− c+ 1 if aj = 1.
If type(q̃j) = + then pij = i if aj = 0 or pij = n− i+ 1 if aj = 1. Thus,

(
Ta(q

1)j , . . . , Ta(q
n)j

)
=

{

(1, . . . , n) aj = 0,

(n, . . . , 1) aj = 1.

Thus, type(p̃j) = + or − depending on aj . If type(q̃j) = − the situation is
opposite. If aj = 0 then pij = n − i − 1 and pij = i if aj = 1. Thus, again
type(p̃j) = + or −. �

Lemma 3. Every rotation Rπ ∈ Gd
n is an automorphism of the combinatorial

cube nd.

Proof. We recall that Rπ

(
[x1 . . . , xd]

)
= [xπ(1), . . . , xπ(d)], where π ∈ Sd. We

claim that p =
(
Rπ(q

1), . . . , Rπ(q
n)
)
is an ordering of Rπ(ℓ) into a linear se-

quence. Let q̃j and p̃j be sequences of j-th coordinates of q or p, respectively.
Let σ = π−1. Note that the sequence p̃j is exactly the sequence q̃σ(j). Thus,
every sequence p̃j has a type +, − or a constant. �

3 Corners, Main Diagonals and Edges

In this section we investigate how every automorphism S ∈ Td
n maps main

diagonals, edges and corners. First, we prove some easy observation, which were
also used by Silver [12].

Observation 3 If an automorphism S ∈ Td
n fixes two collinear points p, q ∈

[n]d, then S also fixes a line ℓ ∈ L(nd) such that p, q ∈ ℓ.

Proof. For any two distinct points p1, p2 ∈ [n]d there is at most one line ℓ ∈ L(nd)
such that p1, p2 ∈ ℓ. Therefore, if the points p and q are fixed then the line ℓ has
to be fixed as well. �

Observation 4 If two lines ℓ1, ℓ2 ∈ L(nd) are fixed by S ∈ Td
n then their inter-

section, a point p in ℓ1 ∩ ℓ2, is fixed by S.

Proof. For any two lines ℓ, ℓ′ there is at most one point in ℓ ∩ ℓ′. Therefore, if
the lines ℓ1 and ℓ2 are fixed then the point p has to be fixed as well. �
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Lemma 4. Let F =
{
[x, y, 1, . . . , 1]|x, y ∈ [n]

}
be a 2-dimensional face of nd,

and let an automorphism S ∈ Td
n fixes all 4 corners of F , i.e., points [1, . . . , 1],

[n, 1, . . . , 1], [1, n, 1, . . . , 1] and [n, n, 1, . . . , 1]. Then, if S fixes a point [i, 1, . . . , 1], i ∈
[n] it also fixes a point [n− i+ 1, 1, . . . , 1].

Proof. The automorphism S fixes all 4 corners of F , therefore by Observation 3,
it fixes both diagonals d1, d2 ⊂ F . The types of d1 and d2 are type(d1) =
(+,+, 1, . . . , 1) and type(d2) = (+,−, 1, . . . , 1).

Suppose that S fixes a point p = [i, 1, . . . , 1], where i ∈ {2, . . . , n−1} (corners
are already fixed). In three steps we show that the point p5 = [n− i+1, 1, . . . , 1]
is fixed (note that for i = n − i + 1 the proof is trivial, thus we suppose i 6= γ

for odd n). Fixed points in a face 7× 7 are depicted in Figure 2.

p

p1

p2

p3

p4

p5

ℓ1

ℓ2

d1d2

c1

Fig. 2. How to fix points by diagonals in a front 2-dimensional face.

First we show that p1 = [i, i, 1, . . . , 1] is fixed by S. A point S(p1) must be
on d1 and it must be collinear with p. There are 2 points collinear with p on
d1: [i, i, 1, . . .1] and [1, . . . , 1], but the second one is already fixed as a corner.
Therefore, the point p1 is fixed. A point p2 = [i, n− i + 1, 1, . . . , 1] ∈ d2 is fixed
by a similar argument.

Next we show that S fixes a point p3 = [n− i + 1, i, 1, . . . , 1]. A point S(p3)
must be on d2 and it must be collinear with p1. If n is even there are two points
on d2 collinear with p1: p2 and p3, but p2 is fixed due to step 1. If n is odd, there
are 3 points collinear with p1: p2, p3 and the face center c1 = [γ, γ, 1, . . . , 1].
However, the point c1 is fixed due to Observation 4 because it is an intersection
of the lines d1 and d2. Therefore, the point p3 cannot be mapped onto c1. A
point p4 = [n− i+ 1, n− i+ 1, 1, . . . , 1] is fixed by a similar argument.

