
Multi-Party Campaigning

Martin Koutecký,1 Nimrod Talmon,2
1 Computer Science Institute, Charles University, Prague, Czech Republic,

2 Ben-Gurion Univesity, Be’er Sheva, Israel
koutecky@iuuk.mff.cuni.cz, talmonn@bgu.ac.il

Abstract

We study a social choice setting of manipulation in elec-
tions and extend the usual model in two major ways: first,
instead of considering a single manipulating agent, in our
setting there are several, possibly competing ones; second,
instead of evaluating an election after the first manipulative
action, we allow several back-and-forth rounds to take place.
We show that in certain situations, such as in elections with
only a few candidates, optimal strategies for each of the ma-
nipulating agents can be computed efficiently. Our algorith-
mic results rely on formulating the problem of finding an op-
timal strategy as sentences of Presburger arithmetic that are
short and only involve small coefficients, which we show is
fixed-parameter tractable – indeed, one of our contributions
is a general result regarding fixed-parameter tractability of
Presburger arithmetic that might be useful in other settings.
Following our general theorem, we design quite general al-
gorithms; in particular, we describe how to design efficient
algorithms for various settings, including settings in which
we model diffusion of opinions in a social network, complex
budgeting schemes available to the manipulating agents, and
various realistic restrictions on adversary actions.

Introduction
Within computational social choice, the study of external
agents wishing to rig a given election has received ex-
tensive study, most notably by studying problems of elec-
tion control and bribery in elections (Faliszewski and Rothe
2015): In these problems, an external agent aims at alter-
ing the result of a given election; in election control, such
an agent can change the structure of the election, usually by
adding/removing voters/candidates, while in bribery prob-
lems, such an agent can change the way certain voters vote.

Existing literature concentrates only on cases in which
just one external agent (e.g., one briber) exists (Faliszewski,
Hemaspaandra, and Hemaspaandra 2009). Some papers take
a more game-theoretic approach, but from a cooperative per-
spective (Bachrach, Elkind, and Faliszewski 2011), while
we are concerned with a non-cooperative perspective. Fur-
thermore, all existing work (to the best of our knowledge)
only deals with one action of bribery or control which is fol-
lowed (immediately, or potentially with an additional opin-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ion diffusion step (Faliszewski et al. 2018)) by evaluating
the resulting election with respect to the agent’s initial goal.

Here we study a very rich and realistic model, in which
several competing agents, each agent with its own objec-
tive, alter the election in multiple rounds, responding to each
other’s actions. In particular, our model captures the set-
ting of multi-party campaigning, in which several parties
are campaigning over the same election. In the most basic
model we consider k bribers operating on an election with
m alternatives and n voters. There is a process, running for `
turns, in which, in each turn, each briber can change certain
votes of their choice, respecting some budget limit. At the
end of the process, a winner of the resulting election is cho-
sen according to some voting ruleR. Our goal is to compute
optimal bribery strategies for each agent.

To this end, we construct a Presburger arithmetic formula
(for background see a recent guide (Haase 2018)) that is true
if and only if a given agent has a winning strategy which re-
spects the budget; indeed, there is a procedure to recover
this strategy if it exists. Furthermore, by ensuring that this
formula is short and contains only small coefficients, we are
able to compute such optimal strategies efficiently; this fol-
lows by combining a careful analysis of the algorithm of
Cooper (1972) for deciding Presburger arithmetic formu-
las together with algorithms for convex integer optimization
in small dimension (Grötschel, Lovász, and Schrijver 1993;
Dadush, Peikert, and Vempala 2011).

Our contribution here is a complexity analysis of decid-
ing Presburger arithmetic formulas, taking into account mul-
tiple parameters, showing that only some of them undergo
a (necessary) combinatorial explosion. In particular, we in-
fer that deciding Presburger arithmetic and even optimizing
a convex function over its satisfying assignments is fixed-
parameter tractable parameterized the length of the given
formula and its largest coefficient. A problem Π is fixed-
parameter tractable (FPT) parameterized by k if it has an
algorithm running in time f(k) poly(n) for any instance of
size n. Classifying a problem as FPT gives a formal way
of saying that a special class of instances (those with small
values of the parameter k) are easy to solve for a problem
which is hard in general.

In essence, Presburger arithmetic contains logical formu-
las over linear constraints (this stands in contrast with Peano
arithmetic, which also permits multiplication of variables).

Thus, it is possible to design the formulas described above
in a modular way incorporating “hooks” within the basic
model described above, which allow future extensions by
plugging in more complex formulas; we later demonstrate
several such extensions using this framework.

In particular, we show that our basic model can be dras-
tically extended to include settings in which (1) voter types
represent complex voter differences; (2) the budgets avail-
able to the agents change between turns, perhaps depend-
ing on the intermediate election at each turn, representing
campaign polling and fundraising interaction; (3) settings in
which voters are embedded in a social network and a diffu-
sion process causes voters to update their votes; and (4) set-
tings in which various restrictions on the strategies available
to the agent are present, allowing for more realistic mod-
eling. Importantly, for these extensions, computational effi-
ciency follows similarly to the basic model.

Our Contributions
Our main contributions are as follows:

1. We suggest a useful model that captures the natural set-
ting of multi-party campaigning, including rich model set-
tings, incorporating opinion diffusion in social networks
and involved budgeting schemes.

