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Abstract. Consider the following hat guessing game. A bear sits on
each vertex of a graph G, and a demon puts on each bear a hat colored
by one of h colors. Each bear sees only the hat colors of his neighbors.
Based on this information only, each bear has to guess g colors and he
guesses correctly if his hat color is included in his guesses. The bears win
if at least one bear guesses correctly for any hat arrangement.

We introduce a new parameter—fractional hat chromatic number µ̂,
arising from the hat guessing game. The parameter µ̂ is related to the
hat chromatic number which has been studied before. We present a sur-
prising connection between the hat guessing game and the independence
polynomial of graphs. This connection allows us to compute the frac-
tional hat chromatic number of chordal graphs in polynomial time, to
bound fractional hat chromatic number by a function of maximum degree
of G, and to compute the exact value of µ̂ of cliques, paths, and cycles.

Keywords: Hat guessing game · Independence polynomial · Chordal
graphs

1 Introduction

In this paper, we study a variant of a hat guessing game. In these types of games,
there are some entities—players, pirates, sages, or, as in our case, bears. A bear
sits on each vertex of graph G. There is some adversary (a demon in our case)
that puts a colored hat on the head of each bear. A bear on a vertex v sees
only the hats of bears on the neighboring vertices of v but he does not know the
color of his own hat. Now to defeat the demon, the bears should guess correctly
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the color of their hats. However, the bears can only discuss their strategy before
they are given the hats. After they get them, no communication is allowed, each
bear can only guess his hat color. The variants of the game differ in the bears’
winning condition.

The first variant was introduced by Ebert [8]. In this version, each bear gets a
red or blue hat (chosen uniformly and independently) and they can either guess
a color or pass. The bears see each other, i.e. they stay on vertices of a clique.
They win if at least one bear guesses his color correctly and no bear guesses a
wrong color. The question is what is the highest probability that the bears win
achievable by some strategy. Soon, the game became quite popular and it was
even mentioned in NY Times [26].

Winkler [29] studied a variant where the bears cannot pass and the objective
is how many of them guess correctly their hat color. A generalization of this
variant for more than two colors was studied by Feige [11] and Aggarwal [1].
Butler et al. [6] studied a variant where the bears are sitting on vertices of a
general graph, not only a clique. For a survey of various hat guessing games, we
refer to theses of Farnik [10] or Krzywkowski [23].

In this paper, we study a variant of the game introduced by Farnik [10], where
each bear has to guess and they win if at least one bear guesses correctly. He
introduced a hat guessing number HG of a graph G (also named as hat chromatic
number and denoted μ in later works) which is defined as the maximum h such
that bears win the game with h hat colors. We study a variant where each bear
can guess multiple times and we consider that a bear guesses correctly if the
color of his hat is included in his guesses. We introduce a parameter fractional
hat chromatic number μ̂ of a graph G, which we define as the supremum of h

g
such that each bear has g guesses and they win the game with h hat colors.

Albeit the hat guessing game looks like a recreational puzzle, connections
to more “serious” areas of mathematics and computer science were shown—
like coding theory [9,19], network coding [14,25], auctions [1], finite dynamical
systems [12], and circuits [30]. In this paper, we exhibit a connection between the
hat guessing game and the independence polynomial of graphs, which is our main
result. This connection allows us to compute the optimal strategy of bears (and
thus the value of μ̂) of an arbitrary chordal graph in polynomial time. We also
prove that the fractional hat chromatic number μ̂ is asymptotically equal, up to
a logarithmic factor, to the maximum degree of a graph. Finally, we compute
the exact value of μ̂ of graphs from some classes, like paths, cycles, and cliques.

