
Scheduling Kernels via Configuration LP
Dušan Knop
Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical
University in Prague, Czech Republic
dusan.knop@fit.cvut.cz

Martin Koutecký
Computer Science Institute of Charles University, Charles University, Czech Republic
koutecky@iuuk.mff.cuni.cz

Abstract
Makespan minimization (on parallel identical or unrelated machines) is arguably the most natural
and studied scheduling problem. A common approach in practical algorithm design is to reduce
the size of a given instance by a fast preprocessing step while being able to recover key information
even after this reduction. This notion is formally studied as kernelization (or simply, kernel) – a
polynomial time procedure which yields an equivalent instance whose size is bounded in terms of
some given parameter. It follows from known results that makespan minimization parameterized by
the longest job processing time pmax has a kernelization yielding a reduced instance whose size is
exponential in pmax. Can this be reduced to polynomial in pmax?

We answer this affirmatively not only for makespan minimization, but also for the (more
complicated) objective of minimizing the weighted sum of completion times, also in the setting of
unrelated machines when the number of machine kinds is a parameter.

Our algorithm first solves the Configuration LP and based on its solution constructs a solution of
an intermediate problem, called huge N -fold integer programming. This solution is further reduced
in size by a series of steps, until its encoding length is polynomial in the parameters. Then, we
show that huge N -fold IP is in NP, which implies that there is a polynomial reduction back to our
scheduling problem, yielding a kernel.

Our technique is highly novel in the context of kernelization, and our structural theorem about
the Configuration LP is of independent interest. Moreover, we show a polynomial kernel for huge
N -fold IP conditional on whether the so-called separation subproblem can be solved in polynomial
time. Considering that integer programming does not admit polynomial kernels except for quite
restricted cases, our “conditional kernel” provides new insight.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Scheduling algorithms; Theory of computation → Integer Programming

Keywords and phrases Scheduling, Kernelization

Acknowledgements Authors wish to thank the Lorentz Center for making it possible to organize the
workshop Scheduling Meets Fixed-Parameter Tractability, which output resulted in this paper. The
contribution of the Lorentz Center in stimulating suggestions, giving feedback and taking care of all
practicalities, helped us to focus on our research and to organize a meeting of high scientific quality.
Furthermore, the authors thank Stefan Kratsch for bringing Proposition 5 to their attention.

ar
X

iv
:2

00
3.

02
18

7v
1

 [
cs

.D
S]

 4
 M

ar
 2

02
0

https://orcid.org/0000-0002-1825-0097
mailto:dusan.knop@fit.cvut.cz
mailto:koutecky@iuuk.mff.cuni.cz

2 Scheduling Kernels via Configuration LP

1 Introduction

Kernelization, data reduction, or preprocessing: all of these refer to the goal of simplifying and
reducing (the size of) the input in order to speed up computation of challenging tasks. Many
heuristic techniques are applied in practice, however, we seek a theoretical understanding
in the form of procedure with guaranteed bounds on the sizes of the reduced data. We use
the notion of kernelization from parameterized complexity (cf. [9, 38]), where along with an
input instance I we get a positive integer k expressing the parameter value, which may be
the size of the sought solution or some structural limitation of the input. A kernel is an
algorithm running in time poly(|I|) which returns a reduced instance I ′ of the same problem
of size bounded in terms of k; we sometimes also refer to I ′ as the kernel.

It is well known [5] that a problem admits a kernel if and only if it has an algorithm
running in time f(k) poly(|I|) for some computable function f (i.e., if it is fixed-parameter
tractable, or FPT, parameterized by k). The “catch” is that this kernel may be very large
(exponential or worse) in terms of k, while for many problems, kernels of size polynomial
in k are known. This raises a fundamental question for any FPT problem: does it have a
polynomial kernel? Answering this question typically provides deep insights into a problem
and the structure of its solutions.

Parameterized complexity has historically focused primarily on graph problems, but
it has been increasingly branching out into other areas. Kernelization, as arguably the
most important subfield of parameterized complexity (cf. a recent monograph [15]), follows
suit. Scheduling is a fundamental area in combinatorial optimization, with results from
parameterized complexity going back to 1995 [2]. Arguably the most central problem in
scheduling is makespan minimization on identical machines, denoted as P ||Cmax, which we
shall define soon. It took until the seminal paper of Goemans and Rothvoss [20] to get an
FPT algorithm for P ||Cmax parameterized by the number of job types (hence also by the
largest job). Yet, the existence of a polynomial kernel for P ||Cmax remained open, despite
being raised by Mnich and Wiese [37] and reiterated by van Bevern1. Here, we give an
affirmative answer for this problem:

I Corollary 1. There is a polynomial kernel for P ||Cmax when parameterized by the longest
processing time pmax.

Let us now introduce and define the scheduling problems P ||Cmax and P ||
∑
wjCj . There are

n jobs and m identical machines, and the goal is to find a schedule minimizing an objective.
For each job j ∈ [n], a processing time pj ∈ N is given and a weight wj are given; in the
case of P ||Cmax the weights play no role and can be assumed to be all zero. A schedule is
a mapping which to each job j ∈ [n] assigns some machine i ∈ [m] and a closed interval of
length pj , such that the intervals assigned to each machine do not overlap except for their
endpoints. For each job j ∈ [n], denote by Cj its completion time, which is the time when it
finishes, i.e., the right end point of the interval assigned to j in the schedule. In the makespan
minimization (Cmax) problem, the goal is to find a schedule minimizing the time when the
last job finishes Cmax = maxj∈[n] Cj , called the makespan. In the minimization of sum of
weighted completion times (

∑
wjCj), the goal is to minimize

∑
wjCj . (In the rest of the

paper we formally deal with decision versions of these problems, where the task is to decide

1 The question was asked at the workshop “Scheduling & FPT” at the Lorentz Center, Leiden, in February
2019, as a part of the opening talk for the open problem session.

D. Knop and M. Koutecký 3

whether there exists a schedule with objective value at most k. This is a necessary approach
when speaking of kernels and complexity classes like NP and FPT.)

In fact, our techniques imply results stronger in three ways, where we handle:

(1) the much more complicated
∑
wjCj objective function involving possibly large job

weights,
(2) the unrelated machines setting (denoted R||Cmax and R||

∑
wjCj), and

(3) allowing the number of jobs and machines to be very large, known as the high-multiplicity
setting.

For this, we need further notation to allow for different kinds of machines. For each machine
i ∈ [m] and job j ∈ [n], a processing time pij ∈ N is given. For a given scheduling instance,
say that two jobs j, j′ ∈ [n] are of the same type if pij = pij′ for all i ∈ [m] and wj = wj′ , and
say that two machines i, i′ ∈ [m] are of the same kind if pij = pi

′

j for all jobs j ∈ [n]. We
denote by τ ∈ N and κ ∈ N the number of job types and machine kinds, respectively, call
this type of encoding the high-multiplicity encoding, and denote the corresponding problems
R|HM |Cmax and R|HM |

∑
wjCj .

Our approach is indirect: taking an instance I of scheduling, we produce a small equivalent
instance I ′ of a the so-called huge N-fold integer programming problem with a quadratic
objective function (see more details below). This is known as compression, i.e., a polynomial
time algorithm producing from I a small equivalent instance of a different problem:

I Theorem 2. The problems R|HM |Cmax and R|HM |
∑
wjCj parameterized by the number

of job types τ , the longest processing time pmax, and the number of machine kinds κ admit a
polynomial compression to quadratic huge N -fold IP parameterized by the number of block
types τ̄ , the block dimension t, and the largest coefficient ‖E‖∞.

If we can then find a polynomial reduction from quadratic huge N -fold IP to our scheduling
problems, we are finished. For this, it suffices to show NP membership, as we do in Lemma 14.

Configuration LP. Besides giving polynomial kernels for some of the most fundamental
scheduling problems, we wish to highlight the technique behind this result, because it is quite
unlike most techniques used in kernelization and is of independent interest. Our algorithm
essentially works by solving the natural Configuration LP of P ||Cmax (and other problems),
which can be done in polynomial time when pmax is polynomially bounded, and then using
powerful structural insights to reduce the scheduling instance based on the Configuration
LP solution. The Configuration LP is a fundamental tool in combinatorial optimization
which goes back to the work of Gilmore and Gomory in 1961 [18]. It is known to provide
high-quality results in practice, in fact, the “modified integer round-up property (MIRUP)”
conjecture states that the natural Bin Packing Configuration LP always attains a value which
is at most one larger than the integer optimum [39]. The famous approximation algorithm of
Karmarkar and Karp [28] for Bin Packing is based on rounding the Configuration LP, and
many other results in approximation use the Configuration LP for their respective problems
as the starting point.

In spite of this centrality and vast importance of the Configuration LP, there are only
few structural results providing deeper insight. Perhaps the most notable is the work of
Goemans and Rothvoss [20] and later Jansen and Klein [26] who show that there is a certain
set of “fundamental configurations” such that in any integer optimum, all but few machines
(bins, etc.) will use these fundamental configurations. Our result is based around a theorem
which shows a similar yet orthogonal result and can be informally stated as follows:

4 Scheduling Kernels via Configuration LP

I Theorem 3. There is an optimum of the Configuration IP where all but few configuration
are those discovered by the Configuration LP, and the remaining configurations are not far
from those discovered by the Configuration LP.