2. We devise efficient algorithms for finding optimal strate-
gies for agents in these models, by a reduction to opti-
mization over satisfying assignments of formulas in Pres-
burger arithmetic.

3. We show that Presburger arithmetic convex minimization
is fixed-parameter tractable wrt. the length of the given
formula and the absolute value of its largest coefficient.
Indeed, this result might be useful in other contexts.

Related Work
There is vast literature on control and bribery (Faliszewski
and Rothe 2015); we mention the paper of Elkind et
al. (2009), who proposed the notion of swap bribery, in
which the external agent (i.e., the briber) pays for each
swap it causes in a voter’s preference order, and that of Fal-
iszewski et al. (2009), who further studied the complexity
of various bribery problems. To the best of our knowledge,
there are no works dealing with multiple external agents ma-
nipulating a given election. (We do mention recent work that
consider multiple bribers (Zhou et al. 2019; Grandi and Tur-
rini 2016; Grandi, Stewart, and Turrini 2018), however in
the different setting of a ranking system; in particular, our
technical contribution differs largely from these works.)

Our algorithmic techniques allow us to show fixed-
parameter tractability (FPT) of our problems. FPT algo-
rithms for bribery problems have been studied quite exten-
sively (Bredereck et al. 2016; Dorn and Schlotter 2012), also
for more complex social choice settings such as multiwinner
elections (Faliszewski, Skowron, and Talmon 2017). We dif-
fer greatly from these works as we consider the more general
case containing several manipulating agents and multiple
back-and-forth rounds. As we show later, our model can ac-
commodate certain diffusion processes that occur, e.g., when
agents live in a social network. In this context, we mention

the work of Bredereck and Elkind (2017) and Faliszewski
et al. (2018) on the interchange between bribery actions and
opinion diffusion in social networks.

Our algorithmic framework is presented for the represen-
tation of elections as society vectors, following the concept
used by Knop et al. (2018a) for studying bribery problems
and also used later by Faliszewski et al. (2018). This repre-
sentation is very general and serves as a unifying framework
to describe extensions to our basic model.

Algorithmically, our approach is based on formulating
combinatorial problems as (linear) minimization over sat-
isfying assignments of Presburger arithmetic formulas. In
this context, the overall idea is quite similar to the use of
Lenstra’s celebrated result (Lenstra 1983) implying that de-
ciding ILP is FPT wrt. the number of integer variables.
Other FPT results originating from the theory of integer
programming that have found use in computational social
choice are algorithms for n-fold IP (Eisenbrand et al. 2019)
and parametric ILP (Eisenbrand and Shmonin 2008). Some
recent work in computational social choice that uses some
of these tools and share the same general flavor (Bredereck
et al. 2020; Knop, Koutecký, and Mnich 2018b, 2017).

Presburger Arithmetic has been introduced by Presburger
and Tarski in 1929 (Presburger 1929) and we built on
Cooper’s algorithm from 1972 (Cooper 1972). Nguyen and
Pak (2019) recently resolved a major open problem by prov-
ing that even deciding short PA formulas is NP-hard (and
beyond) if they are allowed to contain large coefficients.
Klaedtke (2008) gave more refined bounds for the automata
approach to deciding PA formulas, however, even his bounds
do not make the distinction between coefficients and con-
stants which is necessary to obtain our algorithmic result.

PA is FPT
Let m,n be integers. We define
[m,n] := {m,m+ 1, . . . , n} and [n] := [1, n]. Through-
out, we reserve bold face letters (e.g., x,y) for vectors. For
a vector x its i-th coordinate is xi. We write ax for the dot
product of vectors a and x.

We wish to develop efficient algorithms that find optimal
strategies for agents that are manipulating a given election.
Our approach is to write a formula in Presburger arithmetic
(here we shorten to PA; this is not to be confused with Peano
arithmetic) with a vector m of free variables such that the
satisfying assignments are bribery actions corresponding to
a first move in a winning strategy. Here we first provide a
brief introduction to PA, and later show that optimizing over
the satisfying assignments of a PA formula can be done effi-
ciently if some of its parameters are bounded, as will be the
case for the formulas modeling winning strategies.

PA is a useful logic to reason about numbers. Intuitively,
PA can be viewed as Integer Linear Programming (ILP) en-
riched with logical connectives and quantifiers. For two for-
mulas Φ and Ψ, we denote their equivalence by Φ ∼= Ψ.

Definition 1 (Extended Presburger Arithmetic (PA)). An
atom (or atomic formula) is a linear inequality ax ≤ b or
a congruence ax ≡ b mod p, with a ∈ Zn and b, p ∈ Z.
We call t ≡ ax + b for some a and b a term. A formula

is obtained by taking Boolean combinations of atoms using
the standard logical connectives (∧,∨, =⇒ ,¬, etc.) and by
existential and general quantifiers ∃,∀, respectively. Denote
by PA the set of all PA formulas. A literal is an atom or its
negation. A variable is bound in a formula ϕ if it appears in
a quantifier, and it is free otherwise. If x is a vector of the
free variables of a formula ϕ, we write ϕ(x).
Remark 1. The term “extended” in the definition above
refers to the congruence atoms that are not present in the
original language as defined by Presburger (Presburger
1929); however, it is typical to speak of PA as this extended
language because it allows for quantifier elimination, unlike
PA without congruence atoms. For detailed definitions see
Klaedtke (2008).

