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Improved bounds on Fourier entropy and Min-entropy
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Given a Boolean function f : {−1, 1}n → {−1, 1} , define the Fourier distribution to be the distribution on subsets of [n], where

each S ⊆ [n] is sampled with probability f̂ (S )2. The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [27] seeks to

relate two fundamental measures associated with the Fourier distribution: does there exist a universal constant C > 0 such that

H( ˆf 2) ≤ C · Inf (f ), where H( ˆf 2) is the Shannon entropy of the Fourier distribution of f and Inf (f ) is the total influence of f ?

In this paper we present three new contributions towards the FEI conjecture:

(1) Our first contribution shows that H( ˆf 2) ≤ 2 · aUC⊕ (f ), where aUC⊕ (f ) is the average unambiguous parity-certificate

complexity of f . This improves upon several bounds shown by Chakraborty et al. [19]. We further improve this bound

for unambiguous DNFs. We also discuss how our work makes Mansour’s conjecture for DNFs a natural next step towards

resolution of the FEI conjecture.

(2) We next consider the weaker Fourier Min-entropy-Influence (FMEI) conjecture posed by O’Donnell and others [47, 50] which

asks if H∞ ( ˆf 2) ≤ C · Inf (f ), where H∞ ( ˆf 2) is the min-entropy of the Fourier distribution. We show H∞ ( ˆf 2) ≤ 2 · C⊕
min

(f ),

where C⊕
min

(f ) is the minimum parity-certificate complexity of f . We also show that for all ε ≥ 0, we have H∞ ( ˆf 2) ≤

2 log( ∥ f̂ ∥1,ε /(1 − ε )), where ∥ f̂ ∥1,ε is the approximate spectral norm of f . As a corollary, we verify the FMEI conjecture for

the class of read-k DNFs (for constant k ).

(3) Our third contribution is to better understand implications of the FEI conjecture for the structure of polynomials that 1/3-

approximate a Boolean function on the Boolean cube. We pose a conjecture : no flat polynomial (whose non-zero Fourier

coefficients have the same magnitude) of degree d and sparsity 2
ω (d )

can 1/3-approximate a Boolean function. This conjecture

is known to be true assuming FEI and we prove the conjecture unconditionally (i.e., without assuming the FEI conjecture) for a

class of polynomials. We discuss an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille

inequality, which has been extensively studied in functional analysis.

CCS Concepts: • Computing methodologies→ Representation of Boolean functions; •Mathematics of computing→ Infor-

mation theory.
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1 INTRODUCTION

Boolean functions f : {−1, 1}n → {−1, 1} naturally arise in many areas of theoretical computer science and mathe-

matics such as learning theory, complexity theory, quantum computing, inapproximability, graph theory, extremal

combinatorics, etc. Fourier analysis over the Boolean cube {−1, 1}n is a powerful technique that has been used often to

analyze problems in these areas. For a survey on the subject, see [47, 66]. One of the most important and longstanding

open problems in this field is the Fourier Entropy-Influence (FEI) conjecture, first formulated by Ehud Friedgut and Gil

Kalai in 1996 [27]. The FEI conjecture seeks to relate the following two fundamental properties of a Boolean function

f : the Fourier entropy of f and the total influence of f , which we define now.

For a Boolean function f : {−1, 1}n → {−1, 1} , Parseval’s identity relates the Fourier coefficients
{
f̂ (S )

}
S
and the

values

{
f (x )

}
x by ∑

S ⊆[n]

f̂ (S )2 = Ex
[
f (x )2

]
= 1,

where the expectation is taken uniformly over the Boolean cube {−1, 1}n . An immediate implication of this equality is

that the squared Fourier coefficients

{
f̂ (S )2 : S ⊆ [n]

}
can be viewed as a probability distribution over subsets S ⊆ [n],

which we often refer to as the Fourier distribution. The Fourier entropy of f (denoted H( ˆf 2)) is then defined as the

Shannon entropy of the Fourier distribution, i.e.,

H( ˆf 2) :=
∑
S ⊆[n]

f̂ (S )2 log
1

f̂ (S )2
.

The total influence of f (denoted Inf ( f )) measures the expected size of a subset S ⊆ [n], where the expectation is taken

according to the Fourier distribution, i.e.,

Inf ( f ) =
∑
S ⊆[n]

|S | f̂ (S )2.

Combinatorially Inf ( f ) is the same as the average sensitivity as( f ) of f . In particular, for i ∈ [n], define Infi ( f ) to

be the probability that on a uniformly random input flipping the i-th bit changes the function value. Then, Inf ( f ) is

defined to be

∑n
i=1 Infi ( f ).

Intuitively, the Fourier entropy measures how “spread out” the Fourier distribution is over the 2
n
subsets of [n] and

the total influence measures the concentration of the Fourier distribution on the “high” level coefficients. Informally,

the FEI conjecture states that Boolean functions whose Fourier distribution is well “spread out” (i.e., functions with

large Fourier entropy) must have significant Fourier weight on the high-degree monomials (i.e., their total influence is

large). Formally, the FEI conjecture can be stated as follows :

Conjecture 1.1 (FEI Conjecture). There exists a universal constant C > 0 such that for every Boolean function

f : {−1, 1}n → {−1, 1} ,

H( ˆf 2) ≤ C · Inf ( f ). (1)
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Improved bounds on Fourier entropy and Min-entropy 3

The original motivation of Friedgut and Kalai for the FEI conjecture came from studying threshold phenomena

of monotone graph properties in random graphs [27]. For example, resolving the FEI conjecture would imply that

every threshold interval of a monotone graph property on n vertices is of length at most c (logn)−2 (for some universal

constant c > 0). Bourgain and Kalai [12] proved a bound of cε (logn)
−2+ε

for every ε > 0. A very recent work of

Kelman et al. [38] improved this bound to O ((log logn)2/(logn)2) by establishing nearly optimal bounds on Fourier

Min-entropy. In general, it implies sharper bounds on the threshold interval of transitively symmetric functions.

Besides this application, the FEI conjecture is known to imply the famous Kahn-Kalai-Linial theorem [35] (otherwise

referred to as the KKL theorem). The KKL theorem was one of the first major applications of Fourier analysis to

understanding properties of Boolean functions and has since found many application in various areas of theoretical

computer science.

Theorem 1.2 (KKL theorem). For every f : {−1, 1}n → {−1, 1} , there exists an i ∈ [n] such that Infi ( f ) ≥ Var( f ) ·

Ω
(
logn
n

)
, where Var( f ) := 1 − Ex [f (x )]

2 = 1 − f̂ (∅)2.

We discuss the implication of the FEI conjecture to the KKL theorem in more detail in Section 4. Another motivation

to study the FEI conjecture is that a positive answer to this conjecture would resolve the notoriously hard conjecture of

Mansour [44] from 1995.

Conjecture 1.3 (Mansour’s conjecture). Suppose f : {−1, 1}n → {−1, 1} is computed by a t-term DNF.1 Then

for every ε > 0, there exists a family T of subsets of [n] such that |T | ≤ tO (1/ε ) (i.e., size of T is polynomial in t) and∑
T ∈T f̂ (T )2 ≥ 1 − ε .

A positive answer to Mansour’s conjecture, along with the query algorithm of Gopalan et al. [30], would resolve

a long-standing open question in computational learning theory of agnostically learning DNFs under the uniform

distribution in polynomial time (up to any constant accuracy). We discuss this in more detail in Section 3.3.

More generally, the FEI conjecture implies that every Boolean function can be approximated (in ℓ2-norm) by sparse

polynomials over {−1, 1} . In particular, for a Boolean function f and ε > 0, the FEI conjecture implies the existence of a

polynomial p with 2
O (Inf (f )/ε )

monomials such that Ex
[
( f (x ) − p (x ))2

]
≤ ε . The current best known bound in this

direction is 2
O (Inf (f )2/ε2 )

, proven by Friedgut [26].
2

Given the inherent difficulty in answering the FEI conjecture for arbitrary Boolean functions, there have been many

recent works studying the conjecture for specific classes of Boolean functions. We give a brief overview of these results

in the next section. Alongside the pursuit of resolving the FEI conjecture, O’Donnell and others [47, 50] have asked if

a weaker question than the FEI conjecture, the Fourier Min-entropy-Influence (FMEI) conjecture can be resolved. The

FMEI conjecture asks if the entropy-influence inequality in Eq. (1) holds when the entropy of the Fourier distribution is

replaced by the min-entropy of the Fourier distribution (denoted H∞ ( ˆf
2)). The min-entropy of

{
f̂ (S )2

}
S
is defined as

H∞ ( ˆf
2) := min

S ⊆[n]:
f̂ (S ),0

{
log

1

f̂ (S )2

}

and thus it is easily seen that H∞ ( ˆf
2) ≤ H( ˆf 2). In fact, H∞ ( ˆf

2) could be much smaller compared to H( ˆf 2). For

instance, consider the function f (x ) := x1 ∨ IP(x1, . . . ,xn ); then H∞ ( ˆf 2) = O (1) whereas H( ˆf 2) = Ω(n). (IP is the

1
A t -term DNF is a disjunction of at most t conjunctions of variables and their negations.

2
Friedgut’s Junta theorem says that f is ε -close to a junta on 2

O (Inf (f )/ε )
variables. We refer to [47, Section 9.6, page 269, Friedgut’s Junta Theorem] for

details.
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4 Arunachalam et al.

inner-product-mod-2 function.) So the FMEI conjecture could be strictly weaker than the FEI conjecture, making it a

natural candidate to resolve first.

Conjecture 1.4 (FMEI Conjecture). There exists a universal constant C > 0 such that for every Boolean function

f : {−1, 1}n → {−1, 1} , we have

H∞ ( ˆf
2) ≤ C · Inf ( f ).

Another way to formulate the FMEI conjecture is, suppose f : {−1, 1}n → {−1, 1} , then does there exist a Fourier

coefficient f̂ (S ) such that | f̂ (S ) | ≥ 2
−O (Inf (f ))

? By the granularity of Fourier coefficients it is well-known that every

Fourier coefficient of a Boolean function f is an integral multiple of 2
−deg(f )

, see [47, Exercise 1.11] for a proof of this.

(Here the deg( f ) refers to the degree of the unique multilinear polynomial that represents f .) The FMEI conjecture

asks if we can prove a lower bound of 2
−O (Inf (f ))

on any one Fourier coefficient, and even this remains open. Proving

the FMEI conjecture seems to require proving interesting structural properties of Boolean functions. It was observed

by [50] that the FMEI conjecture suffices to imply the KKL theorem (see also Section 4). In fact, it suffices
3
for most of

the implications that follows from the FEI conjecture (see [38]).

Understanding the min-entropy of a Fourier distribution is important in its own right too. It was observed by Akavia

et al. [2] that for a circuit class C, tighter relations between min-entropy of f ∈ C and fA defined as fA (x ) := f (Ax ), for

an arbitrary linear transformationA, could enable us to translate lower bounds against the class C to the class C◦MOD2.

In particular, they conjectured that min-entropy of fA is only polynomially larger than f when f ∈ AC0
[poly(n),O (1)].

(AC0
[s,d] is the class of unbounded fan-in circuits of size at most s and depth at most d .) It is well-known that when

f ∈ AC0
[s,d], H∞ ( ˆf

2) is at most O ((log s )d−1 · log log s ) [11, 41, 62]. Depending on the tightness of the relationship

between H∞ ( ˆf
2) and H∞ ( f̂A

2

), one could obtain near-optimal lower bound on the size of AC0
[s,d]◦MOD2 circuits

computing IP (inner-product-mod-2). This problem has garnered a lot of attention in recent times for a variety of

reasons [2, 20, 21, 54, 56]. The current best known lower bound for IP against AC0
[s,d]◦MOD2 is quadratic when d = 4,

and only super-linear for all d = O (1) [20].

In the remaining part of this introduction, we first give an overview of prior work on the FEI conjecture in Section 1.1

and then describe our contributions in the following sections.

1.1 Prior work

After Friedgut and Kalai [27] posed the FEI conjecture in 1996, there was not much work done towards resolving it,

until the work of Klivans et al. [39] in 2010. They showed that the FEI conjecture holds true for random DNF formulas.

Since then, there have been many significant steps taken in the direction of resolving the FEI conjecture. We review

some recent works here, referring the interested reader to the blog post of Kalai [36] for additional discussions on the

FEI conjecture.

The FEI conjecture is known to be true when we replace the universal constant C with logn in Eq. (1). In fact we

know H( ˆf 2) ≤ O (Inf ( f ) · logn) for real-valued functions f : {−1, 1}n → R (see [37, 50] for a proof and [19] for an

improvement of this statement).
4
If we strictly require C to be a universal constant, then the FEI conjecture is known

to be false for real-valued functions. Instead, for real-valued functions an analogous statement called the logarithmic

Sobolev Inequality [33] is known to be true. The logarithmic Sobolev inequality states that for every f : {−1, 1}n → R,

3
With a minor strengthening: the large Fourier coefficient is required to be associated with a Fourier character of size O (Inf (f )).

4
For Boolean functions, the logn-factor was improved by [32] to log(s(f )) (where s(f ) is the sensitivity of the Boolean function f ).
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Improved bounds on Fourier entropy and Min-entropy 5

we have Ent( f 2) ≤ 2 · Inf ( f ), where Ent( f ) is defined as Ent( f ) = E[f ln( f )] − E[f ] ln(E[f ]), where the expectation

is taken over uniform x ∈ {−1, 1}n .

Restricting to Boolean functions, the FEI conjecture is known to be true for the “standard” functions that arise often

in analysis, such as AND, OR, Majority, Parity, Bent functions and Tribes. There have been many works on proving the

FEI conjecture for specific classes of Boolean functions. O’Donnell et al. [50] showed that the FEI conjecture holds for

symmetric Boolean functions and read-once decision trees. Keller et al. [37] studied a generalization of the FEI conjecture

when the Fourier coefficients are defined on biased product measures on the Boolean cube. Then, Chakraborty et al. [19]

and O’Donnell and Tan [48], independently and simultaneously, proved the FEI conjecture for read-once formulas.

In fact, O’Donnell and Tan proved an interesting composition theorem for the FEI conjecture (we omit the definition

of composition theorem here, see [48] for more). For general Boolean functions, Chakraborty et al. [19] gave several

upper bounds on the Fourier entropy in terms of combinatorial quantities larger than the total influence, e.g., average

decision tree depth, etc., and sometimes even quantities that could be much smaller than influence, namely, average

parity-decision tree depth.

Later Wan et al. [65] used Shannon’s source coding theorem [57] (which characterizes entropy) to establish the FEI

conjecture for read-k decision trees for constant k . Using their novel interpretation of the FEI conjecture they also

reproved O’Donnell-Tan’s composition theorem in an elegant way. Recently, Shalev [55] improved the constant in the

FEI inequality for read-k decision trees, and further verified the conjecture when either the influence is too low, or the

entropy is too high. The FEI conjecture is also verified for random Boolean functions by Das et al. [23] and for random

linear threshold functions (LTFs) by Chakraborty et al. [18].

There has also been some work in giving lower bounds on the constant C in the FEI conjecture. Hod [34] gave a

lower bound of C > 6.45 (the lower bound holds even when considering the class of monotone functions), improving

upon the lower bound of O’Donnell and Tan [48].

However, there has not been much work on the FMEI conjecture. It was observed in [18, 50] that the KKL theorem

implies the FMEI conjecture for monotone functions and linear threshold functions. Finally, the FMEI conjecture for

“regular” read-k DNFs was recently established by Shalev [55].

1.2 Our contributions

Our contributions in this paper are threefold, which we summarize in the following sections.

1.3 Better upper bounds for the FEI conjecture

Our first and main contribution of this paper is to give a better upper bound on the Fourier entropy H( ˆf 2) in terms of

aUC( f ), the average unambiguous certificate complexity of f . Informally, the unambiguous certificate complexity UC( f )

of f is similar to the standard certificate complexity measure, except that the collection of certificates is now required

to be unambiguous, i.e., every input should be consistent with a unique certificate. In other words, an unambiguous

certificate is a monochromatic subcube partition of the Boolean cube. By the average unambiguous certificate complexity,

aUC( f ), we mean the expected number of bits set by an unambiguous certificate on a uniformly random input.