We note that our result, unlike the ones mentioned above [20, 26], also applies to arbitrary
separable convex functions. This has a fundamental reason: the idea behind both previous
results is to shift weight from the inside of a polytope to its vertices without affecting the
objective value, which only works for linear objectives.

Huge N-fold IP. Finally, we highlight that the engine behind our kernels, a conditional
kernel for the so-called quadratic huge N -fold IP, is of independent interest. Integer pro-
gramming is a central problem in combinatorial optimization. Its parameterized complexity
has been recently intensely studied [6, 10, 11, 32, 33]. However, it turns out that integer
programs cannot be kernelized in all but the most restricted cases [26, 34, 35]. We give a
positive result about a class of block-structured succinctly encoded IPs with a quadratic
objective function, so-called quadratic huge N -fold IPs, which was used to obtain many
interesting FPT results [3, 4, 17, 29, 31, 32]. However, our result is conditional on having
a polynomial algorithm for the so-called separation subproblem of the Configuration LP of
the quadratic huge N -fold IP, so there is a price to pay for the generality of this fragment
of IP. The separation subproblem is to optimize a certain objective function (which varies)
over the set of configurations. In the cases considered here, we show that this corresponds to
(somewhat involved) variations of the knapsack problem with polynomially bounded numbers;
in other problems expressible as n-fold IP, the separation subproblem corresponds to a known
hard problem. Informally, our result reads as follows:

I Theorem 4. If the separation subproblem can be solved in polynomial time, then quadratic
huge N -fold IP has a polynomial kernel parameterized by the block dimensions, the number
of block types, and the largest coefficient.

One aspect of the algorithm above is reducing the quadratic objective function. The standard
approach, also used in kernelization of weighted problems [1, 7, 13, 19, 21, 42, 43] is to use
a theorem of Frank and Tardos [16] which “kernelizes” a linear objective function if the
dimension is a parameter. However, we deal with

(1) a quadratic convex (non-linear) function,
(2) over a space of large dimension.

We are able to overcome these obstacles by a series of steps which first “linearize” the
objective, then “aggregate” variables of the same type, hence shrinking the dimension, then
reduce the objective using the algorithm of Frank and Tardos, and then we carefully reverse
this process (cf. Lemma 23). This result has applications beyond this work: for example, the
currently fastest strongly FPT algorithm for R||

∑
wjCj (i.e., an algorithm whose number of

arithmetic operations does not depend on the weights wj) has dependence of m2 poly log(m)
on the number of machines m; applying our new result instead of [11, Corollary 69] reduces
this dependence to m poly log(m).

Other Applications Theorem 4 can be used to obtain kernels for other problems which can
be modeled as huge N -fold IP. First, we may also optimize the `p norms of times when each
machine finishes, a problem known as R|HM |`p. Our results (Corollary 12) show that also
in this setting the separation problem can be solved quickly. Second, the P ||Cmax problem
is identical to Bin Packing (in their decision form), so our kernel also gives a kernel for

D. Knop and M. Koutecký 5

Bin Packing parameterized by the largest item size. Moreover, also the Bin Packing with
Cardinality Constraints problem has a huge N -fold IP model [30, Lemma 54] for which
Corollary 12 indicates that the separation subproblem can be solved quickly. Third, Knop
et al. [30] give a huge N -fold IP model for the Surfing problem, in which many “surfers”
make demands on few different “services” provided by few “servers”, where each surfer may
have different costs of getting a service from a server; one may think of internet streaming
with different content types, providers, and pricing schemes for different customer types. The
separation problem there is polynomially solvable for an interesting reason: its constraint
matrix is totally unimodular because it is the incidence matrix of the complete bipartite
graph. Thus, Theorem 4 gives polynomial kernels for all of the problems above with the
given parameters.

Related Work—Scheduling. Let us finally review related results in the intersection of
parameterized complexity and scheduling. First, up to our knowledge, to study scheduling
problems from the perspective of multivariate complexity were Bodlaender and Fellows [2].
Fellows and McCartin [14] study study scheduling on single machine of unit length jobs with
(many) different release times and due dates. Single machine scheduling where two agents
compete to schedule their private jobs is investigated by Hermelin et al. [22]. There are few
other result [23, 24, 27, 44] focused on identifying tractable scenarios for various scheduling
paradigms (such as flow-shop scheduling or e.g. structural limitations of the job–machine
assignment).

2 Preliminaries

We consider zero to be a natural number, i.e., 0 ∈ N. We write vectors in boldface (e.g., x,y)
and their entries in normal font (e.g., the i-th entry of a vector x is xi). For positive integers
m ≤ n we set [m,n] := {m, . . . , n} and [n] := [1, n], and we extend this notation for vectors:
for l,u ∈ Zn with l ≤ u, [l,u] := {x ∈ Zn | l ≤ x ≤ u} (where we compare component-wise).
For two vectors x,y ∈ Rn, z = max{x,y} is defined coordinate-wise, i.e., zi = max xi, yi for
all i ∈ [n], and similarly for min{x,y}.

If A is a matrix, Ai,j denotes the j-th coordinate of the i-th row, Ai,• denotes the i-th
row and A•,j denotes the j-th column. We use log := log2, i.e., all our logarithms are base 2.
For an integer a ∈ Z, we denote by 〈a〉 := 1 + dlog(|a|+ 1)e the binary encoding length of
a; we extend this notation to vectors, matrices, and tuples of these objects. For example,
〈A,b〉 = 〈A〉 + 〈b〉, and 〈A〉 =

∑
i,j〈Ai,j〉. For a function f : Zn → Z and two vectors

l,u ∈ Zn, we define f [l,u]
max := maxx∈[l,u] |f(x)|; if [l,u] is clear from the context we omit it

and write just fmax.

2.1 Kernel and Compression
Let (Q, κ) be a parameterized problem. We say that (Q, κ) is fized-parameter tractable (or
in FPT for short) if there exists an algorithm that given an instance (x, k) decides whether
(x, k) ∈ (Q, κ) in f(k) · poly(|x|) time, where f : N→ N is a computable function. A kernel
for (Q, κ) is a polynomial time algorithm (that is, an algorithm that stops in poly(|x|) time)
that given an instance (x, k) returns an equivalent instance (x′, k′) (that is, (x′, k′) ∈ (Q, κ)
if and only if (x, k) ∈ (Q, κ)) for which both |x′| and k′ are upper-bounded by g(k) for some
computable function g : N→ N. It is well-known that a parameterized problem is in FPT if
and only if there is a kernel for it. Of course, the smaller the size of the instance returned by

6 Scheduling Kernels via Configuration LP

the kernelization algorithm the better; in particular, we are interested in deciding whether g
can be a polynomial in k and if this is the case, we say there is a polynomial kernel for (Q, κ).
A compression is a similar notion to kernel, that is, it is a polynomial time algorithm that
given (x, k) returns an instance (y, `) with |y|, ` ≤ g(k), however, this time we allow (y, `) to
be an instance of a different parameterized problem (R, λ) and we require (y, `) ∈ (R, λ) if
and only if (x, k) ∈ (Q, κ). A problem (Q, κ) admits a polynomial compression if the function
g is a polynomial and we say that the problem (Q, κ) admits a polynomial compression into
the problem (R, λ).

I Proposition 5 ([15, Theorem 1.6]). Let (Q, κ), (R, λ) be parameterized problems such that
Q is NP-hard and R is in NP. If (Q, κ) admits a polynomial compression into (R, λ), then it
admits a polynomial kernel.

The above observation is useful when dealing with NP-hard problems. The proof simply
follows by pipelining the assumed polynomial compression with a polynomial time (Karp)
reduction from R to Q.

2.2 Scheduling Notation

Overloading the convention slightly, for each i ∈ [κ] and j ∈ [τ], denote by pij the processing
time of a job of type j on a machine of kind i, by wj the weight of a job of type j, by nj the
number of jobs of type j, bymi the number of machines of kind i, and denote n = (n1, . . . , nτ),
m = (m1, . . . ,mκ), p =

(
p1

1, . . . , p
1
τ , p

2
1, . . . , p

κ
τ

)
, w := (w1, . . . , wτ), pmax := ‖p‖∞, and

wmax := ‖w‖∞. We denote the high multiplicity versions of the previously defined problems
R|HM |Cmax and R|HM |

∑
wjCj .

For an instance I ofR||Cmax orR||
∑
wjCj , we define its size as 〈I〉 :=

∑κ
i=1
∑τ
j=1〈pij , wj〉,

whereas for an instance I of P |HM |Cmax or P |HM |
∑
wjCj we define its size as 〈I〉 =

〈n,m,p,w〉. Note that the difference in encoding actually leads to different problems:
for example, an instance of R|HM |Cmax with 2k jobs with maximum processing time
pmax can be encoded with O(kτκ log pmax) bits while an equivalent instance of R||Cmax
needs Ω(2k log pmax) bits, which is exponentially more if τ, κ ∈ kO(1). The membership
of high-multiplicity scheduling problems in NP was open for some time, because it is not
obvious whether a compactly encoded instance also has an optimal solution with a compact
encoding. This question was considered by Eisenbrand and Shmonin, and we shall use their
result. For a set X ⊆ Zd define the integer cone of X, denoted coneN(X), to be the set
coneN(X) :=

{∑
x∈X λxx | λ ∈ NX

}
.

