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Abstract

Set disjointness (Disj ) is a central problem in communication complexity. Here Alice and
Bob each receive a subset of an n-element universe, and they need to decide whether their inputs
intersect or not. The communication complexity of this problem is relatively well understood,
and in most models, including – most famously – interactive randomised communication with
bounded error (R), the problem requires much communication.

In this work we were looking for a variation of Disj , as natural and simple as possible, for
which the known lower bound methods would fail, and thus a new approach would be required
in order to understand its R-complexity. The problem that we have found is a relational one:
each player receives a subset as input, and the goal is to find an element that belongs to both
players. We call it inevitable intersection (II).

The following list of its properties seem to let II resist the old lower bound techniques:

• the domain of II is A×B, the product of the players’ individual input spaces;
• A×B only contains intersecting pairs of subset;
• the input comes from the uniform distribution over A×B;
• A×B is chosen in a randomised fashion, both A and B being uniformly-random subsets

of 2[n] of size 2n
Θ(1)

.

In particular, complexity analysis of II cannot be based on the hardness of Disj (as no pair in
A×B is disjoint); moreover, it cannot be based on any argument based on discrepancy (including
corruption, smooth discrepancy and the like), as the problem allows for a cover of A×B by n
perfectly-monochromatic rectangles.

We are using an ad hoc technique to show that II is ultimately hard : it requires Ω(log|A|) bits
of interactive randomised communication. Besides its ability – apparently unique – to capture
the complexity of the inevitable intersection, the new technique can also be applied to other
“search-like” problems (including Disj ), thus providing new insight into their communicational
hardness.
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1 Introduction

Unstructured search is a basic computational paradigm and its natural instance in the context of
communication complexity is the intersection problem. Here each player receives a subset of [n] and
the goal is to decide whether the intersection of these subsets is empty in the decision version, and
to find an element from the intersection when it is not empty in the search version of the problem.
The decision version is exactly the same as the well-known set disjointness problem (Disj ). The
search version looks more demanding, but for most communication models the decision and the
search version are, essentially, equivalent, as the search version can be reduced to a short series of
decision instances (e.g., via binary search).

The most common in the context of communication complexity is, probably, the model of
randomised interactive communication: there are two players, Alice and Bob, who are allowed to
use random bits and exchange messages in order to find an answer with respect to the input that is
divided between the two of them. The complexity of a given protocol is defined as the maximum
possible number of bits exchanged before producing the answer, when each player’s input has length
at most n. The answer must be correct with non-trivial constant probability – say, at least p when
the input distribution is assumed to be such that no single answer can be correct with probability
more than p − Ω(1). We denote this model by R. The complexity of a problem P in R is the
minimum complexity of a valid protocol for solving P , and we write R(P ) to denote it.

No efficient solution forDisj exists in most communication models, so understanding its complexity
amounts to very little more than proving a tight lower bound. In particular, [KS87] has shown that
R(Disj ) ∈ Ω(n) (see also [BFS86, Raz92]).

Virtually all known lower bound methods for Disj are based on the hardness of witnessing
non-intersection of the input sets : Informally, while it is easy to demonstrate that the given subsets
overlap (e.g., by pointing to an element from the intersection), it can be rather difficult to certify
that the given subsets are disjoint.1 Due to the fact that a communication transcript can be used
as a correctness certificate of the answer produced by a valid protocol, hardness of witnessing
non-intersection implies a lower bound on the communication complexity of Disj and a number of
its modifications.

Given the importance and the natural appeal of both the problem Disj and the model R, in
this work we have been looking for as simple as possible variation of the former, whose complexity
analysis in the latter would lead to a new approach: While the known ones undoubtedly provide
deep insight on the core of hardness of Disj , there seems to remain something mysterious about it, as
witnessed, for example, by the fact that we know nothing about the complexity of Disj in the model
of AM in communication complexity, which allows both randomness (like R) and non-determinism
(like N, the “communication complexity NP ”).2

A communication problem that we call inevitable intersection (II) is an instance of the inter-
section search problem: both Alice and Bob receive a subset as input, and their goal is to find an
element that belongs to both players. Formally, IIA,B is the following problem:

Let A,B ⊆ {0, 1}n be such that

∀a ∈ A, b ∈ B : a ∩ b 6= ∅,
1 This can be formally expressed in terms of non-deterministic communication complexity N, which captures the

complexity of certifying satisfying instances of the target Boolean function (viewed as a predicate). The N-complexity
is Θ(n) for disjointness and Θ(logn) for non-disjointness.

