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Abstract

We show that for every r ≥ 2 there exists εr > 0 such that any r-uniform hypergraph on m
edges with bounded vertex degree has a set of at most (1

2 − εr)m edges the removal of which
breaks the hypergraph into connected components with at most m/2 edges. We use this to give
a satisfiability algorithm for n-variable (d, k)-CSPs in which every variable appears in at most
r constraints in time d(1−εr)n where εr depends only on r, provided that k is small enough as
a function of m. We will also show that unsatisfiable (2, k)-CSPs with variable frequency r can
be refuted in tree-like resolution in size 2(1−εr)n. Furthermore for Tseitin formulas on graphs
with degree at most k (which are (2, k)-CSPs) we give a deterministic algorithm finding such a
refutation.

1 Introduction

The (d, k)-SAT problem which naturally generalizes k-SAT is the problem of deciding whether a
system of constraints on variables from an alphabet of size d, where each constraint is on at most k
variables can be satisfied. We will call such a system of constraints a (d, k)-CSP and we will assume
that when given as input it is represented by the set of truth tables of its constraints. Therefore the
satisfiability of a (d, k)-CSP Ψ can be checked by exhaustive search in time |Ψ|O(1)dn, where n is
the number of variables. Therefore it makes sense to look for exponential time algorithms beating
this trivial running time.

For d = 2, namely the usual k-SAT problem, of course there is a plethora of such algorithms
(see e.g. [PPZ99, PPSZ05, DGH+02]). When the CSP encodes a certain structured problem we
can also find improved algorithms. The notable example here is graph d-coloring problem which is
a special case of (d, 2)-SAT that can be solved in time O(2n) [BHK09]. More generaly (d, 2)-SAT
also admits non-trivial algorithms [BE05].

For the general (d, k)-SAT we are interested in finding algorithms running in time d(1−ε)n for
some ε > 0 which we call the savings of the algorithm, and we would like these savings to be as
large as possible. Note that any k-SAT algorithm can be easily converted to a (d, k)-SAT algorithm.
For each of the original variables, introduce log d boolean variables representing the original value
in binary, and then express each constraint as a k log d-CNF. The conjunction of these CNFs is
satisfiable if and only if the original CSP is satisfiable. Assuming that we can solve k-SAT in time
2(1−εk)n, this yields an algorithm running in time d(1−εk log d)n. That is any non-trivial savings for
k-SAT yields non-trivial savings for (d, k)-SAT. However these savings deteriorate as d grows. This
turns out to be case also for algorithms which are directly designed to solve (d, k)-SAT. Schöning’s

seminal algorithm runns in time O((d(k−1)
k )n). Similary a generalization of PPSZ anlyzed by Hertli
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et al. [HHM+16] has the same shortcoming. The central question is then whether it is possible to
obtain savings independent of d.

Let us be more precise. Define

σd,k := sup{δ : (d, k)-SAT can be solved in time O(d(1−δ)n)}.

The argument above gives σd,k ≥ σ2,k log d. Furthermore Traxler [Tra08] shows that for all d, σ2,k ≥
σd,k. Therefore it follows that under Strong Exponential Time Hypothesis, for all d, limk→∞ σd,k =
0. Our central question can be rephrased as follows.

Question 1. Is it case that for every k, limd→∞ σd,k > 0?

We do not succeed in answering this question. However we show that if each variable appears in
a small number of constraints then it is possible to decide the satisfiability with savings independent
of d. This can be considered as an extension of a result of Wahlström [Wah05] who gave such an
algorithm for CNF-SAT when variables have bounded occurences. However our argument is entirely
different.

Theorem 2 (Main result, informally stated). There exists an algorithm which decides the satisfi-
ability of an n variable (d, k)-CSP in which every variable appears in at most r constraints in time
d(1−ε)n where ε depends only on r, provided that k does not grow too fast (as a function of n).