We would like to point out that the existence of the algorithm computing μ̂ of
a chordal graph is far from obvious. Butler et al. [6] asked how hard is to compute
μ(G) and the optimal strategy for the bears. Note that a trivial non-deterministic
algorithm for computing the optimal strategy (or just the value of μ(G) or μ̂(G))
needs exponential time because a strategy of a bear on v is a function of hat
colors of bears on neighbors of v (we formally define the strategy in Sect. 2). It is
not clear if the existence of a strategy for bears would imply a strategy for bears
where each bear computes his guesses by some efficiently computable function
(like linear, computable by a polynomial circuit, etc.). This would allow us to
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put the problem of computing μ into some level of the polynomial hierarchy, as
noted by Butler et al. [6]. However, we are not aware of any hardness results
for the hat guessing games. The maximum degree bound for μ̂ does not imply
an exact efficient algorithm computing μ̂(G) as well. This phenomenon can be
illustrated by the edge chromatic number χ′ of graphs. By Vizing’s theorem [7,
Chapter 5], it holds for any graph G that Δ(G) ≤ χ′(G) ≤ Δ(G) + 1. However,
it is NP-hard to distinguish between these two cases [18].

Organization of the Paper. We finish this section with a summary of results
about the variant of the hat guessing game we are studying. In the next section,
we present notions used in this paper and we define formally the hat guessing
game. In Sect. 3, we formally define the fractional hat chromatic number μ̂ and
compare it to μ. In Sect. 4, we generalize some previous results to the multi-guess
setting. We use these tools to prove our main result in Sect. 5 including the poly-
time algorithm that computes μ̂ for chordal graphs. The maximum degree bound
for μ̂ and computation of exact values of paths and cycles are provided in Sect. 6.

1.1 Related Works

As mentioned above, Farnik [10] introduced a hat chromatic number μ(G) of a
graph G as the maximum number of colors h such that the bears win the hat
guessing game with h colors and played on G. He proved that μ(G) ≤ O

(
Δ(G)

)

where Δ(G) is the maximum degree of G.
Since then, the parameter μ(G) was extensively studied. The parameter μ

for multipartite graphs was studied by Gadouleau and Georgiu [13] and by Alon
et al. [2]. Szczechla [28] proved that μ of cycles is equal to 3 if and only if the
length of the cycle is 4 or it is divisible by 3 (otherwise it is 2). Bosek et al. [5]
gave bounds of μ for some graphs, like trees and cliques. They also provided
some connections between μ(G) and other parameters like chromatic number
and degeneracy. They conjectured that μ(G) is bounded by some function of
the degeneracy d(G) of the graph G. They showed that such function has to
be at least exponential as they presented a graph G of μ(G) ≥ 2d(G). This
result was improved by He and Li [16] who showed there is a graph G such that
μ(G) ≥ 22

d(G)−1
. Since μ̂(G) is upper-bounded O

(
Δ(G)

)
[10] it holds that μ̂

can not be bounded by any function of degeneracy as there are graph classes
of unbounded maximum degree and bounded degeneracy (e.g. trees or planar
graphs). Recently, Kokhas et al. [21,22] studied a non-uniform version of the
game, i.e., for each bear, there could be a different number of colors of the hat.
They considered cliques and almost cliques. They also provided a technique to
build a strategy for a graph G whenever G is made up by combining G1 and
G2 with known strategies. We generalize some of their results and use them as
“basic blocks” for our main result.

2 Preliminaries

We use standard notions of the graph theory. For an introduction to this topic,
we refer to the book by Diestel [7]. We denote a clique as Kn, a cycle as Cn, and
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a path as Pn, each on n vertices. The maximum degree of a graph G is denoted
by Δ(G), where we shorten it to Δ if the graph G is clear from the context. The
neighbors of a vertex v are denoted by N(v). We use N+(v) to denote the closed
neighborhood of v, i.e. N+(v) = N(v) ∪ {v}. For a set U of vertices of a graph
G, we denote G \ U a graph induced by vertices V (G) \ U , i.e., a graph arising
from G by removing the vertices in U .

A hat guessing game is a triple H = (G,h, g) where

– G = (V,E) is an undirected graph, called the visibility graph,
– h ∈ N is a hatness that determines the number of different possible hat colors

for each bear, and
– g ∈ N is a guessing number that determines the number of guesses each bear

is allowed to make.