2 The bound N(Disj ) ∈ Ω(n) follows, essentially, from the same argument as the one used to establish R(Disj ) ∈
Ω(n). However, the same approach (as well as all others that we are aware of) falls astonishingly short of providing
any insight on the complexity of Disj in AM , a model that can be viewed as the natural closure, where the strength
of both N and R is present. Resolving the communication complexity of Disj in AM is one of the most important
open problems in the field.
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where a binary string is viewed as the set of its coordinates with value “1”. Alice receives
a ∈ A, Bob receives b ∈ B and they have to output some i ∈ a ∩ b.

We will analyse the (expected) R-complexity of IIA,B when A and B are uniformly-random subsets
of
{
x ∈ {0, 1}n

∣∣|x| = n3/5
}
of size 2

5√n/5. 3

The definition of II is analogous to the well-known monotone case of Karchmer-Wigderson
games [KW88, RW92], where lower bounds are known for some instances. Those techniques don’t
seem applicable to the randomised case of IIA,B , as defined above. The special properties of IIA,B
that, as we believe, have allowed it to frustrate the previous lower-bound methods are the following:

• the input space A×B has a product structure, and still it only contains intersecting pairs of
subsets;
• A×B is chosen in a randomised fashion, both A and B being uniformly-random subsets of

2[n] of the required size.

As mentioned above, virtually all known hardness arguments for Disj are based on the observation
that it is hard for a communication protocol to certify that the input subsets are disjoint. More
formally, an efficient communication protocol in any of those communication models where Disj
is known to be hard necessarily implies existence of a relatively large nearly-monochromatic (with
respect to the target problem) combinatorial rectangle in the space of pairs of input values; accordingly,
showing that no such rectangle is possible proves hardness of the problem for these models. In the
case of Disj there exist large rectangles that are biased towards intersecting input pairs; however,
it has been shown that no large rectangle can be sufficiently biased towards non-intersecting pairs
(which is the formal way to say that being disjoint is hard to witness), which implies that Disj has
no efficient protocol.

In the case of IIA,B , on the other hand, not only do large nearly-monochromatic rectangles exist,
but in fact the whole input space A×B can be covered by n perfectly-monochromatic rectangles:
e.g., for any i ∈ [n] the set of all pairs intersecting on i form a rectangle, and the union of all such
rectangles equals A×B. This fact alone makes it impossible to deduce the hardness of II from an
argument that is based on discrepancy (that is, from reasoning about the possibility of sufficient
bias in large rectangles).

The product structure of the support A×B prevents the possibility to “secretly” add to it disjoint
pairs and to base a lower bound argument on the contradiction between, on the one hand, the
possibility to use a good II-protocol for detecting disjoint pairs (where the protocol would not
find a common element) and, on the other hand, the hardness of deciding whether the input pair
is disjoint (to be shown via standard techniques). Adding a non-intersecting pair to A×B would
require extending the marginal support of at least one of the players; even if the input encoding
scheme would allowing such an extension, a very short protocol could easily detect an input pair
outside A×B and produce a special response (say, declare an error), thus frustrating the intended
hardness reduction. At the same time, the lack of structure in the families A and B themselves
seems to make it impossible to embed hard instances of Disj into instances of IIA,B .

Our way of making the complexity of Disj difficult to analyse has one aspect in common with
the problem of analysing the AM -complexity of Disj : Namely, both questions escape the reach
of the current techniques, partially, due to the fact that a hardness statement cannot follow from
reasoning about the discrepancy of large rectangles. In the case of AM the model is such that an
efficient protocol does not seem to guarantee existence of a large biased rectangle even in the case of

3 The constants in the definition have been chosen to allow as simple as possible tight lower-bound analysis, based
on the new technique (cf. Corollary 1). The approach seems to be adjustable to give tight results for any possible
choice of parameters (though we haven’t verified the details), but the required changes are rather technical and do not
seem to provide enough additional insight to justify the more involved argument.
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total functions, and for promise functions or relations an efficient AM protocol is known [Kla11]
to be possible in some cases, where every rectangle is either exponentially small, or has error
inverse-exponentially close to 1/2. In our case the problem II (obviously, a variation on Disj ) has
been defined in such a way that it admits very large monochromatic rectangles, a few of which are
enough to cover the whole input space.