The algorithm follows a simple randomized branching strategy. At every step we find a small
set of variables that once given a value, the CSP breaks into disjoint parts each with at most half of
the original variables. For every assignment on these variables we recursively solve the problem on
the resulting smaller instances. To prove this we associate a natural hypergraph to the CSP. Then
we prove a more general result and show that in every r-uniform hypergraph of small vertex degree
on m edges, there exists a small set of hyperedges the removal of which breaks the hypergraph into
connected components with at most m/2 hyperedges.

Theorem 3 (Hypergraph separator theorem, informally stated). Let H = (V,E) be an r-uniform
hypergraph on m hyperedges and maximum vertex degree k. Provided that k does not grow too
fast as a function of m, there exists set of (1 − ε)m/2 hyperedges the removal of which breaks the
hypergraph into connected components with at most m/2 hyperedges. Furthermore, ε depends only
on r.

Another application of Theorem 3 concerns tree-like resolution refutations of unsatisfiable (2, k)-
CSPs. We show that we can refute such CSPs with savings depending only on the maximum variable
frequency. One extensively studied such class of CSPs are Tseitin formulas on graphs of degree k.
Our result implies that these formulas can be refuted with constant savings. It is known that every
n-variable unsatisfiable k-CNF has a tree-like resolution refutation of size 2(1−Ω(1/k))n ([BT16]).

However the best known lower bounds are only 2(1−1/kβ)n for some β < 0 ([PI00, BI13, BT16]).
Closing this gap remains a challenge. Our result sheds light (though limited) on this question
suggesting that it might even possible to improve the upper bound.

2 Hypergraph Separator Theorem

A connected component in a hypergraph H = (V,E) is a maximal subset of vertices S ⊆ V such
that for every pair u, v ∈ S there exists a sequence of edges e1, . . . , et only on vertices in S with
u ∈ e1 and v ∈ et and ei ∩ ei+1 6= ∅ for every i ∈ [t− 1].
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Definition 4. Let H = (V,E) be a hypergraph. A balanced separator for H is a set R ⊆ E such
that any connected component in (V,E \R) has at most |E|/2 edges.

Note that any set R ⊆ E of size |E|/2 is trivially a balanced separator. Therefore the question is
whether it is possible to get balanced separators of size strictly less than |E|/2. We show that when
the hypergraph has bounded vertex degree this is indeed possible. Let us first fix some notation.
For any S ⊆ V we denote by E(S) the set of edges induced on S, i.e., all edges which are entirely
on vertices in S. For S, T ⊆ V we define E(S, T ) = {e ∈ E : e ∩ S 6= ∅, e ∩ T 6= ∅}.

We will first show that when the maximum vertex degree of the hypergraph is small enough,
then small balanced separators do exist. We then show that our bound is quantitatively tight.

2.1 Small Separators

We need the following concentration bound. This is a consequence of an inequality due to Alon,
Kim and Spencer [AKS97] which was used by Dellamonica and Rödl [DR19].

Lemma 5. Let X1, . . . , Xn be independent Bernoulli variables with Pr[Xi = 1] = p for all i ∈ [n].
Let c > 0 and assume that there is a function f : {0, 1}n → R such that for all (x1, . . . , xn) ∈ {0, 1}n
and every i ∈ [n],

|f(x1, . . . , xn)− f(x1, . . . , xi−1, 1− xi, xi+1, . . . , xn)| ≤ c.

Then for σ2 := nc2p(1− p) and any 0 < α < 2σ/c, we have

Pr[|X − E[X]| ≥ ασ] ≤ 2e−α
2/4,

where X := f(X1 . . . , Xn).

Theorem 3. Let r ≥ 2 be fixed and let H = (V,E) be a hypergraph on m edges and maximum
vertex degree k where each hyperedge has size at most r. Assume that k

√
n � m. Then H has a

balanced separator of size at most (1
2 − εr)m + o(m), where εr = (1 − 2−1/r)r. Furthermore such

a balanced separator can be found by a randomized algorithm in expected polynomial time and by a
deterministic algorithm in time mO(1)2(1−2ε2r)m+o(m).