I Proposition 6 (Eisenbrand and Shmonin [12, Theorem 2]). Let X ⊆ Zd be a finite set
of integer vectors and let b ∈ coneN(X). Then there exists a subset X̃ ⊆ X such that
b ∈ coneN(X̃) and the following holds for the cardinality of X̃:

1. if all vectors of X are nonnegative, then |X̃| ≤ 〈b〉,
2. if M = maxx∈X ‖x‖∞, then |X̃| ≤ 2d(log 4dM).

One can use Proposition 6 to show that the decision versionf ofR|HM |Cmax andR|HM |
∑
wjCj

have short certificates and thus belong to NP. We will later derive the same result as a
corollary of the fact that both of these scheduling problems can be encoded as a certain form
of integer programming, which we will show to have short certificates as well.

D. Knop and M. Koutecký 7

2.3 Conformal Order and Graver Basis
Let g,h ∈ Zn be two vectors. We say that g is conformal to h (we denote it g v h) if both
gi ·hi ≥ 0 and |gi| ≤ |hi| for all i ∈ [n]. In other words, g v h if they are in the same orthant
(the first condition holds) and g is component-wise smaller than h. For a matrix A we define
its Graver basis G(A) to be the set of all v-minimal vectors in Ker(A) \ {0}. We define
g∞(A) = max {‖g‖∞ | g ∈ G(A)} and g1(A) = max {‖g‖1 | g ∈ G(A)}.

We say that two functions f, g : Zd → Z are equivalent on a polyhedron P ⊆ Zd if
f(x) ≤ f(y) if and only if g(x) ≤ g(y) for all x,y ∈ P . Note that if f and g are equivalent
on P , then the set of minimizers of f(x) over P is the same as the set of minimizers of g(x)
over P .

I Proposition 7 (Frank and Tardos [16]). Given a rational vector w ∈ Qd and an integer M ,
there is a polynomial algorithm which finds a w̃ ∈ Zd such that the linear functions wx and
w̃x are equivalent on [−M,M]d, and ‖w̃‖∞ ≤ 2O(d3)MO(d2).

The dual graph GD(A) = (V,E) of a matrix A ∈ Zm×n has V = [m] and {i, j} ∈ E if rows i
and j contain a non-zero at a common coordinate k ∈ [n]. The dual treewidth twD(A) of A
is tw(GD(A)). We do not define treewidth here, but we point out that tw(T) = 1 for every
tree T .

I Proposition 8 (Eisenbrand et al. [11, Theorem 98]). An IP with a constraint matrix A can
be solved in time (‖A‖∞g1(A))O(twD(A)) poly(n,L), where n is the dimension of the IP and
L is the length of the input.

I Proposition 9 (Eisenbrand et al. [11, Lemma 25]). For an integer matrix A ∈ Zm×n, we
have g1(A) ≤ (2‖A‖∞m+ 1)m.

Let us use Proposition 6 to show that R|HM |Cmax and R|HM |
∑
wjCj have short

certificates. Here and later we will use the notion of a configuration: a configuration is a
vector c ∈ Nτ encoding how many jobs of which type are assigned to some machine.

I Lemma 10. (The decision versions of) R|HM |Cmax and R|HM |
∑
wjCj belong to NP.

Proof. To show membership in NP, we have to prove the existence of short certificates. More
precisely, for a high-multiplicity scheduling instance I with a parameter OPT , we have to
show that if I has an optimum of at most OPT , then there exists a certificate of this fact of
length poly(〈I〉). In both cases (R|HM |Cmax and R|HM |

∑
wjCj) the certificate will be a

collection of configurations together with their multiplicities. However, to use Proposition 6 we
will need to introduce a more complicated notion of an extended configuration. R|HM |Cmax.

Let an instance I of R|HM |Cmax together with the value OPT be given. For each machine
kind i ∈ [κ], define Xi

Cmax
:=
{

c ∈ Nτ | pic ≤ OPT
}
× {0}i−1 × {1} × {0}κ−i, and define

the set of its extended configurations of I to be XCmax :=
⋃κ
i=1X

i
Cmax

. The interpretation is
that in any x ∈ XCmax the first τ coordinates encode a configuration (i.e., an assignment of
jobs to a machine) and the remaining κ coordinates encode the kind of a machine for which
this configuration can be processed in time at most OPT . Then any decomposition of the
vector (n,m) =

∑
x∈XCmax

λxx with λ ∈ NXCmax corresponds to a solution of I where the
last job finishes in time at most OPT . Finally, since all vectors in XCmax are nonnegative,
Proposition 6 (Part 1) applied to coneN(XCmax) says that if such a decomposition exists (i.e.,
if I is a Yes instance), then there exists one with |supp(λ)| ≤ 〈(n,m)〉 ≤ 〈I〉 and we are
done.

8 Scheduling Kernels via Configuration LP

R|HM |
∑
wjCj . Let I be an instance of R|HM |

∑
wjCj together with the value OPT . It

is well known [40] that on a single machine a schedule minimizing
∑
wjCj is one which

schedules jobs according to their Smith ratios wj/pij non-increasingly. For each machine kind
i ∈ [κ], we define f i : Nτ → N to be the value of

∑
wjCj for the aforementioned scheduling

of the instance c on a single machine of kind i. Define Xi∑
wjCj

:= {(c, F) ∈ Nτ+1 | c ≤

n, f i(c) ≤ F ≤ OPT} × {0}i−1 × {1} × {0}κ−i, and define the set of extended configurations
to be X∑wjCj

:=
⋃κ
i=1X

i∑
wjCj

. The difference, as compared with Cmax, is that OPT does
not define X∑wjCj

(we only use it to ensure finiteness) but we have an additional coordinate
which expresses (an upper bound on) the contribution of each configuration (machine) to
the objective. Hence, any decomposition of the vector (n, OPT,m) =

∑
x∈X∑

wj Cj

λxx

with λ ∈ N
X∑

wj Cj corresponds to a solution of I of value at most OPT . Proposition 6
says if any decomposition exists (i.e., if I is a Yes instance), then there exists one where
|supp(λ)| ≤ 〈(n, OPT,m)〉. Because f is a quadratic function with coefficients bounded by
pmax and wmax [29] we have 〈OPT 〉 ≤ 〈I〉2 and hence there exists a certificate of length
poly(〈I〉) and R|HM |

∑
wjCj is in NP. J

2.4 N-fold Integer Programming
The Integer Programming problem is to solve:

min f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn, (IP)

where f : Rn → R, A ∈ Zm×n, b ∈ Zm, and l,u ∈ (Z ∪ {±∞})n.
A generalized N -fold IP matrix is defined as

E(N) =

E1

1 E2
1 · · · EN1

E1
2 0 · · · 0

0 E2
2 · · · 0

...
...

. . .
...

0 0 · · · EN2

 . (1)

Here, r, s, t,N ∈ N, E(N) is an (r + Ns) × Nt-matrix, and Ei1 ∈ Zr×t and Ei2 ∈ Zs×t for
all i ∈ [N], are integer matrices. Problem (IP) with A = E(N) is known as generalized
N -fold integer programming (generalized N -fold IP). “Regular” N -fold IP is the problem
where Ei1 = Ej1 and Ei2 = Ej2 for all i, j ∈ [N]. Recent work indicates that the majority of
techniques applicable to “regular” N -fold IP also applies to generalized N -fold IP [11].

The structure of E(N) allows us to divide any Nt-dimensional object, such as the variables
of x, bounds l,u, or the objective f , into N bricks of size t, e.g. x =

(
x1, . . . ,xN

)
. We use

subscripts to index within a brick and superscripts to denote the index of the brick, i.e., xij
is the j-th variable of the i-th brick with j ∈ [t] and i ∈ [N]. We call a brick integral if all of
its coordinates are integral, and fractional otherwise.

Huge N-fold IP. The huge N -fold IP problem is an extension of generalized N -fold IP to
the high-multiplicity scenario, where blocks come in types and are encoded succinctly by type
multiplicities. This means there could be an exponential number of bricks in an instance with
a polynomial encoding size. The input to the huge N -fold IP problem with τ̄ types of blocks
is defined by matrices Ei1 ∈ Zr×t and Ei2 ∈ Zs×t, i ∈ [τ̄], vectors l1, . . . , lτ̄ , u1, . . . ,uτ̄ ∈ Zt,
b0 ∈ Zr, b1, . . . ,bτ̄ ∈ Zs, functions f1, . . . , f τ̄ : Rt → R satisfying ∀i ∈ [τ̄], ∀x ∈ Zt we

D. Knop and M. Koutecký 9

have f i(x) ∈ Z and given by evaluation oracles, and integers µ1, . . . , µτ̄ ∈ N such that∑τ̄
i=1 µ

i = N . We say that a brick is of type i if its lower and upper bounds are li and ui,
its right hand side is bi, its objective is f i, and the matrices appearing at the corresponding
coordinates are Ei1 and Ei2. Denote by Ti the indices of bricks of type i, and note |Ti| = µi
and |

⋃
i∈[τ̄] Ti| = N . The task is to solve (IP) with a matrix E(N) which has µi blocks of

type i for each i. Knop et al. [30] have shown a fast algorithm solving huge n-fold IP. The
main idea of their approach is to prove a powerful proximity theorem showing how one can
drastically reduce the size of the input instance given that one can solve a corresponding
configuration LP (which we shall formally define later). We will build on this approach here.
When f i are restricted to be separable quadratic (and convex) for all i ∈ [τ̄], we call the
problem quadratic huge N -fold IP.