Let ℓ1 be a line such that type(ℓ1) = (n − i + 1,+, 1, . . . , 1) and ℓ2 be a
line such that type(ℓ2) = (+, 1, . . . , 1). Both lines ℓ1 and ℓ2 are fixed because
p4, p3 ∈ ℓ1 and ℓ2 connects two fixed corners. Therefore, the point p5, which is
an intersection of ℓ1 and ℓ2, is fixed by Observation 4 as well. �

In the proofs of the following lemmas we use the notions of blocks. Let p =
[x1, . . . , xd]. We call a set Bj(p) =

{
i ∈ [d]

∣
∣xi = j ∨ xi = n − j + 1

}
j-block
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of p. Note that j-block and (n − j + 1)-block are the same set. We say a line ℓ

such that p ∈ ℓ is active in the j-block Bj(p) if there exists some i ∈ Bj(p) such
that type(ℓ)i ∈ {+,−}. For example p = [1, 1, 2, 4] be a point of the cube 44 then
1-block of p is the set {1, 2, 4} and a line ℓ ∈ L(44) of a type type(ℓ) = (+, 1, 2,−)
is active in B1(p). We consider only non-empty blocks. We say that the point p
from the example has blocks B1(p) and B2(p) = {3}.

Lemma 5. Let p be a point of nd and ℓ be a line such that p ∈ ℓ. Then, there

is exactly one j ∈ [n] such that ℓ is active in Bj(p).

Proof. It is clear that there is at least one j ∈ [n] such that ℓ is active in Bj(p).
Suppose ℓ is active in Bi(p) and Bj(p), i 6= j. Therefore, p has some coordinates
equal to i or n− i + 1 and some coordinates equal to j or n− j + 1. Suppose p

has some coordinates equal to i and j (other cases are analogous). Without loss
of generality p = [i, j, . . . ]. Since i 6= j, type(ℓ) 6= (+,+, . . . ). Thus, type(ℓ) =
(+,−, . . . ). However, it means that j = n− i+ 1 and Bi(p) = Bn−i+1(p). �

Lemma 6. Let p = [x1, . . . , xd] be a point of nd and it has a block Bj(p) for

j 6= γ. Then, there are 2k − 1 active lines in Bj(p) where k =
∣
∣Bj(p)

∣
∣.

Proof. For every J ⊆ Bj(p), J 6= ∅ we define a line ℓJ active in Bj(p) in the
following way. Let qJ be a linear sequence such that p ∈ qJ and for i ∈ [d],

type(qJ )i =







xi i 6∈ J,

+ i ∈ J and xi = j,

− i ∈ J and xi = n− j + 1.

For example,

p = [

k
︷ ︸︸ ︷

n− j + 1, j, . . . , j, xk+1, . . . , xd] and J = {1, 2}

the linear sequence qJ has the type

type(qJ ) = (−,+, j . . . , j, xk+1, . . . , xd).

Note that for each J1, J2 ⊆ Bj(p), J1 6= J2 the linear sequences qJ1
and qJ2

represent different lines.

On the other hand, every line ℓ active in Bj(p) defines a non-empty subset of
Bj(p) as coordinates where ℓ has non-constant coordinate sequences. Therefore,
the number of lines active in Bj(p) is the number of non-empty subsets of Bj(p),
which is 2k − 1. �

Lemma 7. Let p = [x1, . . . , xd] be a point of nd and it has block Bγ(p). Then,

there are 3k−1
2 active lines in Bγ(p) where k =

∣
∣Bγ(p)

∣
∣.
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Proof. The proof is very similar to the previous one. For every J ⊆ Bγ(p), J 6= ∅
we define a line ℓJ such that p ∈ ℓJ . Let qJ be a linear sequence such that for
i ∈ {1, . . . , d}

type(qJ)i =

{

xi i 6∈ J,

+ i ∈ J.

And for every K ⊆ J we define a linear sequence q′JK such that p ∈ q′JK ,
and for j ∈ {1, . . . , d},

type(q′JK)j =

{

type(qJ )j j 6∈ K,

− j ∈ K.

For example,

p = [

k
︷ ︸︸ ︷
γ, . . . , γ, xk+1, . . . , xd] and J = {1, 2, 3},K = {3}

the linear sequence q′JK has a type

type(q′JK) = (+,+,−, γ, . . . , γ, xk+1, . . . , xd).

Note that for fixed J,K and M = J \K the linear sequences q′JK and q′JM
represent the same lines. Again every line ℓ active in Bγ(p) and its two orderings
q1 and q2 into linear sequence define two pairs of the set J,K ⊆ Bγ(p):

1. J =
{
i ∈ Bγ(p)|type(q1)i ∈ {+,−}

}
=

{
i ∈ Bγ(p)|type(q2)i ∈ {+,−}

}
.

2. K = {i ∈ Bγ(p)|type(q1)i = +} = {i ∈ Bγ(p)|type(q2)i = −}.
3. M = {i ∈ Bγ(p)|type(q1)i = −} = {i ∈ Bγ(p)|type(q2)i = +}.

Therefore, the numbers of lines active in Bγ(p) is a half of the number of
pairs (J,K) such that J is a non-empty subset of Bγ(p) and K is a subset of

J . We have
∑k

m=1

(
k
m

)
choices for the set J . For fixed J of size m, we have 2m

choices for K ⊆ J . Therefore the number of these lines is

1

2

k∑

m=1

((k

m

)

2m
)

=
3k − 1

2
.

�

Lemma 8. Let n be odd and ℓ ∈ L(nd) such that the cube center c is in ℓ and

dim(ℓ) = k. Let p ∈ ℓ, p 6= c. Then, deg(p) = 2k − 1 + 3d−k
−1

2 .