There have been many recent works on query complexity, giving upper and lower bounds on UC( f ) in terms of other

combinatorial measures such as decision-tree complexity, sensitivity, quantum query complexity, etc., see [6, 9, 28] for

more. It follows from definitions that UC( f ) lower bounds decision tree complexity. However, it is known that UC( f )

can be quadratically smaller than decision tree complexity [6]. Our main contribution here is an improved upper bound
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of average unambiguous certificate complexity aUC( f ) on H( ˆf 2). This improves upon the previously known bound of

average decision tree depth on H( ˆf 2) [19].

Theorem 1.5. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then,

H( ˆf 2) ≤ 2 · aUC( f ).

A new and crucial ingredient employed in the proof of the theorem is an analog of the law of large numbers in

information theory, usually referred to as the Asymptotic Equipartition Property (AEP) theorem (Theorem 2.4). Employing

information-theoretic techniques for the FEI conjecture seems very natural given that the conjecture seeks to bound the

entropy of a distribution. Indeed, Keller et al. [37, Section 3.1] envisioned a proof of the FEI conjecture itself using large

deviation estimates and the tensor structure (explained below) in a stronger way, and Wan et al. [65] used Shannon’s

source coding theorem [57] to verify the conjecture for bounded-read decision trees.

In order to prove Theorem 1.5, we study the tensorized version of f , f M : {−1, 1}Mn → {−1, 1} , which is defined as

follows,

f M (x1, . . . ,xM ) := f (x1
1
, . . . ,x1n ) · f (x

2

1
, . . . ,x2n ) · · · f (x

M
1
, . . . ,xMn ).

Similarly we define a tensorized versionCM
of an unambiguous certificateC of f ,5 i.e., a direct product ofM independent

copies of C . It is not hard to see that CM
is also an unambiguous certificate of f M . To understand the properties of CM

we study C in a probabilistic manner. We observe that C naturally induces a distribution C on its certificates when the

underlying inputs x ∈ {−1, 1}n are distributed uniformly. Using the asymptotic equipartition property with respect to C,
we infer that for every δ > 0, there existsM0 > 0 such that for allM ≥ M0, there are at most 2

M (aUC(f ,C )+δ )
certificates

in CM
that together cover at least 1 − δ fraction of the inputs in {−1, 1}Mn

. Furthermore, each of these certificates

fixes at mostM (aUC( f ,C ) + δ ) bits. Hence, a particular certificate can contribute to at most 2
M (aUC(f ,C )+δ )

Fourier

coefficients of f M . Combining both these bounds, all these certificates can overall contribute to at most 2
2M (aUC(f ,C )+δ )

Fourier coefficients of f M . Let’s denote this set of Fourier coefficients by B. We then argue that the Fourier coefficients

of f M that are not in B have Fourier weight at most δ . This now allows us to bound the Fourier entropy of f M as

follows,

H( f̂ M
2

) ≤ log |B| + δnM + H(δ ),

where H(δ ) is the binary entropy function. Since H( f̂ M
2

) = M · H( ˆf 2), we have

H( ˆf 2) ≤ 2(aUC( f ,C ) + δ ) + δn +
H(δ )

M
.

By the AEP theorem, note that δ → 0 asM → ∞. Thus, taking the limit asM → ∞ we obtain our theorem.

Looking finely into how certificates contribute to Fourier coefficients in the proof above, we further strengthen

Theorem 1.5 by showing that we can replace aUC( f ) by the average unambiguous parity-certificate complexity aUC⊕ ( f )

of f . Here aUC⊕ ( f ) is defined similar to aUC( f ) except that instead of being defined in terms of monochromatic

subcube partitions of f , we now partition the Boolean cube with monochromatic affine subspaces. (Observe that

subcubes are also affine subspaces.) This strengthening also improves upon the previously known bound of average

parity-decision tree depth on H( ˆf 2) [19]. It is easily seen that aUC⊕ ( f ) lower bounds the average parity-decision tree

depth.

5
Recall an unambiguous certificate is a collection of certificates that partitions the Boolean cube {−1, 1}n .
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Improved bounds on Fourier entropy and Min-entropy 7

Theorem 1.6. Let f : {−1, 1}n → {−1, 1} be any Boolean function. Then,

H( ˆf 2) ≤ 2 · aUC⊕ ( f ).

The proof outline remains the same as in Theorem 1.5. However, a particular certificate in CM
no longer fixes just

variables. Instead these parity certificates now fix parities over variables, and so potentially could involve all variables.

Hence we cannot directly argue that all the certificates contribute to at most 2
M (aUC⊕ (f ,C )+δ )

Fourier coefficients of

f M . Nevertheless, by the AEP theorem we still obtain that a typical parity-certificate fixes at mostM (aUC⊕ ( f ,C ) + δ )

parities. Looking closely at the Fourier coefficients that a parity-certificate can contribute to, we now argue that such

coefficients must lie in the linear span of the parities fixed by the parity-certificate. Therefore, a typical parity-certificate

can overall contribute to at most 2
M (aUC⊕ (f ,C )+δ )

Fourier coefficients of f M . The rest of the proof now follows

analogously.

1.3.1 Further extension to unambiguous DNFs. Consider an unambiguous certificate C = {C1, . . . ,Ct } of f . It covers

both 1 and −1 inputs of f . Suppose {C1, . . . ,Ct1 } for some t1 < t is a partition of f −1 (−1) and {Ct1+1, . . . ,Ct } is a

partition of f −1 (1). To represent f , it suffices to consider

∨t1
i=1Ci . This is a DNF representation of f with the additional

property that {C1, . . . ,Ct1 } forms a partition of f −1 (−1). We call such a representation an unambiguous DNF. In general,

a DNF representation need not satisfy this additional property.

Using the equivalence of total influence and average sensitivity, one can easily observe that

Inf ( f ) ≤ 2 ·min




t1∑
i=1

co-dim(Ci ) · 2
−co-dim(Ci ) ,

t∑
i=t1+1

co-dim(Ci ) · 2
−co-dim(Ci )



≤ aUC( f ,C ),

where co-dim(·) denotes the co-dimension of an affine space. Note that the quantity

∑t1
i=1 co-dim(Ci ) · 2

−co-dim(Ci )
,

in a certain sense, is “average unambiguous 1-certificate complexity” and, similarly,

∑t
i=t1+1 co-dim(Ci ) · 2

−co-dim(Ci )

captures “average unambiguous 0-certificate complexity”.

Building on our ideas from the main theorem in the previous section and using a stronger version (Theorem 2.8) of

the AEP theorem we nearly (see Remark 3.5) establish the aforementioned improved bound of the smaller quantity

between “average unambiguous 1-certificate complexity” and “average unambiguous 0-certificate complexity” on the

Fourier entropy. Formally, we prove the following.

Theorem 1.7. Let f : {−1, 1}n → {−1, 1} be a Boolean function and C = {C1, . . . ,Ct } be a monochromatic affine

subspace partition of {−1, 1}n with respect to f such that {C1, . . . ,Ct1 } for some t1 < t is an affine subspace partition of

f −1 (−1) and {Ct1+1, . . . ,Ct } is an affine subspace partition of f −1 (1). Further, p := Prx [f (x ) = 1]. Then,

H( ˆf 2) ≤




2
*
,

t1∑
i=1

co-dim(Ci ) · 2
−co-dim(Ci ) + p · max

i ∈{1, ...,t1 }
co-dim(Ci )+

-
,

2
*.
,

t∑
i=t1+1

co-dim(Ci ) · 2
−co-dim(Ci ) + (1 − p) · max

i ∈{t1+1, ...,t }
co-dim(Ci )

+/
-
.

The outline for the proof of Theorem 1.7 remains the same as before, but it differs in implementation details. We

sketch them now. Analogous to the proof of the main theorem we consider a partition of inputs with respect to f and

its tensorized version. Motivated by the DNF representation, we study the following partition {C1, . . . ,Ct1 , f
−1 (1)}

which naturally inherits a distribution C given by the uniform distribution on the underlying inputs. Again we build a

“small” set B of Fourier coefficients of f M based on the Fourier expansions of strongly typical sequences. However,
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8 Arunachalam et al.

unlike before, the probability of observing a strongly typical sequence doesn’t capture the number of coefficients it

could contribute to B. Here, we use stronger properties guaranteed by the strong AEP. In particular, it guarantees

that the empirical distribution of a typical sequence is close to the distribution of C. In contrast, the (weak) AEP only

guarantees that the empirical entropy of a typical sequence is close to the entropy of C. Using the stronger property
we can now lower bound the magnitude of any non-zero Fourier coefficient in the Fourier expansion of the indicator

function of a strongly typical sequence. We then use Parseval’s Identity (Fact 2.1) to deduce an upper bound on its

Fourier sparsity, which in turn is used to bound the size of B. We also need to argue that coefficients not in B have

negligible Fourier weight, which can be done as before. Using the two properties, we can now complete the proof.

We also note that a similar bound for the general DNF representation, i.e., when {C1, . . . ,Ct1 } is an arbitrary DNF

representation of f where the Ci s need not be disjoint, suffices to establish Mansour’s conjecture (Conjecture 1.3). In

fact, following the analogy, Theorem 1.7 implies a bound of “average 1-certificate complexity” in the general case. In this

direction, in Section 3.3 we observe that a weaker bound of 1-certificate complexity, i.e., showing H( f̂ 2) ≤ O (C1 ( f )),

would already suffice to answer Mansour’s conjecture positively. For details, see Section 3.3.

1.4 New upper bounds for the FMEI conjecture

Given the hardness of obtaining better upper bounds on the Fourier entropy of a Boolean function, we make progress

on a weaker conjecture, the FMEI conjecture. The FMEI conjecture is much less studied than the FEI conjecture. In fact,

we are aware of only one very recent paper [55] which studies the FMEI conjecture for a particular class of functions.

Our second contribution is to give upper bounds on the min-entropy of general Boolean functions in terms of the

minimum parity-certificate complexity (denoted C⊕
min

( f )) and the approximate spectral norm of Boolean functions

(denoted ∥ f̂ ∥1,ε ). The minimum parity-certificate complexity C⊕
min

( f ) is also referred to as the parity kill number

by O’Donnell et al. [49] and is closely related to the communication complexity of XOR functions [46, 64, 68]. The

approximate spectral norm ∥ f̂ ∥1,ε is related to the quantum communication complexity of XOR functions [40, 67]. In

particular, it characterizes the bounded-error quantum communication complexity of XOR functions with constant

F2-degree [67]. (By F2-degree, we mean the degree of a function when viewed as a polynomial over F2.)

Theorem 1.8. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then,

(i) For every ε ≥ 0, H∞ ( ˆf 2) ≤ 2 · log
(
∥ f̂ ∥1,ε/(1 − ε )

)
.

(ii) H∞ ( ˆf 2) ≤ 2 · C⊕
min

( f ).

(iii) H∞ ( ˆf 2) ≤ 2(1 + log
2
3) · R⊕

2
( f ).6

The proof of Theorem 1.8 (i) expresses the quantity ∥ f̂ ∥1,ε as a (minimization) linear program. We consider the dual

linear program and exhibit a feasible solution that achieves an optimum of (1− ε )/maxS | f̂ (S ) |. This proves the desired

inequality. In order to prove part (ii) and (iii) of the theorem, the idea is to consider a “simple” function д that has “good”

correlation with f , and then upper bound the correlation between f and д using Plancherel’s theorem (Fact 2.1) and the

fact that д has a “simple” Fourier structure. For part (ii), д is chosen to be the indicator function of an (affine) subspace

where f is constant, whereas for part (iii) the randomized parity decision tree computing f itself plays the role of д.7

6R⊕
2
(f ) is the randomized parity-decision tree complexity of f (we define this formally in Section 2).

7
We remark here that there exists simpler proof of part (i), along the lines of parts (ii) and (iii). However, we believe that the linear-programming

formulation of H∞ ( ˆf 2 ) might help obtain better bounds, such as fractional block sensitivity.
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Improved bounds on Fourier entropy and Min-entropy 9

As a corollary (Corollary 4.6) of this theorem we also obtain upper bounds on the Rényi Fourier entropy H
1+δ ( ˆf

2)

of order 1 + δ for all δ > 0. We recall that H
1+δ ( ˆf

2) ≥ H∞ ( ˆf
2) for every δ ≥ 0 and as δ → ∞, H

1+δ ( ˆf
2) converges to

H∞ ( ˆf
2). Also H1 ( ˆf

2), obtained by taking the limit as δ → 0, is the standard Shannon entropy.

We believe that these improved bounds on min-entropy of the Fourier distribution give a better understanding of

Fourier coefficients of Boolean functions, and could be of independent interest. As a somewhat non-trivial application

of Theorem 1.8 (in particular, part (ii)) we verify the FMEI conjecture for read-k DNFs, for constant k . (A read-k DNF is

a formula where each variable appears in at most k terms.)

Theorem 1.9. For every Boolean function f : {−1, 1}n → {−1, 1} that can be expressed as a read-k DNF, we have

H∞ ( ˆf
2) ≤ O (logk ) · Inf ( f ).

This theorem improves upon a recent (and independent) result of Shalev [55] that establishes the FMEI conjecture

for “regular" read-k DNFs (where regular means each term in the DNF has more or less the same number of variables,

see [55] for a precise definition). In order to prove Theorem 1.9, we essentially show that Inf ( f ) is at least as large as

Cmin ( f ), for read-k DNFs (Lemma 4.8), where Cmin ( f ) is the minimum certificate complexity of f . Now the proof of

Theorem 1.9 follows in conjunction with Theorem 1.8 (ii).

New research work since the completion of this work: A very recent work of Kelman et al. [38] shows that the

FMEI conjecture holds up to a logarithmic factor in Inf ( f ). In general they show that almost all the Fourier weight

lies on Fourier coefficients of size at mostO (JInf ( f )) and weight at least 2−O
(JInf (f ) log

(
1+JInf (f )

))
, where

JInf ( f ) := Inf (f )
Var(f ) .

We remark that though these results are very close to the FMEI conjecture, they are incomparable to our bounds. In

particular one could construct examples where that C⊕
min

( f ) is much smaller than
JInf ( f ) log

(
1 + JInf ( f )

)
(e.g., the

inner-product-mod-2 function, AND, etc.) and vice versa (e.g., Majority).

However we remark that there is a similarity in the high-level proof idea of their work and ours. In order to capture

a Fourier coefficient of large weight consider the inner product between the function f and another function д. In our

case we choose д to be a subfunction (of f ) that has large inner product with f , whereas Kelman et al. [38] essentially

choose д to be the truncation of the Fourier spectrum of f to the Fourier coefficients of size at most O (JInf ( f )) and
weight at most 2−Ω

(JInf (f ) log
(
1+JInf (f )

))
. They then present a non-trivial analysis to show that the inner product between

f and д is very small. This is sufficient to reach the conclusion since the total Fourier weight on characters of size at

most O (JInf ( f )), by Markov’s inequality, is a large constant (at least 1 − Var( f )/100).

1.5 Implications of the FEI conjecture and connections to the Bohnenblust-Hille inequality

Our final contribution is to better understand the structure of polynomials that ε-approximate Boolean functions

on the Boolean cube. To be more specific, for simplicity we fix ε = 1/3 and we consider polynomials p such that

|p (x ) − f (x ) | ≤ 1/3 for all x ∈ {−1, 1}n , where f is a Boolean function. Such polynomials have proved to be powerful

and found diverse applications in theoretical computer science. The single most important measure associated with such

polynomials is its degree. The least degree of a polynomial that 1/3-approximates f is referred to as the approximate

degree of f . Tight bounds on approximate degree have both algorithmic and complexity-theoretic implications, see for

instance Sherstov’s recent paper [59] and references therein.

In this work we ask, suppose the FEI conjecture were true, what can be said about approximating polynomials? For

instance, are these approximating polynomials p sparse in their Fourier domain, i.e., is the number of monomials in

p, |{S : p̂ (S ) , 0}|, small? Do approximating polynomials have small spectral norm (i.e., small

∑
S |p̂ (S ) |)? In order to
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10 Arunachalam et al.

understand these questions better, we restrict ourselves to a class of polynomials called flat polynomials over {−1, 1} ,

i.e., polynomials whose non-zero Fourier coefficients have the same magnitude.