We prove that IIA,B , as defined above, is ultimately hard : it requires Ω( 5
√
n) = Ω(log|A|) bits of

interactive randomised communication (cf. Corollary 1). We are not aware of a previously-known
technique that would give a non-trivial lower bound for IIA,B . Besides being able to capture the
complexity of IIA,B in R, the technique proposed in this work provides an alternative lower bound
proof for many other cases of “search-like” problems (including the set disjointness), thus giving new
insight on the aspects of their combinatorial structure that are responsible for their communication
hardness.

2 Preliminaries

We will write [n] to denote the set {1, . . . , n} ⊂ N. Let x(i) address the i’th bit of x for x ∈ {0, 1}n
and i ∈ [n]. Similarly, for S ⊆ [n], let x(S) denote the |S|-bit string, consisting of (naturally-ordered)
bits of x, whose indices are in S.

Let |x| denote the Hamming weight of x ∈ {0, 1}n. At times we will assume the trivial isomorphism
between the n-bit strings and the subsets of [n]. In particular, the notation

([n]
k

)
will stand for{

x ∈ {0, 1}n
∣∣|x| = k

}
, and x ∩ y will address the set

{
i ∈ [n]

∣∣xi = yi = 1
}
.

For a discrete set A, we denote by UA the uniform distribution over its elements. Sometimes
(e.g., in subscripts) we will write “X ⊂∼ A” instead of “X ∼ UA”.

We let log denote the base-2 logarithm; at times, we will write exp(·) instead of e· to avoid
superscript congestion.

We will use the Chernoff bound in the following form (cf. [DM05]).

Claim 1 (Chernoff bound). Let X1, . . . , Xn be mutually independent random variables taking values
in [0, 1] and E[Xi] ≡ µ. Then for any ∆ > 0,

Pr

[
1

n
·
n∑
i=1

Xi ≥ µ+ ∆

]
≤ e

−n∆2

2µ+∆

and

Pr

[
1

n
·
n∑
i=1

Xi ≤ µ−∆

]
≤ e

−n∆2

2µ .

The following tail bound can be viewed as a variation on Markov’s inequality.

Lemma 1. Let X be a random variable taking values in [a, b], then for any ∆ > 0,

Pr

[
X < E[X] + ∆

]
, Pr

[
X > E[X]−∆

]
≥ min

{
∆

b− a
, 1

}
.

Proof. Let λ def
= Pr[X < E[X] + ∆], then

E[X] ≥ (E[X] + ∆) · (1− λ) + a · λ,
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and therefore,

λ ≥ ∆

(E[X] + ∆)− a
.

If E[X] + ∆ ≤ b, then λ ≥ ∆
b−a ; otherwise, λ = 1 trivially.

The case of Pr[X > E[X]−∆] is similar. �

Communication complexity

We will write Rp to denote the model of randomised interactive communication with worst-case
probability of correct answer at least p. When p is obvious from the context or irrelevant, we drop
the subscript p. We will denote by Rµ,p the distributional version of Rp, where the input distribution
is assumed to be µ. For a communication problem S, we will write R(S), Rp(S) or Rµ,p(S) to
denote its complexity in the corresponding model.

One of the most studied communication complexity problems is set disjointness: Alice receives x
and Bob receives y as input, and they have to decide whether the two sets overlap (note that this is
a function: for every input pair, there is exactly one correct answer).

Definition 1 (Set disjointness problem, Disj ). For x, y ⊆ [n], let

Disj (x, y)
def
=

{
1 if x ∩ y = ∅
0 otherwise

.

In this work we study the following problem.

Definition 2 (Inevitable intersection problem, IIA,B ). For A,B ⊆ {0, 1}n such that

∀a ∈ A, b ∈ B : a ∩ b 6= ∅,

let

IIA,B
def
=
{

(a, b, i) ∈ A×B × [n]
∣∣i ∈ a ∩ b}.