2.5 Configurations LP of Huge N-fold IP
Having modeled our scheduling problems as huge N -fold IP instances, our next goal is to
solve the Configuration LP, which we will now define. Because the results we derive below
apply to any quadratic huge N -fold IP, we state them generally (and not as claims about
the specific instances which we shall apply them to).

Let a huge N -fold IP instance with τ̄ types be fixed. Recall that µi denotes the number of
blocks of type i, and let µ =

(
µ1, . . . , µτ̄

)
. We define for each i ∈ [τ̄] the set of configurations

of type i as

Ci =
{

c ∈ Zt | Ei2c = bi, li ≤ c ≤ ui
}
.

Here we are interested in four instances of convex programming (CP) and convex integer
programming (IP) related to huge N -fold IP. First, we have the Huge IP

min f(x) : E(N)x = b, l ≤ x ≤ u, x ∈ ZNt . (HugeIP)

Then, there is the Configuration LP of (HugeIP),

min vy =
τ̄∑
i=1

∑
c∈Ci

f i(c) · y(i, c) (2)

τ̄∑
i=1

Ei1
∑
c∈Ci

cy(i, c) = b0

∑
c∈Ci

y(i, c) = µi ∀i ∈ [τ̄]

y ≥ 0 . (3)

Let B be its constraint matrix and d = (b0,µ) be the right hand side and shorten (2)-(3) to

min vy : By = d, y ≥ 0 . (ConfLP)

Finally, by observing that By = d implies y(i, c) ≤ ‖µ‖∞ for all i ∈ [τ̄], c ∈ Ci, defining
C =

∑
i∈[τ̄]

∣∣Ci∣∣, leads to the Configuration ILP,

min vy : By = d, 0 ≤ y ≤ (‖µ‖∞, . . . , ‖µ‖∞), y ∈ NC . (ConfILP)

The classical way to solve (ConfLP) is by solving its dual using the ellipsoid method
and then restricting (ConfLP) to the columns corresponding to the rows encountered while

10 Scheduling Kernels via Configuration LP

solving the dual, a technique known as column generation. The Dual LP of (ConfLP) in
variables α ∈ Rr, β ∈ Rτ̄ is:

max b0α +
τ̄∑
i=1

µiβi

s.t. (αEi1)c− f i(c) ≤ −βi ∀i ∈ [τ̄], ∀c ∈ Ci (4)

To verify feasibility of (α,β) for i ∈ [τ̄], we need to maximize the left-hand side of (4) over
all c ∈ Ci and check if it is at most −βi. This corresponds to solving the following separation
problem: find integer variables c which for a given vector (α,β) solve

min f i(c)− (αEi1)c : Ei2c = bi, li ≤ c ≤ ui, c ∈ Zt . (sep-IP)

Denote by sep(li,ui, f imax, E
i
1, E

i
2) the time needed to solve (sep-IP).

I Lemma 11 (Knop et al. [30, Lemma 12]). An optimal solution y∗ of (ConfLP) with
|supp(y∗)| ≤ r+ τ̄ can be found in (rtτ̄〈fmax, l,u,b,µ〉)O(1) ·maxi∈[τ̄] sep(li,ui, f imax, E

i
1, E

i
2)

time.

Since (sep-IP) is an IP, it can be solved using Proposition 8 in time g1(Ei2)twD(Ei
2) ·

poly(li,ui,bi, ‖Ei1‖∞fmax, t, τ̄). Hence, together with Lemma 11, we get the following
corollary:

I Corollary 12. An optimal solution y∗ of (ConfLP) with |supp(y∗)| ≤ r + τ̄ can be found
in time (rtτ̄〈fmax, l,u,b,µ〉)O(1) ·maxi∈[τ̄] g1(Ei2)twD(Ei

2).

We later show how that for our formulations of R|HM |Cmax and R|HM |
∑
wjCj , indeed

g1(Ei2) is polynomial in τ, pmax, and twD(Ei2) = 1, hence the (ConfLP) optimum can be
found in polynomial time.

3 Compressing High Multiplicity Scheduling to Quadratic N-fold IP

In this section we are going to prove Theorem 2. To that end, we use the following assumption
(which mainly simplifies notation).
I Remark 13. From here on, we assume τ ≥ ‖p‖∞, since both quantities are parameters.

I Theorem 2 (repeated). The problems R|HM |Cmax and R|HM |
∑
wjCj parameterized by

the number of job types τ , the longest processing time pmax, and the number of machine kinds
κ admit a polynomial compression to quadratic huge N -fold IP parameterized by the number
of block types τ̄ , the block dimension t, and the largest coefficient ‖E‖∞.

Recall that in order to use Theorem 2 to provide kernels for selected scheduling problems
(which are NP-hard) we want to utilize Proposition 5. Thus, we have to show that the “target
problem” quadratic huge N -fold IP is in NP.

I Lemma 14. The decision version of quadratic huge N -fold IP belongs to NP.

Proof. We will use Proposition 6 to show that there exists an optimum whose number of
distinct configurations is polynomial in the input length. Such a solution can then be encoded
by giving those configurations together with their multiplicities, and constitutes a polynomial
certificate. Recall that (ConfILP) corresponding to the given instance of huge N -fold is

min vy : By = d, 0 ≤ y ≤ (‖µ‖∞, . . . , ‖µ‖∞), y ∈ NC .

D. Knop and M. Koutecký 11

Let X be the set of columns of the matrix B extended with an additional coordinate
which is the coefficient of the objective function v corresponding to the given column, that
is, vb for a column b (i.e., the objective value of configuration b). Hence X ⊆ Zr+τ̄+1

and ‖x‖∞ ≤ ‖l,u, fmax‖∞ =: M for any x ∈ X. Applying Proposition 6, part 2, to X,
yields that there exists an optimal solution y of (ConfILP) with supp(y) = X̃ satisfying
|X̃| ≤ 2(r + τ̄ + 1) log(4(r + τ̄ + 1)M), hence polynomial in the input length of the original
instance. J

I Remark 15. Clearly Lemma 14 holds for any huge N -fold IP whose objective is restricted
by some, not necessarily quadratic, polynomial.

Using Theorem 2. Before we move to the proof of Theorem 2 we first derive two simple
yet interesting corollaries.

I Corollary 16. The problems R||Cmax and R||
∑
wjCj admit polynomial kernelizations

when parameterized by τ, κ, pmax.

Proof. Let obj ∈ {Cmax,
∑
wjCj}. We describe a polynomial compression from R||obj to

quadratic huge N -fold IP which, by Lemma 14, yields the sought kernel, since R||obj is
NP-hard and huge N -fold with a quadratic objective is in NP.

We first perform the high-multiplicity encoding of the given instance I of R||obj, thus
obtaining an instance IHM of R|HM |obj with the input encoded as (n,m,p,w). Now, we
can apply Theorem 2 and obtain an instance Īhuge N-fold equivalent to IHM with size bounded
by a polynomial in κ, τ, pmax. J

Proof of Corollary 1. This is now trivial, since it suffices to observe that P ||Cmax is a special
case of R||Cmax, where there is only a single machine kind (i.e., κ = 1) and τ ≤ pmax job
types. Our claim then follows by Corollary 16 (combined with the fact that P ||Cmax is
NP-hard and R||Cmax is in NP). J

3.1 Huge n-fold IP Models
Denote by nmax the τ -dimensional vector whose all entries are ‖n‖∞. It was shown [29, 30]
that R|HM |Cmax is modeled as a feasibility instance of huge n-fold IP as follows. Recall
that we deal with the decision versions and that k is the upper bound on the value of the
objective(s). We set b0 = n, the number of block types is τ̄ = κ, Ei1 := (I 0) ∈ Zτ×(τ+1),
Ei2 := (pi 1), li = 0,ui = (n,∞), bi = k, for i ∈ [κ], and the multiplicities of blocks are
µ = m. The meaning is that the first type of constraints expressed by the Ei1 matrices
ensures that every job is scheduled somewhere, and the second type of constraints expressed
by the Ei2 matrices ensures that every machine finishes in time Cmax.

In the model of R|HM |
∑
wjCj , for each machine kind i ∈ [κ], we define �i to be

the ordering of jobs by the wj/pij ratio non-increasingly, and let a = (a1, a2, . . . , aτ) be a
reordering of pi according to �i. We let

Gi :=

a1 0 0 . . . 0
a1 a2 0 . . . 0
a1 a2 a3 . . . 0
...

