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a b s t r a c t

Consider n runners running on a circular track of unit length with
constant speeds such that k of the speeds are distinct. We show
that, at some time, there will exist a sector S which contains at
least |S|n+⌦(

p
k) runners. The bound is asymptotically tight up

to a logarithmic factor. The result can be generalized as follows.
Let f (x, y) be a complex bivariate polynomial whose Newton
polytope has k vertices. Then there exist a 2 C \ {0} and a
complex sector S = {reı✓ : r > 0, ↵  ✓  �} such that the
univariate polynomial f (x, a) contains at least ��↵

2⇡ n + ⌦(
p
k)

non-zero roots in S (where n is the total number of such roots
and 0  (� � ↵)  2⇡ ). This shows that the Real ⌧ -Conjecture
of Koiran (2011) implies the conjecture on Newton polytopes of
Koiran et al. (2015).

© 2020 Published by Elsevier Ltd.

1. Introduction

Consider n runners running on a circular track with constant and distinct speeds. Does it have to
be the case that, at some point in time, they concentrate in some non-trivial sector? If the speeds
are sufficiently independent, Kronecker’s approximation theorem [11] implies that the runners will
all meet in an arbitrarily small sector. On the other hand, if the speeds are 1, 2, . . . , n, it is easy to
set the starting positions so that the runners never meet in a common half-circle, or any constant
fraction of the circle. A similar construction can also be deduced from the approximation theorem of
Dirichlet [2]. Furthermore, if the starting positions are chosen randomly, the runners will be almost
uniformly distributed at any point in time (see Section 4). Nevertheless, we will show that some
deviation from uniformity must occur:
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Theorem. Assume that n runners run on a circle of unit length with constant speeds such that k of
the speeds are distinct. Then there exist a time and a sector S such that S contains at least |S|n + c

p
k

runners, where c > 0 is an absolute constant.
Observe that |S|n is the expected number of runners in S, had they been distributed uniformly,

and the theorem asserts that at some time, the true distribution of runners is c
p
k-far from uniform.

We will also show that the bound is asymptotically tight up to a logarithmic factor.
The problem of runners has an interesting application to distribution of roots of complex

polynomials. Take a bivariate polynomial f (x, y) such that its Newton polytope has k vertices:Pk�1
i=0 xiyi2 is an iconic example. Given a 2 C \ {0}, consider the univariate polynomial f (x, a). Then

the Theorem can be generalized as follows: there exists a 2 C \ {0} so that if r1e2ı⇡↵1 , . . . , rne2ı⇡↵n

are the non-zero roots of f (x, a), the distribution of ↵1, . . . ,↵n is c
p
k-far from uniform.

In the iconic example, a stronger and simpler result follows from a theorem of Hutchinson [7],
see Section 2 for a detailed discussion. This also gives one motivation for this problem. A different
motivation comes from the complexity of algebraic computations. In [9], Koiran has conjectured
the following: if a univariate polynomial f (x) is sufficiently easy to compute then f (x) has a small
number of distinct real roots. This is called the Real ⌧ -Conjecture; it is rooted partly in Valiant’s
VP vs. VNP problem [1,18], partly in the ⌧ -Conjecture of Shub and Smale [15]. Later, Koiran
et al. [10] conjectured that a similar statement holds for a bivariate polynomial and the number
of vertices of its Newton polytope. While the two conjectures seem related, and they share the
crucial consequence that VP 6= VNP, no implication between them was previously known. We can
now conclude that in fact, the Real ⌧ -Conjecture implies the conjecture on Newton polytopes.

2. Statement and discussion of main results

We first give the usual definition of the discrepancy of a sequence. For r1, . . . , rn 2 [0, 1],

D(r1, . . . , rn) := sup
0ab1

1
n
|Na,b(r1, . . . , rn) � n(b � a)|,

where Na,b := |{i : ri 2 [a, b]}| is the number of ri’s in [a, b]. For general r1, . . . , rn 2 R, we let
D(r1, . . . , rn) := D({r1}, . . . , {rn}), where {r} := r � brc is the fractional part of r . In our setting, the
normalization factor 1

n in D is rather inconvenient, and we define the bias of r1, . . . , rn as

B(r1, . . . , rn) := nD(r1, . . . , rn).

Our main theorem about runners can be formally restated2 as follows:

Theorem 1. Let s1, . . . , sn 2 [0, 1). Let v1, . . . , vn 2 R and k := |{v1, . . . , vn}| be the number of
distinct vi’s. Then there exists t 2 R such that B(s1 + v1t, . . . , sn + vnt) � p

k/12.
The theorem will be proved in Section 3, where we also give a stronger result for k = n. In

Section 4, we show that the bound in Theorem 1 is tight up to a factor of
p
log k.

Let f (x) 2 C[x] be a complex univariate polynomial. Assume that f has n (not necessarily distinct)
non-zero roots r1eı�1 , . . . , rneı�n , where r1, . . . rn > 0 and �1 . . . , �n 2 [0, 2⇡ ). We define the bias of f

B(f ) := B
✓

�1

2⇡
, . . . ,

�n

2⇡

◆
.

Denoting N↵,� (f ) the number of roots of f in the complex sector {reı✓ : r > 0, ✓ 2 [↵, �]}, one can
also write

B(f ) = sup
0↵�2⇡

|N↵,� (f ) � n(� � ↵)
2⇡

|.

We remark that B(f ) has been studied already in the classical paper of Erdös and Turán [5].