Proof. We first observe that with a small modification we may assume without loss of generality
that the hypergraph is r-uniform. To make the hypergraph r-uniform we partition the hyperedges
of size less than r into blocks of size k. For each of these blocks we introduce r new vertices and
we add sufficiently many of them to the hyperedges in the block to make them r-uniform. This
guarantees that the maximum degree remains at most k and we have added at most mr/k new
vertices. We then remove isolated vertices if any exists. We let n denote the number of vertices.

The idea is to find a set S of vertices such that |E(S)| = m/2 ± o(m) and |E(S, S)| ≤ (1
2 −

εr)m± o(m). Observe that for such S, we also have |E(S)| ≤ m/2 + o(m). Furthermore note that
E(S) and E(S) are separated by R := E(S, S), i.e., every connected component in (V,E \ R) is
entirely contained in S or in S. Then we arbitrarily select two sets W1 ⊆ E(S) and W2 ⊆ E(S)
with |W1|, |W2| ≤ o(m) such that |E(S) \W1| ≤ m/2 and |E(S) \W2| ≤ m/2, and we know that
this is possible by the assumption on S. It follows that R∪W1 ∪W2 is a balanced separator of size
at most (1− εr)m/2 + o(m).

We pick the set S ⊆ V by including each vertex independently with probability p := 2−1/r.
Let V = [n]. For each vertex i ∈ [n], let Xi be the random variable which takes value 1 if vertex
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i is chosen, and it take value 0 otherwise. Thus we have S = {i ∈ [n] : Xi = 1}. We define two
functions f1 and f2 as follows:

f1(X1, . . . , Xn) := |E({i ∈ [n] : Xi = 1})| = |E(S)|

and
f2(X1, . . . , Xn) := |E({i ∈ [n] : Xi = 1}, {i ∈ [n] : Xi = 0})| = |E(S, S)|.

Hence observe that
E[f1(X1, . . . , Xn)] = prm =

m

2

and

E[f2(X1, . . . , Xn)] = (1− pr − (1− p)r)m = (
1

2
− εr)m.

We would like to apply Lemma 5 on f1 and f2. Note that since the maximum degree of H is
at most k, for any b ∈ [2] and i ∈ [n],

|fb(X1, . . . , Xn)− fb(X1, . . . , Xi−1, 1−Xi, Xi+1, . . . , Xn)| ≤ k.

Setting α = 4, c = k and σ2 = nk2p(1− p) we apply Lemma 5 on f1 and f2 and obtain

Pr
[
|f1(X1, . . . , Xn)− m

2
| ≥ 4k

√
np(1− p)

]
≤ 2e−4

and

Pr

[
f2(X1, . . . , Xn)− (

1

2
− εr)m ≥ 4k

√
np(1− p)

]
≤ 2e−4.

Since r is fixed and k
√
n� m we have 4k

√
np(1− p) ≤ 4k

√
nr = o(m). Therefore with probability

at least 1 − 4e−4 > 0, |E(S)| = m/2 ± o(m) and |E(S, S)| ≤ (1
2 − εr)m + o(m) and hence there

exists a choice of S satisfying these properties. As explained earlier by adding at most o(m) edges
to E(S, S) we obtain a balanced separator of size (1

2 − εr)m+ o(m).
It is clear the above argument also yields a randomized algorithm for finding such a balanced

separator. The probability that S satisfies our desired properties is a constant and in polynomial
time we can verify whether it indeed satisfies those properties. Thus in expected polynomial time
we find our balanced separator.