We provide some further useful notation below. For ϕ ∈
PA we define T(ϕ) to be the set of all atoms of ϕ of the form
ax ≤ b, D(ϕ) to be the set of all atoms of the form ax ≡ b
mod p, L(ϕ) to be the number of symbols of ϕ (i.e., the
number of atoms, logical connectives, and quantifiers),1 the
maximum coefficient α(ϕ) to be the maximum ‖a‖∞ and
p contained in any of its atoms, and the maximum constant
β(ϕ) to be the largest right hand side b in any of its atoms.

In this section, we aim at solving the following problem.

PRESBURGER ARITHMETIC MINIMIZATION
Input: A PA formula ϕ(x) with d free variables, and

a function f : Rd → R.
Find: Find an assignment x ∈ Zd satisfying ϕ(x)

and minimizing f(x) (among satisfying as-
signments), or reports unsatisfiability.

The main algorithmic result regarding Presburger arith-
metic we prove here is the following.
Theorem 1. PRESBURGER ARITHMETIC MINIMIZATION is
fixed-parameter tractable parameterized by L(ϕ)+α(ϕ) for
any convex function f .
Remark 2. The full proof is deferred to the supplementary
material; here we highlight the main ideas used within. The
proof combines two elements. First, we perform a careful
analysis of Cooper’s algorithm (Cooper 1972) which uses
quantifier elimination to find a quantifier-free formula ψ
equivalent to ϕ. We show that L(ψ), α(ψ) ≤ g(L(ϕ), α(ϕ))
and β(ψ) ≤ g(L(ϕ), α(ϕ))·β(ϕ) for some function g. While
Cooper’s algorithm is by now textbook material (Bradley
and Manna 2007), it has not yet been recognized as a fixed-
parameter algorithm, and the complexity bound we provide
is not explicitly stated (as far as we know) in any existing
work.

Second, ψ is transformed into disjunctive normal form
(DNF), yielding a formula ψ1 ∨ ψ2 ∨ · · · ∨ ψK such that an
assignment x satisfies ψ if and only if it satisfies some ψi,
i ∈ [K], with each ψi being a conjunction of linear inequal-
ities or congruences. Such a conjunction can be then turned
into a system of only linear constraints (by linearizing the
congruences) and then one can apply any FPT algorithm for

1Note that this definition is different than the standard definition
of the length of a formula, which uses unary encoding of numbers.

convex minimization in small dimension (Grötschel, Lovász,
and Schrijver 1993; Dadush, Peikert, and Vempala 2011) to
each of these systems and return the best result among all.

A Basic Model with Multiple Bribers
Here we describe a basic model of an election with mul-
tiple manipulating agents. Informally, we wish to model a
situation containing a set of voters where each manipulating
agent wishes to make its preferred candidate win in an elec-
tion that occurs eventually, and, to this end, can, at a certain
cost, alter the opinions of several voters. We first provide
some preliminaries and then describe our formal model.
Elections. An (ordinal) election (C, V) consists of a setC
of candidates and a set V of voters, who indicate their prefer-
ences over the candidates in C, represented via a preference
order �v which is a total order over C. We often identify a
voter v with her preference order �v . Denote by rank(c, v)
the rank of candidate c in �v; v’s most preferred candidate
has rank 1 and her least preferred candidate has rank |C|.
For distinct candidates c, c′ ∈ C, write c �v c′ if voter v
prefers c over c′ (i.e., v ranks c higher than she ranks c′).
Voting rules. A voting rule R is a function that maps
an election (C, V) to a subset W ⊆ C, called the win-
ners. Many voting rules have been considered in the social
choice literature. Perhaps the simplest voting rule is Plural-
ity, where the winner is an alternative which is ranked first
by the largest number of voters. As another example, the
Borda rule selects as a winner a candidate whose average
ranking over the voters is the highest, that is, a candidate c
getsm−rank(c, v) from each candidate v, and the candidate
with the most points wins.
Swaps and Swap Bribery. Let (C, V) be an election and
let �v∈ V be a voter. For candidates c, c′ ∈ C, a swap
s = (c, c′)v corresponds to an exchange between the po-
sitions of c and c′ in �v; denote the perturbed order by
�sv . A swap (c, c′)v is admissible in �v if rank(c, v) =
rank(c′, v) − 1 (note that this is indeed a swap of consec-
utive candidates). A set S of swaps is admissible in �v if
each swap in S can be applied sequentially in �v , one af-
ter the other, in some order, such that each one of them is
admissible. Note that the perturbed vote, denoted by �Sv , is
independent from the order in which the swaps of S are ap-
plied. We extend this notation for applying swaps in several
votes and denote it V S (note that, in particular, the cost of
V S equals the sum of costs of s ∈ S). We specify v’s cost
of swaps by a function σv : C × C → Z.

In the Swap Bribery problem, which we generalize here,
we are given an election (C, V), a designated candidate c? ∈
C, and swap costs σv : C × C → Z for v ∈ V . The goal is
to identify a set S of admissible swaps of minimum cost so
that c? wins the election (C, V S) under the ruleR.
Societies and Moves. It will be useful to view an elec-
torate not simply as a set of votes, but bundled by voter
types. Let τ ∈ N be the number of types of voters; note
that τ ≤ n, and it can be significantly smaller. E.g., if vot-
ers are only distinguished by their preference orders, then
τ ≤ m! which might be much smaller than n. A society is a
non-negative τ -dimensional integer vector s = (s1, . . . , sτ),

where sj , j ∈ [τ], corresponds to the number of voters of
type j in the society. In most problems, we are interested in
modifying a society by moving people among types. A move
is a vector m = (m1,1, . . . ,mτ,τ) ∈ Zτ2

. Intuitively, mi,j

is the number of people of type i turning type j.