We first observe that if a flat polynomial p 1/3-approximates a Boolean function f , then the entropy of the Fourier

distribution of f must be “large”. In particular, we show that H( ˆf 2) must be at least as large as the logarithm of the

Fourier sparsity of p (Claim 5.1). It then follows that assuming the FEI conjecture, a flat polynomial of degree d and

sparsity 2
ω (d )

cannot 1/3-approximate a Boolean function (Lemma 5.2). However, it is not clear to us how to obtain the

same conclusion unconditionally (i.e., without assuming that the FEI conjecture is true) and, so we pose the following

conjecture.

Conjecture 1.10. No flat polynomial of degree d and sparsity 2
ω (d ) can 1/3-approximate a Boolean function.

Remark 1.11. We remark that there exist degree-d flat Boolean functions of sparsity 2
d
. One simple example on 4

bits is the function x1 (x2 + x3)/2 + x4 (x2 − x3)/2. By taking a (d/2)-fold product of this Boolean function on disjoint

variables, we obtain our remark.

Since we could not solve the problem as posed above, we make progress in understanding this conjecture by further

restricting ourselves to the class of block-multilinear polynomials. An n-variate polynomial is said to be block-multilinear

if the input variables can be partitioned into disjoint blocks such that every monomial in the polynomial has at most one

variable from each block. Such polynomials have been well-studied in functional analysis since the work of Bohnenblust

and Hille [10], but more recently have found applications in quantum computing [1, 45], classical and quantum XOR

games [14], and polynomial decoupling [51]. In the functional analysis literature block-multilinear polynomials are

known asmultilinear forms. In an ingenious work [10], Bohnenblust and Hille showed that for every degree-d multilinear

form p : (Rn )d → R, we have( n∑
i1, ...,id=1

|p̂i1, ...,id |
2d
d+1

) d+1
2d
≤ Cd · max

x 1, ...,xd ∈[−1,1]n
|p (x1, . . . ,xd ) |, (2)

where Cd is a constant that depends on d . In [10], they showed that it suffices to pick Cd to be exponential in d to

satisfy the equation above. For d = 2, Eq. (2) generalizes Littlewood’s famous 4/3-inequality [42]. Eq. (2) is commonly

referred to as the Bohnenblust-Hille (BH) inequality and is known to have deep applications in various fields of analysis

such as operator theory, complex analysis, etc. There has been a long line of work on improving the constant Cd in the

BH inequality (to mention a few [3, 7, 24, 25, 53]). The best known upper bound on Cd (we are aware of) is polynomial

in d . It is also conjectured that it suffices to let Cd be a universal constant (independent of d) in order to satisfy Eq. (2).

In our context, using the best known bound onCd in the BH-inequality implies that a flat block-multilinear polynomial

of degree d and sparsity 2
ω (d logd )

cannot 1/3-approximate a Boolean function. However, from the discussion before

Conjecture 1.10, we know that the FEI conjecture implies the following theorem.

Theorem 1.12. If p is a flat block-multilinear polynomial of degree d and sparsity 2ω (d ) , then p cannot 1/8-approximate

a Boolean function.

Moreover, the above theorem is also implied when the BH-constant Cd is assumed to be a universal constant. Our

main contribution here is to establish the above theorem unconditionally, i.e., neither assumingCd is a universal constant

nor assuming the FEI conjecture. In order to show the theorem, we show an inherent weakness of block-multilinear

polynomials in approximating Boolean functions. More formally, we show the following.
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Improved bounds on Fourier entropy and Min-entropy 11

Lemma 1.13. Let p be a block-multilinear polynomial of degree-d that 1/8-approximates a Boolean function f . Then,

deg( f ) ≤ d .

Organization. In the remainder of the paper, we prove and elaborate on each of these results in more detail. We start

with preliminaries in Section 2. In Section 3, we give improved upper bounds on Fourier entropy (Theorems 1.5, 1.6

and 1.7), verify the FEI conjecture for functions with bounded average unambiguous certificate complexity, and elaborate

on the connections between Fourier entropy vs. certificate complexity and Mansour’s conjecture. In Section 4, we

establish new upper bounds on Fourier min-entropy (Theorem 1.8), and verify the FMEI conjecture for read-k DNFs

(Theorem 1.9). In Section 5, we pose a conjecture (Conjecture 1.10) which is a consequence of the FEI conjecture and

make partial progress (Theorem 1.12) towards its resolution. We further discuss an intriguing connection between our

conjecture and the constants in the Bohnenblust-Hille inequality. Finally we conclude with some open problems in

Section 6.

2 PRELIMINARIES

Notation. We denote the set {1, 2, . . . ,n} by [n]. A partial assignment of [n] is a map τ : [n] → {−1, 1, ∗}. Define

|τ | = |τ−1 (1) ∪ τ−1 (−1) |. A subcube of the Boolean cube {−1, 1}n is a set of x ∈ {−1, 1}n that agrees with some partial

assignment τ , i.e., {x ∈ {−1, 1}n : xi = τ (i ) for every i with τ (i ) , ∗}.

Fourier Analysis. We recall some definitions and basic facts from analysis of Boolean functions, referring to [47, 66]

for more. Consider the space of all functions from {−1, 1}n to R equipped with the inner product defined as

⟨f ,д⟩ B Ex [f (x )д(x )] =
1

2
n

∑
x ∈{−1,1}n

f (x )д(x ).

For S ⊆ [n], the character function χS : {−1, 1}
n → {−1, 1} is defined as χS (x ) B

∏
i ∈S xi . Then the set of character

functions

{
χS

}
S ⊆[n] forms an orthonormal basis for the space of all real-valued functions on {−1, 1}n . Hence, every

real-valued function f : {−1, 1}n → R has a unique Fourier expansion

f (x ) =
∑
S ⊆[n]

f̂ (S )χS (x ).

The degree of f , denoted deg( f ), is defined as max

{
|S | : f̂ (S ) , 0

}
. The spectral norm of f is defined to be

∑
S | f̂ (S ) |.

The Fourier weight of a function f on a set S of coefficients is defined as

∑
S ∈S f̂ (S )2. The approximate spectral norm of

a Boolean function f is defined as

∥ f̂ ∥1,ε = min

{∑
S
|p̂ (S ) | : |p (x ) − f (x ) | ≤ ε for every x ∈ {−1, 1}n

}
.

We note a well-known fact that follows from the orthonormality of the character functions.

Fact 2.1 (Plancherel’s Theorem). For any f ,д : {−1, 1}n → R,

Ex [f (x )д(x )] =
∑
S ⊆[n]

f̂ (S )д̂(S ).

In particular, if f : {−1, 1}n → {−1, 1} is Boolean-valued andд = f , we have Parseval’s Identity
∑
S f̂ (S )2 = E

[
f (x )2

]
,

which in turn equals 1. Hence

∑
S f̂ (S )2 = 1 and we can view

{
f̂ (S )2

}
S
as a probability distribution, which allows us to

discuss the Fourier entropy and min-entropy of the distribution

{
f̂ (S )2

}
S
, defined as
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Definition 2.2. For a Boolean function f : {−1, 1}n → {−1, 1} , its Fourier entropy (denoted H( ˆf 2)) and min-entropy

(denoted H∞ ( ˆf
2)) are

H( ˆf 2) B
∑
S ⊆[n]

f̂ (S )2 log
1

f̂ (S )2
, and H∞ ( ˆf

2) B min

S ⊆[n]:
f̂ (S ),0

{
log

1

f̂ (S )2

}
.

Similarly, we can also define the Rényi Fourier entropy.

Definition 2.3 (Rényi Fourier entropy). For f : {−1, 1}n → {−1, 1} , α ≥ 0 and α , 1, the Rényi Fourier entropy of f of

order α is defined as

Hα ( ˆf
2) B

1

1 − α
log

*.
,

∑
S ⊆[n]

| f̂ (S ) |2α +/
-
.

It is known that in the limit as α → 1,Hα ( ˆf
2) is the (Shannon) Fourier entropyH( ˆf 2) (see [22, Chapter 17, Section 8])

and when α → ∞, observe that Hα ( ˆf
2) converges to H∞ ( ˆf

2). It is easily seen that

H∞ ( ˆf
2) ≤ H1 ( ˆf

2) ≤ H 1

2

( ˆf 2) ≤ H0 ( ˆf
2).

For f : {−1, 1}n → {−1, 1} , the influence of a coordinate i ∈ [n], denoted Infi ( f ), is defined as

Infi ( f ) = Pr

x ∈{−1,1}n

[
f (x ) , f (x (i ) )

]
= Ex

[( f (x ) − f (x (i ) )

2

)
2

]
,

where the probability and expectation is taken according to the uniform distribution on {−1, 1}n and x (i ) is x with the

i-th bit flipped. The total influence of f , denoted Inf ( f ), is

Inf ( f ) =
∑
i ∈[n]

Infi ( f ).

In terms of the Fourier coefficients of f , it can be shown, e.g., [35], that Infi ( f ) =
∑
S ∋i f̂ (S )

2
, and therefore

Inf ( f ) =
∑
S ⊆[n]

|S | f̂ (S )2.

The variance of a real-valued function f is given by Var( f ) :=
∑
S,∅ f̂ (S )

2 = 1 − f̂ (∅)2. It easily follows that Var( f ) ≤

Inf ( f ). We now introduce some basic complexity measures of Boolean functions which we use often, referring to [15]

for more.

Sensitivity. For x ∈ {−1, 1}n , the sensitivity of f at x , denoted sf (x ), is defined to be the number of neighbors y of x

in the Boolean hypercube (i.e., y is obtained by flipping exactly one bit of x) such that f (y) , f (x ). The sensitivity

s( f ) of f is maxx {sf (x )}. The average sensitivity as( f ) of f is defined to be Ex [sf (x )]. By the linearity of expectation

observe that

Ex
[
sf (x )

]
=

n∑
i=1

Pr

x

[
f (x ) , f (x (i ) )

]
=

n∑
i=1

Infi ( f ) = Inf ( f ),

so the average sensitivity of f equals the total influence of f . As a result, the FEI conjecture asks if H( ˆf 2) ≤ C · as( f )

for every Boolean function f .

Certificate complexity. For x ∈ {−1, 1}n , the certificate complexity of f at x , denoted C( f ,x ), is the minimum number

of bits in x that needs to be fixed to ensure that the value of f is constant. The certificate complexity C( f ) of f is
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Improved bounds on Fourier entropy and Min-entropy 13

maxx {C( f ,x )}. The minimum certificate complexity of f is Cmin ( f ) = minx {C( f ,x )}. The 0-certificate complexity

C0 ( f ) of f ismaxx :f (x )=1{C( f ,x )}. Similarly, the 1-certificate complexityC1 ( f ) of f ismaxx :f (x )=−1{C
1 ( f ,x )}. Observe

that for every x ∈ {−1, 1}n , s( f ,x ) ≤ C( f ,x ). This gives s( f ) ≤ C( f ) and as( f ) ≤ aC( f ) where aC( f ) denotes the

average certificate complexity of f . As before, the average is taken with respect to the uniform distribution on {−1, 1}n .

Parity-certificate complexity. Analogously, we define the parity-certificate complexity C⊕ ( f ,x ) of f at x as the

minimum number of parities on the input variables one has to fix in order to fix the value of f at x , i.e.,

C⊕ ( f ,x ) B min{co-dim(H ) | H is an affine subspace on which f is constant and x ∈ H },

where co-dim(H ) is the co-dimension of the affine subspace H . It is easily seen that C⊕ ( f ,x ) ≤ C( f ,x ). We also define

C⊕ ( f ) B maxx {C⊕ ( f ,x )}, and C⊕
min

( f ) B minx {C⊕ ( f ,x )}.

Unambiguous certificate complexity. Wenow define the unambiguous certificate complexity of f . Let τ : [n]→ {−1, 1, ∗}

be a partial assignment. We refer to

Sτ =
{
x ∈ {−1, 1}n : xi = τ (i ) for every i ∈ [n] \ τ

−1 (∗)
}

as the subcube generated by τ . We call C ⊆ {−1, 1}n a subcube of {−1, 1}n if there exists a partial assignment τ such

that C = Sτ and the co-dimension of C is the number of bits fixed by τ , i.e., co-dim(C ) = |{i ∈ [n] : τ (i ) , ∗}|. A set of

subcubes C = {C1, . . . ,Cm } partitions {−1, 1}n if the subcubes are disjoint and they cover {−1, 1}n , i.e., Ci ∩Cj = ∅ for

i , j and ∪iCi = {−1, 1}
n
.

An unambiguous certificateU = {C1, . . . ,Cm }, also referred to as a subcube partition, is a set of subcubes partitioning

{−1, 1}n . We say U computes a Boolean function f : {−1, 1}n → {−1, 1} if f is constant on each Ci (i.e., f (x ) is the

same for all x ∈ Ci ). For an unambiguous certificateU , the unambiguous certificate complexity UC(U ,x ) on input x

equals co-dim(Ci ) for the Ci satisfying x ∈ Ci . Define the average unambiguous certificate complexity of f with respect

toU as

aUC( f ,U ) B Ex [UC(U ,x )].

Then, the average unambiguous certificate complexity of f is defined as

aUC( f ) B min

U
aUC( f ,U ),

where the minimization is over all unambiguous certificates for f . Finally, the unambiguous certificate complexity of f is

UC( f ) B min

U
max

x
UC(U ,x ).

Note that since unambiguous certificates are more restricted than general certificates, we have C( f ) ≤ UC( f ).

An unambiguous ⊕-certificateU = {C1, . . . ,Cm } for f is defined to be a collection of monochromatic affine subspaces

that together partition the space {−1, 1}n . It is easily seen that a subcube is also an affine subspace. Analogously,

for an unambiguous ⊕-certificate U , on an input x , UC⊕ (U ,x ) := co-dim(Ci ) for the Ci satisfying x ∈ Ci , and

aUC⊕ ( f ,U ) := Ex [UC⊕ (U ,x )]. Similarly, we define aUC⊕ ( f ) and UC⊕ ( f ).

DNFs. ADNF (disjunctive normal form) is a disjunction (OR) of conjunctions (ANDs) of variables and their negations.

An unambiguous DNF is a DNF that satisfies the additional property that : on every (−1)-input, exactly one of the

conjunctions outputs −1.
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14 Arunachalam et al.

Approximate degree. The ε-approximate degree of f : {−1, 1}n → R, denoted degε ( f ), is defined to be the minimum

degree among all multilinear real polynomials p such that | f (x ) − p (x ) | ≤ ε for all x ∈ {−1, 1}n . Usually ε is chosen to

be 1/3, but it can be chosen to be any constant in (0, 1), without significantly changing the model.

Deterministic decision trees. A deterministic decision tree for f : {−1, 1}n → {−1, 1} is a rooted binary tree where

each node is labelled by i ∈ [n] and the leaves are labelled with an output bit {−1, 1} . On input x ∈ {−1, 1}n , the tree

proceeds at a node with label i by evaluating the bit xi and continuing with the subtree corresponding to the value of xi .

Once a leaf is reached, the tree outputs a bit. We say that a deterministic decision tree computes f if for all x ∈ {−1, 1}n

its output equals f (x ).

A parity-decision tree for f is similar to a deterministic decision tree, except that each node in the tree is labelled by

a subset S ⊆ [n]. On input x ∈ {−1, 1}n , the tree proceeds at a node with label S by evaluating the parity of the bits xi

for i ∈ S and continues with the subtree corresponding to the value of ⊕i ∈Sxi . Note that if the subsets at each node

have size |S | = 1, then we get the standard deterministic decision tree model.

Randomized decision trees A randomized decision tree for f is a probability distribution Rµ over deterministic decision

trees for f . On input x , a decision tree is chosen according to Rµ , which is then evaluated on x . The complexity of the

randomized tree is the largest depth among all deterministic trees with non-zero probability of being sampled according

to Rµ . One can similarly define a randomized parity-decision tree as a probability distribution R⊕µ over deterministic

parity-decision trees for f .

We say that a randomized decision tree computes f with bounded-error if for all x ∈ {−1, 1}n its output equals f (x )

with probability at least 2/3. R2 ( f ) (respectively, R
⊕
2
( f )) denotes the complexity of the optimal randomized (respectively,

parity) decision tree that computes f with bounded-error, i.e., errs with probability at most 1/3.