. . .
a1 a2 a3 . . . aτ

 , H := −I,

12 Scheduling Kernels via Configuration LP

with I the τ × τ identity, and define F i := (Gi H) in two steps. Denote by I�i a matrix
obtained from the τ × τ identity matrix by permuting its columns according to �i. The
model is then b0 = n, the number of block types is again τ̄ = κ, for each i ∈ [κ] we have
Ei1 = (I�i 0) ∈ Zτ×2τ , Ei2 = F̄ i, li = 0, ui = (nmax, pmaxτnmax), bi = 0, f i is a separable
convex quadratic function (whose coefficients are related to the wj/pij ratios), and again
µ = m. Intuitively, in each brick, the first τ variables represent numbers of jobs of each
type on a given machine, and the second τ variables represent the amount of processing time
spend by jobs of the first j types with respect to the ordering �i.

3.2 Solving The Separation Problem Quickly: Cmax

The crucial aspect of complexity of (sep-IP) is its constraint matrix Ei2. For R|HM |Cmax,
this is just the vector (pi, 1). Clearly twD((pi, 1)) = 1 since GD((pi, 1)) is a single vertex.
By Proposition 9, g1((pi, 1)) ≤ 2‖p‖∞ + 1. Moreover, fmax depends polynomially on
‖n,m,p‖∞. Hence, Corollary 12 states that (ConfLP) of the R|HM |Cmax model can be
solved in time (rtτ̄〈fmax, l,u,b,µ〉)O(1) ·maxi g1(Ei2)twD(Ei

2) = poly(pmax, τ, log ‖n,m,p‖∞),
which is polynomial in the input.

3.3 Solving The Separation Problem Quickly: ∑wjCj

The situation is substantially more involved in the case of R|HM |
∑
wjCj : in order to

apply Corollary 12, we need to again bound g1(Ei2) and twD(Ei2), but the matrix Ei2 is more
involved now. Let

Ḡi :=

a1 0 . . . 0
0 a2 . . . 0
...

. . .
...

0 0 . . . aτ

 , H̄ :=

−1 0 0 . . . 0
1 −1 0 . . . 0
0 1 −1 . . . 0
...

.
...

0 0 . . . 1 −1

 ,

and define F̄ i = (Ḡi H̄). Now observe that F i and F̄ i are row-equivalent2. This means that
we can replace F i with F̄ i without changing the meaning of the constraints and without
changing the feasible set. But while twD(Fi) = τ (because it is the clique Kτ), we have

I Lemma 17. For each i ∈ [κ], twD(F̄ i) = 1.

Proof. Observe that the dual graph of H̄ is a path (on τ vertices). By the definition of the
dual graph the Ḡi part of F̄ i does not add any edges to it. J

Note that application of Proposition 9 yields g1(Ei2) ≤ O(τ τ). This general upper bound, as
we shall see, is not sufficient for our purposes, since we need g1(Ei2) ≤ poly(τ). However, we
can improve it significantly:

I Lemma 18 (Hill-cutting). We have g∞(F i), g∞(F̄ i) ≤ O(τ4) and g1(F i), g1(F̄ i) ≤ O(τ5)
for every i ∈ [κ].

Proof. Let F = F i for some i ∈ [κ]. Let (x, z) ∈ Z2τ be some vector satisfying F · (x, z) = 0.
Our goal now is to show that whenever there exists k ∈ [τ] with |zk − zk−1| > 2τ3 + 1

2 Two matrices A, A′ are row-equivalent if one can be transformed into the other using elementary row
operations.

D. Knop and M. Koutecký 13

(where we define z0 := 0 for convenience), then we can construct a non-zero integral vector
(g,h) ∈ KerZ(F) satisfying (g,h) v (x, z), which shows that (x, z) 6∈ G(A). If no such
index k exists, it means that ‖x‖∞ ≤ O(τ3) because zk − zk−1 = akxk holds in F (and F̄ i).
Moreover, if |zk − zk−1| ≤ 2τ3 + 1 for all k ∈ [τ], then |zk| ≤ O(τ4) for every k ∈ [τ],
hence ‖(x, z)‖∞ ≤ O(τ4). Note that, since the dimension of (x, z) is 2τ , this also implies
‖(x, z)‖1 ≤ O(τ5). Thus we now focus on the case when ∃k ∈ [τ] : |zk − zk−1| > 2τ3 + 1.

Let us now assume that (zk−zk−1) is positive and zk ≥ τ3. There are three other possible
scenarios: when (zk − zk−1) is positive but zk < τ3, or when (zk − zk−1) is negative and
zk < −τ3 or zk ≥ −τ3. We will later show that all these situations are symmetric to the one
we consider and our arguments carry over easily, hence our assumption is without loss of
generality.

B Claim 19. If (zk−zk−1) is positive and zk ≥ τ3, then there exists nonzero (g,h) ∈ KerZ(F)
with (g,h) v (x, z).

Proof. We distinguish two cases: either zk, . . . , zτ ≥ τ , or there exists `′ > k such that
z`′ < τ . In the first case, we set gk = 1 and hk = hk+1 = · · · = hτ = ak, and all other
coordinates of (g,h) to zero. It is straightforward to verify that F · (g,h) = 0. Clearly also
(g,h) v (x, z) and we are done.

For the second case we assume there exists an index `′ > k such that z`′ < τ . We
claim that then there exists an ` > k such that x` < −τ . Suppose not: then we have∑`′

q=k+1 aqxq ≥
∑`′

q=k+1 τ · (−τ) ≥ −τ2 and hence z`′ = zk +
∑`′

q=k+1 aqxq ≥ τ3 − τ2 ≥ τ2,
a contradiction (for τ ≥ 2). Let ` be the smallest index larger than k satifying x` < −τ .
Note that by the minimality of ` we have zq ≥ τ2 for all q = k, k + 1, . . . , ` − 1. Now let
gk := a`, g` := −ak, hk, hk+1, . . . , h`−1 := ak · a`, and all remaining coordinates be zero. It
is easy to check that (g,h) ∈ KerZ(F), and it remains to show that (g,h) v (x, z). Since
akxk = zk − zk−1 ≥ τ3 we clearly have xk ≥ τ2 hence gk < xk, and since x` < −τ we also
have |g`| < |x`|, so g v x. Next, since zk ≥ τ3 and ` is smallest such that x` < −τ , the
sequence zk+1, zk+2, . . . , z` decreases by at most τ2 in each step, and there are at most τ − 1
steps, hence zq ≥ τ3 − (τ − 1)τ2 = τ2 ≥ ak · a` for all q = k, . . . , `− 1, concluding h v z. C

Let us consider the remaining symmetric cases. If zk − zk−1 is negative and zk < −τ3,
then (−x,−z) satisfies the original assumption, leading to some (g′,h′) v (−x,−z), hence
(−g′,−h′) v (x, z) and we are done. If zk − zk−1 is negative but zk > −τ3, then we would
pick the largest index ` smaller than k with x` > τ and continue as before (the symmetry
is that now ` is to the left of k rather than to its right; that is, the case distinction from
the previous paragraph is according to the value of z1). Lastly, if zk − zk−1 is positive but
zk < τ3, negating (x, z) gives a reduction to the previous case. J

I Remark 20. We have called Lemma 18 the “Hill-cutting Lemma”. This is based on the
intuitive visualization of the proof (a large coordinate corresponds to a hill, and subtracting
a Graver element from it cuts the hill down, until no large hills are left). It is also a name
known in the research of VASSes (vector addition systems with states) where a similar idea
appears in a paper of Valiant and Patterson from 1975 [41].

Together with the observation from the previous section and using our newly obtained bounds
together with Corollary 12, we obtain:

I Corollary 21. Let I = (n,m,p,w) be an instance of R|HM |Cmax or R|HM |
∑
wjCj.

A (ConfLP) optimum y∗ with |supp(y∗)| ≤ r+τ̄ can be found in time poly(pmax, τ, κ, 〈n,m,p,w〉).

14 Scheduling Kernels via Configuration LP

4 Kernelization of Huge N-fold IP

4.1 Reducing by proximity
Our first step in obtaining a kernel for quadratic huge N -fold IP is to solve (ConfLP),
as discussed previously (Lemma 11 and Corollary 12). The next step is to obtain an
equivalent (quadratic) huge N -fold IP instance whose components will be polynomially
bounded, except for the objective. For that, we derive the following proximity theorem. We
let {x} = x− bxc be the fractional part of x, and extend this definition coordinate-wise to
vectors, i.e., {x} = ({x1}, {x2}, . . . , {xn}).

I Theorem 3. Let y∗ be an optimum of (ConfLP) with |supp(y∗)| ≤ r + τ̄ and let

P :=
(
(r + τ̄)26t4 log(t‖E1

2 , . . . , E
τ̄
2 ‖∞)

)
(2r)r+1(‖E‖∞s)3rs .

Define y∗−P := max{0, byc − P1} (where the max is taken coordinate-wise). and for each
i ∈ [τ̄], let ĉi := 1

‖{yi
−P
}‖1

∑
c∈Ci{y−P (i, c)}c and denote Ĉ = {(i, ĉi) | i ∈ [τ̄]}. There exists

an optimal solution ζ = y−P + ζ̄ of (ConfILP) with ‖ζ̄‖1 ≤ (2τ̄ + r)P and

supp(ζ̄) ⊆ {(i, c) | i ∈ [τ̄], c ∈ Ci, ∃(i, c′) ∈ supp(y) ∪ Ĉ : ‖c− c′‖∞ ≤ P} .