2 In the Introduction, we asserted that there is a sector which contains more than the expected number of runners,
whereas here we claim the existence of a sector containing more or less than the expected number. But if a sector contains
few runners, its complement must contain many; and we can keep it closed by enlarging it by ✏.
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Let f (x, y) = P
i,j ai,jx

iyj be a bivariate complex polynomial. Let supp(f ) := {(i, j) : ai,j 6= 0} ✓ Z2

be the set of exponents of monomials with a non-zero coefficient. The Newton polytope of f ,
Newt(f ) ✓ R2, is defined as the convex hull of supp(f ). In Section 5.2, we will prove:

Theorem 2. Let f (x, y) be a bivariate complex polynomial such that Newt(f ) has k vertices. Then there
exists a 2 C \ {0} such that the univariate polynomial f (x, a) satisfies3 B(f (x, a)) � ⌦(

p
k).

The theorem can be motivated by the following example. Take a real polynomial f (x) = Pn
i=0 aix

i.
A theorem of Hutchinson [7], which appears more explicitly in [12], gives the following: if ai are
positive and

a2i > 4ai�1ai+1 (1)

for every i 2 {1, . . . , n � 1} then all the roots of f (x) are distinct, real and negative. Now consider
the bivariate polynomial g(x, y) = Pn

i=0 bix
iyi2 with bi > 0. Then we can set a > 0 small enough, so

that the coefficients of the univariate polynomial g(x, a) satisfy (1), and hence all the roots are real
and negative. In the language of Theorem 2, B(g(x, a)) = n. In this argument, i2 could be replaced
by any strictly convex function (or strictly concave, letting a ! 1). Furthermore, using a result of
Karpenko and Vishnyakova [8], we can also assume that bi 2 R are non-zero (rather than positive),
giving that the roots are real (rather than negative). However, things get more complicated if some
coefficients are zero. In this case, we can no longer expect all the roots of g(x, a) to be real, or lie
on the same line reı�, r 2 R. Theorem 2 nevertheless tells us that for some a 2 C \ {0}, the roots of
g(x, a) non-trivially concentrate in some complex sector.

It is easy to see that Theorem 2 does not hold if f (x, y) and a are required to be real. Furthermore,
as noted in Proposition 12, the bound in Theorem 2 is tight up to

p
log k factor.

We shall also give the following modification of Theorem 2. For a univariate complex polynomial
f (x) = P

aixi, let <(f ) denote the real polynomial
P

i <(ai)xi (where <(ai) is the real part of ai).

Theorem 3. Let f (x, y) be a complex polynomial such that its Newton polytope has k vertices. Then
there exists a 2 C \ {0} such that <(f (x, a)) has ⌦(k) distinct real roots.

This is proved in Section 5.3. We remark that a weaker bound of ⌦(
p
k) follows from Theorem 2

and Cauchy’s argument principle.

An application to Real ⌧ -Conjectures. The Real ⌧ - Conjecture of Koiran [9] asserts the following: let
f 2 R[x] be a real univariate polynomial which can be written as

f =
pX

i=1

qY

j=1

fi,j , where |supp(fi,j)|  r , (2)

then f has at most (pqr)c distinct real roots (for some absolute constant c). In [10], Koiran et al.
have made a similar conjecture (called the ⌧ -Conjecture for Newton Polygons): let f (x, y) be a real
bivariate polynomial as in (2), then Newt(f (x, y)) has at most (pqr)c0 vertices. Using Theorem 2, we
can conclude the two conjectures are related:

Proposition 4. The Real ⌧ -Conjecture implies the ⌧ -Conjecture for Newton Polygons.

Proof. In [6], it was shown that the Real ⌧ -Conjecture implies the following: given a complex
univariate polynomial f as in (2), its bias can also bounded as B(f )  (pqr)c00 (where c 00 > 0 is
a new absolute constant). Assume now that f (x, y) is a (real or complex) polynomial of the form (2)
such that Newt(f (x, y)) has k vertices. By Theorem 2, we can find a 2 C\{0} so that B(f (x, a)) � C

p
k,

with a constant C > 0. Assuming the Real ⌧ -Conjecture, the result in [6] gives that C
p
k  (pqr)c00

and hence k  C2(pqr)2c00 — as required4 by the conjecture on Newton polytopes. ⇤

3 In this paper, g(k) � ⌦(h(k)) means that g(k) � c · h(k) holds for some constant c > 0 and every sufficiently large k.
4 As the non-trivial case is pqr � 2, the constant C2 can be subsumed in the exponent.
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We point out that the same could be concluded from Theorem 3 and a lemma from [6] relating
the complexity of f with that of <(f ).

Some notation. For n 2 N, let [n] := {1, . . . , n}. For r 2 R, {r} := r � brc is the fractional part of r .
log(x) is the logarithm in base two.

3. Lower bounds on the discrepancy of runners

In this section, we prove Theorem 1, as well as give a stronger bound in the special case k = n.
We point out that the special case can be easily proved by estimating maxt2[0,1] |

Pn
j=1 e

2⇡ ı(sj+vjt)|
and then using some well-known properties of discrepancy, such as the Koksma inequality (see,
e.g., the monograph [14]). In the case of non-distinct speeds, this approach seems hard to implement
and leads to Turán style problems on power-sums [13,17]. The strategy of our proof is therefore
different. We directly estimate the expectation of the square of the number of runners in S, for a
random time t and a random sector S. It is more convenient to first analyse the case when the
speeds are integers: at time t = 1 the runners return to their original positions and it is enough to
understand the system in the interval t 2 [0, 1].