Information Theory. We need some preliminaries from Information theory. We start with the following consequence

of the law of large numbers, called the Asymptotic Equipartition Property (AEP) or the Shannon-McMillan-Breiman

theorem. See Chapter 3 in the book [22] for more details.

Theorem 2.4 (Asymptotic Eqipartition Property (AEP) Theorem). Let X be a random variable drawn from a

distribution P and suppose X1,X2, . . . ,XM are independently and identically distributed copies of X, then

−
1

M
log P (X1,X2, . . . ,XM ) −→ H(X)

in probability asM → ∞.

We now recall the notion of typical sequences.

Definition 2.5. Fix ε ≥ 0. The typical set T (M )
ε (X) with respect to a distribution P is defined to be the set of sequences

(x1,x2, . . . ,xM ) ∈ X1 × X2 × · · · × XM such that

2
−M (H(X)+ε ) ≤ P (x1,x2, . . . ,xM ) ≤ 2

−M (H(X)−ε ) .

The following properties of the typical set follows from the AEP.

Theorem 2.6 ([22, Theorem 3.1.2]). Let ε ≥ 0 and T (M )
ε (X) be a typical set with respect to P , then

(i) |T (M )
ε (X) | ≤ 2

M (H(X)+ε ) .

(ii) Suppose x1, . . . ,xM are drawn i.i.d. according to X, then

Pr

[
(x1, . . . ,xM ) ∈ T

(M )
ε (X)

]
≥ 1 − ε,
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Improved bounds on Fourier entropy and Min-entropy 15

forM sufficiently large.

(iii) |T (M )
ε (X) | ≥ (1 − ε )2M (H(X)−ε ) , forM sufficiently large.

We also require the following stronger version of typical sequences and asymptotic equipartition property.

Definition 2.7 ([22, Chapter 11, Section 2]). Let X be a random variable drawn according to a distribution P . Fix ε > 0.

The strongly typical set T ∗(M )
ε (X) is defined to be the set of sequences ρ = (x1,x2, . . . ,xM ) ∈ X1 × X2 × · · · × XM such

that N (x ; ρ) = 0 if P (x ) = 0, and otherwise

�����
N (x ; ρ)

M
− P (x )

�����
≤

ε

|X|
,

where N (x ; ρ) is defined as the number of occurrences of x in ρ.

The strongly typical set shares similar properties with its (weak) typical counterpart which we state now. See [22,

Chapter 11, Section 2] for a proof of this theorem.

Theorem 2.8 (Strong AEP Theorem). Following the notation in Definition 2.7, let T ∗(M )
ε (X) be a strongly typical set.

Then, there exists δ > 0 such that δ → 0 as ε → 0, and the following hold :

(i) Suppose x1, . . . ,xM are drawn i.i.d. according to X, then

Pr

[
(x1, . . . ,xM ) ∈ T

∗(M )
ε (X)

]
≥ 1 − ε,

forM sufficiently large.

(ii) If (x1, . . . ,xM ) ∈ T
∗(M )
ε (X), then

2
−M (H(X)+δ ) ≤ P (x1, . . . ,xM ) ≤ 2

−M (H(X)−δ ) .

(iii) ForM sufficiently large,

(1 − ε )2M (H(X)−δ ) ≤ |T
∗(M )
ε (X) | ≤ 2

M (H(X)+δ ) .

3 BETTER BOUNDS ON FOURIER ENTROPY

In this section we prove the main result of this paper : a new improved upper bound on the Fourier entropy of Boolean

functions. It is well-known that Inf ( f ) lower bounds many combinatorial measures associated with Boolean functions

such as decision tree depth, certificate complexity, sensitivity, etc. Given the difficulty in resolving the FEI conjecture, it

is natural to wonder if the Fourier entropy can be upper bounded by these larger measures. Indeed, Chakraborty et

al. [19] established many bounds on the Fourier entropy, including average parity-decision tree complexity. We improve

on their bounds by showing an upper bound of average unambiguous parity-certificate complexity. In order to keep

the presentation clear, we first prove a weaker upper bound of average unambiguous certificate complexity aUC( f ) on

H( ˆf 2). We then explain how to generalize the proof to establish the stronger upper bound of average unambiguous

parity-certificate complexity aUC⊕ ( f ).

3.1 Average unambiguous certificate complexity

We recall an unambiguous certificate C = {C1, . . . ,Ct } for f is a collection of monochromatic subcubes (with respect

to f ) that together partition the hypercube {−1, 1}n . The average unambiguous certificate complexity of f with respect

to C , denoted by aUC( f ,C ), equals Ex ∈{−1,1}n [UC(C ,x )]. Further, aUC( f ) = minC
{
aUC( f ,C )

}
. We now prove the

main theorem.

Manuscript submitted to ACM



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Arunachalam et al.

Theorem 3.1 (Restatement of Theorem 1.5). For every Boolean function f : {−1, 1}n → {−1, 1} , we have

H( ˆf 2) ≤ 2 · aUC( f ).

Before we prove this inequality, we first give a sketch of the proof. Given f : {−1, 1}n → {−1, 1} and an unambiguous

certificate C for f , our first step is to consider the function f M : {−1, 1}Mn → {−1, 1} defined as theM-fold product

of f . We then consider a random variable C (supported on C ) and let T
(M )
δ (C) be a typical set associated withM i.i.d

copies of C. Based on the typical set, we define a 2
2M ·(aUC(f )+δ )

-sized set B of Fourier coefficients of f M and show

that B has fairly large Fourier weight. We then consider the re-normalized entropy when restricted to the Fourier

coefficients in B. By taking the limit (M → ∞), we obtain H( ˆf 2) ≤ O (aUC( f )). We now fill in the details.

Proof. It suffices to show that for every unambiguous certificate C for f , we have

H( ˆf 2) ≤ 2 · aUC( f ,C ).

Let C := {C1, . . . ,Ct } be an unambiguous certificate of f . For everyCi , let τ (Ci ) be the partial assignment τ (Ci ) : [n]→

{−1, 1, ∗}, corresponding to the bits fixed by Ci . Let supp(τ (Ci )) ⊆ [n] be the set of indices where τ (Ci ) , ∗. As a

shorthand, we denote |supp(τ (Ci )) | by |τ (Ci ) |. Consider the Boolean function f M : {−1, 1}Mn → {−1, 1} given by the

M-fold iterated product of f with itself over distinct variables, i.e.,

f M (x1, . . . ,xM ) = f (x1
1
, . . . ,x1n ) · f (x

2

1
, . . . ,x2n ) · · · f (x

M
1
, . . . ,xMn ),

where x i ∈ {−1, 1}n for every i ∈ [M]. First, observe thatH( f̂ M
2

) = M ·H( ˆf 2). Similarly, we also have aUC( f M ,CM ) =

M · aUC( f ,C ).

We now bound the Fourier entropy of f M by showing that there is a “small” set of Fourier coefficients of f M whose

total Fourier weight is approximately 1.

Let C be a subcube-valued random variable that equals Ci with probability 2
−|τ (Ci ) |

.
8
Further, let C1,C2, . . . ,CM

be i.i.d random copies of C. For a choice of δ > 0, let T
(M )
δ (C) be the typical set with respect to the distribution{

2
−τ (Ci )

}
i ∈[t ]

. We now define a set B of Fourier coefficients of f M , which we argue below to have large Fourier weight.

B :=

{
(S1, . . . , SM ) ⊆ [n]M | Si ⊆ supp(τ (Ci )) ⊆ [n] for i ∈ [M] and (C1, . . . ,CM ) ∈ T

(M )
δ (C)

}
. (3)

Using Theorem 2.6 about typical sequences, we are now ready to bound the size of B as follows.

Claim 3.1.

|B| ≤ 2
2M (aUC(f ,C )+δ ) .

Proof of Claim. We first bound the size ofT
(M )
δ (C) and then count contributions of a typical sequence (C1, . . . ,CM )

to B. For the first bound, by the properties of the AEP Theorem 2.6 (i), the total number |T
(M )
δ (C) | of typical sequences

is at most 2
M (H(C)+δ )

. For the second bound, observe that (C1, . . . ,CM ) contributes a set (S1, . . . , SM ) to B if and only

if Si ⊆ supp(τ (Ci )) for all i ∈ [M]. Therefore, the maximum possible contribution of a typical sequence is bounded by

2
|τ (C1 ) |+· · ·+ |τ (CM ) | = (Pr[C1 = C1, . . . ,CM = CM ])−1 ≤ 2

M (H(C)+δ ) ,

where the equality is because the random variable C is sampled according to the distribution

{
2
−|τ (Ci ) |

}
i ∈[t ]

and the

inequality follows from Definition 2.5 of typical sets.

8
Since {C1, . . . , Ct } are disjoint subcubes partitioning {−1, 1}n , we have that

∑t
i=1 2

−|τ (Ci ) | = 1.
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Improved bounds on Fourier entropy and Min-entropy 17

Combining both the upper bounds, we get |B| ≤ 2
2M (H(C)+δ )

. Finally, by the definition of entropy, we have

H(C) =
t∑
i=1

2
−|τ (Ci ) | · |τ (Ci ) | =

1

2
n

∑
x ∈{−1,1}n

UC(C ,x ) = aUC( f ,C ),

where the second equality used that {C1, . . . ,Ct } formed an unambiguous certificate for f . □

We now claim that B is a “small” set of Fourier coefficients of f M that has “large” Fourier weight. In order to

quantitatively prove this, we show that the Fourier coefficients that are not in B have total Fourier weight at most δ . In

what follows, with some abuse of notation, we will denote a set S ⊆ [n] and the corresponding subset {xi | i ∈ S } of

variables by the same set S .

Claim 3.2. ∑
(S1,S2, ...,SM )<B

f̂ M (S1 ∪ · · · ∪ SM )2 ≤ δ .

Proof of Claim. We saw earlier that CM
is an unambiguous certificate of f M . Let ρ ∈ CM

be a certificate of f M ,

and 1ρ (z) be the {0, 1}-valued function that is 1 if and only if z is consistent with the certificate ρ. Further we denote

the value f M takes on any input consistent with ρ by f M (ρ). We can then express f M on an input z ∈ {−1, 1}Mn
as

follows

f M (z) =
∑

ρ ∈CM

f M (ρ) · 1ρ (z) =
∑

ρ ∈T (M )
δ (C)

f M (ρ) · 1ρ (z) +
∑

ρ<T (M )
δ (C)

f M (ρ) · 1ρ (z)

︸                          ︷︷                          ︸
:=д (z )

. (4)

For (S1, . . . , SM ) ⊆ [n]M , consider the expansion of the Fourier coefficient

f̂ M (S1 ∪ · · · ∪ SM ) = Ez
[
f M (z)χS1∪···∪SM (z)

]

= Ez



∑
ρ ∈T (M )

δ (C)

f M (ρ) · 1ρ (z) · χS1∪···∪SM (z) +
∑

ρ<T (M )
δ (C)

f M (ρ) · 1ρ (z) · χS1∪···∪SM (z)


=

∑
ρ ∈T (M )

δ (C)

f M (ρ) · Ez
[
1ρ (z) · χS1∪···∪SM (z)

]
+

∑
ρ<T (M )

δ (C)

f M (ρ) · Ez
[
1ρ (z) · χS1∪···∪SM (z)

]
.

Now observe that for a fixed certificate ρ, we have Ez
[
1ρ (z) · χS1∪···∪SM (z)

]
, 0 if and only if ρ fixes the variables

in S1 ∪ · · · ∪ SM . By definition of B it now follows that if (S1, . . . , SM ) < B, then Ez
[
1ρ (z) · χS1∪···∪SM (z)

]
= 0 for

ρ ∈ T
(M )
δ (C), and thus f̂ M (S1 ∪ · · · ∪ SM ) gets contribution only from ρ that are not typical, i.e., ρ < T (M )

δ (C).
In this direction, consider the function д(z) defined in Eq. (4), which is {−1, 1, 0}-valued. Using the argument above,

we have that if (S1, . . . , SM ) < B, then f̂ M (S1 ∪ · · · ∪ SM ) = д̂(S1 ∪ · · · ∪ SM ). Then, clearly,∑
(S1,S2, ...,SM )<B

f̂ M (S1 ∪ · · · ∪ SM )2 ≤
∑
T

д̂(T )2. (5)

Moreover by Parseval’s Theorem (Fact 2.1),

∑
T д̂(T )2 = Ez

[
д(z)2

]
. Therefore,∑

(S1,S2, ...,SM )<B

f̂ M (S1 ∪ · · · ∪ SM )2 ≤ Ez
[
д(z)2

]
= Pr

z

[
z < T

(M )
δ (C)

]
≤ δ ,
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where the first inequality uses Eq. (5) and Parseval, the second equality is because д(z)2 ∈ {0, 1} and the last inequality

follows from Theorem 2.6 (ii). □

We are now ready to bound the Fourier entropy of f and complete the proof. We need the following well-known

trick to bound entropy when the underlying distribution has large weight on a small support. Let S be a set of Fourier

characters such that

∑
S<S д̂(S )

2 = δ . In order to upper bound the Fourier entropy, we first express H(д̂2) as follows

H(д̂2) =
∑
S ∈S

д̂(S )2 log
(

1

д̂(S )2

)
+

∑
S<S

д̂(S )2 log
(

1

д̂(S )2

)
.

We renormalize the first expression in the sum by (1 − δ ) and the second expression by δ . By doing so, we get

H(д̂2) = (1 − δ )H

(
д̂(S )2

1 − δ
: S ∈ S

)
+ δ H

(
д̂(S )2

δ
: S < S

)
−

∑
S ∈S

д̂(S )2 log(1 − δ ) −
∑
S<S

д̂(S )2 log(δ ),

= (1 − δ )H

(
д̂(S )2

1 − δ
: S ∈ S

)
+ δ H

(
д̂(S )2

δ
: S < S

)
+ H(δ ), (6)

where the equality used

∑
S ∈S д̂(S )

2 = 1 − δ and we denote H(p) := p log 1

p + (1 − p) log 1

1−p .

We now use Eq. (6) when applied to the function f M and set S = B. We then obtain

M · H( ˆf 2) = H( f̂ M
2

) ≤ log |B| + δ · log |{S : S < B}| + H(δ ) ≤ 2M (aUC( f ,C ) + δ ) + δnM + H(δ ),

where the second inequality used Claims 3.1 and 3.2. Dividing byM on both sides, we get

H( ˆf 2) ≤ 2 · (aUC( f ,C ) + δ ) + δn +
H(δ )

M
.

By the AEP theorem we know that δ → 0 as M → ∞. Therefore, allowing M → ∞ and taking the limit gives us the

theorem. □

3.1.1 Extension to ⊕-certificate complexity. We now discuss a strengthening of Theorem 3.1 where we improve the

upper bound to average unambiguous parity-certificate complexity aUC⊕ ( f ). Recall that an unambiguous ⊕-certificate

C = {C1, . . . ,Ct } for f is a collection of monochromatic affine subspaces that together partition the space {−1, 1}n .

(Observe that a subcube is a special type of affine subspace.) Analogously, the average unambiguous ⊕-certificate

complexity of f with respect toC , denoted by aUC⊕ ( f ,C ), equals Ex [UC⊕ (C ,x )] and aUC⊕ ( f ) B minC aUC⊕ ( f ,C ).

Let Ai be the set of parities fixed by Ci for i ∈ [t]. A parity is defined over a subset of variables and thus, naturally, can

be viewed as a vector in {0, 1}n .

Like in the proof of Theorem 3.1, we study the M-fold iterated product of C . In order to find a “small” set of

coefficients where the Fourier weight is concentrated, we define B differently. The Fourier expansion of f M , given by

Eq. (4), suggests the following definition.

For a set S ⊆ [n], define 1S ∈ {0, 1}
n
to be the indicator vector representing S (i.e., 1S (j ) = 1 if and only if j ∈ S). Let

(S1, . . . , SM ) be an M-tuple where each Si ⊆ [n]. Then, we define B by letting (S1, . . . , SM ) ∈ B if and only if there

exists a typical sequence (Ci1 , . . . ,CiM ) ∈ T
(M )
δ (C) such that for all j ∈ [M], 1Sj ∈ span⟨Ai j ⟩ (where by span⟨Ai j ⟩, we

mean the linear F2-span of parities in Ai j , when viewed as vectors). We recall that Ai j is the set of parities fixed by

Ci j . Observe that the earlier definition of B is now a special case of this. With this definition of B the rest of the proof

follows similarly to establish the following generalization.
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Theorem 3.2 (Restatement of Theorem 1.6). Let f : {−1, 1}n → {−1, 1} be any Boolean function. Then,

H( ˆf 2) ≤ 2 · aUC⊕ ( f ).