The rules of the game are defined as follows. On each vertex of G sits a bear.
The demon puts a hat on the head of each bear. Each hat has one of h colors. We
would like to point out, that it is allowed that bears on adjacent vertices get a
hat of the same color. The only information the bear on a vertex v knows are the
colors of hats put on bears sitting on neighbors of v. Based on this information
only, the bear has to guess a set of g colors according to a deterministic strategy
agreed to in advance. We say bear guesses correctly if he included the color of
his hat in his guesses. The bears win if at least one bear guesses correctly.

Formally, we associate the colors with natural numbers and say that each
bear can receive a hat colored by a color from the set S = [h] = {0, . . . , h − 1}.
A hats arrangement is a function ϕ : V → S. A strategy of a bear on v is a
function Γv : S|N(v)| → (

S
g

)
, and a strategy for H is a collection of strategies for

all vertices, i.e. (Γv)v∈V . We say that a strategy is winning if for any possible
hats arrangement ϕ : V → S there exists at least one vertex v such that ϕ(v)
is contained in the image of Γv on ϕ, i.e., ϕ(v) ∈ Γv

(
(ϕ(u))u∈N(v)

)
. Finally, the

game H is winning if there exists a winning strategy of the bears.
As a classical example, we describe a winning strategy for the hat guessing

game (K3, 3, 1). Let us denote the vertices of K3 by v0, v1 and v2 and fix a hats
arrangement ϕ. For every i ∈ [3], the bear on the vertex vi assumes that the
sum

∑
j∈[3] ϕ(vj) is equal to i modulo 3 and computes its guess accordingly. It

follows that for any hat arrangement ϕ there is always exactly one bear that
guesses correctly, namely the bear on the vertex vi for i =

∑
j ϕ(vj) (mod 3).

Some of our results are stated for a non-uniform variant of the hat guessing
game. A non-uniform game is a triple

(
G = (V,E),h,g

)
where h = (hv)v∈V and

g = (gv)v∈V are vectors of natural numbers indexed by the vertices of G and a
bear on v gets a hat of one of hv colors and is allowed to guess exactly gv colors.
Other rules are the same as in the standard hat guessing game. To distinguish
between the uniform and non-uniform games, we always use plain letters h and
g for the hatness and the guessing number, respectively, and bold letters (e.g.
h,g) for vectors indexed by the vertices of G.



Bears with Hats and Independence Polynomials 287

3 Fractional Hat Chromatic Number

From the hat guessing games, we can derive parameters of the underlying visi-
bility graph G. Namely, the hat chromatic number μ(G) is the maximum integer
h for which the hat guessing game (G,h, 1) is winning, i.e., each bear gets a
hat colored by one of h colors and each bear has only one guess—we call such
game a single-guessing game. In this paper, we study a parameter fractional hat
chromatic number μ̂(G) arising from the hat multi-guessing game and defined
as

μ̂(G) = sup
{

h

g

∣
∣
∣
∣ (G,h, g) is a winning game

}

Observe that μ(G) ≤ μ̂(G). Farnik [10] and Bosek et al. [5] also study multi-
guessing games. They considered a parameter μg(G) that is the maximum num-
ber of colors h such that the bears win the game (G,h, g). The difference between
μg and μ̂ is the following. If μg(G) ≥ k, then the bears win the game (G, k, g)
and μ̂ ≥ k

g . If μ̂(G) ≥ p
q , then there are h, g ∈ N such that p

q = h
g and the bears

win the game (G,h, g). However, it does not imply that the bears would win the
game (G, p, q). It is easy to prove that if the bears win the game (G,h, g) then
they win the game (G, kh, kg) for any constant k ∈ N (see the full version [4]
for the details). The opposite implication does not hold– we discuss a counterex-
ample at the end of this section. Unfortunately, this property prevents us from
using our algorithm, which computes μ̂, to compute also μ of chordal graphs.

Moreover, by definition, the parameter μ̂ does not even have to be a rational
number. In such a case, for each p, q ∈ N, it holds that

– If p
q < μ̂(G) then there are h, g ∈ N such that p

q = h
g and the bears win the

game (G,h, g).
– If p

q > μ̂(G) then the demon wins the game (G, p, q).