Definition 2. A change is a vector ∆ = (∆1, . . . ,∆τ) ∈
Zτ whose elements sum up to 0. We say that ∆ is the
change associated with a move m if, for all i ∈ [τ], ∆i =∑τ
j=1mj,i −mi,j , and we write ∆ = ∆(m). A change ∆

is feasible wrt. society s if s + ∆ ≥ 0, i.e., if applying the
change ∆ to s results in a society (i.e., as long as there are
enough voters from each type to move to other types).

A useful notion is the move costs vector, which is a vector
c = (c1,1, . . . , cτ,τ) in (N∪{+∞})τ2

satisfying the triangle
inequality, i.e., ci,k ≤ ci,j + cj,k for all distinct i, j, k.

Remark 3. In this work we focus on moves that correspond
to swap bribery actions. However, the actions of bribery,
manipulation, and control that are expressible as moves
in societies are much more general, as shown by Knop et
al. (2018a). E.g., one may create, for each voter type t ∈ [τ],
an “inactive” variant t′, and moving a voter from t to t′ cor-
responds to deleting this voter while moving a voter from t′

to t corresponds to adding it – which are the actions con-
sidered in constructive control by adding/deleting voters.
Hence, we encourage the reader to keep in mind that when-
ever we talk about swaps and bribery, many other types of
actions may be substituted or added in that place.

Our Basic Model
In our formal model we consider a society with n voters over
m candidates. Bundling voters into types according to their
preferences, we have that the number of voter types equals
the number of preference orders existing in the society (thus,
in particular, upper bounded by m!). We consider k bribers,
A1, . . . , Ak, and a process of ` turns, such that, in each turn,
each briber is given a budget of B to be used to change the
society; in each turn, the bribers bribe the society in a round-
robin fashion – A1 first, then A2, and so on. The bribery
operations are all unit-cost swap bribery operations; in our
context this means that, in each turn, each briber can cause
at mostB swaps of consecutive candidates. At the end of the
`-th round, we apply the Borda voting rule on the society to
identify a winning candidate.

We are interested in an optimal strategy for A1; we refer
to A1 as our briber where, w.l.o.g., the preferred candidate
of A1 is p.

Remark 4. It is also possible to model the situation when a
different agent plays the first turn, i.e., where they play and
we respond, and so forth. In that case, we are able to verify,
with the same complexity as all the results below, whether a
winning strategy of our briber exists within a certain cost,
but since the move that should be made will depend on the
previous moves of the other bribers, there is no answer to
be output other than “yes/no”. After a move by the other
bribers is realized, we are in the original setting, because it
is our turn, and we can compute the optimal response.

Optimal Strategies via Presburger Arithmetic
Here we wish to formulate the problem of finding optimal
strategies for our briber in the model described above us-
ing formulas in PA; this will be useful algorithmically, as
Theorem 1 then implies efficient algorithms if the relevant
parameters are kept small.

First, we note that here we are interested in a worst-
case adversarial model, so we assume that the only aim of
the other bribers (i.e., A2, . . . , Ak) is to interfere with our
briber; thus, while A1 uses his bribery budget to try to make
p win the election underR after the ` turns, all other bribers
use their bribery budget to prevent alternative p from win-
ning. Thus, in particular, the other bribers can collude and
join forces (possibly also transferring money between them-
selves) to prevent p from winning. So, in fact, the number
of other bribers does not make a difference in our current
worst-case model; in particular, k − 1 other bribers, each
with a budget of B for each turn, are equal, from the point
of view of our briber, to a single briber with a budget of
(k− 1)B for each turn. Thus, below we assume that there is
only one other briber, which we refer to as the other briber.

Formulating Optimal Strategies
Below we describe a formula Φ in PA; later we argue that Φ
is satisfiable iff there is a strategy for our briber guaranteeing
that our candidate wins.

We first describe some ingredients of Φ. First, s11 is the ini-
tial society. Then, c is the cost vector corresponding to unit-
cost swap-briberies (i.e., ci,j is the cost of swapping from
type i to type j, which is the number of inversions between
the corresponding two permutations). We need the following
auxiliary predicates:

• PossibleMove(m, s) is true for a move m and a so-
ciety s if the resulting vector is a society, that is,
PossibleMove(m, s) ≡ s + ∆(m) ≥ 0.

• FeasibleMove(m, B) is true for a move m and an integer
B if the number of swaps in move m is at most B that is,
FeasibleMove(m, B) ≡ cm ≤ B.

• ApplyMove(m, s, s′) is true for a move m and two so-
cieties s, s′ if s′ is the result of applying m to s, that
is, ApplyMove(m, s, s′) ≡ s′ = s + ∆(m). Since
we prefer to view this as a function, we write s′ =
ApplyMove(m, s).

• BordaWinner(p, s) is true for a society s if p is the Borda
winner in it. This is encoded by observing that the Borda
score of candidate c is Sc =

∑
t∈[τ] (m− rank(c, t))

(where rank(c, t) is the rank of c for voters of type t), and
p is the unique Borda winner if Sp > Sc for every can-
didate c 6= p, i.e., BordaWinner(p, s) ≡

∧
c∈C\{p} Sc <

Sp. Note that Sc is just a shorthand for the aforementioned
sum, so we need not introduce any new variables.