Proof. The proof is by a reinterpretation of a proximity theorem of Knop et al. [30, The-
orem 21]. Define a mapping ϕ which assigns to each solution y of (ConfLP) a solution x
of the relaxation of (HugeIP) as follows. For each coordinate (i, c) such that y(i, c) > 0,
add to x by(i, c)c bricks of type i with configuration c. Then, for each i ∈ [τ̄], add∑

c∈Ci{y(i, c)} = ‖{yi}‖1 = ‖{yi−P }‖1 bricks of type i with value ĉi, i.e., the remaining
bricks take values which are the “average of remaining configurations of type i.”

I Proposition 22 ([30, Theorem 21]). Let y be an optimum of (ConfLP) with |supp(y)| ≤
r + τ̄ and x∗ = ϕ(y). Then there exists an optimal solution z∗ of (HugeIP) such that

‖z∗ − x∗‖1 ≤
(
(r + τ̄)26t4 log(t‖E1

2 , . . . , E
τ
2 ‖∞)

)
(2r)r+1(‖E‖∞s)3rs = P .

Proposition 22 speaks about the (HugeIP) and its relaxation, and our task now is to interpret
this as a statement about (ConfILP) and (ConfLP). There are two key observations: if z∗
and x∗ differ by at most P in `1-norm, then, first, they differ in at most P bricks, and second,
they differ in each brick by at most P in `∞-norm. This means that, first, all but at most P
bricks in z∗ take on values c′ with (i, c′) ∈ supp(y), and second, those which have some value
c outside of supp(y) are at `∞-distance at most P from some c′ with (i, c′) ∈ supp(y) ∪ Ĉ.
So, in a sense, the configurations c for (i, c) ∈ supp(y) ∪ Ĉ serve as centers around which the
whole solution ζ is concentrated. Moreover, notice that by the fact that ‖supp(y)‖ ≤ r + τ̄

and |Ĉ| = τ̄ , the number of these centers is at most 2τ̄ + r.
The construction of y−P reflects the first observation and, for each (i, c) ∈ supp(y) ∪ Ĉ,

corresponds to fixing the value to be c for max{0, by(i, c)− P c} bricks. Also the bound on
‖ζ̄‖1 follows from the first observation: after we have fixed the value of all but P bricks
for each (i, c) ∈ supp(y) ∪ Ĉ, there are at most |supp(y) ∪ Ĉ| · P = (2τ̄ + r)P bricks whose
value is to be decided. The claim about supp(ζ̄) follows from the second observation: each
of the yet-to-be-assigned bricks has to lie near one of the “centers”. Since there is a 1:1
correspondence (up to brick permutation) between the solutions of (HugeIP) and (ConfILP),
the theorem follows. J

D. Knop and M. Koutecký 15

Theorem 3 intuitively says, that an optimum y∗ of (ConfLP) tells us around which at most
2τ̄ + r “centers” will be an optimum of (ConfILP) concentrated. Based on this, we now
construct an equivalent but smaller instance of Huge N -fold.

Let y∗ be an optimum of (ConfLP) as above. thLet τ̃ = τ̄ + |supp(y∗)|; this is the
number of “centers”. We shall now define an instance of huge N̄ -fold IP with τ̃ types
as follows. For each (i, c′) ∈ supp(y∗) ∪ Ĉ, define a type with blocks Ei1, Ei2, with lower
bound bc′c −max{bc′c − P1, li}, upper bound bc′c −min{bc′c+ (P + 1)1,ui}, right hand
side bi − Ei2bc′c, and objective f̄ i,c′(c̄) = f i(bc′c + c̄). (Note that the new objective is
separable quadratic if the old one was.) Let µ̄(i,c′) = min{P, by(i, c′)c} if (i, c′) ∈ supp(y∗)
and µ̄(i,c′) = ‖{(y∗)i}‖1 if (i, c′) ∈ Ĉ. Let N̄ = ‖µ̄‖1. Finally, let

b̄0 := b0 −By−P −
∑

(i,c′)∈supp(y∗)∪Ĉ

µ(i,c′)Ei1bc′c .

(In other words, we first define an instance whose bounds are restricted to Ci ∩ [bc′c −
P1, dc′e+ P1] for each (i, c′) ∈ supp(y∗) ∪ Ĉ. This means that the lower and upper bounds
are close to each other but still potentially large Then, we perform the variable transformation
c̄ = c− bc′c which “shifts” the origin of our coordinate system to c′ for each brick of type
(i, c′), in order to shrink the bounds.)

The resulting instance is

min f̄(x̄) : E(N̄)x̄ = b̄, l̄ ≤ x̄ ≤ ū . (reduced-HugeIP)

The equivalence of the original instance and (reduced-HugeIP) follows immediately from its
definition and Theorem 3.

4.2 Objective Reduction
In (reduced-HugeIP), everything except possibly f̄ is bounded by a polynomial of the
parameters. The next lemma shows how to replace f̄ with an equivalent but small function.

I Lemma 23 (Quadratic huge N -fold objective reduction). Let a huge N -fold IP instance with a
separable quadratic objective f be given explicitly by its coefficients, and denote D := ‖u−l‖∞.
Then, there is a separable quadratic function f̃ which is equivalent to f on {x | l ≤ x ≤ u} with
coefficients bounded by coeff(f) such that both log f̃ [l,u]

max , log coeff(f̃) ≤ poly(τ̄ , t, log(ND)).
Moreover, f̃ can be computed in polynomial time.

Proof. Our aim is to use Proposition 7. Notice that the statement equivalently applies to
any d-dimensional box of largest dimension 2M because the position of the box [−M,M]d
relative to the origin does not matter. There are two obstacles to straightforwardly applying
this theorem to the assumed huge N -fold IP instance: first, the objective function is not
a linear function, and second, the dimension is too large, so we would get an encoding length
polynomial in N and not logN . Our approach to these obstacles is to first turn the objective
into a linear one in an extended space (“linearization”), then use this linearity to aggregate
variables across bricks of the same type (“aggregation”), then reduce the resulting linear
objective using Proposition 7, and then reverse the take steps, that is, “deaggregate” and
“delinearize” the obtained function.

We first deal with the first obstacle. By assumption, for each type i ∈ [τ̄], each brick
j ∈ Ti, and each coordinate ` ∈ [t], the contribution of the variable xj` to the objective is
αj`(x

j
`)2 +βj`x

j
` +γj` for some αj` , β

j
` , γ

j
` ∈ Q. Since constant terms make no difference between

solutions, from now on we assume γj` = 0 for all j and `. We define an auxiliary variable

16 Scheduling Kernels via Configuration LP

f(x)
x ∈ [l,u]
Nt

f̃(x)
x ∈ [l,u]
Nt

f̃max = Nt(ND2)O((tτ̄)3)xmax

〈coeff(f̃)〉 = O((tτ̄)3) log(ND) + ‖µ‖∞

g(x, z) = (α,β)(z,x)
(x, z) ∈ P

2Nt

g̃(x, z) = (α̃, β̃)(z,x)
(x, z) ∈ P

2Nt

〈α̃i〉 = O((tτ̄)3) log(ND) + ‖µ‖∞
〈β̃i〉 = O((tτ̄)3) log(ND) + ‖µ‖∞

(A,B)(X,Z)
(X,Z) ∈ Q

2tτ̄

(Ã, B̃)(X,Z)
(X,Z) ∈ Q

2tτ̄

lin
ear
ize

ag
gre
ga
te

reduce

de
ag
gre
ga
te

de
lin
ear
ize

Figure 1 In the figure above, we have P = {(x, (x)2) | l ≤ x ≤ u}, 0 ∈ P , Q = [−ND2, ND2]2tτ̄ .
Each box corresponds to a stage in the process of reducing f to f̃ and contains three elements:

(1) a currently considered objective function equivalent to f ,
(2) the space under consideration, and
(3) the dimension of this space.
The change corresponding to each step is given a distinct color, which highlights the main feature
which is being changed (e.g., changing the objective from quadratic to linear, shrinking the dimension,
reducing the coefficients, etc.).

zj` = (xj`)2.3 Now notice that the function becomes αj`z
j
` + βj`x

j
` , hence linear over xj` and zj` .

Having done this over all coordinates, we obtain an objective function g(x, z) = (α,β)(z,x)
which is linear over the variables x, z, and x is a minimum for f if and only if x, z is a
minimum for g (we use the fact that x uniquely determines z). Moreover, assuming that
0 ∈ [l,u], it holds that if x ∈ [l,u], then z ∈ [(l)2, (u)2], where (l)2 is obtained by squaring
each component of l and analogously for u. In case 0 6∈ [l,u], we can obtain an equivalent
instance which satisfies this condition by a simple affine transformation [11, Lemma 49].