For example, the fractional hat chromatic number μ̂(P3) of the path P3 is irra-
tional. We discuss path P3 the full version [4]. In the case of an irrational μ̂(G),
our algorithm computing the value of μ̂ of chordal graphs outputs an estimate
of μ̂(G) with arbitrary precision. The next lemma state that the multi-guessing
game is in some sense monotone. The proof is in the full version [4].

Lemma 1. Let
(
G = (V,E), h, g

)
be a winning hat guessing game. Let r′ be a

rational number such that r′ ≤ h/g. Then, there exist numbers h′, g′ ∈ N such
that h′/g′ = r′ and the hat guessing game (G,h′, g′) is winning.

It is straight-forward to prove a generalization of Lemma 1 for non-uniform
games. However, for simplicity, we state it only for the uniform games. By the
proof of the previous lemma, we know that we can use a strategy for (G,h, g) to
create a strategy for a game (G, k · h, k · g + �) for arbitrary k, � ∈ N. A question
is if we can do it in general: Can we derive a winning strategy if we decrease
the fraction h/g, but the hatness h and the guessing number g are changed
arbitrarily? It is true for cliques. We show in Sect. 4 that the bears win the game
(Kn, h, g) if and only if h/g ≤ n. However, it is not true in general. For example,
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for n large enough it holds that μ̂(Pn) ≥ 3, as we show in Sect. 6 that μ̂(Pn)
converges to 4 when n goes to infinity. However, Butler et al. [6] proved that
μ(T ) = 2 for any tree T . Thus, the bears lose the game (Pn, 3, 1).

4 Basic Blocks

In this section, we generalize some results of Kokhas et al. [21,22] about cliques
and strategies for graph products, which we use for proving our main result.
The single-guessing version of the next theorem (without the algorithmic conse-
quences) was proved by Kokhas et al. [21,22]. The proof of the following theorem
is stated in the full version [4].

Theorem 1. Bears win a game
(
Kn = (V,E),h,g

)
if and only if

∑

v∈V

gv
hv

≥ 1.

Moreover, if there is a winning strategy, then there is a winning strategy (Γv)v∈V

such that each Γv can be described by two linear inequalities whose coefficients
can be computed in linear time.

By Theorem 1, we can conclude the following corollary.

Corollary 1. For each n ∈ N, it holds that μ̂(Kn) = n.

Further, we generalize a result of Kokhas and Latyshev [21]. In particular,
we provide a new way to combine two hat guessing games on graphs G1 and G2

into a hat guessing game on graph obtained by gluing G1 and G2 together in a
specific way.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs, let S ⊆ V1 be a set of vertices
inducing a clique in G1, and let v ∈ V2 be an arbitrary vertex of G2. The clique
join of graphs G1 and G2 with respect to S and v is the graph G = (V,E) such
that V = V1 ∪ V2 \ {v}; and E contains all the edges of E1, all the edges of E2

that do not contain v, and an edge between every w ∈ S and every neighbor
of v in G2. See Fig. 1 for an example of a clique join and the application of the
following lemma.

Lemma 2. Let H1 =
(
G1 = (V1, E1),h1,g1

)
and H2 =

(
G2 = (V2, E2),h2,g2

)

be two hat guessing games and let S ⊆ V1 be a set inducing a clique in G1 and
v ∈ V2. Set G to be the clique join of graphs G1 and G2 with respect to S and v.
If the bears win the games H1 and H2, then they also win the game H = (G,h,g)
where

hu =

⎧
⎪⎨

⎪⎩

h1
u u ∈ V1 \ S

h2
u u ∈ V2 \ {v}

h1
u · h2

v u ∈ S, and
gu =

⎧
⎪⎨

⎪⎩

g1u u ∈ V1 \ S

g2u u ∈ V2 \ {v}
g1u · g2v u ∈ S.
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Proof Idea. For every bear u ∈ S, we interpret his color as a tuple (c1u, c2u) where
c1u ∈ [h1

u] and c2u ∈ [h2
v]. The bears in G1 \S or G2 \{v} use the strategies for H1

or H2, respectively. The bears in S combine the winning strategies for H1 and
H2. The full proof is in the full version [4]. �

We remark that Lemma 2 generalizes Theorem 3.1 and Theorem 3.5 of [21]
not only by introducing multiple guesses but also by allowing for more general
ways to glue two graphs together. Thus, it provides new constructions of winning
games even for single-guessing games.