Given 0  �  1 and ↵ 2 R, let

S↵,↵+� := {x 2 [0, 1] : {x � ↵}  � } .

When [0, 1] is viewed as a circle, S↵,↵+� is the closed sector which starts at ↵ and continues
clockwise for distance � . � will be called the aperture of S↵,↵+� and denoted |S↵,↵+� |. Given a sector
S and x 2 R, we define

�S(x) =
⇢

1 , {x} 2 S
0 , {x} 62 S

.

Let NS(x1, . . . , xn) := Pn
i=1 �S(xi) and �↵,� (x) := �S↵,↵+� (x).

Remark.

B(r1, . . . , rn) = sup
0↵,�1

|NS↵,↵+� (r1, . . . , rn) � � n|.

Moreover, it does not matter whether the sectors are closed, open, or half-open.

In the following, Exh(x) will stand for
R 1
0 h(x)dx, the expectation of h(x) on [0, 1]. Similarly,

Ex,yh(x, y) stands for
R 1
0

R 1
0 h(x, y)dydx etc. In the cases considered below, Fubini’s theorem is

applicable and we have Ex,y = Ey,x.

Lemma 5. Let s1, s2 2 R, let v1, v2 be distinct integers and � 2 [0, 1]. Then
E
t,↵

�↵,� (s1 + v1t) = � , (3)

E
t,↵

�↵,� (s1 + v1t)�↵,� (s2 + v2t) = � 2 . (4)

Proof. (3) is rather obvious. In fact, we already have

E
↵
�↵,� (s + vt) = � , E

t
�↵,� (s + vt) = � ,

where the latter holds if5 v 2 Z \ {0}.

5 The assumption v 2 Z makes �↵,� (s + vt) 1-periodic in t , and v 6= 0 guarantees the runner spends � -fraction of
time in S↵,↵+� .
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To prove (4), note that �↵,� (x + z) = �↵�z,� (x) and the left-hand side of (4) equals A :=R 1
0

R 1
0 �↵�v1t,� (s1)�↵�v2t,� (s2)d↵dt . We have
Z 1

0
�↵�v1t,� (s1)�↵�v2t,� (s2)d↵ =

Z 1�v1t

�v1t
�↵0,� (s1)�↵0+(v1�v2)t,� (s2)d↵

0

=
Z 1

0
�↵0,� (s1)�↵0+(v1�v2)t,� (s2)d↵

0 ,

where we have used the substitution ↵0 = ↵ � v1t and the fact that �↵,� is 1-periodic in the first
argument. Exchanging the order of integration, we have

A =
Z 1

0

Z 1

0
�↵,� (s1)�↵+(v1�v2)t,� (s2)d↵dt

=
Z 1

0

✓
�↵,� (s1)

Z 1

0
�↵+(v1�v2)t,� (s2)dt

◆
d↵ =

Z 1

0

�
�↵,� (s1)�

�
d↵ = � 2 . ⇤

As a warm-up for Theorem 1, we first consider the case of runners with distinct speeds. In this
case, the obtained result is stronger.

Theorem 6. Let v1, . . . , vn be distinct real numbers and s1, . . . , sn 2 [0, 1). Let � 2 [0, 1]. Then there
exist t 2 R and a sector S = S↵,↵+� of aperture � such that

|NS(s1 + v1t, . . . , sn + vnt) � � n| �
p
(� � � 2)n.

In particular, there exists t 2 R such that B(s1 + v1t, . . . , sn + vnt) � p
n/2.

Proof. Assume first that v1, . . . , vn are distinct integers. Define N(↵, t) := Pn
i=1 �↵,� (si + vit);

the number of runners in S↵,↵+� at time t . We shall abbreviate E↵,t by E. We want to estimate
E((N(↵, t) � � n)2). By the previous lemma, we obtain E(N(↵, t)) = � n. This implies E((N(↵, t) �
� n)2) = E((N(↵, t)2) � � 2n2). Moreover, the lemma also gives

E(�↵,� (si + vit)�↵,� (sj + vjt)) = � , if i = j ,
= � 2 , if i 6= j .

This means that

E(N(↵, t)2) =
nX

i=1

E(�↵,� (si + vit)2) +
X

i6=j

E(�↵,� (si + vit)�↵,� (sj + vjt))

=� n + � 2n(n � 1) = (� � � 2)n + � 2n2 .

Altogether, we obtain

E((N(↵, t) � � n)2) = (� � � 2)n + � 2n2 � � 2n2 = (� � � 2)n .

This means that for some ↵ and t , |N(↵, t) � � n| �
p
(� � � 2)n which proves the special case of

the theorem.
For non-integer speeds, we will apply Dirichlet’s approximation theorem. If v0

1, . . . , v
0
n are

distinct real numbers and ✏ > 0, the theorem gives a positive integer q and integers v1, . . . , vn
such that |v0

i q � vi|  ✏ for every i. Let N 0(↵, t) := Pn
i=1 �↵,� (si + v0

i t) and N(↵, t) be as above. We
again want to estimate |N 0(↵, t) � � n|. Since we can scale the time by a factor of q, we can assume
that in fact q = 1 and so |v0

i � vi|  ✏ for every i. We observe that

E((N 0(↵, t) � � n)2) � E((N(↵, t) � � n)2) � ✏cn ,

where cn is a constant depending only on n. This is because N(↵, t) and N 0(↵, t) differ on at most an
2✏n-fraction of ↵ 2 [0, 1]. Hence we conclude that there exist ↵ and time t with |N 0(↵, t) � � n| �p
(� � � 2)n � ✏c 0

n. Since we can pick ✏ arbitrarily small and N 0(↵, t) is an integer, we conclude
|N 0(↵, t) � � n| �

p
(� � � 2)n for some ↵, t . ⇤
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We remark that the main part of Theorem 6 fails miserably if the runners have non-distinct
speeds. Consider n = 2k runners with k distinct speeds running in pairs such that in a given pair,
the two runners maintain distance 1/2. Then we can set the starting positions so that for every
sector S of aperture � = 1/2 and every time, the number of runners in the sector is at least k and
at most6 k + 4.