We remark that as a corollary to the theorem it follows that the FEI conjecture holds for the class of functions f with

bounded aUC⊕ ( f ), and Inf ( f ) ≥ 1. That is, for a Boolean function f with Inf ( f ) ≥ 1, we have

H( ˆf 2) ≤ 2 · aUC⊕ ( f ) · Inf ( f ).

We note that the reduction in [65, Proposition E.2] shows that removing the requirement Inf ( f ) ≥ 1 from the above

inequality will prove the FEI conjecture for all Boolean functions with Inf ( f ) ≥ logn. Furthermore, if we could show

the FEI conjecture for Boolean functions f where aUC⊕ ( f ) = ω (1) is a slow-growing function of n, again the padding

argument in [65] shows that we would be able to establish the FEI conjecture for all Boolean functions.

3.2 Further improving the bound: unambiguous DNFs

In this section, we further improve the bounds obtained in the previous section by considering theDNF representation of

f . Let C := {C1, . . . ,Ct } be an unambiguous certificate of f . It covers both 1 and −1 inputs of f . Suppose {C1, . . . ,Ct1 }

for some t1 < t is a subcube partition of f −1 (−1) and {Ct1+1, . . . ,Ct } is a subcube partition of f −1 (1). To represent f ,

it suffices to consider

t1∨
i=1

Ci . This is a DNF representation of f with an additional property that {C1, . . . ,Ct1 } forms a

partition of f −1 (−1). We call such a representation an unambiguous DNF. In general, a DNF representation need not

satisfy this additional property.

As before, for every Ci , let τ (Ci ) be the partial assignment τ (Ci ) : [n]→ {−1, 1, ∗} corresponding to the bits fixed by

Ci , and |τ (Ci ) | denotes the size of the set of indices where τ (Ci ) , ∗. We know that

Inf ( f ) ≤ aUC( f ,C ) =
t∑
i=1
|τ (Ci ) | · 2

−|τ (Ci ) | =

t1∑
i=1
|τ (Ci ) | · 2

−|τ (Ci ) | +

t∑
i=t1+1

|τ (Ci ) | · 2
−|τ (Ci ) | .

However, the following better bound on the influence is easily seen from the equivalence of influence and average

sensitivity.

Proposition 3.3. Let f : {−1, 1}n → {−1, 1} be a Boolean function and C = {C1, . . . ,Ct } be an unambiguous certificate

of f . Then,

Inf ( f ) ≤ 2 ·min




t1∑
i=1
|τ (Ci ) |2

−|τ (Ci ) | ,

t∑
i=t1+1

|τ (Ci ) |2
−|τ (Ci ) |



≤ aUC( f ,C ).

Therefore, it’s natural to ask whether we can improve the upper bound in Theorem 3.1 to

min




t1∑
i=1
|τ (Ci ) |2

−|τ (Ci ) | ,

t∑
i=t1+1

|τ (Ci ) |2
−|τ (Ci ) |




(up to a constant factor).

We remark that the quantity

∑t1
i=1 |τ (Ci ) |2

−|τ (Ci ) |
, in a certain sense, is “average unambiguous 1-certificate complexity”

and, similarly,

∑t
i=t1+1 |τ (Ci ) |2

−|τ (Ci ) |
captures “average unambiguous 0-certificate complexity”. Moreover, answering

this question is of significance to tackling Mansour’s conjecture positively. For more details, see Section 3.3.

Building on our ideas from the main theorem in the previous section and using a stronger version of the AEP theorem

(Theorem 2.8) we nearly establish the aforementioned improved bound of the smaller quantity between “average

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Arunachalam et al.

unambiguous 1-certificate complexity” and “average unambiguous 0-certificate complexity” on the Fourier entropy.

Formally, we prove the following.

Theorem 3.4. Let f : {−1, 1}n → {−1, 1} be a Boolean function and C = {C1, . . . ,Ct } be an unambiguous certificate of

f such that {C1, . . . ,Ct1 } for some t1 < t is a subcube partition of f −1 (−1) and {Ct1+1, . . . ,Ct } is a subcube partition of

f −1 (1). Further, p := Prx [f (x ) = 1]. Then,

H( ˆf 2) ≤




2
*
,

t1∑
i=1
|τ (Ci ) | · 2

−|τ (Ci ) | + p · max

i ∈{1, ...,t1 }
|τ (Ci ) |+

-
,

2
*.
,

t∑
i=t1+1

|τ (Ci ) | · 2
−|τ (Ci ) | + (1 − p) · max

i ∈{t1+1, ...,t }
|τ (Ci ) |

+/
-
.

Remark 3.5. An unsatisfactory part of the bound above is the presence of the term p ·max |τ (Ci ) |. This is because

when max |τ (Ci ) | term is not weighted by p, it becomes a trivial bound on entropy. Ideally, one would like to get rid of

this term altogether, possibly at the expense of increasing the constant factor in the first summand.

Moreover, a similar bound when {C1, . . . ,Ct1 } is an arbitrary DNF representation of f (i.e., when theCi s need not be

disjoint) suffices to prove Mansour’s conjecture (Conjecture 3.7). For details, see Section 3.3.

Proof of Theorem 3.4. We only prove the inequality

H( ˆf 2) ≤ 2 · *
,

t1∑
i=1
|τ (Ci ) | · 2

−|τ (Ci ) | + p · max

i ∈[t1]
|τ (Ci ) |+

-
. (7)

In order to obtain the other inequality in the theorem statement, we can replace f by ¬f and observe that Fourier

entropy of f and ¬f is the same. We recall {C1, . . . ,Ct1 } is a subcube partition of f −1 (−1) and p = Prx [f (x ) = 1].

Like in the proof of Theorem 3.1, we define a random variable over subsets of {−1, 1}n such that the support of the

random variable partitions the space. In particular, define a random variable C that equals one of theCi , 1 ≤ i ≤ t1, with

probability 2
−|τ (Ci ) |

and equals the set f −1 (1) := {x | f (x ) = 1} with probability p.9 We consider theM-fold iterated

product of this partition {C1, . . . ,Ct1 , f
−1 (1)} of {−1, 1}n , which gives us a partition P of the space {−1, 1}Mn

such that

f M is constant on each part. Overall there are (t1 + 1)
M

parts in P. For a part ρ ∈ P, let 1ρ (z) be the {0, 1}-valued

function that is 1 if and only if z ∈ {−1, 1}Mn
is in ρ. Furthermore, for ρ ∈ P, let f M (ρ) ∈ {−1, 1} be the value of f M

on the part ρ. Then, on an input z ∈ {−1, 1}Mn
,

f M (z) =
∑
ρ ∈P

f M (ρ) · 1ρ (z) =
∑

ρ ∈T ∗(M )
ε (C)

f M (ρ) · 1ρ (z) +
∑

ρ<T ∗(M )
ε (C)

f M (ρ) · 1ρ (z). (8)

where T
∗(M )
ε (C) is the strongly typical set with respect to the distribution of C and ε > 0. Similar to the proof of

Theorem 3.1, we now define a set B of Fourier coefficients of f M , which we argue below to be of “small” size and “large”

Fourier weight.

B :=

{
(S1, . . . , SM ) ⊆ [n]M | 1̂ρ (S1 ∪ · · · ∪ SM ) , 0 for some ρ ∈ T

∗(M )
ε (C)

}
. (9)

Claim 3.3.

|B| ≤ 2
2Mδ · 2

2M
(∑t

1

i=1 |τ (Ci ) |(2
−|τ (Ci ) |+ε ′) + (p+ε ′)max

t
1

i=1 |τ (Ci ) |
)
,

9
Observe that

∑t
1

i=1 2
−|τ (Ci ) | = 1 − p , hence C is a valid random variable.
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where ε ′ = ε/(t1 + 1) and δ > 0 is such that δ → 0 as ε → 0.

Proof of Claim. Similar to Claim 3.1 we first bound the size of the strongly typical set T
∗(M )
ε (C) and then count

contributions of a strongly typical sequence ρ to B. The contribution of ρ can be upper bounded by the sparsity of the

Fourier expansion of the indicator function 1ρ . Therefore,

|B| ≤ |T
∗(M )
ε (C) | ·max

ρ ∈P
{Fourier sparsity of 1ρ }.

By the strong AEP theorem, Theorem 2.8 (iii), we have |T
∗(M )
ε (C) | ≤ 2

M (H(C)+δ )
. We now bound the Fourier sparsity

of 1ρ for a strongly typical ρ. By Parseval’s Theorem (Fact 2.1), we have∑
(S1, ...,SM )

1̂ρ (S1 ∪ · · · ∪ SM )2 = Pr

z

[
1ρ (z) = 1

]
.

Therefore,

sparsity(1̂ρ ) · min

(S1, ...,SM )
1̂ρ (S1 ∪ · · · ∪ SM )2 ≤ Pr

z

[
1ρ (z) = 1

]
≤ 2
−M (H(C)−δ ) , (10)

where the second inequality follows from the strong AEP theorem, Theorem 2.8 (ii), and sparsity(1̂ρ ) denotes the

Fourier sparsity of 1ρ . To obtain an upper bound on the sparsity we now establish a lower bound on the magnitude of

the non-zero Fourier coefficients of 1ρ .

Since ρ ∈ {C1, . . . ,Ct1 , f
−1 (1)}M , the Fourier expansion of the indicator function1ρ is a product of Fourier expansion

of indicator functions ofC1, . . . ,Ct1 and f −1 (1). The indicator function ofCi is just an AND over the appropriate subset

of literals, and the indicator function of f −1 (1) is 1 −

t1∑
i=1

1Ci . Hence, a lower bound on the magnitude of a non-zero

Fourier coefficient of 1ρ is given by

t1∏
i=1

(
1

2
|τ (Ci ) |

)N (Ci ;ρ )
·

(
1

2
maxi∈{1, . . .,t

1
} { |τ (Ci ) | }

)N (f −1 (1);ρ )
,

where N (Ci ; ρ) (respectively, N ( f −1 (1); ρ)) is the number of occurrences of Ci (respectively, f
−1 (1)) in ρ. Therefore,

squaring the above lower bound and using it in Eq. (10) we obtain

sparsity(1̂ρ ) ≤
1

2
M (H(C)−δ )

·

t1∏
i=1

2
2 |τ (Ci ) | ·N (Ci ;ρ ) · 22maxi∈[t

1
]
{ |τ (Ci ) | } ·N (f −1 (1);ρ ) ,

=
1

2
M (H(C)−δ )

· 2
2·

(∑t
1

i=1 |τ (Ci ) | ·N (Ci ;ρ ) + maxi∈[t
1
]
{ |τ (Ci ) | } ·N (f −1 (1);ρ )

)
,

≤
1

2
M (H(C)−δ )

· 2
2M ·

(∑t
1

i=1 |τ (Ci ) | ·
(
2
−|τ (Ci ) |+ε ′

)
+ maxi∈[t

1
]
{ |τ (Ci ) | } ·(p+ε ′)

)
, (11)

where the last inequality follows from the strong AEP theorem and ε ′ = ε/(t1 + 1). Now using inequality (11) along

with the bound on the size of the strongly typical set T
∗(M )
ε (C) we obtain the claimed bound on the size of B, thereby

completing the proof of the claim. □

The next claim shows that the Fourier coefficients not in B have low total Fourier weight.
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Claim 3.4. ∑
(S1,S2, ...,SM )<B

f̂ M (S1 ∪ · · · ∪ SM )2 ≤ ε .

Proof of Claim. We omit the proof as it is similar to the proof of Claim 3.2. □

Now bounding the Fourier entropy of f M as in the proof of Theorem 3.1 and taking the limit asM → ∞, we obtain

the following bound on the Fourier entropy of f ,

H( ˆf 2) ≤ 2 · *
,

t1∑
i=1
|τ (Ci ) | · 2

−|τ (Ci ) | + p · max

i ∈[t1]
|τ (Ci ) |+

-
.

□

3.2.1 Extension to affine subspace partition. Since our techniques are oblivious to the change of basis, again analogous

to Theorem 3.2 we obtain the following generalization of Theorem 3.4 to the setting when {C1, . . . ,Ct } forms a

monochromatic affine subspace partition. We state the generalization below without the proof.

Theorem 3.6 (Restatement of Theorem 1.7). Let f : {−1, 1}n → {−1, 1} be a Boolean function and C = {C1, . . . ,Ct }

be a monochromatic affine subspace partition of {−1, 1}n with respect to f such that {C1, . . . ,Ct1 } for some t1 < t is an affine

subspace partition of f −1 (−1) and {Ct1+1, . . . ,Ct } is an affine subspace partition of f −1 (1). Further, p := Prx [f (x ) = 1].

Then,

H( ˆf 2) ≤




2
*
,

t1∑
i=1

co-dim(Ci ) · 2
−co-dim(Ci ) + p · max

i ∈{1, ...,t1 }
co-dim(Ci )+

-
,

2
*.
,

t∑
i=t1+1

co-dim(Ci ) · 2
−co-dim(Ci ) + (1 − p) · max

i ∈{t1+1, ...,t }
co-dim(Ci )

+/
-
.

3.3 Discussions on certificate complexity and Mansour’s conjecture

An important consequence of the FEI conjecture, among many, is a positive answer to the long-standing conjecture of

Mansour.

Conjecture 3.7 (Mansour’s Conjecture [43]). Let f : {−1, 1}n → {−1, 1} be a Boolean function that is representable

by a t-term DNF. For every constant ε > 0, there exists a polynomial p over {−1, 1} with sparsity poly(t ) such that

Ex
[
( f (x ) − p (x ))2

]
≤ ε . (The exponent in poly(t ) can depend on 1/ε .)

In fact, Mansour’s original conjecture states that sparsity of the polynomial p (in the conjecture above) can be taken

to be tO (log
1

ε ) . Mansour’s conjecture has a number of important consequences. For instance, Gopalan et al. [30] showed

that a positive answer to Mansour’s conjecture (Conjecture 3.7) would imply that DNF formulas can be agnostically

learned in polynomial time up to any constant error parameter. This has been a long-standing open question [29] in

computational learning theory.

Earlier we saw that H( ˆf 2) ≤ O (aUC⊕ ( f )). In fact we saw a somewhat stronger bound (Theorem 3.6); informally,

capturing “average unambiguous 1-parity-certificate complexity”. An interesting follow-up question in light of such

results, in particular Theorems 3.1 and 3.4, is if one could strengthen these upper bound to O (min{C0 ( f ),C1 ( f )}). In

this section we observe that this bound on the Fourier-entropy in terms of C0 ( f ),C1 ( f ) (which is clearly weaker than

the FEI conjecture) suffices to establish Mansour’s conjecture.
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We remark that it was implicit in previous works [29, 36, 39, 50] that one doesn’t need the full power of the FEI

conjecture to establish Mansour’s conjecture. However, the following question : What is the weakest form of the FEI

conjecture that still implies Mansour’s conjecture?, was left unexplored. Our observation sharpens this relationship and

establishes Mansour’s conjecture as a natural next step towards resolving the FEI conjecture.

We now formally state the weaker conjecture than the FEI conjecture that suffices to imply Mansour’s conjecture.

Conjecture 3.8. There exists a universal constant λ > 0 such that for every Boolean function f : {−1, 1}n → {−1, 1} ,

we have

H( ˆf 2) ≤ λ ·min

{
C0 ( f ),C1 ( f )

}
.

It is weaker than the FEI conjecture because Inf ( f ) ≤ min

{
C0 ( f ),C1 ( f )

}
[5, 11, 63]. To establish the implication

we will use the following equivalent form of Conjecture 3.8.

Conjecture 3.9. There exists a universal constant λ > 0 such that for every Boolean function f : {−1, 1}n → {−1, 1} ,

we have

H( ˆf 2) ≤ λ · C1 ( f ).