Proof. Since p ∈ ℓ and p 6= c, the point p has exactly 2 blocks Bj(p) and Bγ(p).
Note that

∣
∣Bj(p)

∣
∣ = k. Thus, the point p is incident with 2k − 1 lines active in

Bj(p) and with 3d−k
−1

2 lines active in Bγ(p) (by Lemma 6 and Lemma 7). By
Lemma 5, the lines active in Bj(p) are disjoint from the lines active in Bγ(p)
and there are no other lines incident with p. �
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Lemma 9. Every automorphism S ∈ Td
n maps a main diagonal m ∈ Lm(nd)

onto a main diagonal m′ ∈ Lm(nd).

Proof. Every point on a main diagonal has only one block. For n even the proof
is trivial. For every point q ∈ [n]d it holds that any of blocks of q is not the
γ-block. Therefore, every point p ∈ m has degree 2d − 1 and any point which is
not in any main diagonal has at least two blocks and thus the degree at most
2d−1 (by Lemma 6). Every automorphism S ∈ Td

n has to preserve the point
degree. Thus, a point p ∈ m has to be mapped onto a point p′ ∈ m′.

Now we prove the lemma for n odd. The center of the cube c is always mapped

onto c (c is the only point of degree 3d−1
2 ). Therefore, the main diagonal m ∈

Lm(nd) has to be mapped onto a line ℓ ∈ L(nd) such that c ∈ ℓ. By Lemma 8,

we know the degree of a non-central point p ∈ ℓ is deg(p) = 2k − 1 + 3d−k
−1

2 .

The degree of a non-central point q 6= c on a main diagonal m ∈ Lm(nd) is

deg(q) = 2d − 1. We show that if k 6= d then 2k − 1 + 3d−k
−1

2 6= 2d − 1. For

contradiction let us suppose that 2d − 2k = 3d−k
−1

2 and k < d. We rewrite the
formula into binary numbers:

2d 1

d
︷ ︸︸ ︷

0 . . . . . . . . . 0

−2k −1

k
︷ ︸︸ ︷

0 . . .0

3d−k
−1

2

d
︷ ︸︸ ︷

1 . . . 1 0 . . .0
︸ ︷︷ ︸

k

= β > 0.

It is easy to prove by induction that 4 divides 3d−k − 1 if and only if d − k

is even. The number β must be even so d− k must be even as well. We use the
well-known divisibility-by-3 test in the binary system for δ = 2β + 1 (it should
be equal to 3d−k > 1). The binary number is divisible by 3 if and only if the
number E of even order digits and the number O of odd order digits are equal
modulo 3. Note that

δ =

d−k
︷ ︸︸ ︷

1 . . . 1

k
︷ ︸︸ ︷

0 . . . 0 1.

The number d − k is even, thus the numbers of digits of the orders 1 to d are
equal, but |E − O| = 1 (because of the 1 at the order 0). Therefore δ is not
divisible by 3, which is the contradiction. �

Lemma 10. Let S ∈ Td
n, e be an edge and p be a corner, such that p ∈ e. If the

corner p is fixed by S, then S(e) = e′ is an edge such that p ∈ e′.

Proof. Without loss of generality the corner p is [1, . . . , 1] and the type of e is
type(e) = (+, 1, . . . , 1). First we prove the lemma for odd n. Let k = dim

(
S(e)

)

and suppose that 1 < k < d (the line S(e) can not have a dimension d as
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main diagonals are mapped on to main diagonals by Lemma 9). Without loss of
generality

type
(
S(e)

)
= (

k
︷ ︸︸ ︷

+, . . . ,+, 1, . . . , 1).

Let c1 be the center of e, i.e., the point [γ, 1, . . . , 1]. Note that c1 is collinear with
the cube center c. Thus, the point S(c1) has to be also collinear with the cube
center and

S(c1) = [

k
︷ ︸︸ ︷
γ, . . . , γ, 1, . . . , 1].

Consider the set of lines

L =
{
ℓ ∈ L(nd) | ∀i ≤ k : type(ℓ)i ∈ {+,−}, ∀i > k : type(ℓ)i = 1

}
.

Note that the set L contains all lines incident to the vertex S(c1) which are
active in the block Bγ

(
S(c1)

)
. Moreover, each line in L intersect exactly 2 main

diagonals and the intersections points are corners (in particular not the cube
center c). The line S(e) is in L. Since k > 1, there is a line ℓ′ ∈ L different
from S(e). Let ℓ be a preimage of ℓ′, i.e., ℓ = S(ℓ′). The line ℓ has to intersect
exactly 2 main diagonals as main diagonals are mapped onto main diagonals by
Lemma 9. Moreover, the line ℓ can not intersect the main diagonals in the cube
center c. Note that ℓ 6= e. There is only one line ℓ1 incident to c1, different from
e, such that it intersects some main diagonal. The type of ℓ1 is

type(ℓ1) = (γ,+, . . . ,+).

However, the line ℓ1 intersects the main diagonals in the cube center c. Thus, the
line ℓ′ does not have a preimage, which is a contradiction and k = dim

(
S(e)

)
= 1.