Figure 1 shows the general structure of Φ. In Φ, mj
i rep-

resents the i-th move of our briber, if j = 1, or the other
briber, if j = 2. sji represents the society just before the i-th
turn of our briber, if j = 1, or the other briber, if j = 2.
Finally, s′ represents the eventual society.

Figure 1: General Structure of φ.

Φ(m1
1) ≡ PossibleMove(m1

1, s
1
1) ∧ FeasibleMove(m1

1, B) ∧ s21 = ApplyMove(m1
1, s

1
1)

∀m2
1 : PossibleMove(m2

1, s
2
1) ∧ FeasibleMove(m2

1, B) ∧ s12 = ApplyMove(m2
1, s

2
1)

...

∃m1
` : PossibleMove(m1

` , s
1
`) ∧ FeasibleMove(m1

` , B) ∧ s2` = ApplyMove(m1
` , s

1
`)

∀m2
` : PossibleMove(m2

` , s
2
`) ∧ FeasibleMove(m2

` , B) ∧ s′ = ApplyMove(m2
` , s

2
`)

∧ BordaWinner(p, s′)

Note that the lines beginning with “∃” are for our briber
while the lines beginning with “∀” are for the other briber, as
we care whether there are bribery operations for our briber to
choose that would be winning for any bribery operations that
the other briber might choose. Moreover, the PossibleMove
predicates make sure that we only consider possible moves,
the FeasibleMove predicates make sure that we only con-
sider feasible moves, and we make sure to update the current
society by applying the ApplyMove function.

Finding Optimal Strategies
Given the formula Φ as defined above and an initial society
s11, Theorem 1 computes an initial move m1

1 of a winning
strategy of our briber if one exists, and otherwise reports
that there is no winning strategy. (In fact, the first predicate
FeasibleMove(m1

1, B) may be removed and instead a more
involved cost function may be minimized.)

To bound the complexity, we examine L(Φ), α(Φ), and
β(Φ). The length L(Φ) is bounded by a polynomial in the
number of variables, which is O(` · τ2), since for each
round we have a constant number of society and move vec-
tors, which are of dimensions τ and τ2, respectively, and
the number of rounds is O(`). The largest coefficient α(Φ)
is bounded by ‖c‖∞, which is the largest swap distance
between two permutations, which is O(m2). It is crucial
to note that the large input data, which is B and s11, only
ever appear as constants (right hand sides), hence β(Φ) ≤
‖B, s11‖∞. Recall that Theorem 1 implies an FPT algorithm
for parameters τ and ` if L(Φ) and α(Φ) are bounded by a
function of these, which indeed is the case here.

Enriched Models
Above we described an efficient algorithm for our basic
model. This basic model is, however, quite restricted. Luck-
ily, our approach is very robust, thus rendering our algo-
rithms quite general; indeed, as we show next, we have effi-
cient algorithms in many cases for other, much less restricted
models.

The basic observation is that, as we use PA, we can in
fact design our formulas (in particular, Φ) in a modular way;
then, we can adapt each module separately to accommo-
date for various model generalizations and variants. Figure 2
shows a modular and slightly more general version of Φ.

Specifically, for the basic model, PreConditions merely

checks both PossibleMove and FeasibleMove, and the
PostProcessing step leaves the society and budgets intact.
Below we discuss various enrichments to the basic model
presented above and describe how to define PreConditions
and PostProcessing to formulate them, thus to allow for our
algorithmic approach to operate on them as well.

Complex Budgeting Schemes

In the basic model, each briber had a fixed budget to be used
separately for each turn. We discuss other options below.

Initial Budgets. We can allow the budget to be fixed at
the beginning of the process. This would correspond to a
campaign manager setting aside some amount to be used
during the whole campaign. This can be formulated in the
PostProcessing step, by decreasing from Bji−1 the amount
just used, i.e., setting Bji = Bji−1 − cmj

i−1.

Individual Budgets. We can also easily make it so that
our briber has a different budget than the other briber, by
simply plugging this info into each Bji , i ∈ [`], j ∈ {1, 2}.

Chunked Budgets. We can allow the budget to be given
in chunks. This would correspond to, say, a campaign man-
ager assigning some amount to be used for each month (if
one turn means one month).

This can be formulated in the PostProcessing step, by
decreasing from B the amount just used, in addition to
adding to B some amount, i.e., if Cji is the contribution
to briber j in round i, then we would add the constraint
Bji = Bji−1 − cmj

i−1 + Cji to the PostProcessing formula.

Adaptive Budgets. We can even allow the budget to be
adaptive; for example, that in each turn, the increase in the
budget is a linear function that depends on the Borda score of
the preferred candidate pi (alternatively, on p for our briber
and on the inverse Borda score of p for the other briber), i.e.,
Bji = Bji−1 − cmj

i−1 + Sp(s
j
i−1), where Sp(s

j
i−1) is the

Borda score of p in the society sji−1. This would correspond
to voters donating to the campaign as it runs depending on
the intermediate poll results.

More generally, the budget for each briber is decided
based on the society just before he plays. The dependence
might be arbitrary, as long as it can be formulated in PA.

Figure 2: A modular and slightly more general version of Φ.