Fig. 1. Applying Lemma 2 on winning hat guessing games (C4, 3, 1) (see [28]) and
(K3, 3, 1), we obtain a winning hat guessing game (G,h, 1) where G is the result of
identifying an edge in C4 and K4, and h is given in the picture.

5 Independence Polynomial

The multivariate independence polynomial of a graph G = (V,E) on variables
x = (xv)v∈V is

PG(x) =
∑

I⊆V
I independent set

∏

v∈I

xv.

First, we describe informally the connection between the multi-guessing game
and the independence polynomial. Consider the game (G,h, g) and fix a strategy
of bears. Suppose that the demon put on the head of each bear a hat of random
color (chosen uniformly and independently). Let Av be an event that the bear
on the vertex v guesses correctly. Then, the probability of Av is exactly g/h.
Moreover, for any independent set I holds that Av is independent on all events
Aw for w ∈ I, w �= v. Thus, we can use the inclusion-exclusion principle to
compute the probability that Av occurs for at least one v ∈ I, i.e., at least one
bear sitting on some vertex of I guesses correctly.

Assume that no two bears on adjacent vertices guess correctly their hat colors
at once; it turns out that if we plug −g/h into all variables of the non-constant
terms of −PG, then we get exactly the fraction of all hat arrangements on which
the bears win. The non-constant terms of PG correspond (up to sign) to the
terms of the formula from the inclusion-exclusion principle. Because of that, we
have to plug −g/h into the polynomial PG.
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To avoid confusion with the negative fraction −g/h, we define signed inde-
pendence polynomial as ZG(x) = PG(−x), i.e.,

ZG(x) =
∑

I⊆V
I independent set

(−1)|I| ∏

v∈I

xv.

We also introduce the monovariate signed independence polynomial UG(x)
obtained by plugging x for each variable xv of ZG.

Note that the constant term of any independence polynomial PG(x) equals
to 1, arising from taking I = ∅ in the sum from the definition of PG. When
UG(g/h) = 0 and no two adjacent bears guess correctly at the same time, then
the bears win the game (G,h, g) because the fraction of all hat arrangements,
on which at least one bear guesses correctly, is exactly 1, however, the proof is
far from trivial.

Slightly abusing the notation, we use ZG′(x) to denote the independence
polynomial of an induced subgraph G′ with variables x restricted to the vertices
of G′. The independence polynomial PG can be expanded according to a vertex
v ∈ V in the following way.

PG(x) = PG\{v}(x) + xvPG\N+(v)(x)

The analogous expansions hold for the polynomials ZG and UG as well. This
expansion follows from the fact that for any independent set I of G, it holds
that either v is not in I (the first term of the expansion), or v is in I but in
that case, no neighbor of v is in I (the second term). The formal proof of this
expansion of PG was provided by Hoede and Li [17].

For a graph G, we let R(G) denote the set of all vectors r ∈ [0,∞)V such
that ZG(w) > 0 for all 0 ≤ w ≤ r, where the comparison is done entry-wise. For
the monovariate independence polynomial UG, an analogous set to R(G) would
be exactly the real interval [0, r) where r is the smallest positive root of UG.
(Note that ZG(0) = 1 and UG(0) = 1.)

Our first connection of the independence polynomial to the hat guessing
game comes in the shape of a sufficient condition for bears to lose. Consider the
following beautiful connection between Lovász Local Lemma and independence
polynomial due to Scott and Sokal [27].

Theorem 2 ([27] Theorem 4.1). Let G = (V,E) be a graph and let (Av)v∈V

be a family of events on some probability space such that for every v, the event
Av is independent of {Aw | w �∈ N+(v)}. Suppose that p ∈ [0, 1]V is a vector of
real numbers such that for each v we have P (Av) ≤ pv and p ∈ R(G). Then

P
( ⋂

v∈V

Āv

) ≥ ZG(p) > 0.