We now complete the proof for even n. For a contradiction suppose that
dim(e′) ≥ 2. Without loss of generality the type of e′ is (+, . . . ,+, 1, . . . , 1). Let
p2 = [2, 1, . . . , 1] and p3 = [3, 1, . . . , 1]. Since n ≥ 4, the points p2 and p3 are
not corners. Therefore, the point pi (for i ∈ {2, 3}) has blocks Bi(pi) = {1} and
B1(pi) = {2, . . . , d}. Let L2 be a set of lines incident with p2 without the edge
e and similarly L3 be a set of lines incident with p3 without e. Note that lines
in Li (for i ∈ {2, 3}) can be active only in the block B1(pi). Let ℓ2 ∈ L2 and
ℓ3 ∈ L3. For ℓ2 holds that type(ℓ2)1 = 2 and for ℓ3 holds that type(ℓ3)1 = 3.
Therefore, the lines ℓ2 and ℓ3 cannot intersect.

Now take images of p2 and p3. Let q2 = S(p2) = [i, . . . , i, 1, . . . , 1] and q3 =
S(p3) = [j, . . . , j, 1, . . . , 1]. Since dim(e′) ≥ 2, the point q2 is incident with a line
k2 such that type(k2) = (+, i, . . . , i, 1, . . . , 1). Similarly, the point q3 is incident
with a line k3 such that type(k3) = (j,+, . . . ,+, 1, . . . , 1). The lines k1 and k2
have to be images of some lines in L1 and L2, respectively. However, the lines
k1 and k2 intersect in a point [j, i, . . . , i, 1, . . . , 1], which is a contradiction. �

Lemma 11. If an automorphism S ∈ Td
n fixes the corner [1, . . . , 1] and all its

neighbors, then S fixes all corners of the cube nd.
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Proof. We prove the automorphism S fixes all corners p = [x1, . . . , xd] by induc-
tion over

k(p) =
∣
∣{i ∈ [d] : xi = n}

∣
∣.

By the assumption, the automorphism S fixes corners p such that k(p) ∈ {0, 1}.
Without loss of generality, a corner q such that k(q) > 1 has coordinates

q = [

k(q)
︷ ︸︸ ︷
n, . . . , n, 1, . . . , 1].

We take neighbors q1, q2 of the corner q as

q1 = [

k(q)−1
︷ ︸︸ ︷
n, . . . , n, 1, . . . , 1]

q2 = [1, n, . . . , n
︸ ︷︷ ︸

k(q)−1

, 1, . . . , 1].

The corners q1 and q2 have two common neighbors: q and

q3 = [1,

k(q)−2
︷ ︸︸ ︷
n, . . . , n, 1, . . . , 1].

Corners q1, q2 and q3 are fixed by the induction hypothesis. Therefore, corner q
is also fixed as it must be the neighbor of q1 and q2. �

4 Generators of the Group Td

n

In this section we characterize the generators of the group Td
n. As we stated in

Section 1, we use the groups Gd
n, Fn.

Definition 1. Let Ad
n be a group generated by elements of Gd

n ∪ Fn.

We prove that Ad
n = Td

n. The idea of the proof, that resembles a similar proof of
Silver [12], is composed of two steps:

1. For any automorphism S ∈ Td
n we find an automorphism A ∈ Ad

n, such that
S ◦A fixes all corners of the cube nd and one edge.

2. If an automorphism S′ ∈ Td
n fixes all corners and one edge then S′ is the

identity.

Hence, for every S ∈ Td
n we find an inverse element A such that A is composed

only by elements of Ad
n, therefore S ∈ Ad

n. We divide the construction of the
automorphism A into two steps. In the proof of Theorem 5 we construct an
automorphism A′ ∈ Ad

n such that S ◦A′ fixes all corners of the cube. In the proof
of Theorem 6 we construct an automorphism A′′ ∈ Ad

n such that S ◦A′ ◦A′′ fixes
all corners and one edge of the cube.

In the next proofs we use the following permutations. For i, j ∈ [n] and
i, j 6= γ (in a case of odd n), let ρ = ρ(i, j) be a permutation in Sn such that
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1. ρ(i) = j, ρ(j) = i.
2. ρ(n− i+ 1) = n− j + 1, ρ(n− j + 1) = n− i+ 1.
3. ρ(k) = k for all other k 6∈ {i, j, n− i+ 1, n− j + 1}.

Note that the permutation ρ(i, j) has exactly two cycles of the length two (or
one cycle if i = n− j + 1) and it has the symmetry property, i.e. Fρ(i,j) ∈ Fn.

Theorem 5. For all S ∈ Td
n there exists A′ ∈ Ad

n such that S ◦ A′ fixes every

corner of the cube nd.

Proof. We start with the point p0 = [1, . . . , 1]. By Lemma 9, the point S(p0) =
[x1, . . . , xd] has to be on a main diagonal, i.e., there is some j ∈ [n] such that each
xi is equal j or n− j +1. The point p0 cannot be mapped onto the cube center,
thus j 6= γ. We choose F = Fρ(j,1) ∈ Fn. Thus, S ◦ F (p0) is a corner. Then,

we choose a translation Ta ∈ Gd
n where ai = 1 if and only if

[
S ◦ F (p0)

]

i
= n.