To prove Theorem 1, we need one more lemma:

Lemma 7. Let s1, . . . , sm 2 R and ↵ 2 [0, 1]. Let N(� ) := Pm
i=1 �↵,� (si). Then

E
�
((N(� ) � �m)2) � 1

12
.

Proof. The function N(� ) is integer-valued. Hence |N(� ) � �m| � �(�m), where �(z) 2
[0, 1/2] denotes the distance of z 2 R from a closest integer. It is therefore enough to estimateR 1
0 �(�m)2d� . The function �(�m) is 1/m-periodic and symmetric with respect to the point �0 =

1/2m. This means that
R 1
0 �(�m)2d� = 2m

R 1/2m
0 �(�m)2d� . Furthermore, if � 2 [0, 1/2m] then

�(�m) = �m and hence
Z 1/2m

0
�(�m)2d� = m2

Z 1/2m

0
� 2d� = m2

3(2m)3
= 1

24m
.

This gives
R 1
0 �(�m)2 � 2m/24m = 1/12. ⇤

Proof of Theorem 1. We will assume that v1, . . . , vn are integers; the general case proceeds in the
same way as in the proof of Theorem 6. Without loss of generality, assume that already v1, . . . , vk
are distinct. Given j 2 [k], let Aj := {i 2 [n] : vi = vj} be the set of runners with speed vj. Let
Nj(↵, � , t) := P

i2Aj �↵,� (si + vit) and N(↵, � , t) := Pn
i=1 �↵,� (si + vit). Hence N(↵, � , t) denotes

the number of runners in S↵,↵+� at time t and N(↵, � , t) = Pk
j=1 Nj(↵, � , t). We want to estimate

E((N(↵, � , t) � � n)2), where E now stands for E↵,� ,t .
Setting gj(↵, � , t) := Nj(↵, � , t) � � |Aj|, we claim that

E(g2
j ) � 1/12 ,

E(gj1gj2 ) = 0, if j1 6= j2 . (5)

The first inequality is a consequence of Lemma 7. (5) is an application of Lemma 5 as follows. For
a fixed � , we have E↵,tNj(↵, � , t) = � |Aj| which means that

E
↵,t

(gj1gj2 ) = E
↵,t

(Nj1 (↵, � , t)Nj2 (↵, � , t)) � � 2|Aj1 ||Aj2 |.

Furthermore, by Lemma 5,

E
↵,t

(Nj1 (↵, � , t)Nj2 (↵, � , t)) =
X

i12Aj1 ,i22Aj2

E
↵,t

�↵,� (si1 + vj1 t)�↵,� (si2 + vj2 t)

=� 2|Aj1 ||Aj2 | .
This shows that the left-hand side of (5) indeed equals zero.

We now have

E((N(↵, � , t) � � n)2) = E((
kX

j=1

gj)2) =
kX

j=1

E(g2
j ) +

X

j1 6=j2

E(gj1gj2 ) � k
12

.

This implies that for some ↵, t, � , |N(↵, � , t) � � n| � p
k/12. ⇤

6 This is owing to the fact that S is closed; a half-closed sector would contain precisely k runners at every time.
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4. An upper bound on the discrepancy of runners

We now want to show that the bounds in Theorems 1 and 6 are tight up to logarithmic factors.

Theorem 8. Let v1 := 1, . . . , vn := n. There exist s1, . . . , sn 2 [0, 1) such that for every t 2 R and ev-
ery � 2 [0, 1], the following holds. For every sector S of aperture � , |NS(s1 + v1t, . . . , sn + vnt) � � n| 
O(

p
n� log n + log n). Hence B(s1 + v1t, . . . , sn + vnt)  O(

p
n log n).

Clearly, this implies a similar bound in the general case of non-distinct speeds. If k  n, set
v1, . . . , vn so that v1 = 1, . . . , vk = k and vk+1, . . . , vn = k. Applying Theorem 8 and setting the
starting positions of the last n � k + 1 runners so that they uniformly partition the circle, we have
for every t

B(s1 + v1t, . . . , sn + vnt)  O(
p
k log k).

Proof of Theorem 8. Pick s1, . . . , sn 2 [0, 1] uniformly and independently at random. Let NS(t) :=
NS(s1 + v1t, . . . , sn + vnt) be the number of runners in S at time t . We claim that for every fixed t
and a fixed sector S of aperture � � 4 log n/n,

Pr
s1,...,sn

h
|NS(t) � � n| � 4

p
n� log n

i
 n�5 . (6)

For if s1, . . . , sn are uniform and independent, so are s1 + v1t, . . . , sn + vnt . The expected value of
NS(t) is µ := � n. Chernoff bound gives that for every 0  �  1,

Pr[NS(t)  (1 � �)µ]  e��2µ/2 , Pr[NS(t) � (1 + �)µ]  e��2µ/3.