Now we overcome the second obstacle. For each i ∈ [τ̄] and ` ∈ [t], we define Zi` =
∑
j∈Ti

zj`
and Xi

` =
∑
j∈Ti

xj` and write X,Z. Similarly define Ai` := µiα
j
` , Bi` := µiβ

j
` for any j ∈ Ti,

and denote A := (A1
1, . . . , A

τ̄
t) and similarly B. Note that, since we assume 0 ∈ [l,u] and

‖l−u‖∞ = D, we have that ‖x‖∞ ≤ D and thus ‖X‖∞ ≤ ND and ‖Z‖∞ ≤ ND2, since also
‖z‖∞ ≤ D2. Consequently, we can assume that (X,Z) ∈ Q = [−ND2, ND2]2tτ̄ . Observe that
minimizing g(x, z) (and hence f(x)) is equivalent to minimizing

∑
i∈[τ̄]

∑
`∈[t]A

i
`Y

i
` +Bi`Xi

` =
(A,B)(Z,X), which is a linear function over 2tτ̄ variables which take on values at most
ND2 over the feasible region. Applying the algorithm of Frank and Tardos to (A,B) yields
(in polynomial time) vector (Ã, B̃) with ‖(Ã, B̃)‖∞ ≤ (ND2)O(tτ̄)3 such that (Ã, B̃) is
equivalent to (A,B) on Q. Now we can work backwards to obtain an equivalent quadratic
function f̃ in the original space of variables x.

3 This can be thought of as a quadratic constraint. One need not worry, though, as we are only
constructing an equivalent objective to be used with the original instance, not actually introducing
quadratic constraints into the formulation. Finally, we are going to “revert” this step, since f̃ is again a
separable quadratic function.

D. Knop and M. Koutecký 17

B Claim 24. Any function equivalent to f on the variables x on [−1, 2]Nt must have identical
coefficients across bricks of the same type.

Proof. Let f̃ be any separable quadratic function equivalent to f on [−1, 2]Nt, and α̃j` , β̃
j
`

be such that the contribution of variable xj` of type i is α̃
j
`(x

j
`)2 + β̃j`x

j
` . In what follows we

fix i ∈ [τ̃].
We first prove that β̃j` = β̃k` for each j, k ∈ Ti and ` ∈ [t]; fix j, k, `. We define a point x

which is 0 everywhere except two coordinates xj` = 1 and xk` = −1. Now, we observe that
f(x) = f(−x). Indeed, since f and f̃ are equivalent on [−1, 1]Nt ⊆ [l,u], it must hold that
f̃(x) = f̃(−x). This implies that

f̃(x) = α̃j` + β̃j` + α̃k` − β̃k` = α̃j` − β̃
j
` + α̃k` + β̃k` = f̃(−x) .

It follows that 2β̃j` = 2β̃k` and we get β̃j` = β̃k` .
It remains to show that α̃j` = α̃k` for each j, k ∈ Ti and ` ∈ [t]; again, fix j, k, `. We define

two points x and x̂ which are 0 everywhere except two coordinates: xj` = 2, xk` = 1 and
x̂j` = 1, x̂k` = 2. Observe that we have f(x) = f(x̂) which implies f̃(x) = f̃(x̂). Now, we get
that

f̃(x) = 4α̃j` + 2β̃j` + α̃k` + β̃k` = α̃j` + β̃j` + 4α̃k` + 2β̃k` = f̃(x̂) .

Thus, since β̃j` = β̃k` , we have that 3α̃j` = 3α̃k` and the claim follows. C

We define, for each i ∈ [τ̄], j ∈ Ti, and ` ∈ [t], α̃j` = Ãi

µi
, β̃j` = B̃i

µi
, and define

g̃(x, z) = (α̃, β̃)(x, z). Clearly, g̃ is equivalent to g on P by the equivalence of (A,B)
and (Ã, B̃) on Q and the claim above. Finally, we define f̃ to be the separable quadratic
function where the contribution of variable xj` , j ∈ Ti, is α̃

j
`(x

j
`)2 + β̃xj` . By the definition

of the variables zj` , a point x ∈ [l,u] is a minimum for f̃ if and only if (x, z) is a minimum
for g̃. Now, (x, z) is a minimum for g̃ if and only if it is a minimum for g. Thus, x
is a minimum for f , hence f̃ is equivalent with f on [l,u]. Furthermore, we get that
log f̃ [l,u]

max , log coeff(f̃) ≤ poly(τ̄ , t, log(ND)). J

The consequence of Lemma 11, Theorem 3, and Lemma 23 is the following:

I Theorem 4. If (sep-IP) is solvable in polynomial time, then quadratic huge N-fold IP
admits a polynomial kernel when parameterized by (τ̄ , t, ‖E‖∞).

5 Conclusions and Research Directions

We designed kernels for scheduling problems based on the (ConfLP), which may be of
practical interest due to the ubiquity of (ConfLP) (aka column generation) in practice.

On the side of theory, one may wonder why not apply the approach developed here to
other scheduling problems, in particular those modeled as quadratic huge N -fold IP in [30],
such as R|rj , dj |

∑
wjCj . The answer is simple: we are not aware of a way to solve the

separation problem in polynomial time; in fact, we believe this to be a hard problem roughly
corresponding to Unary Vector packing in variable dimension. However, the typical use
of Configuration LP is not to obtain an exact optimum (which is often hard), but to obtain
an approximation which is good enough. Perhaps a similar approach within our context
may lead to so-called lossy kernels [36]? However, it is not even clear that an approximate
analogue of Theorem 3 holds, because getting an LP solution whose value is close to optimal
does not immediately imply getting a solution which is (geometrically) close to some optimum;
cf. the discussions on ε-accuracy in [11, Definition 31] and [25, Introduction].

18 REFERENCES

References

1 Matthias Bentert, René van Bevern, Till Fluschnik, André Nichterlein, and Rolf Nie-
dermeier. Polynomial-time preprocessing for weighted problems beyond additive goal
functions. CoRR, abs/1910.00277, 2019. URL: http://arxiv.org/abs/1910.00277,
arXiv:1910.00277.

2 Hans L. Bodlaender and Michael R. Fellows. W[2]-hardness of precedence constrained
k-processor scheduling. Operations Research Letters, 18(2):93–97, 1995. doi:10.1016/
0167-6377(95)00031-9.

3 Robert Bredereck, Andrzej Kaczmarczyk, Dušan Knop, and Rolf Niedermeier. High-
multiplicity fair allocation: Lenstra empowered by n-fold integer programming. In Anna
Karlin, Nicole Immorlica, and Ramesh Johari, editors, Proceedings of the 2019 ACM
Conference on Economics and Computation, EC 2019, Phoenix, AZ, USA, June 24-28,
2019, pages 505–523. ACM, 2019. doi:10.1145/3328526.3329649.

4 Laurent Bulteau, Danny Hermelin, Dušan Knop, Anthony Labarre, and Stéphane Vialette.
The clever shopper problem. Theory Comput. Syst., 64(1):17–34, 2020. doi:10.1007/
s00224-019-09917-z.

5 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes
of parameterized tractability. Annal of Pure Appliled Logic, 84(1):119–138, 1997. doi:
10.1016/S0168-0072(95)00020-8.

6 Timothy Chan, Jacob W. Cooper, Martin Koutecký, Daniel Král, and Kristýna Pekárková.
A row-invariant parameterized algorithm for integer programming. CoRR, abs/1907.06688,
2019. URL: http://arxiv.org/abs/1907.06688, arXiv:1907.06688.

7 Steven Chaplick, Fedor V. Fomin, Petr A. Golovach, Dušan Knop, and Peter Zeman.
Kernelization of graph hamiltonicity: Proper h-graphs. In Zachary Friggstad, Jörg-
Rüdiger Sack, and Mohammad R. Salavatipour, editors, Algorithms and Data Structures
- 16th International Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7,
2019, Proceedings, volume 11646 of Lecture Notes in Computer Science, pages 296–310.
Springer, 2019. doi:10.1007/978-3-030-24766-9_22.

8 Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors.
45th International Colloquium on Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer,
2015. doi:10.1007/978-3-319-21275-3.

10 Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. Faster al-
gorithms for integer programs with block structure. In Chatzigiannakis et al. [8], pages
49:1–49:13. doi:10.4230/LIPIcs.ICALP.2018.49.

11 Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký,
Asaf Levin, and Shmuel Onn. An algorithmic theory of integer programming. Technical
report, 2019. http://arxiv.org/abs/1904.01361.

12 Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer cones.
Operations Research Letters, 34(5):564–568, 2006.

13 Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial
kernels for weighted problems. Journal of Computer and System Sciences, 84:1–10, 2017.
doi:10.1016/j.jcss.2016.06.004.

http://arxiv.org/abs/1910.00277
http://arxiv.org/abs/1910.00277
http://dx.doi.org/10.1016/0167-6377(95)00031-9
http://dx.doi.org/10.1016/0167-6377(95)00031-9
http://dx.doi.org/10.1145/3328526.3329649
http://dx.doi.org/10.1007/s00224-019-09917-z
http://dx.doi.org/10.1007/s00224-019-09917-z
http://dx.doi.org/10.1016/S0168-0072(95)00020-8
http://dx.doi.org/10.1016/S0168-0072(95)00020-8
http://arxiv.org/abs/1907.06688
http://arxiv.org/abs/1907.06688
http://dx.doi.org/10.1007/978-3-030-24766-9_22
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.49
http://arxiv.org/abs/1904.01361
http://dx.doi.org/10.1016/j.jcss.2016.06.004

REFERENCES 19

14 Michael R. Fellows and Catherine McCartin. On the parametric complexity of schedules
to minimize tardy tasks. Theoretical Computer Scicience, 298(2):317–324, 2003. doi:
10.1016/S0304-3975(02)00811-3.