Therefore, S ◦ F ◦ Ta(p0) = p0.
By induction over i we can construct automorphisms Zi to fix the points p0

and
pi = [1, . . . , n

i
, . . . , 1]

for all i ∈ {1, . . . , d}. For i = 0, the point p0 is fixed by Z0 = S ◦ F ◦ Ta. For
i > 0, by induction hypothesis we have an automorphism Zi−1 such that it fixes
all points in the set Pi−1 =

{
pk|0 ≤ k ≤ i − 1

}
. The corner pi is mapped onto

pj for j ≥ i because edges incident with p0 are mapped onto edges incident with
p0 (by Lemma 10) and points in Pi−1 are already fixed. If Zi−1(pi) = pi, we
choose Zi = Zi−1. Otherwise, we choose a rotation Rπ where π switches i and j

coordinates, thus

Rπ

(
[x1, . . . , xi, . . . , xj , . . . , xd]

)
= [x1, . . . , xj , . . . , xi, . . . , xd] :

Rπ(pj) = Rπ

(
[1, . . . , 1,

i

. . . , n
j
, . . . , 1]

)
= [1, . . . , n

i
, . . . , 1

j
, . . . , 1]

We set Zi = Zi−1 ◦ Rπ. Hence, the automorphism Zi fixes pi and all points
of Pi because the rotation Rπ does not affect the first i − 1 coordinates. Note
that it also fixes p0. In this way we can fix all corners pi for i ∈ {0, . . . , d − 1}.
Thus, the automorphism Zd−1 fixes all points of Pd−1 and the corner pd is fixed
automatically because there is no other possibility where the corner pd can be
mapped. The automorphism Zd−1 fixes the corner p0 = [1, . . . , 1] and all its
neighbors. Therefore by Lemma 11, the automorphism Zd−1 = S ◦ A′ for some
A′ ∈ An

d fixes all corners of the cube. �

Theorem 6. For all S ∈ Td
n there exists A ∈ Ad

n such that S ◦ A fixes every

corner of the cube nd and every point of a line ℓ =
{
[i, 1, . . . , 1]|i ∈ [n]

}
.

Proof. By Theorem 5 we have an automorphism A′ ∈ Ad
n such that S′ = S ◦A′

fixes all corners of the cube. We find an automorphism A′′ ∈ Ad
n such that

S′ ◦A′′ fixes all corners and all points on the line ℓ. The line ℓ is fixed by S′ due
to Observation 3. Let k = ⌊n

2 ⌋. We construct the automorphism A′′ by induction
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over i ∈ {1, . . . , k}. We show that in a step i an automorphism Yi fixes all corners
and every point in the set

Qi =
{
[j, 1, . . . , 1], [n− j + 1, 1, . . . , 1]|1 ≤ j ≤ i

}
.

First, let i = 1 and Y1 = S′. The automorphism Y1 fixes all corners and Q1

contains only [1, . . . , 1] and [n, 1, . . . , 1], which are also corners. Suppose that
i > 1. By induction hypothesis, we have an automorphism Yi−1 which fixes all
corners and every point in the set Qi−1. If Yi−1

(
[i, 1, . . . , 1]

)
= [i, 1, . . . , 1] then

Yi = Yi−1. Otherwise, Yi−1

(
[i, 1, . . . , 1]

)
= [j, 1, . . . , 1]. Note that i < j ≤ n−i+1

because points in Qi−1 are already fixed. Also in the case of odd n, it holds that
j 6= γ as i 6= γ and [i, 1, . . . , 1] is not collinear with the cube center, thus the point
Yi−1

(
[i, 1, . . . , 1]

)
is not collinear with the cube center as well. Let us consider

Fρ ∈ Fn for ρ = ρ(i, j). The automorphism Yi = Yi−1 ◦ Fρ fixes the following
points:

1. All corners, as the automorphism Yi−1 fixes all corners by the induction
hypothesis and ρ(1) = 1 and ρ(n) = n.

2. Set Qi−1, as the automorphism Yi−1 fixes the set Qi−1 by the induction
hypothesis and ρ(s) = s for all s < i and s > n− i+ 1.

3. Point [i, 1, . . . , 1]: Yi−1 ◦ Fρ

(
[i, 1, . . . , 1]

)
= Fρ

(
[j, 1, . . . , 1]

)
= [i, 1, . . . , 1].

4. Point [n− i+ 1, 1, . . . , 1] by Lemma 4.

Note that if n is odd the point [γ, 1, . . . , 1] is fixed as well by an automorphism
Yk. Thus, the automorphism Yk = S ◦A for some A ∈ Ad

n fixes all points of the
line ℓ and all corners of the cube. �

It remains to prove that if an automorphism S ∈ Td
n fixes all corners and all

points in the line ℓ =
{
[i, 1, . . . , 1]|i ∈ [n]

}
then S is the identity. We prove it in

two parts. First, we prove that if d = 2 then the automorphism S is the identity.
Then, we prove it for a general dimension by an induction argument.

Theorem 7. Let an automorphism S ∈ T2
n fixes all corners of the cube n2 and

all points in the line ℓ =
{
[i, 1]|i ∈ [n]

}
. Then, the automorphism S is the identity.