Before establishing the implication, we quickly argue that Conjectures 3.8 and 3.9 are equivalent. It is easily seen that

Conjecture 3.8 implies Conjecture 3.9. For the reverse direction, note that both f and ¬f have the same Fourier-entropy,

while C0 ( f ) and C1 ( f ) reverse roles.

We also note that Conjecture 3.9 is readily seen to imply the weaker version of “Mansour’s conjecture for width”

posed by [31] which in turn is known to imply Conjecture 3.7. However, for the sake of completeness, we present here

a direct argument to verify this implication.

Proposition 3.10. Conjecture 3.9 implies Conjecture 3.7.

Proof. Let f be a t-term DNF and suppose δ1,δ2 > 0 are constants which we pick later. Let д be a Boolean function

obtained from f by dropping all terms of length more than log(4t/δ1) in the DNF for f . Over the uniform distribution,

each term of length greater than log(4t/δ1) equals 1 with probability at most δ1/4t . Then д(x ) and f (x ) differ only if x

is accepted by a term of length greater than log(4t/δ1). Since there are at most t terms, by a union bound, we get

Ex
[
( f (x ) − д(x ))2

]
≤ 4 · t ·

δ1
4t
= δ1. (12)

Using Conjecture 3.9 for the function д, we get H(д̂2) ≤ λ · C1 (д) ≤ λ log(4t/δ1). We now construct a polynomial p by

defining its Fourier coefficients as follows:

p̂ (S ) =



д̂(S ) if |д̂(S ) | ≥ 2
−H(д̂2 )/(2δ2 ) ,

0 otherwise.

By Parseval’s identity (Fact 2.1), it follows that the number of non-zero Fourier coefficients in p is at most 2
H(д̂2 )/δ2

.

Additionally we have that

Ex
[
(д(x ) − p (x ))2

]
=

∑
S

(
д̂(S ) − p̂ (S )

)
2

=
∑

S : |д̂ (S ) |<2−H(д̂2 )/(2δ2 )

д̂(S )2, (13)
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and

H(д̂2) =
∑
S

д̂(S )2 log
1

д̂(S )2
≥

∑
S : |д̂ (S ) |<2−H(д̂2 )/(2δ2 )

д̂(S )2 log
1

д̂(S )2

≥
H(д̂2)

δ2

∑
S : |д̂ (S ) |<2−H(д̂2 )/(2δ2 )

д̂(S )2.

(14)

Putting together Eq. (13) and (14), we get

Ex
[
(д(x ) − p (x ))2

]
=

∑
S : |д̂ (S ) |<2−H(д̂2 )/(2δ2 )

д̂(S )2 ≤ δ2. (15)

Let us now compute E[( f − p)2].

E
[
( f − p)2

]
= E

[
( f − д)2

]
+ E [2( f − д) (д − p)] + E

[
(д − p)2

]
,

≤ δ1 + 2
√
E

[
( f − д)2

]√
E

[
(д − p)2

]
+ δ2,

≤ δ1 + 2
√
δ1δ2 + δ2,

= (
√
δ1 +

√
δ2)

2,

where the first inequality used the Cauchy-Schwarz inequality, Eq. (12) and (15). The second inequality also used Eq. (12)

and (15). By picking δ1 = δ2 = ε/4 we get E[( f − p)2] ≤ ε , which ensures that p has the approximation needed for

Mansour’s conjecture. Additionally, the Fourier sparsity of p is at most

2
H(д̂2 )/δ2 ≤ 2

λ log(4t/δ1 )/δ2 =
(
16t

ε

) 4λ
ε
.

□

We end this section with another open problem that could form an intermediate step towards resolving Mansour’s

conjecture. The following seemingly weaker conjecture than Conjecture 3.8 is not known to imply Mansour’s conjecture.

Conjecture 3.11. There exists a universal constant λ > 0 such that for any Boolean function f : {−1, 1}n → {−1, 1} ,

H( ˆf 2) ≤ λ ·max

{
C0 ( f ),C1 ( f )

}
= λ · C( f ).

4 BETTER BOUNDS ON FOURIER MIN-ENTROPY

The Fourier Min-entropy-Influence conjecture (FMEI) is a natural weakening of the FEI conjecture that has received much

less attention compared to the FEI conjecture. The FMEI conjecture was raised by O’Donnell and others in [47, 50] as a

simpler question to tackle, given the hardness of resolving the FEI conjecture. We restate the FMEI conjecture below.

Conjecture 4.1 (FMEI conjecture). There exists a universal constant C > 0 such that for every Boolean function

f : {−1, 1}n → {−1, 1} , we have H∞ ( ˆf 2) ≤ C · Inf ( f ).

Although the FMEI conjecture is a natural first step towards proving the FEI conjecture, it is also interesting in its

own right. The FMEI conjecture implies the famous KKL theorem [35] as we show below. In fact we do not know of

any proof of the KKL theorem that doesn’t go through hypercontractivity or logarithmic Sobolev inequalities, which

makes proving the FMEI conjecture even more interesting. The KKL theorem states that for every Boolean function
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f : {−1, 1}n → {−1, 1} , there exists an index i ∈ [n] such that Infi ( f ) ≥ Var( f ) · Ω
(
logn
n

)
. We now show how a

positive answer to the FMEI conjecture implies the KKL theorem:
10

for simplicity, assume that f is balanced (i.e.,

f̂ (∅) = Ex [f (x )] = 0). Then the FMEI conjecture implies the existence of ∅ , T ⊆ [n] such that f̂ (T )2 ≥ 2
−C ·Inf (f )

.

Furthermore, for every i ∈ T , we have

Infi ( f ) =
∑
S :S ∋i

f̂ (S )2 ≥ f̂ (T )2 ≥ 2
−C ·Inf (f ) ≥ 2

−Cn ·maxj {Inf j (f )}, (16)

where the first inequality follows because T contains i , the second inequality follows from the FMEI conjecture and

the last inequality because Inf ( f ) ≤ n · maxj {Inf j ( f )}. However note that maxj {Inf j ( f )} clearly upper bounds the

left-hand-side of Eq. (16). Thus, we have

max

j ∈[n]

{
Inf j ( f )

}
≥ 2
−Cn ·maxj {Inf j (f )} .

Rearranging this inequality, we obtainmaxj ∈[n]{Inf j ( f )} ≥ Ω
(
logn
n

)
, which is the KKL theorem for balanced functions.

The proof can also be extended to non-balanced functions (see [50]).

We now prove Theorem 4.2, which is our main contribution in this section. In the following theorem, we give upper

bounds on H∞ ( ˆf
2) in terms of analytic and combinatorial measures of Boolean functions.

Theorem 4.2 (Restatement of Theorem 1.8). Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then,

(i) For every ε ≥ 0, H∞ ( ˆf 2) ≤ 2 · log
(
∥ f̂ ∥1,ε/(1 − ε )

)
.

(ii) H∞ ( ˆf 2) ≤ 2 · C⊕
min

( f ).

(iii) H∞ ( ˆf 2) ≤ 2(1 + log
2
3) · R⊕

2
( f ).

Before giving a proof, we first make a few remarks about the second statement in the theorem above. The FMEI

conjecture asks if H∞ ( ˆf
2) ≤ C · as( f )? Since we also know that for every x ∈ {−1, 1}n , we have s( f ,x ) ≤ C( f ,x ), a

weaker question than the FMEI conjecture (with a larger right-hand side) would be, is H∞ ( ˆf
2) ≤ C · aC( f )? In the

theorem above, we give a positive answer to this question and in fact show that H∞ ( ˆf
2) ≤ 2 · C⊕

min
( f ). Observe that

C⊕
min

( f ) is not only a lower bound on aC⊕ ( f ) (and in turn aC( f )), but it is the parity certificate complexity on the

“easiest” input to f , unlike C⊕ ( f ) where the complexity is measured according to the “hardest” input x to f . In our

perspective, this brings us closer to proving the FMEI conjecture. In fact, we identify a non-trivial class of Boolean

functions for which Cmin ( f ) lower bounds Inf ( f ), and hence establish the FMEI conjecture for this class (Theorem 4.9).

Proof of Theorem 4.2. We prove the three parts separately as follows.

Part (i). Fix ε ≥ 0 and d ∈ [n]. Given a Boolean function f , suppose p is a degree-d polynomial that minimizes

∥ f̂ ∥
1,ε,d = min

{
∥p̂∥1 : deg(p) ≤ d and |p (x ) − f (x ) | ≤ ε for every x ∈ {−1, 1}n

}
,

10
This argument has appeared before in [50].
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where the minimization is over all polynomials. Alternatively, ∥ f̂ ∥
1,ε,d can also be expressed as the following linear

program and p minimizes this program.

∥ f̂ ∥
1,ε,d = min

∑
S |cS |

subject to

����f (x ) −
∑
S : |S | ≤d cS χS (x )

���� ≤ ε for every x ∈ {−1, 1}n

cS ∈ R for every S : |S | ≤ d

Note that for every ε ≥ 0 and d ≥ degε ( f ) the above linear program is feasible. From standard manipulations, the dual

of the linear program is as follows.

max

∑
x ∈{−1,1}n ϕ (x ) f (x ) − ε

∑
x ∈{−1,1}n |ϕ (x ) |

subject to |ϕ̂ (S ) | ≤ 1

2
n for every S : |S | ≤ d

ϕ (x ) ∈ R for every x ∈ {−1, 1}n

Observe that both linear programs are feasible for d ≥ degε ( f ). Therefore, from the duality theorem of linear programs,

the objective value of any dual feasible solution lower bounds the primal optimum and, moreover, the two programs

have the same optimum value. We thus obtain the following characterization of ∥ f̂ ∥
1,ε,d .

11

Lemma 4.3. Let f : {−1, 1}n → {−1, 1} , ε ≥ 0, and d ∈ [n] such that d ≥ degε ( f ). Then, ∥ f̂ ∥1,ε,d ≥ T if and only if

there exists a polynomial ϕ : {−1, 1}n → R satisfying |ϕ̂ (S ) | ≤ 2
−n for all |S | ≤ d and∑

x ∈{−1,1}n
ϕ (x ) f (x ) − ε

∑
x ∈{−1,1}n

|ϕ (x ) | ≥ T .

Let us consider ϕ (x ) =
f (x )

2
n
maxS |f̂ (S ) |

. Clearly the dual constraints are satisfied, and the objective value for this choice

of ϕ is given by ∑
x ∈{−1,1}n

ϕ (x ) f (x ) − ε
∑

x ∈{−1,1}n
|ϕ (x ) | =

1 − ε

maxS | f̂ (S ) |
.

The equality holds since ϕ (x ) f (x ) = |ϕ (x ) |. Now, by Lemma 4.3, we have

∥ f̂ ∥
1,ε,d ≥

1 − ε

maxS | f̂ (S ) |
.

Therefore, we obtain,

H∞ ( ˆf
2) ≤ 2 · log *

,

∥ f̂ ∥
1,ε,d

1 − ε
+
-
.

Since d is arbitrary, in order to ensure feasibility of the program we pick d = degε ( f ). The first part of the theorem

follows since ∥ f̂ ∥1,ε,n = ∥ f̂ ∥1,ε .

Part (ii). Suppose C⊕
min

( f ) = k . By definition of C⊕
min

( f ), there exists an affine subspace H ⊆ {−1, 1}n such that

co-dim(H ) = k and f is constant on H . Without loss of generality, assume that f (x ) = −1 for every x ∈ H . Since

co-dim(H ) equals k , H is given by a set of k (linearly independent) parity constraints. That is, there exist k linearly

11
We remark that similar linear program characterizations of approximate degree of Boolean functions have appeared before in the works of Sherstov [58]

and Bun and Thaler [16].
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independent vectors S1, . . . , Sk ∈ {0, 1}
n
, and b1, . . . ,bk ∈ {−1, 1}, such that

H =

{
x ∈ {−1, 1}n : for every j ∈ [k],

∏
i ∈supp(Sj )

xi = bj

}
.

Consider the indicator function 1H : {−1, 1}n → {−1, 1} , which evaluates to −1 for every x ∈ H and 1 otherwise. The

Fourier expansion of1H is easy to understand. Observe thatH can be viewed as an AND over parities or negated-parities.

For j ∈ [k], let yj =
∏

i ∈supp(Sj ) xi . It is now easily seen that

1H (x ) = AND(−b1y1,−b2y2, . . . ,−bkyk ). (17)

Recall that bj is fixed, thus −bjyj is either yj or −yj . Writing out the Fourier expansion for the AND function in Eq. (17),

it follows that

1H (x ) =
(
1 −

1

2
k−1

)
+

∑
T ⊆[k] : T,∅

(−1) |T |+1

2
k−1

∏
j ∈T
−bjyj

=

(
1 −

1

2
k−1

)
+

∑
T ⊆[k] : T,∅

(
−

∏
j ∈T bj

2
k−1

) ∏
j ∈T

*..
,

∏
i ∈supp(Sj )

xi
+//
-
.

Now using the fact that x2i = 1, observe that the monomial

∏
j ∈T

∏
i ∈supp(Sj ) xi simplifies to a multilinear monomial.

We further observe that for each non-emptyT , we can simplify

∏
j ∈T

∏
i ∈supp(Sj ) xi to a distinct multilinear monomial.

This is a consequence of linear independence of S1, S2, . . . , Sk . Let us denote the set of non-zero Fourier coefficients of

1H by T . By what we argued just now, it follows that |T | ≤ 2
k
. We are now ready to conclude the proof.

Lemma 4.4. There exists a set T ⊆ [n] such that | f̂ (T ) | ≥ 1

2
k .

Proof. Let Prx [f (x ) = −1] = p. We consider the correlation between f and 1H .

⟨f ,1H ⟩ = Ex [f (x ) · 1H (x )] =
1

2
k
+ (−1)

(
p −

1

2
k

)
+ (1 − p) = (1 − 2p) +

1

2
k−1
= f̂ (∅) +

1

2
k−1
. (18)

On the other hand,

⟨f ,1H ⟩ =
∑
S ⊆[n]

f̂ (S ) · 1̂H (S ) = f̂ (∅) ·
(
1 −

1

2
k−1

)
+

∑
T ∈T : T,∅

f̂ (T ) ·

(
−

∏
j ∈T bj

2
k−1

)
. (19)

Putting together Eq. (18) and Eq. (19) we have,

1 = − f̂ (∅) +
∑

T ∈T : T,∅

f̂ (T ) ·
(
−Πj ∈Tbj

)
≤

∑
T ∈T

| f̂ (T ) |. (20)

Since |T | = 2
k
, we obtain maxT ∈T | f̂ (T ) | ≥

1

2
k . □

This completes the proof of part (ii).

Remark 4.5. We note that in fact the proof of part (ii), in particular Eq. (20), shows that the following bounds hold.

(a) There exists a non-empty set S ⊆ [n] of size at most Cmin ( f ) such that

��� f̂ (S )
��� ≥

1 − | f̂ (∅) |

2
Cmin (f ) − 1

≥
Var( f )

2
Cmin (f )+1

.
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(b) There exists a non-empty set S ⊆ [n] of size at most max

{
C0

min
( f ),C1

min
( f )

}
such that

��� f̂ (S )
��� ≥

1 + | f̂ (∅) |

2
max

{
C0

min
(f ),C1

min
(f )

}
− 1

≥

√
Var( f )

2
max

{
C0

min
(f ),C1

min
(f )

} .

We end the remark here and continue with the proof of the theorem.

Part (iii). Consider a randomized parity-decision tree Rµ computing f with probability at least 2/3. Let T be the set

of deterministic parity-decision trees such that Rµ assigns a non-zero probability to every T ∈ T . By definition, it then

follows that Ex ET∼µ [f (x )T (x )] ≥ 1/3. This also shows that

1

3

≤ Ex ET∼µ [f (x )T (x )] = ET∼µ Ex [f (x )T (x )] = ET∼µ



∑
S ⊆[n]

f̂ (S )T̂ (S )


. (21)

On the other hand, one can upper bound the last expression in Eq. (21) as follows

ET∼µ



∑
S ⊆[n]

f̂ (S )T̂ (S )


≤ ET∼µ



∑
S ⊆[n]

| f̂ (S ) | |T̂ (S ) |


≤

(
max

S ⊆[n]
| f̂ (S ) |

)
ET∼µ



∑
S ⊆[n]

|T̂ (S ) |


. (22)

Putting together Eq. (21) and Eq. (22) we have,

1

3

≤

(
max

S ⊆[n]
| f̂ (S ) |

)
ET∼µ



∑
S ⊆[n]

|T̂ (S ) |


≤

(
max

S ⊆[n]
| f̂ (S ) |

)
2
R⊕
2
(f ) .