The deterministic algorithm exhaustively checks all sets of at most (1
2 − εr)m+ o(m) edges to

find a balanced separator. This has running time mO(1)
(

m
( 1
2
−εr)m+o(m)

)
≤ mO(1)2h(1/2−εr)m+o(m),

where h(·) is the binary entropy function. Using h(1/2−x/2) ≤ 1−x2/2, we can bound the running
time by mO(1)2(1−2ε2r)m+o(m).

2.2 Optimality

We now show that Theorem 3 is tight.

Lemma 6. For every fixed α < 1 and r ≥ 2 and k, n→∞ with k � n, there exists an r-uniform
hypergraph H = (V,E) with the following properties:

1. |E| = (1± o(1))nkr

2. ∆(H) = O(k)
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3. For every S ⊆ V with |S| ≥ αn, |E(S)| = (1± o(1))( |S|n )r|E|.

Proof. We first sample G from G(r)(n, q) where q = nk/r

(nr)
. The expected number of edges is nk

r .

Thus by Chernoff’s bound with probability at least 1− 2−Ω(n), |E| = (1± o(1))nkr .
Next we bound the number of edges which are incident to vertices of degree at least 2ek. For

every vertex the probability that it has degree at least t is at most
((n−1
r−1)
t

)
qt. Note that for t ≥ 2ek

this probability is at most 2−t. Therefore we can upper bound the expected number of edges
incident with some vertex of degree at least 2ek by

n

∞∑
t=2ek

t2−t = O(nk/2k).

Therefore by Markov’s inequality with constant probability the number of edges incident with some
vertex of degree at least 2ek is at most O(nk/2k).

Let S ⊆ V be any set of size αn. The expected number of edges in S is
(
αn
r

)
q. Let δ = k−1/3 =

o(1). By Chernoff’s bound

Pr[|E(S)| 6= (1± δ)
(
αn

r

)
q] ≤ 2 exp(−δ2

(
αn

r

)
q/3)

= 2 exp(−δ2

(
αn

r

)
nk/3r

(
n

r

)
)

≤ 2 exp(−(1± o(1))αrnk1/3/3r),

where in the last inequality we use
(αnr )
(nr)

= (1±o(1))αrn since r is fixed. Since there are
(
n
αn

)
choices

for S, the probability that there exists S ⊆ V of size αn with |E(S)| 6= (1± δ)
(
αn
r

)
q is at most(

n

αn

)
× 2 exp(−(1± o(1))αrnk1/3/3r) = o(1).

It follows that there exists an r-uniform hypergraph G with (1 ± o(1))nr k edges, at most γn
of which are incident with some vertex of degree at least 2ek, where γ = O(k/2k). Furthermore
for every S ⊆ V with |S| = αn, |E(S)| = (1 ± δ)

(
αn
r

)
q. We remove at most γn edges to make

the maximum vertex degree at most O(k). Call the resulting hypergraph H = (V,E). Note
that |E(H)| = (1 ± o(1))nr k. Let δ′ = δ + γ. We have in H for every S ⊆ V with |S| = αn,
|E(S)| = (1 ± δ′)

(
αn
r

)
q. A simple averaging argument further gives that for every S ⊆ V with

|S| ≥ αn, E(S) = (1± δ′)
(|S|
r

)
q = (1± o(1))( |S|n )r|E|.

Theorem 7. For every fixed r ≥ 2 and k,m → ∞ with k � m, there exists an r-uniform
hypergraph with vertex degree O(k) and m edges such that any balanced separator of H has size at
least (1

2 − εr)m(1± o(1)), where εr := (1− 2−1/r)r.

We will show that the hypergraph H = (V,E) given by Lemma 6 with α := 1− 2−1/r satisfies
this property. Note that εr = αr and (1 − α)r = 1/2. Let m = |E|. The following fact proves the
result for the case when the balance separator is a bipartition. As it turns out and which we will
show later, this is also the core of the argument for the general case.

Fact 1. Let (A,B) be a bipartition of H with min{|A|, |B|} ≥ αn. Then |E(A,B)| ≥ (1/2 −
εr)m(1± o(1)).