Proof. Let d1, d2 ∈ Lm(n2). Thus, type(d1) = (+,+) and type(d2) = (+,−).
Since all corners are fixed, the diagonals d1 and d2 are fixed as well due to
Observation 3. Let p ∈ d1 ∪ d2 such that p is not a corner. The point p is
collinear with the only one point q ∈ ℓ such that q is not a corner. Therefore,
every point on the diagonals d1 and d2 is fixed.

Now we prove that every line in L(n2) is fixed. Let ℓ1 ∈ L(n2) be a line of
a dimension 1. Suppose n is even. The line ℓ1 intersects the diagonals d1 and
d2 in distinct points, which are fixed. Therefore, the line ℓ1 is fixed as well by
Observation 3.

Now suppose n is odd. If ℓ1 does not contain the cube center c1 = [γ, γ] then
ℓ is fixed by the same argument as in the previous case. Thus, suppose c1 ∈ ℓ1.
There are two lines ℓ2, ℓ3 in L(n2) of dimension 1 which contains c1. Their types
are type(ℓ2) = (γ,+) and type(ℓ3) = (+, γ). The line ℓ2 also intersects the line
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ℓ. Therefore, the line ℓ2 contains two fixed points c1 and [γ, 1] and thus it is
fixed. The line ℓ3 is fixed as well because every other line is fixed. For better
understanding of all lines and points used in the proof see Figure 3 with an
example of the cube 52.

c1

d1d2

ℓ3

ℓ

ℓ1 ℓ2

p

q

Fig. 3. Points and lines used in the proof of Theorem 7.

Every point in n2 is fixed due to Observation 4 because every point is in an
intersection of at least two fixed lines. �

Theorem 8. Let an automorphism S ∈ Td
n fix all corners of the cube nd and

all points of an arbitrary edge e. Then, the automorphism S is the identity.

Proof. We prove the theorem by induction over dimension d of the cube nd. The
basic case for d = 2 is Theorem 7.

Therefore, we can suppose d > 2 and the theorem holds for all dimen-
sions smaller then d. Without loss of generality, e =

{
[i, 1, . . . , 1]

∣
∣i ∈ [n]

}
. For

s ∈ {1, n} and i ∈ [d], let F s
i be a (d − 1)-dimensional face which fix the i-th

coordinate to s, i.e.,

F s
i =

{
[x1, . . . , xd]|xi = s, xj ∈ [n] for j 6= i

}
.

Note that the faces F 1
2 , . . . , F

1
d cotanins the line e. Therefore, all points of the

faces F 1
2 , . . . , F

1
d are fixed by the induction hypothesis as all corners are fixed

as well. Let e1 be an edge of type (1, 1,+, 1, . . . , 1) (since d > 2, the edge e1 is
well-defined). It holds that e1 ⊆ F 1

1 ∩ F 1
2 . Thus, all corners of the face F 1

1 are
fixed and all points of one edge of F 1

1 are fixed. Therefore, all points of face F 1
1

are fixed by the induction hypothesis.
We will prove that all points of faces Fn

i are fixed by similar argument. Let
fi be an edge of type

type(fi) =

{

(1, . . . , 1,+, n
i
, 1, . . . , 1) if i > 1

(n, 1, . . . , 1,+) if i = 1.

Consider the face Fn
i and set j = i + 1 mod d. The line fi is contained in the

faces Fn
i and F 1

j . Thus by the same argument as above, all points of the faces
Fn
1 , . . . , F

n
d are fixed.
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We showed that every outer point is fixed. Every line ℓ ∈ L(nd) is fixed due to
Observation 3 because every line contains at least two outer points. Therefore by
Observation 4, every point q ∈ [n]d is fixed because every point is an intersection
of at least two lines. �

Corollary 1. The groups Td
2k and Td

2k+1 are isomorphic for k ≥ 2.

Proof. The groups Gd
n are all isomorphic to the group of d-dimensional hyper-

cube automorphism for all n. For every permutation π ∈ S2k+1 with the sym-
metry property holds that π(k) = k. Therefore, the group F2k is isomorphic to
the group F2k+1. �

5 Order of the Group Td

n

In the previous section we characterized the generators of the group Td
n. Now

we compute the order of Td
n. First, we state several technical lemmas.

Lemma 12. Orders of the basic groups are as follows.

1. |Gd
n| = 2dd!.

2. |Fn| = 2kk! for k = ⌊n
2 ⌋.

Proof. Size of the hypercube automorphism group Qd is well known [8].
Size of the group Fn is the number of permutations π ∈ Sn with the symmetry

property. If n is even, we have n possibilities how to choose the image of the
first element, we have n− 2 possibilities for the second element, and so on, thus
there are

n

2
−1
∏

i=0

(n− 2i)

such permutations. If n is odd, the element n+1
2 has to be mapped onto itself.

Therefore, the order of Fn where n is odd is the same as the order of Fn−1. The
general formula is

k−1∏

i=0

(2k − 2i) = 2k
k−1∏

i=0

(k − i) = 2kk!

for k = ⌊n
2 ⌋. �

Lemma 13. The groups Gd
n and Fn commute.