The full proofs omitted in this section are stated in the full version [4].

Proposition 1. A hat guessing game H = (G = (V,E),h,g) is losing whenever
r ∈ R(G) where r = (gv/hv)v∈V .
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Proof Idea. We let the demon assign a hat to each bear uniformly at random and
independently from the other bears. Let Av be the event that the bear on the ver-
tex v guesses correctly. Applying Theorem 2 to G and the events Av, we conclude
that the bears lose (no event Av occurs) with a non-zero probability. �

A strategy for a hat guessing game H is perfect if it is winning and in every
hat arrangement, no two bears that guess correctly are on adjacent vertices.
We remark that perfect strategies exist, for example the strategy for a single-
guessing game on a clique Kn and exactly n colors [20], or for a multi-guessing
game on a clique Kn and h/g = n (Corollary 1). The following proposition shows
that a perfect strategy can occur only when r = (gv/hv)v∈V lies in some sense
just outside of R(G).

Proposition 2. If there is a perfect strategy for the hat guessing game (G,h,g)
then for r = (gv/hv)v∈V we have that ZG(r) = 0 and ZG(w) ≥ 0 for every
0 ≤ w ≤ r.

Proof Idea. We fix a perfect strategy and show that if we plug the vector r into
ZG then the non-constant terms of ZG compute exactly the negative fraction
of hat arrangements for which at least one bear guesses his hat color correctly.
We point out that the assumption of the perfect strategy is crucial and this step
would not be true without this assumption. Since the constant term of ZG is
always equal to 1, it follows that ZG(r) = 0.

Scott and Sokal [27, Corollary 2.20] proved that ZG(w) ≥ 0 for every 0 ≤
w ≤ r if and only if r lies in the closure of R(G). Therefore, Proposition 2
further implies that if a perfect strategy for game (G,h,g) exists, then r =
(gv/hv)v∈V lies in the closure of R(G). And since r cannot lie inside R(G) due
to Proposition 1, it must belong to the boundary of the set R(G).

The natural question is what happens outside of the closure of R(G). We
proceed to answer this question for chordal graphs.

A graph G is chordal if every cycle of length at least 4 has a chord. For our
purposes, it is more convenient to work with a different equivalent definition of
chordal graphs. For a graph G = (V,E), a clique tree of G is a tree T whose
vertex set is precisely the subsets of V that induce maximal cliques in G and for
each v ∈ V the vertices of T containing v induces a connected subtree. Gavril [15]
showed that G is chordal if and only if there exists a clique tree of G.

Theorem 3. Let G = (V,E) be a chordal graph and let r = (rv)v∈V be a vector
of rational numbers from the interval [0, 1]. If r �∈ R(G) then there are vectors
g,h ∈ N

V such that gv/hv ≤ rv for every v ∈ V and the hat guessing game
(G,h,g) is winning.

Proof Idea. The proof is done by induction over the vertices of a clique tree T
of G. We take a leaf of T , which represents a clique C of G. If the vector r is
such that the bears win on C by Theorem 1, then we are done. Otherwise, let
G′ be a graph arising from G by removing vertices that are only in C and no
other maximal clique. We define new vectors g1,g2,g1, and h2 arising from g
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and h in such a way that the bears would win the game H1 = (C,h1,g1) by
Theorem 1 and the game H2 = (G′,h2,h1) by induction hypothesis. We use the
winning strategies for H1 and H2 and combine them into a winning strategy for
the game (G,h,g) using Lemma 2. See Fig. 2 for an illustration of the proof. �

Fig. 2. Application of Theorem 1 on a chordal graph G with vector r ∈ R(G). In each
step, we highlight the clique S and vertex w that are used for Lemma 2 to inductively
build a strategy for G from strategies on cliques given by Theorem 1.

Theorem 3 applied for the uniform polynomial UG immediately gives us the
following corollary.

Corollary 2. For any chordal graph G, the fractional hat chromatic number
μ̂(G) is equal to 1/r where r is the smallest positive root of UG(x).