Φ(m1
1) ≡ PreConditions(m1

1, s
1
1, B

1
1) ∧ s21 = ApplyMove(m1

1, s
1
1) ∧ (s̄21, B

1
2) = PostProcessing(s21,m

1
1, B

1
1)

∀m2
1 : PreConditions(m2

1, s̄
2
1, B

2
1) ∧ s12 = ApplyMove(m2

1, s̄
2
1) ∧ (s̄12, B

2
2) = PostProcessing(s12,m

2
1, B

2
1)

...

∃m1
` : PreConditions(m1

` , s̄
1
` , B

1
`) ∧ s2` = ApplyMove(m1

` , s̄
1
`) ∧ (s̄2` , B

1
`+1) = PostProcessing(s2` ,m

1
` , B

1
`)

∀m2
` : PreConditions(m2

` , s̄
2
` , B

2
`) ∧ s′ = ApplyMove(m2

` , s̄
2
`) ∧ (s̄′, B2

`+1) = PostProcessing(s′,m2
` , B

2
`)

WinningConditions(p, s̄′)

Voter Behavior
We can model several scenarios w.r.t. how voters respond to
bribery. This is allowed by the fact that if we start with a
society with a small number of types, the following refine-
ments do not increase the number of types too much. When
we speak of different cost functions, these would be a part
of the PreConditions check, and they need to be encoded by
a linear function with small coefficients in order for Theo-
rem 1 to give a fixed-parameter algorithm.
Loyal Voters. One possibility is that, whenever a voter
is bribed for the first time, then she stays loyal and would
never be bribed again. This can be encoded by, for each type
t ∈ [τ], introducing a new type t′ which has the same prefer-
ence order but the cost of moving it is infinite for every type
except for itself. Thus, the resulting society has 2τ types.
Semiloyal Voters. A more relaxed notion of loyalty
would be that, each time a voter is bribed, her price for be-
ing bribed again goes up. This is encoded by, for each type
t ∈ [τ], introducing 2` + 1 new types t0, t1, . . . , t2`, where
a voter is of type tj if their preference order corresponds to
type t and they have been bribed j times in the process. The
cost of moving a voter of type tj to type t′j+1 can be set as
needed to model the increase in cost, and the cost of moving
from tj to t′j′ for any j′ 6= j + 1 is ∞, unless t = t′ and
j = j′, where the cost is zero. (Infinite costs are not mod-
eled using a large enough integer as usual in some contexts,
but rather by upper bounding by zero the corresponding co-
ordinate of a move vector.)
Greedy Voters. A different option is that, in each turn,
each voter remembers the bribing offer from our briber as
well as the bribing offer from the other briber, and simply
goes with the higher offer. Note that for this to be formu-
lated we shall add the possibility of offering more money to
bribe a certain voter. To model this, we need a list of all
possible offers a voter can get, which is bounded by our
assumption that the cost functions are bounded. Then, for
each original voter type t ∈ [τ] and for each possible offer
o ∈ N, we create a new voter type to. A voter is of type to
if their preference order is t and if their last accepted bribe
offer was o. The cost function of moving from to to t′o′ can
be set as needed to model the observed behavior, and is ∞
for every o′ ≤ o unless t = t′. (To be precise, this mod-
els the behavior where a briber is aware that paying o is not
enough to move a voter; if we wanted to model that a briber

decides to spend money but it has no effect, we could re-
place PreConditions with a function altering the move and
the budget, so that we would charge the briber for the move
he attempted to make, but only execute the move accepted
by the voters. This would still give a fixed-parameter algo-
rithm, but would lead to more clutter in the formula.)

Pay-off Functions and Winning Conditions
In the basic model we considered the single-winner Borda
voting rule as defining the winning condition, and we im-
plicitly considered a 0/1 pay-off function, getting a 0 if our
candidate loses and getting a 1 if he wins. We can allow
for more complex winning conditions and pay-off functions,
corresponding also to more advanced social choice settings.
Below, when discussing different pay-offs, we still encode
this as a decision problem: is there a strategy (or what is
the cheapest strategy) achieving a given pay-off. In particu-
lar, in the supplementary material we discuss encoding any
ILP-definable single-winner voting rule (including all scor-
ing rules, and others); encoding a setting in which the candi-
dates, as well as the bribers, are embedded on a real line; and
encoding multiwinner elections, e.g., the winning condition
that requires p to be in a winning committee.

Adversarial Constraints
In the basic model we considered a worst-case assumption
on the side of our briber in which the other bribers were
only concerned with interfering with the goal of our briber.
It is also natural to assume that each of the other bribers Ai,
i ∈ [2, k], has its own preferred alternative pi, and the goal
of briber Ai is to make pi the winner of the election. This
goal may be expressed (in broad terms) in Ai never consid-
ering moves that harm them, which means that A1 does not
need to ensure they will be able to respond to such moves.
Note that this is significantly different from the collusion
case considered before in that A1 has more “maneuvering
space” by not having to be overly pessimistic with respect to
his opponent’s moves.

In the supplementary material we provide details on how
to encode a few specific possibilities, which depend on the
social choice setting; note that now we cannot simply reduce
the setting with several other bribers (i.e., with k > 2) to
the setting with only one briber (i.e., with k = 2); thus, the
length of the formula now also depends on k.