Proof. Let Ta ◦Rπ ∈ Gd
n and Fρ ∈ Fn. Note that for ρ holds that ρ

(
flip(i, b)

)
=

flip
(
ρ(i), b

)
due to the symmetry property. Then,

Ta ◦Rπ ◦ Fρ

(
[x1, . . . , xd]

)

=Fρ

([
flip(xπ(1), aπ(1)), . . . ,flip(xπ(d), aπ(d))

])

=
[

ρ
(
flip(xπ(1), aπ(1))

)
, . . . , ρ

(
flip(xπ(d), aπ(d))

)]

=
[

flip
(
ρ(xπ(1)), aπ(1)

)
, . . . ,flip

(
ρ(xπ(d)), aπ(d)

)]

.
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Similarly,

Fρ ◦ Ta ◦Rπ

(
[x1, . . . , xd]

)
= Ta ◦Rπ

([
ρ(x1), . . . , ρ(xd)

])

=
[

flip
(
ρ(xπ(1)), aπ(1)

)
, . . . ,flip

(
ρ(xπ(d)), aπ(d)

)]

.

�

By Lemma 13 we can conclude that any automorphismA ∈ Td
n can be written

as A = G ◦ F where G ∈ Gd
n and F ∈ Fn. Thus, the product

Gd
nFn =

{
G ◦ F |G ∈ Gd

n, F ∈ Fn

}

is exactly the group Td
n. We state the well-known product formula for a group

product.

Lemma 14 (Product formula [4]). Let S and T be subgroups of a finite group

G. Then, for an order of a product ST holds that

|ST | =
|S| · |T |

|S ∩ T |
.

Thus, for computing the order of Td
n we need to compute the order of the inter-

section of the basic groups Gd
n and Fn.

Lemma 15. The intersection Gd
n ∩ Fn = {Id , Fσ} where σ(i) = n− i+ 1.

Proof. It is clear that {Id , Fσ} ⊆ Gd
n∩Fn because Fσ = Ta where a = (1, . . . , 1).

Consider a main diagonal ℓ =
{
[i, . . . , i]|i ∈ [n]

}
and its ordering into a

linear sequence (p1, . . . , pn), where pi = [i, . . . , i]. Every automorphism G ∈ Gd
n

preserves an order of points on the line ℓ, i.e., a sequence
(
G(p1), . . . , G(pn)

)
is

an ordering of G(ℓ) into a linear sequence.
Consider an automorphism Fρ ∈ Fn. We claim that

(
Fρ(p

1), . . . , Fρ(p
n)
)
is

an ordering of Fρ(ℓ) into a linear sequence if and only if ρ is the identity or σ.
Recall that Fρ(p

i) =
[
ρ(pi1), . . . , ρ(p

i
d)
]
. Thus, to

(
Fρ(p

1), . . . , Fρ(p
n)
)
be a linear

sequence it must hold that ρ(i) = i or ρ(i) = n − i + 1 for all i. We conclude
that if ρ is not the identity and ρ 6= σ then Fρ 6∈ Gd

n. �

As a corollary of Lemmas 12, 14 and 15 we get the second part of Theorem 1.

6 The Complexity of Colored Cube Isomorphism

In this section we prove Theorem 2. As we stated before, CHI is in GI. There-
fore, Colored Cube Isomorphism as a subproblem of CHI is in GI as well. It
remains to prove the problem is GI-hard. Let s1 and s2 be colorings of a com-
binatorial cube nd. We say the colorings s1 and s2 are isomorphic if there is an
automorphism A ∈ Td

n which preserves the colors, i.e., for every point p of a
combinatorial cube nd holds that s1(p) = s2

(
A(p)

)
.
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First, we describe how we reduce the input of Graph Isomorphism to the
input of Colored Cube Isomorphism. Let G = (V,E) be a graph. Without
loss of generality V = [n]. We construct the coloring sG : [k]2 → {0, 1} for
k = 2n + 4 as follows. The value of sG

(
[i, j]

)
is 1 if [i, j] = [n + 1, n + 1] or

[i, j] = [n + 1, n + 2] or i, j ≤ n and {i, j} ∈ E. The value of sG(p) for any
other point p is 0. We can view the coloring sG as a matrix MG such that
MG

i,j = sG
(
[i, j]

)
. The submatrix of MG consisting of the first n rows and n

columns is exactly the adjacency matrix of the graph G. For example, let P be
a path on 3 vertices, then

MP =



















0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



















The idea of the reduction is as follows. If two colorings sG1 , sG2 are iso-
morphic via a cube automorphism A ∈ T2

k then A can be composed only of
automorphisms in Fk (due to the colors of [n + 1, n + 1] and [n + 1, n + 2]).
Hence, the automorphism A = Fρ for some permutation ρ ∈ Sk. Moreover, the
permutation ρ maps the numbers in [n] to the numbers in [n] and describes the
isomorphism between the graphs G1 and G2.

Lemma 16. Let G1, G2 be graphs without vertices of degree 0. If colorings sG1 ,

sG2 are isomorphic via a cube automorphism A ∈ T2
k then A = Fρ ∈ Fk. More-

over, ρ(i) ≤ n if and only if i ≤ n.