5



Proof. Assume |A| ≤ |B| and |A| = γn. Since γ ≥ α, Lemma 6 guarantees that |E(A)| =
γrm(1± o(1)) and |E(B)| = (1− γ)rm(1± o(1)) and hence

|E(A,B)| = (1− γr − (1− γ)r)m(1± o(1))

≥ (1− αr − (1− α)r)m(1± o(1))

= (
1

2
− εr)m(1± o(1)),

where the inequality follows since the function 1− xr − (1− x)r is increasing for x ∈ (0, 1
2).

Proof of Theorem 7. Let R ⊆ E be a balanced separator in H of minimum size. The removal of
edges in R breaks H into two or more connected components each with at most m/2 edges. By
minimality of R these connected components are induced subgraphs. We group these connected
components in two parts A and B such that ||A| − |B|| is minimized. Assume that |A| ≤ |B|. We
have two cases. Either B is connected or it contains more than one connected component. Note
that R ⊇ E(A,B). Assume first that B is connected. We have |A| ≥ (α + o(1))n since otherwise
|B| > (1 − α + µ)n for some µ > 0 and hence |E(B)| ≥ (1 − α + µ + o(1))rm(1 ± o(1)) > m/2,
contradicting that |E(B)| ≤ m/2. Fact 1 then implies that |R| ≥ |E(A,B)| ≥ (1

2 − εr)m(1± o(1)).
Now assume that B contains more than one connected component. Thus we can write B = B1∪

B2, where B1 and B2 is an arbitrary bipartition of these components. Assume |B1| ≥ |B2|. We show
that |A| ≥ |B1|. Assume for a contradiction that this is not the case. Then |A| < min{|A∪B2|, |B1|}
and further we have max{|A∪B2|, |B1|} ≤ |B1 ∪B2|. This means that A∪B2 and B1 give a more
balanced bipartition, contradicting the minimality of ||A| − |B||. Since |A| + |B1| + |B2| = n and
|A| ≥ |B1| ≥ |B2|, we have |A| ≥ n/3 ≥ αn (recall that α = 1 − 2−1/r and α ≤ 1/3 when r ≥ 2).
Once again we can apply Fact 1 to conclude that |R| ≥ |E(A,B)| ≥ (1

2 − εr)m(1± o(1)).

3 A CSP-SAT Algorithm

A (d, k)-CSP Ψ is defined by a set of variables X taking values in an alphabet Σ of size d and a
set C of constraints each on most k of these variables. We write Ψ = (X, C) to specify the variables
and the constraint set. We will assume that the CSP is represented by the set of truth tables
of its constraints. Observe that a (2, k)-CSP can be represented as a k-CNF. An assignment to
the variables satisfies Ψ if it satisfies every constraint. The variable frequency of Ψ is the largest
number of contraints that any variable appears in. Given a partial assignment ρ which gives values
to a set D ⊆ X, the restriction of Ψ is denoted by Ψ|ρ which is a CSP on X \D and each constraint
is restricted by fixing the values of variables in D by ρ.

Let Ψ = (X, C) be a CSP. We construct a hypergraph HΨ = (V,E) as follows. We set V = C,
that is every constraint is represented by a vertex in H. For every variable x ∈ X we create a
hyperedge ex := {C : x ∈ C}, that is the set of constraints containing x form a hyperedge.

Proposition 8. Assume that HΨ consists of connected components H1, . . . ,Ht. Then Ψ can be
expressed as ∧ti=1Ψi where HΨi = Hi for each 1 ≤ i ≤ t.