If we now set � := 4
q

log n
� n , we have �µ = 4

p
n� log n and �2µ = 16 log n. Hence both the

probabilities in (6) are at most e�16 log n/3  n�5.
Let m := bn/(4 log n)c and �0 := 1/m. Let S be the set of sectors of the form Si�0,i�0+j�0 ,

i, j 2 {0, . . . ,m � 1}. That is, S consists of the m2 sectors whose starting point and aperture
are a multiple of �0. Let T be the set of times of the form k/nm, k 2 {0, . . . , nm + 1}. Since
m < n, we have |S| · |T |  n4. Then (6) and the union bound give that, with positive probability,
|NS � |S| · n|  4

p
n|S| log n holds for every S 2 S and t 2 T .

Hence there exist s1, . . . , sn so that

|NS � |S|·n|  4
p
n|S| log n , for all S 2 S, t 2 T . (7)

We first claim that this can be extended also to times not in T :

|NS � |S|·n|  4
p
n|S| log n + O(log n) , for all S 2 S, t 2 R . (8)

For, given a ‘‘small’’ sector S0 in S of aperture �0, (7) tells us that NS0  8 log n + 1. Between two
consecutive times t1 = k/nm and t2 = (k + 1)/nm in T , the fastest runner with speed n covers
distance n/nm = �0. This means that the runners that come to or leave from a sector S must come
from, or move to, the at most two adjacent small sectors of aperture �0. In a similar fashion, we can
extend (8) to all sectors of aperture � 2 [0, 1]. For given such a sector S, we can find S1 2 S [ {;}
and S2 2 S with S1 ✓ S ✓ S2 and apertures satisfying |S1| � � � 2�0, |S2|  � + 2�0. ⇤

4.1. An explicit construction

It would be interesting to give an explicit construction of low-discrepancy runners, and we now
make a step in this direction. We will use the Erdös–Turán inequality [4] which is a useful tool
for bounding discrepancy. We also note that the inequality would somewhat simplify the proof of
Theorem 8 (see also [3]), at the cost of obtaining weaker bounds.

It is convenient to interpret the discrepancy of runners in terms of norms of complex polynomi-
als. Let f (x) = P

i aix
i be a complex polynomial. Let |f |m := max|x|=1 |f (x)| be its maximum on the

unit complex circle. Furthermore, let f (k)(x) := P
i a

k
i x

i be the Hadamard power of f . The following
lemma is a straightforward adaptation of the Erdös–Turán inequality to our setting:
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Lemma 9. Let v1, . . . , vn be distinct non-negative integers, s1, . . . , sn 2 [0, 1) and f (x) :=Pn
i=1 e

2⇡ ısi xvi . Then for every t 2 R,

B(s1 + v1t, . . . , sn + vnt)  c

 
1 +

nX

k=1

|f (k)(x)|m
k

!
,

where c > 0 is an absolute constant.

In order to apply Lemma 9, we want to find a polynomial f (x) with unimodular coefficients
such that |f (k)(x)|m is small for every k  n. Our construction is a generalization of that of Shapiro
polynomials, see, e.g., [16]. Shapiro’s construction gives a polynomial f (x) with ±1 coefficients and
degree d = 2n � 1 such that |f (x)|m  2(n+1)/2 = p

2(d + 1).
Let us fix a prime p. Let ⇠ be a pth primitive root of unity. Let D be the p ⇥ p (unnormalized)

discrete Fourier transformmatrix, Dj,k = ⇠ jk, j, k 2 {0, . . . , p�1}. Recursively, we construct a p-tuple
of polynomials Q0,r , . . . ,Qp�1,r . We set Q0,0 := 1, . . . ,Qp�1,0 := 1. If r � 0, we let

0

BB@

Q0,r+1
Q1,r+1
...
Qp�1,r+1

1

CCA = D ·

0

BBB@

Q0,r
xpr Q1,r

...

x(p�1)pr Qp�1,r

1

CCCA
. (9)

The construction guarantees that every Qi,r has degree dr = pr � 1 and that its coefficients have
absolute value one.

For example, in the case p = 2, we obtain the usual Shapiro polynomials. The definition is
simplified to

Q0,0 ,Q1,0 = 1 ,

✓
Q0,r+1
Q1,r+1

◆
=
✓
1 1
1 �1

◆
·
✓

Q0,r
x2r Q1,r

◆
,

and gives the sequence:

1
1 ,

1 + x
1 � x ,

1 + x + x2 � x3
1 + x � x2 + x3 ,

1 + x + x2 � x3 + x4 + x5 � x6 + x7
1 + x + x2 � x3 � x4 � x5 + x6 � x7 , . . .

We can bound |Q (k)
i,r |m as follows.

Proposition 10. Let 0  i  p � 1 and k be a natural number such that p does not divide k. Then
|Q (k)

i,r |m  p
r+1
2 = p

p(dr + 1).

Proof. Assume first that k = 1. We will prove that for every x with |x| = 1,

|Q0,r (x)|2 + · · · + |Qp�1,r (x)|2 = pr+1 . (10)

This is by induction on r . If r = 0, the statement is clear. For the inductive step, let Qr+1(x) be the
vector on the left-hand side of (9) and Pr (x) the one on the right-hand side, so that Qr+1(x) = DPr (x).
For u 2 Cp let |u| be its Euclidean norm. The matrix D satisfies D · D̄t = pIp. This means that for
every u 2 Cp, |Du|2 = p|u|2. Hence we have |Qr+1(x)|2 = p|Pr (x)|2 for every x 2 C. Furthermore, if
|x| = 1, we have |Pr (x)|2 = |Qr (x)|2 and hence |Qr+1(x)|2 = p|Qr (x)|2. This implies (10).