Informally, when Alice receives a and Bob receives b as their input to IIA,B , a correct answer
is any i ∈ a ∩ b (a correct answer does not have to be unique, so this is a relational problem).
Note that IIA,B can be viewed as a search version of Disj with an additional constraint that
∀a ∈ A, b ∈ B : a ∩ b 6= ∅. The most important for us is the syntactic nature of this constraint:
an instance of IIA,B is defined by the choice of A,B ⊆ {0, 1}n for every n ∈ N, and only those
instances are valid where “a ∩ b 6= ∅” is a tautology.

3 Our argument

A deterministic 2-party communication protocol of length c defines a partition of the input matrix
into at most 2c same-answer rectangles (the protocol is able to distinguish only between input pairs
coming from different rectangles). At the same time, if there exists an efficient randomised protocol,
then there must exist a reasonably-accurate deterministic protocol for every input distribution µ.
A typical rectangle defined by such a protocol must be relatively large (otherwise the union of all
rectangles would be too small to cover the whole input matrix) and nearly-monochromatic (otherwise
the protocol would not be sufficiently accurate).

In the case of Disj one can find an input distribution µ such that no large (with respect to µ)
rectangle would consist mostly of non-intersecting input pairs, and at the same time, the probability
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of a pair of sets (X,Y ) ∼ µ to not intersect would be close to 1/2. The above reasoning implies that
if a short randomised protocol for Disj were possible, the non-intersecting input pairs that are often
produced by µ would have “no rectangle to go”, thus contradicting the assumption and leading to
the desired lower bound on the randomised communication complexity of Disj .

In the case of IIA,B , non-emptiness of a ∩ b holds for every possible input pair (a, b) ∈ A×B,
so one cannot meaningfully ask “Where do non-intersecting input pairs go? ”: If a 6∈ A or b 6∈ B, at
least one of the players would immediately notice the promise violation.

To analyse the communication complexity of IIA,B , we will use the following approach. Consider
a deterministic protocol of complexity c that solves IIA,B with respect to the uniform (over A×B)
input distribution U with error at most 1/2. This protocol corresponds to a partition of A×B into
at most 2c rectangles that are labelled by the answers of the protocol, such that (X,Y ) ∼ U belongs
to a rectangle labelled by some i ∈ X ∩ Y with probability at least 1/2.

We would like to get a lower bound of the form c ∈ nΩ(1); that is, we want to show that a
partition of A×B with properties as described above must have size exp

(
nΩ(1)

)
. Note that there

always exists a cover of A×B by n perfectly-monochromatic rectangles:

ri
def
=
{

(a, b) ∈ A×B
∣∣a(i) = b(i) = 1

}
, (1)

where the label of ri is “i”. So, we are looking for a property of large rectangles that would obstruct
combining them into a partition of A×B, but not into a cover of it.

Let us consider a partition R of A×B into rectangles. For all i ∈ [n] and r ∈ R, let

p(r, i)
def
= Pr

(X,Y )∼U

[
X(i) = Y (i) = 1

∣∣(X,Y ) ∈ r
]
.

For a typical r0 ∈ R that is labelled by “i0”, we expect p(r0, i0) to be high, but what about the rest
of i-s? We will see (cf. Lemma 2) that if r0 is large enough, then, informally speaking, p(r0, i) cannot
be too different from the global (unconditional) expectation

pi
def
= Pr
U

[X(i) = Y (i) = 1]

for too many values of i ∈ [n] (this is the case for the rectangles defined in (1), for instance).
Intuitively, a rectangle pays in terms of the entropy of its uniformly-random element for making
some of its bits biased (i.e., making p(r0, i) significantly different from pi).

This property of large rectangles is enough to prove a strong lower bound on the cardinality of R
(cf. Theorem 1). To understand how, let us consider the following extreme situation: the rectangles
in R are either small or large, and for a large r0 ∈ R labelled by i0 it holds that

p(r0, i) ≈

{
1
2 if i = i0

pi otherwise
.