The second inequality follows from the fact that each T is a deterministic parity-decision tree of depth at most R⊕
2
( f ),

hence it easily follows that the spectral norm of the Fourier coefficients of T can be upper bounded by 2
R⊕
2
(f )

(for a

proof of this, see [13]). Rewriting the last inequality, we have maxS ⊆[n] | f̂ (S ) | ≥
1

2
R⊕
2
(f )+log 3

, which gives us the third

part of the theorem. □

Using a well-known fact that upper bounds Rényi entropy of order 1 + δ (for every δ > 0) by a constant times the

min-entropy of

{
ˆf (S )2

}
, we deduce the following corollary. Since this fact works for all δ > 0, it is tempting to say

that we can improve the bounds in Theorem 4.2 from H∞ ( ˆf
2) to H( ˆf 2), but this relation between the Rényi entropies

breaks down for δ = 0.

Corollary 4.6. Let f : {−1, 1}n → {−1, 1} , and δ > 0. Then,

(i) For every ε ≥ 0, H
1+δ ( ˆf

2) ≤ 2

(
1 + 1

δ

)
· log

(
∥ f̂ ∥1,ε/(1 − ε )

)
.

(ii) H
1+δ ( ˆf

2) ≤ 2

(
1 + 1

δ

)
· C⊕

min
( f ).

(iii) H
1+δ ( ˆf

2) ≤ 2(1 + log 3)
(
1 + 1

δ

)
· R⊕

2
( f ).

Proof. Use the fact that for any distribution P , H
1+δ (P ) ≤

(
1 + 1

δ

)
H∞ (P ). Indeed, it is easily seen from the

definition of Rényi entropy that − 1

δ log

(∑
j p

1+δ
j

)
≤ − 1+δ

δ log

(
maxj {pj }

)
, and thus the fact follows. We remark that a

tighter analysis of the Rényi entropy can be used to improve the constants. □

As a corollary to Theorem 4.2 (ii), we now establish the FMEI conjecture for read-k DNFs, for constant k . A Boolean

function is said to belong to the class of read-k DNF if it can be expressed as a DNF such that every variable (negated

or un-negated) appears in at most k terms. We note that, independently, Shalev [55] showed, among other things, that

FMEI holds for “regular” read-k DNFs. However, we show it for the general class of read-k DNFs. We remark that this

improvement crucially uses our sharper bound of Cmin on the min-entropy of

{
ˆf (S )2

}
S
.
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We will need the well-known KKL theorem which we state below.

Theorem 4.7 ([27, 35]). There exists a universal constant c > 0 such that for every f : {−1, 1}n → {−1, 1} , we have

Inf ( f ) ≥ c · Var( f ) · log
1

maxi Infi ( f )
.

The next lemma establishes a lower bound of minimum certificate size on the total influence of constant-read DNF.

A similar argument appears in Shalev [55] too.

Lemma 4.8. There exists a universal constant c > 0 such that for all f : {−1, 1}n → {−1, 1} that can be expressed as a

read-k DNF, we have

Inf ( f ) ≥ c · Var( f ) · (Cmin ( f ) − 1 − logk ) .

Proof. Suppose f is a t-term read-k DNF, then f can be written as f (x ) =
∨t
j=1Tj (x ), whereTj (x ) is a term. Recall,

Infi ( f ) = Prx [f (x ) , f (x (i ) )]. Using the fact that f is a DNF we upper bound the Infi ( f ) as follows,

Infi ( f ) = Pr

x

[
f (x ) , f (x (i ) )

]
≤

t∑
j=1

Pr

x

[
Tj (x ) , Tj (x

(i ) )
]
.

Clearly when Tj is not defined over a variable xi , Prx [Tj (x ) , Tj (x
(i ) )] = 0, and otherwise it equals

1

2
|Tj |−1

because all

other literals must be set to true in order to satisfy that term. Therefore, we have

Infi ( f ) ≤
t∑
j=1

Pr

x

[
Tj (x ) , Tj (x

(i ) )
]
=

t∑
j=1

xi appears in Tj

Pr

x

[
Tj (x ) , Tj (x

(i ) )
]
≤ k2−(Cmin (f )−1) .

The second inequality follows because a variable appears in at most k terms, and |Tj | ≥ Cmin ( f ) for all j. Now using

the KKL theorem (Theorem 4.7), we obtain

Inf ( f ) ≥ c · Var( f ) · log
1

maxi Infi ( f )
≥ c · Var( f ) · (Cmin ( f ) − 1 − logk ).

This concludes the proof of the lemma. □

We now use Lemma 4.8 and Theorem 4.2 (ii) to show that FMEI conjecture holds for read-k DNF.

Theorem 4.9 (Restatement of Theorem 1.9). Let f : {−1, 1}n → {−1, 1} be a read-k DNF. Then,

H∞ ( ˆf
2) ≤ C · Inf ( f ), where C = O (logk ).

Proof. We consider two cases based on whether Var( f ) is “small” (< 1/2) or “large” (≥ 1/2).

Case 1. Var( f ) < 1/2. Recall, Var( f ) = 1 − f̂ (∅)2. Therefore, we have

H∞ ( ˆf
2) ≤ log

1

f̂ (∅)2
= log

1

1 − Var( f )
≤ (log e )

Var( f )
1 − Var( f )

≤ (2 log e )Var( f ) ≤ (2 log e )Inf ( f ).

The second inequality uses the fact, for x ∈ (0, 1), log 1

1−x ≤ (log e ) x
1−x .

Case 2. Var( f ) ≥ 1/2. Using Theorem 4.2 (ii) and Lemma 4.8 we bound the min-entropy as follows,

H∞ ( ˆf
2) ≤ 2 · Cmin ( f ) ≤ (2/c ) ·

Inf ( f )
Var( f )

+ 2(1 + logk ),
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where c is a universal constant. Since Inf ( f ) ≥ Var( f ) ≥ 1/2, we further bound the last term in the above inequality to

obtain

H∞ ( ˆf
2) ≤ ((4/c ) + 4(1 + logk )) · Inf ( f ).

This completes the proof of the theorem. □

5 IMPLICATIONS OF THE FEI CONJECTURE

The FEI and FMEI conjecture seem to impose a strong constraint on the Fourier spectrum of a Boolean function. For

example, the FMEI conjecture (if true) would show the existence of a large Fourier coefficient in the spectrum of every

Boolean function that has small average sensitivity. In the introduction we saw that the FEI conjecture implies the

existence of a Fourier-sparse polynomial p that approximates a Boolean function f in ℓ2-distance, i.e., Ex [( f (x )−p (x ))
2
]

is small. (A particular case being Mansour’s conjecture, which is also a consequence of the FEI conjecture.) In this

section we discuss one implication of the FEI conjecture relating to the structure of polynomials that approximate

Boolean functions in the ℓ∞-distance, i.e, |p (x ) − f (x ) | is small for every x ∈ {−1, 1}n . In particular, we consider the

question “Do polynomials approximating a Boolean function in ℓ∞-distance satisfy some property?”. In this direction,

we make progress by showing that if the FEI conjecture is true, then we can rule out polynomials with “large” Fourier

sparsity from representing or approximating Boolean functions. In this section, we also consider a class of polynomials

and show that no polynomial in that class can 1/8-approximate a Boolean function (without assuming that the FEI

conjecture is true).

Definition 5.1. An n-variate multilinear polynomial p is said to be a flat polynomial if all its non-zero coefficients

have the same magnitude.

Lemma 5.2. Let ε ∈ (0, 1/2) be a constant, and suppose the FEI conjecture is true. Let p be a flat polynomial with degree

d and sparsity T = 2
ω (d ) . Then p cannot ε-approximate any Boolean function.

Proof. In order to prove the lemma, we crucially use the following claim.

Claim 5.1. Let p be a flat polynomial with sparsityT and, further, suppose p ε-approximates a Boolean function f . Then,

H( ˆf 2) ≥ Ω(logT ), (23)

where the constant in Ω(·) depends on ε .

We assume this claim and conclude the proof of the lemma. By contradiction, let us assume that p ε-approximates a

Boolean function f , so degε ( f ) ≤ d . Assuming the FEI conjecture is true, we have H( ˆf 2) = O (Inf ( f )). Furthermore,

using a result of Shi [60], we have Inf ( f ) ≤ O (degε ( f )) for every f and constant ε . So, we have H( ˆf 2) ≤ O (degε ( f )) ≤

O (d ). Using Claim 5.1, it follows that

Ω(logT ) ≤ H( ˆf 2) ≤ O (d ).

But this upper bound of T = 2
O (d )

contradicts the assumption on T in the statement of the lemma. Hence, we conclude

that p cannot ε-approximate any Boolean function. □

We now prove the claim.
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Proof of Claim 5.1. Suppose p ε-approximates a Boolean function f . Without loss of generality suppose that all

non-zero coefficients of p have magnitude
α√
T
for some α ∈ [(1 − ε ), (1 + ε )]. Such an α exists because, by Parseval’s

identity (Fact 2.1), we have ∑
S

p̂ (S )2 = Ex
[
p (x )2

]
∈

[
(1 − ε )2, (1 + ε )2

]
,

where the inclusion assumes p ε-approximates f . Now consider the following set A of “large” Fourier coefficients,

A B

{
S : | f̂ (S ) | ≥

2α
√
T

}
. (24)

For every S ∈ A, we have | f̂ (S ) − p̂ (S ) | ≥ | f̂ (S ) |/2 and hence∑
S ∈A

f̂ (S )2 ≤ 4

∑
S ∈A

(
f̂ (S ) − p̂ (S )

)
2

≤ 4

∑
S ⊆[n]

(
f̂ (S ) − p̂ (S )

)
2

= 4Ex
[
( f (x ) − p (x ))2

]
≤ 4ε2, (25)

where the equality uses Parseval’s identity (Fact 2.1) and the last inequality uses that p ε-approximates f . From Eq. (25),

we have

∑
S<A f̂ (S )2 ≥ 1 − 4ε2. This gives us our desired lower bound on the Fourier entropy of f ,

H( ˆf 2) =
∑
S ⊆[n]

f̂ (S )2 log
1

f̂ (S )2

≥
∑
S<A

f̂ (S )2 log
1

f̂ (S )2
≥

∑
S<A

f̂ (S )2 · log
( T

4α2

)
≥ (1 − 4ε2) log

( T

4α2

)
≥ (1 − 4ε2) log

T

4(1 + ε )2
= Ω(logT ).

The second inequality follows by the definition of A (Eq. (24)), the third inequality by negation of the inequalities in

Eq. (25), the last inequality holds because α ≤ (1+ε ) by the definition of α , and the last equality assumes ε ∈ (0, 1/2). □

Since we are still unable to resolve the FEI conjecture, an interesting intermediate question would be to unconditionally

prove the following conjecture.

Conjecture 5.3. No flat polynomial of degree d and sparsity 2
ω (d ) can ε-approximate a Boolean function.

Although we have not been able to resolve this conjecture, we now discuss some partial progress towards resolving

it. Additionally, we give an intriguing connection between this conjecture and the Bohnenblust-Hille inequality.

Partial progress towards resolving Conjecture 5.3. A first step towards disproving the conjecture would be to show

that no flat polynomial of degree d and sparsity

(n
d

)
can approximate a Boolean function. We now show that this in fact

already follows from results of Tal [61, 62]. Among other results, Tal [61, Claim 2.13] showed that, if a Boolean function

f can be 1/3-approximated in the ℓ∞-distance by a degree-d polynomial, then it has exponentially decreasing Fourier

tails above level O (d ). Now using the results
12

in [62], we know∑
S : |S |=d

| f̂ (S ) | ≤ O (d )d . (26)

Suppose p is a degree-d flat polynomial where all degree-d multilinear monomials have non-zero coefficients. That is,

the sparsity of p, denoted T , equals
(n
d

)
. Furthermore, suppose that p 1/3-approximates f in ℓ∞-norm. This implies

12
See [62, Lemmas 29 and 34] for a precise statement of his results.
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|p̂ (S ) | = α√
T
for some α ∈ [2/3, 4/3]. Then, we have

∑
S : |S |=d

|p̂ (S ) − f̂ (S ) | ≤ *.
,

∑
S : |S |=d

|p̂ (S ) − f̂ (S ) |2+/
-

1/2

·

√(
n

d

)
≤

1

3

·

√(
n

d

)
,

where the first inequality is Cauchy-Schwarz and the second uses |p (x ) − f (x ) | ≤ 1/3 for all x . On the other hand,∑
S : |S |=d

|p̂ (S ) − f̂ (S ) | ≥
∑

S : |S |=d

(
|p̂ (S ) | − | f̂ (S ) |

)
=

∑
S : |S |=d

|p̂ (S ) | −
∑

S : |S |=d

| f̂ (S ) |

≥
2

3

√(
n

d

)
−

∑
S : |S |=d

| f̂ (S ) |,

where the first inequality uses the reverse-triangle inequality and the last uses the lower bound on |p̂ (S ) |. From the

above two inequalities we get

∑
S : |S |=d

| f̂ (S ) | ≥
1

3

√(
n

d

)
.

This contradicts Eq. (26) when d = o(n1/3). Thus, p cannot 1/3-approximate a Boolean function. However, our conjecture

asks if a similar result also holds when T = 2
ω (d )

.

Instead of considering arbitrary flat polynomials, we consider a restricted class of polynomials which are referred to

as block-multilinear polynomials. An n-variate polynomial is said to be block-multilinear if the input variables can be

partitioned into disjoint blocks A1, . . . ,Ad ⊆ {x1, . . . ,xn } such that every monomial in the polynomial has at most one

variable from each block. For the purposes of this paper we will assume that each block is of the same size. In other

words, a block-multilinear polynomial p : (Rn )d → R can be written as

p (x1, . . . ,xd ) =
∑

S ⊆[nd] : ∀j ∈[d], |S∩x j | ≤1

p̂ (S )
∏
l ∈S

xl , (27)

where p̂ (S ) ∈ R for every S ⊆ [nd]. Note that this is the standard Fourier decomposition of p if x i ∈ {−1, 1}n for

every i ∈ [d]. Clearly such a block-multilinear polynomial has degree at most d and sparsity at most (n + 1)d . Such

polynomials have found applications in quantum computing [1, 45], classical and quantum XOR games [14], polynomial

decoupling [51] and in functional analysis which we discuss later. Our main contribution in this section is that we show

a positive answer to Conjecture 5.3 for the class of flat block-multilinear polynomials.

Theorem 5.4 (Restatement of Theorem 1.12). If p is an n-variate flat block-multilinear polynomial with degree d

and sparsity 2
ω (d ) , then p cannot 1/8-approximate a Boolean function.

We defer the proof of this theorem to the next section. We now continue with the relevance of block-multilinear

polynomials and the theorem above to functional analysis literature.

Relation between Theorem 5.4 and the Bohnenblust-Hille (BH) inequality. Consider the block-multilinear polynomial

p : (Rn )d → R defined in Eq. (27), but we further assume that it has no monomial of degree < d . One way to show

that p is not 1/8-close to a Boolean function would be to show that there exists x ′ such that |p (x ′) | is greater than 9/8.
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Understanding if such an x ′ exists for such a polynomial p can be cast as the following maximization problem

∥p∥ := max

x 1, ...,xd ∈[−1,1]n

����

n∑
i1, ...,id=1

p̂i1, ...,id x
1

i1 · · · x
d
id

����. (28)

In order to develop an intuition for the maximization problem, consider the case d = 2 and furthermore suppose

p̂i1,i2 ∈ {−1, 1} and x
i ∈ {−1, 1}n , then giving a lower bound on ∥p∥ is well-known in computer science as the so-called

unbalancing lights problem (see [4, Section 2.5], where they show the existence of sign vectors such that ∥p∥ ≥
√
n).

For larger d and arbitrary p, showing lower bounds on ∥p∥ in Eq. (28) has been extensively studied in the functional

analysis literature and is sometimes referred to as the “generalized unbalancing lights problem”.