The specific settings we describe in the supplementary
material consider an adversarial constraint that corresponds
to “do not decrease the margin of victory of pi”; and an
adversarial constraint for multiwinner elections that corre-
sponds to “do not decrease the ranking of p in the ranking of
the alternatives induced by the score given to each alterna-
tive by the voting rule R.” Here we provide details on other
specific adversarial constraints.

Agent Far-sightedness The purpose of this section is in
getting away from the overly pessimistic assumption that
other agents are somehow willing to harm themselves. How-
ever, perhaps not accounting for any moves of opponents by
which they harm themselves is overly naı̈ve and optimistic,
because there may exist moves that cause harm in the short
term but are in fact beneficial in the long run. To account for
this, we introduce the notion of z-far-sightedness: an agent
is z-far-sighted, z ∈ N, if they are only willing to perform
moves which are guaranteed (no matter what strategy other
agents choose) to benefit them after z rounds of the cam-
paigning game or by the time the game ends (i.e., by the
time the election is evaluated), whichever comes first.

With the knowledge of the total number of rounds `,
we can implement z-far-sightedness in our model as part
of the PreConditions check. We only sketch the approach
here because giving a full description would be notationally
cumbersome. So, we construct a formula Φi,z,`′ express-
ing the z-far-sightedness condition for agent i in round `′;
the structure of Φi,z,`′ is analogous to Φ but only considers
min{z, ` − `′} rounds, and it is constructed from the per-
spective of the considered agent.

However, we need to account for the fact that other agents
are also far-sighted. This means that we have to construct
Φi,z,`′ recursively. A possible issue is where the recursion
terminates: this is where we need the foreknowledge that
the game ends in ` rounds. Specifically, in order to construct
Φi,z,`′ , we need to have constructed Φi′,z,`′′ , where i′ is “the
next agent” i′ = i + 1 mod k, and `′′ is either `′ if i was
not the last agent to play in round `′, and `′ + 1 otherwise.
Hence, the recursion depth in the construction of Φi,z,`′ is at
most k · `, and the length of the resulting formula is bounded
by a function of τ, k, and `, again yielding an FPT algorithm
when parameterized by τ, k, and `.

Diffusion Processes
In the basic model the only way by which votes have
changed is through bribery operations. Very naturally, we
can accommodate other ways to change votes, most notably
diffusion processes, in which voters are assumed to reside on
a social network and update their votes based on the votes of
their neighbors (Grandi 2017). Faliszewski et al. (2018) have
defined a very general class of opinion diffusion processes,
called ILP-definable processes, which do not consider each
voter individually but group them by types (note that, like
in our models, the types may be more refined than just by
preference orders).

Any ILP-definable diffusion process can be encapsu-
lated within the PostProcessing step. In particular, we need
to specify a number of diffusion steps to happen after

each bribery operation, which translates into the length of
the resulting PostProcessing formula. Note that some ILP-
definable diffusion processes have been shown to converge
in a number of steps bounded by the number of voter types,
hence if such process is considered, we may allow full con-
vergence to happen after each bribery step. Otherwise, a
time-bound between bribery steps perhaps translates into a
small number of diffusion steps.

Discussion and Outlook
We developed an algorithmic framework for situations in
which several bribers aim at rigging a given election, and
showed that in many cases, finding optimal strategies can be
done in time which depends super-polynomially only on the
number of rounds and the number of alternatives in the elec-
tion or, more generally, only on the number of voter types in
the given election. Our framework is versatile and incorpo-
rates many features which make the resulting model highly
realistic, in particular we can efficiently solve situations in
which there are (1) complex voter types; (2) different bud-
gets, including adaptive budgets, for each agent; (3) voters
are embedded in a network and are affected by certain diffu-
sion processes; (4) various realistic restrictions apply to the
manipulating agents.

Next we discuss some avenues for future research.
Unbounded number of bribery rounds. Our re-
sults are parameterized by the number of rounds of the
bribery-counterbribery exchange. It is known that decid-
ing Presburger arithmetic sentences (a problem easier than
PRESBURGER ARITHMETIC MINIMIZATION) has super-
exponential complexity unless the length of the formula is
bounded (Fischer and Rabin 1974), and even with bounded
length but large coefficients, the complexity grows increas-
ingly higher in the polynomial hierarchy with increasing
number of quantifier alternations (Nguyen and Pak 2019).
However, it remains open whether any of the proposed cam-
paigning models are also hard when the number of rounds is
not bounded.

We conjecture that the most basic model with unit-cost
swap actions and identical budgets for each round is FPT
for a constant number of bribers and parameterized by the
number of candidates, because we believe that the identi-
cal budget will enforce some sort of repetitive structure in
the strategies of bribing agents. However, we also conjec-
ture that already when we allow the budgets to vary from
round to round, the problem is NP-hard for constantly many
bribers and candidates.
Presburger arithmetic and AI. Finally, Theorem 1
which we rely on, and particularly Cooper’s algorithm for
Presburger arithmetic, is a general and widely applicable
tool. We are curious to see more applications in computa-
tional social choice, and, more generally, in the field of Ar-
tificial Intelligence. This is particularly interesting because
Theorem 1 falls into the larger context of identifying fixed-
parameter tractability in problems above NP in the polyno-
mial hierarchy (of which PA is an example) which has only
recently begun to be explored, and which has great relevance
to AI (de Haan 2016).