Let us also assume pi ≡
(
k
n

)
2 for some k � n (this is almost true almost always if A and B are

sufficiently large random subsets of
([n]
k

)
, which will be the case of interest to us). If we assume

by contradiction that R is small, then a significant fraction of its rectangles must be large; let us
again take the extreme case and assume that all R’s rectangles are large. Let i1 ∈ [n] be such that
at least 1/n-fraction of A×B belongs to “i1”-labelled rectangles from R, and let us use the above
assumptions to estimate pi1 : On the one hand, with some probability q ≥ 1/n, a uniformly-random
input (X,Y ) belongs to a rectangle r ∈ R labelled by “i1”; by our assumptions, this event contributes
roughly p(r, i1) · q = 1

2 · q to the probability that X(i) = Y (i) = 1. On the other hand, with
probability 1− q the input belongs to a rectangle labelled differently, and we have assumed that in
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that case X(i1) = Y (i1) = 1 with probability roughly pi1 , so this event contributes about pi1 · (1− q).
Therefore,

pi1 ≈
1

2
· q + pi1 · (1− q) =⇒ pi1 ≈

1

2
,

which contradicts our assumption that pi ≡
(
k
n

)
2 � 1.

Our argument can be summarised like this: On the one hand, a large nearly-monochromatic
rectangle in R causes a noticeable deviation (increase) of the global probability that its label
coordinate belongs to X ∩ Y ; on the other, large rectangles cannot efficiently absorb the deviations
caused by other large rectangles; therefore, there must be many small rectangles in R, and the
partition itself must be large. While in order to prove that Disj is communicationally hard one
usually argues that in a short protocol non-intersecting input pairs would have “nowhere to go”, we
will argue that in a hypothetical short protocol for IIA,B there would be excessive probabilities of
those intersection coordinates that the protocol typically outputs.

4 The communication complexity of II
We start by proving a lemma that limits witnessing against coordinate-wise intersections by a large
input rectangle.

Lemma 2. Let 1 ≤ k < n
2 and 1 ≤M ′ ≤M ≤ 1

2

(
n
k

)1/2, such that

log

(
M

M ′

)
≤ logM

3
− 5 log n.

Then for

∆ = 51 · k
3/2

n
·

√
log

(
M

M ′

)
+ log n

it holds that

max
A′⊆A
B′⊆B

|A′|,|B′|≥M ′
T⊆[n]

{∑
i∈T

((
k

n

)
2 − Pr

(X,Y )⊂∼A′×B′
[X(i) = Y (i) = 1]

)}
< ∆

with probability higher than 1− exp(n−M 1/3) when A and B are uniformly-random subsets of
([n]
k

)
of size M .

Informally, the lemma states that almost always with respect to A and B, membership of the
input pair (X,Y ) in a large rectangle A′ ×B′ ⊆ A×B cannot significantly decrease the probability
that X(i) = Y (i) = 1 for many i ∈ [n]; note that this probability equals

(
k
n

)
2 when X,Y ⊂∼

([n]
k

)
.

This lemma will be the core technical tool of the lower bound proof for IIA,B .

Proof of Lemma 2. Consider someA′ ⊆ A ⊆
([n]
k

)
and let pi

def
= PrX⊂∼A′ [X(i) = 1], α def

=
∑n

i=1

∣∣pi − k
n

∣∣
and S

def
=
{
i ∈ [n]

∣∣pi < k
n

}
. Let us see that if α is big enough, then A′ contains a non-negligible

fraction of bit strings, whose projection to S has unnaturally low Hamming weight. As
∑
pi = k by

assumption,
∑

i∈S
(
k
n − pi

)
= α

2 and

E
X⊂∼A′

[|X(S)|] =
k · |S|
n
− α

2
.
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Therefore by Lemma 1,

Pr
X⊂∼A′

[
|X(S)| ≤ k · |S|

n
− α

4

]
≥ α

4

/(
max
x∈A′
{|x(S)|} − min

x∈A′
{|x(S)|}

)
≥ α

4n
.

As A′ ⊆ A, the set A itself must contain enough elements, whose projection to S has low
Hamming weight:

M ′ ≤
∣∣A′∣∣ ≤ 4n

α
·
∣∣∣∣{a ∈ A∣∣∣∣|a(S)| ≤ k · |S|

n
− α

4

}∣∣∣∣, (2)

and the same holds for B.
Now fix B′ ⊆ B ⊆

([n]
k

)
and let qi

def
= PrY⊂∼B′ [Y (i) = 1] and β def

=
∑n

i=1

∣∣qi − k
n

∣∣. Note that the
value of ∑

i∈T

((
k

n

)
2 − Pr

(X,Y )⊂∼A′×B′
[X(i) = Y (i) = 1]