Equality (10) gives |Qi,r |m  p(r+1)/2 as required. Let k be such that p does not divide k. Then
Q (k)
i,r satisfy the same recursive definition, except that the root ⇠ is replaced with ⇠ k, and the same

conclusion holds. ⇤

In order to obtain low-discrepancy runners from Proposition 10, it is enough to take the
polynomial Q0,r for a suitable r . It turns out that r = 3 gives optimal parameters in this setting.7

7 Hence the recursion (9) is applied 3 times. Note, however, that Q0,3 implicitly depends on the chosen prime p (and
the root ⇠ ).
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Corollary 11. Let p be a prime and n := p3. Let s0, . . . , sn�1 2 [0, 1) be such that Q0,3 = Pn�1
j=0 e2⇡ ısj xj.

Then B(s0, s1 + t, . . . , sn�1 + (n � 1)t)  O(n2/3 log n) for every t 2 R.

Proof. By Lemma 9, it is enough to estimate A := Pn
k=1

|Q (k)
0,3|

m
k . If p - k, we have |Q (k)

0,3|m  p2 = n2/3

by Proposition 10. Hence
X

kn,p- k

|Q (k)
0,3(x)|m
k


nX

k=1

n2/3

k
 O(n2/3 log n) .

If p divides k, we have |Q (k)
0,3|m  n. Hence

X

kn,p|k

|Q (k)
0,3(x)|m
k


X

kn,p|k

n
k

= n
p

n/pX

a=1

1
a

 O(n2/3 log n) .

This gives the estimate A  O(n2/3 log n). ⇤

5. Newton polytopes and angular distribution of zeros

In this section, we prove Theorems 2 and 3.

5.1. The connection with runners

We start by discussing the connection between Theorem 2 and the discrepancy of runners. Let
f (x, y) be a polynomial of the form

f (x, y) = xm1ym2

nY

i=1

(x � aiyqi ) , (11)

where ai = rie2⇡ ısi , ri > 0, si 2 [0, 1), and m1,m2, q1, . . . , qn 2 Z with m1,m2 � 0. Let
k := |{q1, . . . , qn}| be the number of distinct qi’s. Then Newt(f (x, y)) has precisely 2k vertices (if
k > 0). This is because the Newton polytope of a product g1g2 is the Minkowski sum of Newton
polytopes of the factors g1 and g2 (see, e.g., [10] or references within). Hence, Newt(f (x, y)) is the
Minkowski sum of line segments (and a point) with precisely k distinct gradients, which yields 2k
vertices. Given a = re2⇡ ıt , r > 0, the non-zero roots of f (x, a) are of the form rqj rje2⇡ ı(sj+qjt), j 2 [n].
Hence, as t varies, their arguments are

2⇡ (s1 + q1t) , . . . , 2⇡ (sn + qnt) ,

and they can be seen as a system of runners on a circle of length one with speeds q1, . . . , qn. Using
Theorem 1, these observations entail:

B(f (x, a)) � ⌦(
p
k) , for some a with |a| = 1.

Conversely, a system of runners s1 + v1t, . . . , sn + vnt , v1, . . . , vn 2 N, can be associated with the
bivariate polynomial

g(x, y) =
nY

j=1

(x � e2⇡ ısj yvj ).

This and Theorem 8 imply:

Proposition 12. For every n, there exists g(x, y) whose Newton polytope has 2n vertices but for every
a 2 C \ {0}, B(g(x, a))  O(

p
n log n).

We remark that g can be assumed to have real coefficients by taking instead g · ḡ = Qn
j=1(x

2 �
2 cos(2⇡sj)xyvj + y2vj ). Furthermore, Theorem 8 gives more information: for example, every small
sector of aperture O(log n/n) contains at most O(log n) runners. The same could be said about the
roots of g(x, a).
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5.2. Proof of Theorem 2

Our goal is to deduce Theorem 2 from Theorem 1. The strategy is to approximate f (x, y) by
polynomials corresponding to edges of its Newton polytope — hence reducing the problem to the
already understood case as in (11). As pointed out by an anonymous referee, the following proof
is similar to the proof of Newton–Puiseux theorem (see, e.g., [19]). The theorem expresses roots
of f (x, y) = 0, when viewed as a polynomial in x, as Puiseux series in y. Moreover, the first
approximation of the series is given by monomials on the boundary Newt(f (x, y)), which would
lead to an alternative proof of Theorem 2 from Theorem 1.

Let g(x, y) be a polynomial such that Newt(g) lies on the line ` = {(t, qt + m) : t 2 R}, q 2 Q.
Then g(x, y) can be written as

g(x, y) = ym
n2X

j=n1

cjxjyqj . (12)

Furthermore, if q 2 Z, g(x, y) can be factored as

g(x, y) = a0ym
nY

i=1

(xyq � ai) , (13)

where a0, . . . , an 2 C.

Lemma 13. Let g(x, y) be as in (13) with a0 6= 0. Let h(x, y) be a polynomial such that Newt(h) lies
in the strict upper-half plane determined by `. Then for every ✏ > 0 sufficiently small, and every a 2 C
with 0 < |a| sufficiently small with respect to ✏, the following holds. Let ⇠ be a non-zero root of g(x, a)
of multiplicity p. Then g(x, a) + h(x, a) has precisely p roots ⇠ 0 which satisfy |⇠ 0 � ⇠ |  ✏|⇠ |, counted
with multiplicity.