Proof. Theorem 3 implies that μ̂(G) ≥ 1/r. For the other direction, let (wi)i∈N be
a sequence of rational numbers such that wi < r for every i and limi→∞ wi = r.
Set wi = (wi)v∈V . Scott and Sokal [27, Thereom 2.10] prove that r ∈ R(G) if
and only if there is a path in [0,∞)V connecting 0 and r such that ZG(p) > 0 for
any p on the path. Taking the path {λwi | λ ∈ [0, 1]}, we see that ZG(λwi) =
UG(λ · wi) > 0 and thus wi ∈ R(G) for every i. Therefore by Proposition 1,
the hat guessing game (G,h, g) is losing for any h, g such that g/h = wi and
μ̂(G) ≤ 1/wi for every i. It follows that μ̂(G) ≤ 1/r. �

We would like to remark that the proof of Theorem 3 (and also Theorem 1)
is constructive in the sense that given a graph G and a vector r it either greedily
finds vectors g,h ∈ N

V such that gv/hv ≤ rv together with a succinct represen-
tation of a winning strategy on (G,h,g) or it reaches a contradiction if r ∈ R(G).
Moreover, it is easy to see that it can be implemented to run in polynomial time
if the clique tree of G is provided. Combining it with the well-known fact that
a clique tree of a chordal graph can be obtained in polynomial time (see Blair
and Peyton [3]) we get the following corollary.

Corollary 3. There is a polynomial-time algorithm that for a chordal graph
G = (V,E) and vector r decides whether r ∈ R(G). Moreover, if r �∈ R(G) it
outputs vectors h,g ∈ N

V such that gv/hv ≤ rv for every v ∈ V , together with
a polynomial-size representation of a winning strategy for the hat guessing game
(G,h,g).
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This result is consistent with the fact that chordal graphs are in general well-
behaved with respect to Lovász Local Lemma—Pegden [24] showed that for
a chordal graph G, we can decide in polynomial time whether a given vector r
belongs to R(G). We finish this section by presenting an algorithm that computes
hat chromatic number of chordal graphs.

Theorem 4. There is an algorithm A such that given a chordal graph G as an
input, it approximates μ̂(G) up to an additive error 1/2k. The running time of
A is 2k · poly(n), where n is the number of vertices of G. Moreover, if μ̂(G) is
rational, then the algorithm A outputs the exact value of μ̂(G).

Proof Idea. We start with an interval I0 = [0, 1]. We repeatedly use the algo-
rithm given by Corollary 3 to produce intervals Ij such that 1/μ̂(G) is in Ij .
We gradually decrease the length of the intervals Ij until it is small enough to
determine μ̂(G) with the sought precision 1/2k. �

6 Applications

In this section, we present applications of the relation between the hat guessing
game and independence polynomials which was presented in the previous section.

First, we prove that μ̂(G) is asymptotically equal to Δ(G) up to a logarithmic
factor. Since the bears can use a strategy for trees on a star with a central vertex
of degree Δ(G) (which is always a subgraph of any graph G), we deduce a lower
bound stated as Proposition 3. The formal proof is in the full version [4].

Proposition 3. The fractional hat chromatic number of any graph G = (V,E)
is at least Ω(Δ/ logΔ).

Farnik [10] proved that μg(G) ∈ O
(
g ·Δ(G)

)
, from which we can deduce that

μ̂(G) ∈ O
(
Δ(G)

)
. It gives with Proposition 3 the following corollary that μ̂(G)

is almost linear in Δ(G).

Corollary 4. For any graph G, it holds that μ̂(G) ∈ Ω(Δ/ logΔ) and μ̂(G) ∈
O(Δ).

It follows from Corollary 4, that μ̂(Pn) and μ̂(Cn) are some constants. In
the full version [4] we prove the following proposition that the fractional hat
chromatic number of paths and cycles goes to 4 with their increasing length.

Proposition 4. limn→∞ μ̂(Pn) = limn→∞ μ̂(Cn) = 4

We remark that Proposition 4 follows also from the results of Scott and
Sokal [27] as they proved that the small positive roots of UPn

and UCn
go to

1/4 when n goes to infinity. However, their proof is purely algebraic whereas we
provide a combinatorial proof.
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