The first paper giving a lower bound to Eq. (27) was by H. F. Bohnenblust and E. Hille [10] in 1931. They gave a

lower bound on the injective tensor norm of degree-d multilinear forms, which in our context translates to a lower

bound on ∥p∥. To be precise, their result states the following : for every n, d there exists a constant Cd ≥ 1 such that,

for every degree-d block-multilinear polynomial p : (Rn )d → R, we have( n∑
i1, ...,id=1

|p̂i1, ...,id |
2d
d+1

) d+1
2d
≤ Cd · max

x 1, ...,xd ∈[−1,1]n
|p (x1, . . . ,xd ) |. (29)

The result of [10] showed that it suffices to pick Cd = d
d+1
2d 2

d−1
2 in order to satisfy Eq. (29). In addition, their bound on

Cd recovers the well-known Littlewood’s 4/3 inequality [42] when d = 2. Since their seminal work, a lot of research in

the functional analysis literature (for the last 80 years!) has been in finding the optimal BH-constants, i.e., the smallest

Cd for which Eq. (29) holds. We cite a few results [3, 7, 24, 25, 45, 53], referring the reader to the references within

these papers for more. It is a long-standing open question whether Cd is a universal constant (there has been recent

work [53] giving numerical evidence that this is the case).

After a series of works, Pellegrino and Seoane-Sepúlveda showed [52] that it suffices to pick Cd = poly(d ). As far as

we are aware, the best upper bound onCd was shown by Bayart et al. [7] asCd = O (d0.365). We also point the interested

reader to [45, Theorem 17] for a suboptimal, yet elegant proof that shows that it suffices to pick Cd = O (d1.45) in order

to satisfy Eq. (29).

We now discuss the relevance of the BH-inequality to Theorem 5.4. Consider an arbitrary flat block-multilinear

polynomial p : ({−1, 1}n )d → R with degree d and sparsity T that 1/8-approximates a Boolean function. That is, every

non-zero Fourier coefficient |p̂i1, ...,id | equals α/
√
T for some α ∈ [7/8, 9/8]. Then using Eq. (29), we get((

7/8
√
T

) 2d
d+1
·T

) d+1
2d
≤ Cd · ∥p∥ ≤ (9/8) ·Cd .

With further simplification, we have

T ≤ (9/7)2d ·C2d
d .

Using the result of Bayart et al. [7], Cd = O (d0.365), we get that the sparsity T ≤ 2
O (d logd )

. However, from the FEI

conjecture (cf. Claim 5.1) it follows that T ≤ 2
O (d )

. Thus, using the current best bound on Cd we cannot conclude

Theorem 5.4. However, if the long-standing open question ofCd being a universal constant were true, then Theorem 5.4

follows. But provingCd a universal constant seems to be a very hard problem. Nevertheless, in the next section, we will

prove Theorem 5.4, while circumventing the barrier of improving the upper bound on Cd .

We remark that Theorem 5.4 does not say anything about the BH-inequality, since Theorem 5.4 states that a flat

block-multilinear polynomial either takes a value in the range (−1/8, 1/8) or takes a value of magnitude more that 9/8,
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while the BH-inequality states that such a polynomial definitely takes a value of high magnitude (> 9/8) on at least one

input.
13

5.1 Proof of Theorem 5.4

We restate the theorem for convenience.

Theorem 5.4 (restated). If p is an n-variate flat block-multilinear polynomial with degree d and sparsity 2
ω (d ) , then p

cannot 1/8-approximate a Boolean function.

Without loss of generality, let us assume d divides n. Let {A1, . . . ,Ad } be a partition of {x1, . . . ,xn } and for simplicity

suppose A1 = {x1, . . . ,xk } for k = n/d . Let B = {x1, . . . ,xn } \ A1 denote the set of remaining variables. Then the

monomials of p can be divided into those containing variables in A1 and those independent of variables in A1. So we

can write p as follows

p (x ) = q0 (xB ) +
k∑
i=1

xiqi (xB ), (30)

where q0, . . . ,qk are polynomials of degree at most d − 1. From here on, for notational simplicity we simply rewrite xB

as z.

Lemma 5.5. Let p be a degree-d block-multilinear polynomial that 1/8-approximates a Boolean function f : {−1, 1}n →

{−1, 1} . Further, let q0, . . . ,qk be as defined in Eq. (30). Then,

(I) For every z ∈ {−1, 1}n−k , we have qi (z) ∈ [−9/8,−7/8] ∪ [−1/8, 1/8] ∪ [7/8, 9/8], i.e., qi is a 1

8
-approximation to a

{−1, 0, 1}-valued function.

(II) For every z ∈ {−1, 1}n−k , there exists a unique j ∈ {0, . . . ,k } which satisfies

|qj (z) | ≥ 7/8 and
∑
i,j
|qi (z) | ≤ 1/8.

Proof. The proof of the first part is fairly straightforward, while the second part requires some calculations.

Proof of (I). We first rewrite q1, . . . ,qk as follows:

qi (z) =
p (x1, . . . ,xi−1, 1,xi+1, . . . ,xk , z) − p (x1, . . . ,xi−1,−1,xi+1, . . . ,xk , z)

2

,

for i ∈ [k] and similarly we rewrite q0 as

q0 (z) =
p (x1, . . . ,xk , z) + p (−x1, . . . ,−xk , z)

2

.

Now the first part follows from the fact that p is a 1/8-approximation to the Boolean function f . So the qi s are a

1/8-approximation to a {−1, 0, 1}-valued function. □

Proof of (II). Fix z ∈ {−1, 1}n−k . First observe that for every x1, . . . ,xk ∈ {−1, 1} , we have

p (x1, . . . ,xk , z) ∈


q0 (z) −

k∑
i=1
|qi (z) |, q0 (z) +

k∑
i=1
|qi (z) |

︸                                               ︷︷                                               ︸
:=I (z )

. (31)

13
It is not clear to us if flat polynomials considered in Theorem 5.4 can take values close to 0, or if it is possible to show that flat polynomials always take

a large value outside the Boolean cube.
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Furthermore, there exists a choice of x1, . . . ,xk ∈ {−1, 1} such that p evaluates to either one of the end points in the

interval I (z). Moreover I (z) satisfies exactly one of the following containments:

(a) I (z) ⊆ [7/8, 9/8], or

(b) I (z) ⊆ [−9/8,−7/8], or

(c) I (z) intersects both the intervals [−9/8,−7/8] and [7/8, 9/8].

We now prove that in all the three cases, there exists j ∈ {0, . . . ,k } such that |qj (z) | ≥ 7/8 and
∑
i,j |qi (z) | ≤ 1/8,

hence proving the lemma statement.

Cases (a) and (b). The proofs for Case (a) and (b) are exactly the same, so we prove the lemma assuming I (z) ⊆

[7/8, 9/8]. In this case, observe that q0 (z) −
∑k
i=1 |qi (z) | ≥ 7/8 and q0 (z) +

∑k
i=1 |qi (z) | ≤ 9/8. Clearly this implies

q0 (z) ≥ 7/8. Furthermore, from both the inequalities it follows that

k∑
i=1
|qi (z) | ≤ min

{
q0 (z) − 7/8, 9/8 − q0 (z)

}
.

Using the fact that q0 (z) ∈ [7/8, 9/8], it follows that
∑k
i=1 |qi (z) | ≤ 1/8, which concludes the proof for Case (a).

Case (c). Recall the definition of p (x1, . . . ,xk , z) from Eq. (31). Let a,b ∈ {−1, 1}k be such that

p (a, z) = q0 (z) −
k∑
i=1
|qi (z) | and p (b, z) = q0 (z) +

k∑
i=1
|qi (z) |. (32)

It is not hard to see that a = −b. Consider a path from a to b on the Boolean hypercube. Since p (a, z) ∈ [−9/8,−7/8]

and p (b, z) ∈ [7/8, 9/8], there exists an edge
14

on this path such that the value of p on this edge jumps from the interval

[−9/8,−7/8] to [7/8, 9/8]. For now the existence of such an edge is sufficient, below we explicitly construct such an

edge. Let us denote the direction of this edge by j ∈ [k]. We now claim that |qj (z) | ≥ 7/8 and
∑
i,j |qi (z) | ≤ 1/8.

The first claim |qj (z) | ≥ 7/8 follows immediately, because the change in p on this edge is 2 · |qj (z) | (by Eq. (32)), and

the change of value of p on this edge is ≥ 2 · (7/8). Thus we have |qj (z) | ≥ 7/8.

We now prove

∑
i,j |qi (z) | ≤ 1/8 by considering two cases based on whether sign(q0 (z)) is positive or negative.

Since the proofs for both cases are similar, for simplicity we prove it assuming sign(q0 (z)) is positive. We now define the

edge between a,b where the value of p jumps from the interval [−9/8,−7/8] to [7/8, 9/8]. Consider the edge in the jth

direction given by setting all the variables except x j as follows : xi = sign(qi (z)) for i ∈ [k] \ {j}. Clearly the value of p

only depends on x j and equals

∑
i,j |qi (z) | + x jqj (z). When x j = sign(qj (z)), p takes the value

∑
i,j |qi (z) | + |qj (z) |

which is in the interval [7/8, 9/8] and∑
i,j
|qi (z) | + |qj (z) | ∈ [7/8, 9/8], implies

∑
i,j
|qi (z) | ≤ 9/8 − |qj (z) |. (33)

Similarly, when x j = −sign(qj (z)) then p takes the value

∑
i,j |qi (z) | − |qj (z) | which is in the interval [−9/8,−7/8], and∑

i,j
|qi (z) | − |qj (z) | ∈ [−9/8,−7/8], implies

∑
i,j
|qi (z) | ≤ |qj (z) | − 7/8. (34)

From Eq. (33) and (34) we have

∑
i,j |qi (z) | ≤ 1/8. The uniqueness of j in each case follows because

∑k
i=0 |qi (z) | ≤

9/8. □

14
An edge in the direction of j ∈ [k] on the Boolean hypercube refers to a tuple (w, w (j ) ) wherew, w (j ) ∈ {−1, 1}k andw (j )

is the bit string obtained

by flipping the sign of the jth bit ofw .
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□

We now show that if p (x ) 1

8
-approximates a Boolean function f then deg( f ) ≤ d .

Lemma 5.6. Let p be a degree-d block-multilinear polynomial that 1

8
-approximates a Boolean function f : {−1, 1}n →

{−1, 1} . Then, deg( f ) ≤ d .

Proof. We will establish the proof by induction on d .

Base case. We have d = 1. Let p (x ) = a0 +
∑n
i=1 aixi , where ai ∈ R. Since p approximates f , it follows that

sign(p (x )) = f (x ) for every x . We now express sign(p (x )) as a polynomial of degree at most 1. From Lemma 5.5 (II), it

follows that there exists a unique i ∈ {0} ∪ [n] such that

sign(p (x )) =



sign(ai ) · xi if i ∈ [n],

sign(a0) otherwise.

Thus the base case follows.

Inductive assumption. Assume the lemma statement for polynomials p of degree at most d − 1.

Inductive step. Consider the decomposition of p (x1, . . . ,xn )

p (x ) = q0 (z) +
k∑
i=1

xiqi (z).

Recall from the proof of Lemma 5.5 (I), that qi (z) can be expressed as a difference between two (d − 1)-block-multilinear

polynomials by fixing x1, . . . ,xk . That is,

q0 (z) =
p (1, . . . , 1, z) + p (−1, . . . ,−1, z)

2

,

qi (z) =
p (1, . . . , 1, 1, 1, . . . , 1, z) − p (1, . . . , 1,−1, 1, . . . , 1, z)

2

for i ∈ [k],

(35)

where the−1 in the final expressionp (1, . . . , 1,−1, 1, . . . , 1, z) is at the i-th coordinate. Clearly, it follows thatp (−1, . . . ,−1, z)

andp (1, . . . , 1, z) are block-multilinear polynomials withd−1 parts that 1
8
-approximate Boolean functions f (−1, . . . ,−1, z)

and f (1, . . . , 1, z), respectively. Therefore, by the inductive assumption, both deg( f (−1, . . . ,−1, z)) and deg( f (1, . . . , 1, z))

are ≤ d − 1. Additionally the function q̃0 defined as

q̃0 (z) =
f (1, . . . , 1, z) + f (−1, . . . ,−1, z)

2

is a {−1, 0, 1}-valued function satisfying deg(q̃0) ≤ d − 1. Moreover, q0 (as defined in Eq. (35)) is a
1

8
-approximation to

q̃0. In a similar fashion, one can define q̃i for all i ∈ [k] which is a {−1, 0, 1}-valued function of degree at most d − 1

that additionally satisfies that qi (as defined in Eq. (35)) is a
1

8
-approximation to q̃i . Finally consider the polynomial p̃

defined as follows,

p̃ (x ) = q̃0 (z) +
k∑
i=1

xi q̃i (z).

Firstly note that p̃ (x ) is a polynomial that takes value in {−1,+1} for all x ∈ {−1,+1}n . This is because for all i , qi (z)
1

8
-approximates q̃i (z) and so from Lemma 5.5, for any given z there exists exactly one i such that q̃i (z) takes a non-zero
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value. So for a given x if j is the unique index from Lemma 5.5 such that |qj (zx ) | ≥ 7/8, then for that x we have

p (x ) = x jqj (z).

From this observation we also get | f (x ) − p̃ (x ) | ≤ 1/4 for any x . This is because for a given x if j is the unique

index from Lemma 5.5 such that |qj (zx ) | ≥ 7/8, then | f (x ) − x jqj (zx ) | ≤ 1/8 (because of Lemma 5.5 (II)) and

|x jqj (zx ) − x j q̃j (zx ) | ≤ 1/8 (by definition of q̃j ) and p (x ) = x jqj (zx ). Since both f and p̃ are {−1,+1}-valued functions

and since | f (x ) − p̃ (x ) | ≤ 1/4, it follows that p̃ (x ) = f (x ).

By construction, the degree of p̃ is at most d . The lemma now follows as p̃ (x ) = f (x ). □

Using Claim 5.1 and Lemma 5.6, it now follows that if p is a degree-d flat block-multilinear polynomial that 1/8-

approximates a Boolean function, then the sparsity of p is at most 2
O (d )

. This completes the proof of Theorem 5.4.

6 CONCLUSION

We gave improved upper bounds on Fourier entropy of Boolean functions in terms of average unambiguous (parity)-

certificate complexity, and as a corollary verified the FEI conjecture for functions with bounded average unambiguous

(parity)-certificate complexity. We established many bounds on Fourier min-entropy in terms of analytic and combina-

torial measures, namely minimum certificate complexity, logarithm of the approximate spectral norm and randomized

(parity)-decision tree complexity. As a corollary to this, we verified the FMEI conjecture for read-k DNFs. We also

studied structural implications of the FEI conjecture on approximating polynomials. In particular, we proved that flat

block-multilinear polynomials of degree d and sparsity 2
ω (d )

can not approximate Boolean functions.

We now list a few open problems which we believe are structurally interesting and could lead towards proving the

FEI or FMEI conjecture. Let f : {−1, 1}n → {−1, 1} be a Boolean function.

(1) Does there exist a Fourier coefficient S ⊆ [n] such that | f̂ (S ) | ≥ 2
−O (deg

1/3 (f ))? This would show H∞ ( ˆf
2) ≤

O (deg
1/3 ( f )).

(2) Can we show H( ˆf 2) ≤ O (Q ( f ))? Or, H∞ ( ˆf
2) ≤ O (Q ( f ))? (where Q ( f ) is the 1/3-error quantum query

complexity of f , which Beals et al. [8] showed to be at least deg
1/3 ( f )/2).

(3) Does there exist a universal constant λ > 0 such that H( ˆf 2) ≤ λ · min{C1 ( f ),C0 ( f )}? This would resolve

Mansour’s conjecture.

In an earlier version of this manuscript we suggested that bounding the logarithm of the approximate spectral norm by

O (deg
1/3 ( f )) or O (Q ( f )) might be an approach to answer Question (1) or (2) above. However, in a very recent work

[17] it is shown that log(∥ f̂ ∥1,ε ) could be as large as Ω(Q ( f ) · logn), thus nullifying the suggested approach.
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