Acknowledgement
Koutecký was partially supported by Charles University
project UNCE/SCI/004 and by the project 19-27871X of GA
ČR. Talmon was supported by the Israel Science Foundation
(ISF; Grant No. 630/19).

References
Bachrach, Y.; Elkind, E.; and Faliszewski, P. 2011. Coali-
tional voting manipulation: A game-theoretic perspective. In
Proceedings of IJCAI ’11.

Bradley, A. R.; and Manna, Z. 2007. The calculus of compu-
tation: decision procedures with applications to verification.
Springer Science & Business Media.

Bredereck, R.; and Elkind, E. 2017. Manipulating Opinion
Diffusion in Social Networks. In Proceedings of IJCAI ’17,
894–900.

Bredereck, R.; Faliszewski, P.; Niedermeier, R.; Skowron,
P.; and Talmon, N. 2020. Mixed integer programming
with convex/concave constraints: Fixed-parameter tractabil-
ity and applications to multicovering and voting. Theoretical
Computer Science .

Bredereck, R.; Faliszewski, P.; Niedermeier, R.; and Talmon,
N. 2016. Complexity of shift bribery in committee elections.
In Proceedings of AAAI ’16.

Cooper, D. C. 1972. Theorem proving in arithmetic without
multiplication. Machine intelligence 7(91-99): 300.

Dadush, D.; Peikert, C.; and Vempala, S. 2011. Enumerative
lattice algorithms in any norm via M-ellipsoid coverings.
In 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, 580–589. IEEE.

de Haan, R. 2016. Parameterized Complexity in the Polyno-
mial Hierarchy. Ph.D. thesis, Springer.

Dorn, B.; and Schlotter, I. 2012. Multivariate complexity
analysis of swap bribery. Algorithmica 64(1): 126–151.

Eisenbrand, F.; Hunkenschröder, C.; Klein, K.; Koutecký,
M.; Levin, A.; and Onn, S. 2019. An Algorithmic Theory of
Integer Programming. http://arxiv.org/abs/1904.01361.

Eisenbrand, F.; and Shmonin, G. 2008. Parametric integer
programming in fixed dimension. Mathematics of Opera-
tions Research 33(4): 839–850.

Elkind, E.; Faliszewski, P.; and Slinko, A. 2009. Swap
bribery. In Proceedings of SAGT ’09, 299–310.

Faliszewski, P.; Gonen, R.; Koutecký, M.; and Talmon, N.
2018. Opinion Diffusion and Campaigning on Society
Graphs. In Proceedings of IJCAI ’18, 219–225.

Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra,
L. A. 2009. How hard is bribery in elections? Journal of
Artificial Intelligence Research 35: 485–532.

Faliszewski, P.; and Rothe, J. 2015. Control and Bribery in
Voting. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and
Procaccia, A. D., eds., Handbook of Computational Social
Choice, chapter 7. Cambridge University Press.

Faliszewski, P.; Skowron, P.; and Talmon, N. 2017. Bribery
as a measure of candidate success: Complexity results for
approval-based multiwinner rules. In Proceedings of AA-
MAS ’17, 6–14.
Fischer, M. J.; and Rabin, M. O. 1974. Super-exponential
complexity of Presburger arithmetic. In Karp, R. M., ed.,
comp, 27–42.
Grandi, U. 2017. Social choice and social networks. In
Endriss, U., ed., Trends in Computational Social Choice. AI
Access.
Grandi, U.; Stewart, J.; and Turrini, P. 2018. The complexity
of bribery in network-based rating systems. In Proceedings
of AAAI ’18.
Grandi, U.; and Turrini, P. 2016. A network-based rat-
ing system and its resistance to bribery. arXiv preprint
arXiv:1602.01258 .
Grötschel, M.; Lovász, L.; and Schrijver, A. 1993. Geo-
metric algorithms and combinatorial optimization, volume 2
of Algorithms and Combinatorics. Springer-Verlag, Berlin,
second edition.
Haase, C. 2018. A survival guide to presburger arithmetic.
ACM SIGLOG News 5(3): 67–82.
Klaedtke, F. 2008. Bounds on the automata size for Pres-
burger arithmetic. ACM Transactions on Computational
Logic 9(2): 11.
Knop, D.; Koutecký, M.; and Mnich, M. 2017. Combina-
torial n-fold integer programming and applications. Mathe-
matical Programming 1–34.
Knop, D.; Koutecký, M.; and Mnich, M. 2018a. A unifying
framework for manipulation problems. In Proceedings of
AAMAS ’18, 256–264.
Knop, D.; Koutecký, M.; and Mnich, M. 2018b. Vot-
ing and bribing in single-exponential time. arXiv preprint
arXiv:1812.01852 .
Lenstra, H. W. 1983. Integer programming with a fixed num-
ber of variables. Mathematics of operations research 8(4):
538–548.
Nguyen, D.; and Pak, I. 2019. Short Presburger arithmetic
is hard. SIAM Journal on Computing 0: STOC17–1.
Presburger, M. 1929. Uber die vollstandigkeiteines gewissen
systems der arithmetik ganzer zahlen, in welchen die addi-
tion als einzige operation hervortritt. In Comptes-Rendus du
ler Congres des Mathematiciens des Pays Slavs.
Zhou, X.; Matsubara, S.; Liu, Q.; Liu, Y.; and Huang, G.
2019. Bribery in Rating System: A Game-Theoretic Per-
spective. arXiv preprint arXiv:1911.10014 .