15 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
theory of parameterized preprocessing. Cambridge University Press, 2019.

16 András Frank and Éva Tardos. An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

17 Tomáš Gavenčiak, Dušan Knop, and Martin Koutecký. Integer programming in paramet-
erized complexity: Three miniatures. In Christophe Paul and Michal Pilipczuk, editors,
13th International Symposium on Parameterized and Exact Computation, IPEC 2018,
August 20-24, 2018, Helsinki, Finland, volume 115 of LIPIcs, pages 21:1–21:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.IPEC.2018.21.

18 P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Oper. Res., 9:849–859, 1961.

19 Steffen Goebbels, Frank Gurski, Jochen Rethmann, and Eda Yilmaz. Change-making
problems revisited: a parameterized point of view. Journal of Combinatorial Optimization,
34(4):1218–1236, Nov 2017. doi:10.1007/s10878-017-0143-z.

20 Michel X. Goemans and Thomas Rothvoß. Polynomiality for bin packing with a constant
number of item types. In Proc. SODA 2014, pages 830–839, 2014.

21 Frank Gurski, Carolin Rehs, and Jochen Rethmann. Knapsack problems: A parameterized
point of view. Theoretical Compututer Science, 775:93–108, 2019. doi:10.1016/j.tcs.
2018.12.019.

22 Danny Hermelin, Judith-Madeleine Kubitza, Dvir Shabtay, Nimrod Talmon, and Ger-
hard J. Woeginger. Scheduling two competing agents when one agent has significantly
fewer jobs. In Thore Husfeldt and Iyad A. Kanj, editors, 10th International Symposium
on Parameterized and Exact Computation, IPEC 2015, September 16-18, 2015, Patras,
Greece, volume 43 of LIPIcs, pages 55–65. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015. doi:10.4230/LIPIcs.IPEC.2015.55.

23 Danny Hermelin, Michael Pinedo, Dvir Shabtay, and Nimrod Talmon. On the para-
meterized tractability of single machine scheduling with rejection. European Journal of
Operational Research, 273(1):67–73, 2019. doi:10.1016/j.ejor.2018.07.038.

24 Danny Hermelin, Dvir Shabtay, and Nimrod Talmon. On the parameterized tractability
of the just-in-time flow-shop scheduling problem. Journal of Scheduling, 22(6):663–676,
2019. doi:10.1007/s10951-019-00617-7.

25 D. S. Hochbaum and J. G. Shantikumar. Convex separable optimization is not much
harder than linear optimization. J. ACM, 37(4):843–862, 1990.

26 Bart M. P. Jansen and Stefan Kratsch. A structural approach to kernels for ilps: Treewidth
and total unimodularity. In Nikhil Bansal and Irene Finocchi, editors, Algorithms -
ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015,
Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 779–791. Springer,
2015. doi:10.1007/978-3-662-48350-3_65.

27 Klaus Jansen, Marten Maack, and Roberto Solis-Oba. Structural parameters for schedul-
ing with assignment restrictions. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th.
Paschos, editors, Algorithms and Complexity - 10th International Conference, CIAC
2017, Athens, Greece, May 24-26, 2017, Proceedings, volume 10236 of Lecture Notes in
Computer Science, pages 357–368, 2017. doi:10.1007/978-3-319-57586-5_30.

28 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. In Proceedings of the 23rd Annual Symposium on

http://dx.doi.org/10.1016/S0304-3975(02)00811-3
http://dx.doi.org/10.1016/S0304-3975(02)00811-3
http://dx.doi.org/10.4230/LIPIcs.IPEC.2018.21
http://dx.doi.org/10.1007/s10878-017-0143-z
http://dx.doi.org/10.1016/j.tcs.2018.12.019
http://dx.doi.org/10.1016/j.tcs.2018.12.019
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.55
http://dx.doi.org/10.1016/j.ejor.2018.07.038
http://dx.doi.org/10.1007/s10951-019-00617-7
http://dx.doi.org/10.1007/978-3-662-48350-3_65
http://dx.doi.org/10.1007/978-3-319-57586-5_30

20 REFERENCES

Foundations of Computer Science, FOCS ’82, pages 312–320, Washington, DC, USA,
1982. IEEE Computer Society.

29 Dušan Knop and Martin Koutecký. Scheduling meets n-fold integer programming. Journal
of Scheduling, 21:493–503, 2018.

30 Dušan Knop, Martin Koutecký, Asaf Levin, Matthias Mnich, and Shmuel Onn. Multitype
integer monoid optimization and applications. Technical report, 2019. http://arxiv.
org/abs/1909.07326.

31 Dušan Knop, Martin Koutecký, and Matthias Mnich. Voting and bribing in single-
exponential time. In Heribert Vollmer and Brigitte Vallée, editors, 34th Symposium on
Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017, Hannover,
Germany, volume 66 of LIPIcs, pages 46:1–46:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.46.

32 Dušan Knop, Martin Koutecký, and Matthias Mnich. Combinatorial n-fold integer
programming and applications. Mathematical Programming, Nov 2019. doi:10.1007/
s10107-019-01402-2.

33 Martin Koutecký, Asaf Levin, and Shmuel Onn. A parameterized strongly polynomial
algorithm for block structured integer programs. In Chatzigiannakis et al. [8], pages
85:1–85:14. doi:10.4230/LIPIcs.ICALP.2018.85.

34 Stefan Kratsch. On polynomial kernels for integer linear programs: Covering, packing
and feasibility. In Hans L. Bodlaender and Giuseppe F. Italiano, editors, Algorithms -
ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4,
2013. Proceedings, volume 8125 of Lecture Notes in Computer Science, pages 647–658.
Springer, 2013. doi:10.1007/978-3-642-40450-4_55.

35 Stefan Kratsch. On polynomial kernels for sparse integer linear programs. Journal of
Computer and System Sciences, 82(5):758–766, 2016. doi:10.1016/j.jcss.2015.12.
002.

36 Daniel Lokshtanov, Fahad Panolan, MS Ramanujan, and Saket Saurabh. Lossy kernel-
ization. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 224–237, 2017.

37 Matthias Mnich and Andreas Wiese. Scheduling and fixed-parameter tractability. Math.
Program., 154(1-2):533–562, 2015.

38 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006. doi:10.1093/ACPROF:OSO/9780198566076.001.0001.

39 Guntram Scheithauer and Johannes Terno. The modified integer round-up property of
the one-dimensional cutting stock problem. European Journal of Operational Research,
84(3):562–571, 1995.

40 Wayne E. Smith. Various optimizers for single-stage production. Naval Res. Logist.
Quart., 3:59–66, 1956.

41 Leslie G Valiant and Michael S Paterson. Deterministic one-counter automata. Journal
of Computer and System Sciences, 10(3):340–350, 1975.

42 René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. On (1+\varepsilon)-
approximate data reduction for the rural postman problem. In Michael Khachay, Yury
Kochetov, and Panos M. Pardalos, editors, Mathematical Optimization Theory and Oper-
ations Research - 18th International Conference, MOTOR 2019, Ekaterinburg, Russia,
July 8-12, 2019, Proceedings, volume 11548 of Lecture Notes in Computer Science, pages
279–294. Springer, 2019. doi:10.1007/978-3-030-22629-9_20.

http://arxiv.org/abs/1909.07326
http://arxiv.org/abs/1909.07326
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.46
http://dx.doi.org/10.1007/s10107-019-01402-2
http://dx.doi.org/10.1007/s10107-019-01402-2
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.85
http://dx.doi.org/10.1007/978-3-642-40450-4_55
http://dx.doi.org/10.1016/j.jcss.2015.12.002
http://dx.doi.org/10.1016/j.jcss.2015.12.002
http://dx.doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
http://dx.doi.org/10.1007/978-3-030-22629-9_20

REFERENCES 21

43 René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. Parameterized algorithms
and data reduction for the short secluded s-t-path problem. Networks, 75(1):34–63, 2020.
doi:10.1002/net.21904.

44 René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval
scheduling and colorful independent sets. Journal of Scheduling, 18(5):449–469, 2015.
doi:10.1007/s10951-014-0398-5.

http://dx.doi.org/10.1002/net.21904
http://dx.doi.org/10.1007/s10951-014-0398-5

	1 Introduction
	2 Preliminaries
	2.1 Kernel and Compression
	2.2 Scheduling Notation
	2.3 Conformal Order and Graver Basis
	2.4 N-fold Integer Programming
	2.5 Configurations LP of Huge N-fold IP

	3 Compressing High Multiplicity Scheduling to Quadratic N-fold IP
	3.1 Huge n-fold IP Models
	3.2 Solving The Separation Problem Quickly: Cmax
	3.3 Solving The Separation Problem Quickly: wj Cj

	4 Kernelization of Huge N-fold IP
	4.1 Reducing by proximity
	4.2 Objective Reduction

	5 Conclusions and Research Directions