)
is maximised by T =

{
i ∈ [n]

∣∣Pr(X,Y )⊂∼A′×B′ [X(i) = Y (i) = 1] <
(
k
n

)
2
}
, so without loss of generality,

we fix T to be this set.
For all i ∈ T it holds that

Pr[X(i) = Y (i) = 1] = pi · qi = (
k

n
+ pi −

k

n
)(
k

n
+ qi −

k

n
)

≥
(
k

n

)
2 − k

n
·
(∣∣∣∣pi − k

n

∣∣∣∣+

∣∣∣∣qi − k

n

∣∣∣∣)− ∣∣∣∣pi − k

n

∣∣∣∣ · ∣∣∣∣qi − k

n

∣∣∣∣
≥
(
k

n

)
2 − 2k

n
·
(∣∣∣∣pi − k

n

∣∣∣∣+

∣∣∣∣qi − k

n

∣∣∣∣),
where the last inequality follows from i ∈ T =⇒ pi <

k
n or qi < k

n . Accordingly,∑
i∈T

((
k

n

)
2 − Pr

A′×B′
[X(i) = Y (i) = 1]

)
≤ 2k

n
·
∑
i∈T

(∣∣∣∣pi − k

n

∣∣∣∣+

∣∣∣∣qi − k

n

∣∣∣∣) ≤ 2k

n
· (α+ β).

Therefore, if

max
A′⊆A
B′⊆B

|A′|,|B′|≥M ′
T⊆[n]

{∑
i∈T

((
k

n

)
2 − Pr

(X,Y )⊂∼A′×B′
[X(i) = Y (i) = 1]

)}
≥ ∆

then α ≥ n∆
4k or β ≥ n∆

4k .
Let us see what happens if α is non-negligible. From (2), for some S ⊆ [n]:

M ′ ≤ 4n

α
·
∣∣∣∣{a ∈ A∣∣∣∣|a(S)| ≤ k · |S|

n
− α

4

}∣∣∣∣,
which can be reformulated as

M ′

M
≤ 4n

α
· Pr
X⊂∼A

[
|X(S)| ≤ k · |S|

n
− α

4

]
. (3)

Let eS
def
=
[
|X(S)| ≤ k·|S|

n −
α
4

]
. For a fixed S, this event depends only on the value taken by

X. First we analyse the probability of eS under X ⊂∼
([n]
k

)
. To do that (with accuracy sufficient for
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our needs), we note that in a sequence of n independent Bernoulli trials with individual success
probability k

n (next denoted by B⊗nk/n), exactly k successes are observed with probability at least 1
n ;

moreover, the corresponding conditional distribution is coordinate-wise symmetric.4 Accordingly,

Pr
X⊂∼([n]

k )
[eS ] ≤ n · Pr

X∼B⊗nk/n
[eS ] ≤ n · e

−n2α2

32k|S|2 ≤ exp

(
lnn− α2

32k

)
, (4)

where the second inequality follows from the Chernoff bound (Claim 1), and the last one uses |S| ≤ n.
Next we claim that the probability of eS is unlikely to differ significantly under X ⊂∼

([n]
k

)
and

under X ⊂∼ A when A is a uniformly-random subset of
([n]
k

)
of size M . Let

e′S
def
=

[
Pr
X⊂∼A

[eS ] ≥ Pr
X⊂∼([n]

k )
[eS ] + δ

]
for some δ < 1 to be fixed later. For a fixed S, this event depends only on the content of A (which
we now view as a random object).

If instead of choosing A as a subset of size M , we would select M times a uniformly-random
element of

([n]
k

)
and add it to A (possibly with repetitions), then by the assumption about M ,

no repetition would occur with probability more than 1/2; conditional on that, the process would
indeed generate a uniformly-random subset of size M . Let Y = (Yi)

M
i=1, where Yi-s are independent

Bernoulli variables that take value “1” with probability Pr
X⊂∼([n]

k )[eS ], then

Pr

A⊂∼((
[n]
k )
M

)

[
e′S
]
≤ 2Pr

[
|Y |
M
≥ Pr

X⊂∼([n]
k )

[eS ] + δ

]
≤ 2 · e

−Mδ2

3 ,

where the second inequality follows from the Chernoff bound (Claim 1). By the union bound and
since n ≥ 3,