Proof. This is an application of Rouché’s theorem. Let 0 < ✏ < 1 be such that ✏ < |ai � aj| for
every ai 6= aj. Given a 2 C \ {0}, every root of g(x, a) is of the form ⇠ (a) = aka�q for some ak 6= 0.
Let us fix such an ak. Let ⌦(a) be the open ball with centre at ⇠ (a) and radius ✏|⇠ (a)|. Let M1 be the
minimum of |g(x, 1)| on @⌦(1). Hence M1 > 0 and

min
x2@⌦(a)

|g(x, a)| � M1|a|m . (14)

Furthermore, we claim that there exists M2 independent on a such that whenever |a| < 1,

max
x2@⌦(a)

|h(x, a)|  M2|a|m+1 . (15)

For let h(x, y) = P
(i,j)2A ci,jx

iyj. By the assumption on h (also recall that q is an integer), we have that
j � qi+m+ 1 whenever ci,j 6= 0. Furthermore, given x 2 @⌦(a), we have |x|  2|⇠ (a)| = 2|ak||a|�q.
Hence,

|h(x, a)| 
X

(i,j)2A
|ci,j||x|i|a|j 

X

(i,j)2A
|ci,j||2ak|i|a|�qi+j

 |a|m+1
X

(i,j)2A
|ci,j||2ak|i ,

which shows that (15) holds.
Inequalities (14) and (15) imply that for every a with |a| small enough, |h(x, a)| < |g(x, a)| holds

for every x 2 @⌦(a). Rouché’s theorem then gives that g(x, a) and g(x, a)+h(x, a) contain the same
number of roots in ⌦(a), counted with multiplicities. ⇤

We now make some observations about polytopes. Let P ✓ R2 be a polytope with k > 2 vertices.
Then P has k edges. An edge e will be called a lower edge, if P lies in the closed upper-half plane
determined by the line passing through e. Similarly, an upper edge and the lower-half plane. Every
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edge e is either a lower or an upper edge, unless e is parallel to the y-axis. There can be at most two
such edges, and we conclude that P has either at least (k � 2)/2 lower edges, or at least (k � 2)/2
upper edges.

Suppose that P has s lower edges e1, . . . , es with gradients q1, . . . , qs. Then the gradients are
distinct and, assuming q1 < · · · < qs, P contains vertices (a1, b1), . . . , (as+1, bs+1) with a1 < · · · <
as+1 such that every ei connects (ai, bi) and (ai+1, bi+1). Furthermore, the projection of P to the x-axis
is the interval [a1, as+1].

Let f (x, y) = P
i,j ai,jx

iyj and let e ✓ R2 be an edge of Newt(f ) connecting vertices (a, b) and
(a0, b0) with a < a0. We define

fe(x, y) :=
X

(i,j)2e
ai,jxiyj , f ⇤

e (x, y) := x�afe(x, y) .

Lemma 14. Let L be the set of lower edges of Newt(f (x, y)). Let f ⇤(x, y) := Q
e2L f

⇤
e (x, y). Then for

every � 2 [0, 2⇡ ) and every r > 0 sufficiently small,

|B(f (x, reı�)) � B(f ⇤(x, eı�))| < 1.

Proof. Without loss of generality, assume that x does not divide f and that the lower edges
have integer gradients. Otherwise, we can divide by x and replace y by a suitable power of y. For
a 2 C \ {0}, Arg(a) denotes the unique ✓ 2 (�⇡ , ⇡] with a = |a|eı✓ .

Let n := deg(f (x, y)), where from now on deg will denote the degree with respect to the x-
variable. Let e1, . . . , es be the lower edges of Newt(f (x, y)) with gradients q1 < · · · < qs. As
in the above discussion, we have vertices (a1, b1), . . . , (as+1, bs+1) so that ei connects (ai, bi) and
(ai+1, bi+1), and a1 = 0, as+1 = n. Observe that x does not divide f ⇤

ei and deg(f ⇤
ei ) = ai+1 � ai. Hence,

deg(f ⇤) =
sX

i=1

deg(f ⇤
i ) =

sX

i=1

(ai+1 � ai) = as+1 � a0 = n .

Let � be given and ✏ > 0 be sufficiently small. We claim the following: given r sufficiently small,
there is a bijection between the roots of f ⇤(x, eı�) and f (x, reı�), so that any two corresponding roots
⇠ , ⇠ 0 satisfy |Arg(⇠ 0/⇠ )| < ✏. We will call such a bijection an ✏-matching. This clearly implies that
B(f (x, reı�)) and B(f ⇤(x, eı�)) get arbitrarily close to each other (for our purposes, it is enough to set
✏ = 1/2n).

The claim is an application of Lemma 13. Let di := deg(f ⇤
ei ). We can factor each f ⇤

ei as

f ⇤
ei (x, y) = c0ybi

diY

j=1

(xyqi � cj) , (16)

This means that the roots of f ⇤
ei (x, re

ı�) lie in the disc

Di(r) = {z 2 C : mir�qi  |z|  m0
ir

�qi},
where 0 < mi  m0

i are independent of r . By the definition of fei , the Newton polytope of
f (x, y) � fei (x, y) lies in the strict upper-half plane determined by the edge ei. From Lemma 13,
we conclude that for every r > 0 small enough, f (x, reı�) contains at least di roots in the disc