Proof. Let A = S◦F where S ∈ G2
k, F ∈ Fk andm1,m2 be main diagonals of [k]2

of a type (+,+) and (+,−), respectively. Due to the colors of p1 = [n+1, n+1]
and p2 = [n + 1, n + 2] we will show that A has to fix m1 and m2 and that
A ∈ Fk.

Since G1 and G2 are simple graphs without loops, there is exactly one point
of the color 1 on the main diagonal m1 (the point p1) and there are no points of
the color 1 on the main diagonal m2 in both colorings sG1 and sG2 . Therefore, A
has to fix m1 and m2 and the point p1. Let ℓ1 be a line of a type (n+ 1,+) and
ℓ2 be a line of a type (+, n+ 1). Note that in both coloring the line ℓ1 contains
two points of the color 1 (p1 and p2) and ℓ2 contains only one point of the color
1 (the point p1). The line ℓ1 can be mapped only on the lines ℓ1 or ℓ2. However,
due to the colors of the points p1 and p2 in both coloring the line ℓ1 has to be
fixed. Thus, the point p2 is fixed as well.

Every automorphism in Fk fixes the lines m1 and m2. Thus, the automor-
phism S has to fix the main diagonals as well. Let S = Ta ◦ Rπ. There are 8
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automorphisms in G2
k. By simple case analysis we know that S fixes the lines m1

and m2 if and only if a = (0, 0) or a = (1, 1). If π is the identity, then S = Ta

and it is also in Fk (see Lemma 15).
Let us suppose that π 6= Id and a = (0, 0). Note that A(p1) =

[
ρ(n+1), ρ(n+

1)
]
. The automorphism A fixes the point p1, thus ρ(n+ 1) = n+ 1. Therefore,

A(p2) =
[
ρ(n+2), ρ(n+1)

]
=

[
ρ(n+2), n+1

]
6= p2, which is a contradiction as

we proved that A fixes the point p2. The proof for a = (1, 1) is identical. Thus,
we conclude that A ∈ Fk.

Now we prove the last part of the lemma. We already know that ρ(n+ 1) =
n+1 and ρ(n+2) = n+2. For every i ≤ n there is at least one point with color 1
on a line of type (+, i) in both colorings sG1 , sG2 because graphs G1 and G2 do
not contain any vertex of degree 0. On the other hand, for every i ≥ n+3 there
are only points with color 0 on a line of type (+, i) in both colorings. Therefore,
if i ≤ n then i has to be mapped on j ≤ n by ρ. �

The proof of the following theorem follows from Lemma 16.

Theorem 9. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs without vertices of

degree 0. Then, the graphs G1 and G2 are isomorphic if and only if the colorings

sG1 and sG2 are isomorphic.

Proof. First, suppose that sG1 and sG2 are isomorphic. Let V1 = V2 = [n]. By
Lemma 16, we know that sG1 and sG2 are isomorphic via a cube automorphism
Fρ ∈ Fk. We define the function f : V1 → V2 as f(i) = ρ(i). By Lemma 16, f is
a well defined bijection. It remains to prove that f is a graph isomorphism:

{i, j} ∈ E1 ⇔ sG1

(
[i, j]

)
= 1 ⇔ sG2

(
[ρ(i), ρ(j)]

)
= 1 ⇔

{
f(i), f(j)

}
∈ E2.

Now we prove the other implication. Let f : V (G1) → V (G2) be an isomor-
phism of G1 and G2. We construct the permutation ρ : [k] → [k] as follows:

ρ(i) =

{

i n+ 1 ≤ i ≤ n+ 2

f(i) i ≤ n

We define values of ρ(i) for i ≥ n+3 in such a way the symmetry property holds
for the permutation ρ.

We prove that Fρ ∈ Fk is an isomorphism between sG1 and sG2 . Let us
suppose that sG1

(
[i, j]

)
= 1. If [i, j] = [n+ 1, n+ 1] or [i, j] = [n+ 1, n+2] then

sG2

(
Fρ([i, j])

)
= 1 as well. Otherwise, i, j ≤ n because there is no other point

colored by 1. Thus,

sG1

(
[i, j]

)
= 1 ⇔ {i, j} ∈ E1 ⇔

{
f(i), f(j)

}
∈ E2 ⇔ sG2

(
[ρ(i), ρ(j)]

)
= 1.

Hence, we proved that sG1

(
[i, j]

)
= 1 if and only if sG2

(
Fρ[i, j]

)
= 1. �

We may suppose that the input graphs G1 and G2 have minimum degree at
least 1 for the purpose of the polynomial reduction of Graph Isomorphism to
Colored Cube Isomorphism. Thus, Theorem 2 follows from Theorem 9.
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7 Open Problems

We characterized the automorphism group of the cube nd for finite n and d.
It would be interesting to characterize the automorphisms of the cube with an
infinite dimension. Would the automorphisms be the same even for uncountable
dimension? The lines of the cube nd cannot be (straightforwardly) generalized
to infinite n, because of the decreasing coordinate sequences.

We also proved that the Colored Cube Isomorphism problem is basically
as hard as the Graph Isomorphism problem. However, for strategy searching
algorithms the most important task is to prune the game tree at upper levels,
i.e., after constantly many turns. Thus, a natural question arises: Is there a
polynomial time algorithm for the Colored Cube Isomorphism problem if all
color classes except one have constant size?
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