Pr

A⊂∼((
[n]
k )
M

)

[∨
S

e′S

]
≤ 2n+1 · e

−Mδ2

3 < exp

(
n− Mδ2

3

)
. (5)

Now let δ def
=
√

3 ·M−1/3. Combining (3), (4) and (5), we conclude that if α ≥ n∆
4k , then

M ′

M
<

4n

α
·
(

exp

(
lnn− α2

32k

)
+ δ

)
≤ 8n2 · e−

n2∆2

512k3 + 14n ·M−1/3 (6)

holds with probability greater than 1− exp
(
n−M 1/3

)
with respect to a uniformly-random A ⊆

([n]
k

)
of size M . By symmetry, the same is true if β ≥ n∆

4k , and therefore true unconditionally. From (6)
we conclude that

M ′

M
< 16n2 · e−

n2∆2

512k3

or
M ′

M
< 28n ·M−1/3.

The latter possibility would contradict the lemma assumptions, and the former implies

∆2 <

(
log

(
M

M ′

)
+ log n

)
· 2560 · k3

n2
.

The result follows. �Lemma 2
4 That is, the corresponding marginal distribution is the same at each coordinate.
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We are ready to implement the lower bound method that has been presented in Section 3.

Theorem 1. Let 1 ≤ k ≤ n
3 and n8 ≤M ≤ 1

2 ·
(
n
k

)1/2. If A and B are uniformly-random subsets of([n]
k

)
of size M , then

R1/2(IIA,B ) ≥ RUA×B ,1/2(IIA,B ) > min

{
logM

3
− 8 log n,

n2

93636 · k3
− 4 log n

}
holds with probability higher than 1− exp(n−M 1/3 + 1)−Pr[∃a ∈ A, b ∈ B : a ∩ b = ∅].

Note that the statement of the theorem can be strengthened as follows: Instead of requiring that
a ∩ b 6= ∅ for every possible a ∈ A and b ∈ B, we could let a uniformly-random pair from A × B
have non-empty intersection with sufficiently high probability 1− δ and allow protocol error strictly
higher than δ (say, looking at R1/4+δ(IIA,B )). Since in this case a valid protocol would be allowed
to err whenever a ∩ b = ∅, all the challenges in proving a good lower bound that this work aims to
address (as discussed in Sections 1 and 3) would still be present. The reason why we impose the
restriction that a ∩ b 6= ∅ for every possible input pair is aesthetic: we have been trying to emphasise
the syntactic nature of the guarantee that the intersection was non-empty.

The theorem above can be applied to prove the following.

Corollary 1. Let k = n3/5 and M = 2
5√n/5, then

R1/2(IIA,B ) ≥ RUA×B ,1/2(IIA,B ) ∈ Ω
(

5
√
n
)

holds with probability 1− 2−Ω( 5√n) when A and B are uniformly-random M -subsets of
([n]
k

)
.

The lower bound above is linear in the input size, which is logM . Accordingly, it is tight and
R1/2(IIA,B ) ∈ Θ( 5

√
n) almost always (i.e., for almost all A and B).

Proof. Note that

Pr[∃a ∈ A, b ∈ B : a ∩ b = ∅] ≤M2 · Pr
X,Y⊂∼([n]

k )
[X ∩ Y = ∅]

= M2

(
n−k
k

)(
n
k

) ≤M2

(
n− k
n

)k
≤M2 · exp

(
−k

2

n

)
≤ 2

− 5√n/10

and apply Theorem 1. �Corollary 1

Proof of Theorem 1. Let µ be the input distribution of (X,Y ) – namely, the uniform distribution
over A × B where |A| = |B| = M , and assume that P is a deterministic protocol of complexity
c that solves IIA,B with error at most 1/2 with respect to µ, conditional on a ∩ b 6= ∅ for every
(a, b) ∈ A×B.5 We will keep track of the events

∀i ∈ [n] : ei
def
= [X(i) = Y (i) = 1].

Informally, we will say that a typical answer “i” is output by P with probability at least 1/n and
conditional on the answer “i”, the probability of ei is at least 1/2. That is, “i”-labelled rectangles of P
boost the probability of ei by roughly 1/n, which must be compensated by lowering the conditional

5In the rest of the proof of Theorem 1, unless stated otherwise, we implicitly assume the input distribution µ.
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probability of ei in the rest of the rectangles of P, and Lemma 2 implies that for that to happen, a
typical rectangle must be rather small.