D0
i(r) = {z 2 C : mi(1 � ✏)r�qi < |z|  m0

i(1 + ✏)r�qi}
and, moreover, there is an ✏-matching between di of these roots and the roots of f ⇤

ei (x, re
ı�). As r

approaches zero, the discs D0
i(r) and D0

j(r) become disjoint for distinct i and j. Since deg(f ) = deg(f ⇤),
this means that there is an ✏-matching between the roots of f (x, reı�) and f ⇤(x, reı�). To conclude
the claim, observe from (16) that the arguments of the roots of f ⇤(x, reı�) do not depend on r . ⇤

Proof of Theorem 2. Let f (x, y) be such that Newt(f (x, y)) has k vertices. Without loss of generality,
we will assume that Newt(f ) has s � (k � 2)/2 lower edges. For otherwise, take the polynomial
ymf (x, y�1) for m sufficiently large.
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Using Lemma 14, it is enough to show there exists � 2 [0, 2⇡ ) with

B(f ⇤(x, eı�)) � ⌦(
p
s) . (17)

If the gradients of the lower edges are integers, we can factor f ⇤ as (11) and conclude (17) from
Theorem 1 as in the discussion in Section 5.1. If the gradients are not integers, take instead f ⇤(x, ym)
for a suitable m. ⇤

5.3. Proof of Theorem 3

As already remarked, a weaker version of Theorem 3 follows from Theorem 2. However, the
following proof of the full version is self-contained, though similar to that of Theorem 2.

An analogue of Lemma 13 is the following:

Lemma 15. Let g(x, y) be a real polynomial as in (12) with cn1cn2 < 0 and q 2 Q. Let h(x, y) be a
real polynomial such that Newt(h) lies strictly above the line `. Then there exist 0 < d < d0 such that
for every 0 < r sufficiently small, g(x, r) + h(x, r) contains a root in the interval (dr�q, d0r�q).

Proof. The assumption cn1cn2 < 0 guarantees the existence of 0 < d < d0 with g(d, 1)g(d0, 1) < 0.
This means that for every 0 < r , also g(dr�q, r)g(d0r�q, r) < 0. As in the proof of Lemma 13, it can
be shown that for r > 0 sufficiently small, |h(dr�q, r)| < |g(dr�q, r)| and |h(d0r�q, r)| < |g(d0r�q, r)|.
This shows that g(x, r) + h(x, r) has different signs on the endpoints of the interval [dr�k, d0r�k],
and the interval must contain a real root. ⇤

The following lemma is a substitute for Theorem 1. Let r1, . . . , rk be a sequence of real numbers.
We define

V (r1, . . . , rk) := |{i 2 [k � 1] : riri+1 < 0}|,
the number of sign variations in the sequence.

Lemma 16. Let ↵1, . . . ,↵k 2 [0, 2⇡ ) and let n1, . . . , nk be positive integers such that ni 6= ni+1 for
every i 2 [k � 1]. Then there exists � 2 [0, 2⇡ ) such that8 V (cos(↵1 + �n1), . . . , cos(↵k + �nk)) �
(k � 1)/8.

Proof. Pick a random x 2 [0, 1]. Let fi(x) := cos(↵i + 2⇡nix) cos(↵i+1 + 2⇡ni+1x). We claim that

Pr[fi(x) < 0] � 1/8.

This can be seen as follows. An easy calculation shows that
R 1
0 fi(x)dx = 0 and

R 1
0 fi(x)2dx = 1/4. Let

A := {x 2 [0, 1] : fi(x) < 0}. Then
1
4

=
Z 1

0
fi(x)2dx


Z 1

0
|fi(x)|dx =

Z

A
|fi(x)|dx +

Z

[0,1]\A
|fi(x)|dx = 2

Z

A
|fi(x)|dx  2|A| ,

which shows that |A| � 1/8.
Let �i(x) 2 {0, 1} be the indicator function of the event that fi(x) < 0. Then the expectation of

�1(x)+ · · · + �k�1(x) is at least (k� 1)/8. Hence there exists x 2 [0, 1) so that fi(x) < 0 holds for at
least (k � 1)/8 of the i’s. ⇤

Proof of Theorem 3. As in the proof of Theorem 2, we can assume that the polytope has s �
(k � 2)/2 lower edges. Let e1, . . . , es be such edges with gradients q1, . . . , qs, where ei connects

8 We are not trying to optimize the constant; a different argument would give an improvement of (k � 1)/6.
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(ai, bi) and (ai+1, bi+1) with ai < ai+1. Let rieı↵i be the coefficient of xaiybi in f (where ri > 0,
↵i 2 [0, 2⇡ )).

Given a = reı� , we can write <(fei (x, a)) as

cos(↵i + bi�)rirbi xai + cos(↵i+1 + bi+1�)ri+1rbi+1xai+1 + <(ui(x, a)),

where ui(x, y) is a polynomial such that Newt(ui(x, y)) lies on the line strictly between the points
(ai, bi) and (ai+1, bi+1). Let T (�) be the sequence cos(↵1 + �b1), . . . , cos(↵s+1 + �bs+1). Note that
bi 6= bi+1 holds for every i 2 [s], with at most one exception. By the previous lemma, there exists a
� such that V (T (�)) � (s� 1)/8 (this ‘‘one exception’’ compensated by the sequence having length
s + 1). Fix such a �. Given an i with cos(↵i + �bi) cos(↵i+1 + �bi+1) < 0, we can apply Lemma 15,
to conclude that <(f (x, reı�)) has a root in the interval (dir�qi , d0

ir
�qi ) for every r sufficiently small.

As r approaches zero, the intervals corresponding to different i’s are disjoint (the gradients qi are
distinct). This gives that <(f (x, reı�)) has at least (s � 1)/8 distinct real roots for r sufficiently
small. ⇤
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