As P partitions A×B into 2c rectangles, at least a (1− n−3)-fraction of the input pairs from
A×B belong to a rectangle with both sides of size at least M ′ def

= M
n3·2c . Denote by R+ the set of all

such rectangles, by R− the rest of P’s rectangles and let R = R+ ∪R−. For every r ∈ R, let `(r) be
the label of the rectangle, i.e., the answer returned by P when (X,Y ) ∈ r.

First, let us show that E(X,Y )⊂∼A×B[|X ∩ Y |] is unlikely to be too different from k2

n . Let ν be the
distribution of the multiset B, resulting from selecting M times uniformly at random an element of([n]
k

)
and adding it to B (i.e., |B| ≤M). Then the inequality below follows from the Chernoff bound

(Claim 1) and the fact that the distribution of Y ⊂∼ B that results from B ∼ ν is uniformly-random:

∀x0 ∈
(

[n]

k

)
: Pr

B∼ν

[
E

Y⊂∼B
[|x0 ∩ Y |] >

k2

n
+

1

n2

]
≤ e−

M
n5 .

On the other hand, the probability that B ∼ ν is a set is more than

1− M2(
n
k

) ≥ 3

4
,

in which case B is a uniformly-random subset of
([n]
k

)
of size M . Accordingly,

Pr
|B|=M

[
E

Y⊂∼B
[|x0 ∩ Y |] >

k2

n
+

1

n2

]
<

4

3
· e−

M
n5 < exp

(
−M 1/3

)
,

where B is a uniformly-random subset of
([n]
k

)
of size M . By the union bound,

Pr
|A|=|B|=M

[
E

(X,Y )⊂∼A×B
[|X ∩ Y |] > k2

n
+

1

n2

]
≤ Pr

B

[
∃x0 : E

Y⊂∼B
[|x0 ∩ Y |] >

k2

n
+

1

n2

]
< exp

(
n−M 1/3

)
.

For the rest of the proof we assume that E[|X ∩ Y |] ≤ k2

n + 1
n2 .

Now we come back to the protocol P. By the correctness assumption,∑
r∈R

µ(r) ·Pr
[
e`(r)

∣∣(X,Y ) ∈ r
]
≥ 1

2
.

On the other hand, ∑
r∈R

µ(r) ·
∑
i∈[n]

Pr
[
ei
∣∣(X,Y ) ∈ r

]
= E[|X ∩ Y |] ≤ k2

n
+

1

n2
.

Accordingly, ∑
r∈R

µ(r) ·
∑
i 6=`(r)

Pr
[
ei
∣∣(X,Y ) ∈ r

]
≤ k2

n
+

1

n2
− 1

2
.
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Let µ(R+)
def
=
∑

r∈R+
µ(r), then µ(R+) ≥ 1− n−3 and

∑
r∈R+

µ(r)

µ(R+)
·
∑
i 6=`(r)

Pr
[
ei
∣∣(X,Y ) ∈ r

]
≤
(
k2

n
+

1

n2
− 1

2

)
· 1

µ(R+)

≤
(
k2

n
+

1

n2
− 1

2

)
·
(

1 +
2

n3

)
≤ k2

n
+

1

n2
+

2k2

n4
− 1

2

≤ k2

n
+

3

2n2
− 1

2
.

Therefore for some r0 ∈ R+, ∑
i 6=`(r0)

Pr
[
ei
∣∣(X,Y ) ∈ r0

]
≤ k2

n
+

3

2n2
− 1

2
,

which can be rewritten as ∑
i 6=`(r0)

(
k2

n2
− Pr

(X,Y )∼r0
[ei]
)
≥ 1

2
− 3 + 2k2

2n2
>

1

6
.

By Lemma 2, with probability at least 1− exp(n−M 1/3) this implies

k3/2

n
·

√
log

(
M

M ′

)
+ log n >

1

306

or

log

(
M

M ′

)
>

logM

3
− 5 log n,

where the former can be rewritten as

log

(
M

M ′

)
>

n2

93636 · k3
− log n.

The result follows. �Theorem 1
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