Proof. This is immediate once we observe that for any C ∈ Hi and D ∈ Hj for i 6= j, C and D do
not have any variable in common.
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Proposition 9. Let Ψ = (X, C) be a CSP and HΨ = (V,E) be the corresponding hypergraph. Let
ρ be a partial assignment which gives values to a set D ⊆ X. Then HΨ|ρ is obtained by removing
all ex with x ∈ D from HΨ. Furthermore, if Ψ is unsatisfiable so is Ψ|ρ and consequently if Ψ|ρ
breaks into ∧ti=1Ψi as in Proposition 8, then at least one of Ψis is unsatisfiable.

Proof. After restricting some of the variables, those variables disappear and some constraints get
simplified. But no new constraint is introduced and hence the hypergraph is obtained by removing
the corresponding hyperedges. If a CSP is unsatisfiable, obviously it is unsatisfiable under any
partial assignment. If an unsatisfiable CSP is decomposed into disjoint CSPs, at least one of these
CSPs is unsatisfiable, since otherwise we can take a satisfying assignment from each part and
since they are on disjoint sets of variables together they form a satisfying assignment of the whole
CSP.

We are now ready to describe our algorithm CSP-SAT.

Algorithm 1 CSP-SAT(Ψ)

Construct HΨ = (V,E).
Construct a small balanced separator R as in Theorem 3 (either probabilistically or determinis-
tically).
for all ρ ∈ ΣR do

Let Ψ|ρ = ∧ti=1Ψi as in Proposition 9.
for all i ∈ [t] do

Exhaustively check if Ψi is satisfiable
end for
if all Ψi’s are satisfiable then return satisfiable
end if

end for
return unsatisfiable

Theorem 2. Let r ≥ 2 be a fixed integer, n, d, k ≥ 1 be integers such that k �
√
n. Let εr =

(1 − 2−1/r)r. Let Ψ be an n-variable (d, k)-CSP with variable frequency at most r. CSP-SAT(Ψ)
correctly decides the satisfiability of Ψ. Moreover, if d ≥ 3 then it runs deterministically in time
|Ψ|O(1)d(1−εr)n+o(n), if d = 2 then it runs in expected time |Ψ|O(1)2(1−εr)n+o(n) if we find R randomly,
and in deterministic time |Ψ|O(1)2(1−2ε2r)n+o(n) if we find R deterministically.

Proof. The correctness of the algorithm follows immediately from Proposition 9. In polynomial
time we can construct HΨ = (V,E). Observe that HΨ has n edges each of size at most r and it has
vertex degree at most k. By Theorem 3, we can find a balanced separator of size (1

2 − εr)n+ o(n)

deterministically in time 2(1−2ε2r)n+o(n) or probabilistically in expected polynomial time in n. After
having found the balanced separator R, there are at most d( 1

2
−εr)n+o(n) runs of the for loop over

ρ. For each restriction ρ we spend |Ψ|O(1) time to compute the decomposition of Ψ. Then for each
of these parts we exhaustively check its satisfiability in time at most dn/2. Since Ψ breaks into at
most m := |V | parts the total running time after finding R is at most |Ψ|O(1)d( 1

2
−εr)n+o(n)+n/2 =

|Ψ|O(1)d(1−εr)n+o(n). For d ≥ 3, 2n < 3(1−εr)n so the total running time including finding the
separator is bounded by |Ψ|O(1)d(1−εr)n+o(n). For d = 2, if we use the randomized procedure
to find R, the total expected running time will be at most |Ψ|O(1)2(1−εr)n+o(n), and if we run
the deterministic procedure to find R, the total running time is at most |Ψ|O(1)(2(1−2ε2r)n+o(n) +
2(1−εr)n+o(n)) ≤ |Ψ|O(1)2(1−2ε2r)n+o(n).
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Notice, for x ∈ [0, 1], 2−x ≤ 1 − x
2 so 2−

1
r ≤ 1 − 1

2r so (1 − 2−
1
r ) ≥ 1 − (1 − 1

2r ) = 1
2r . Hence,

εr ≥ 1
(2r)r .

Remark. We can slightly modify the algorithm and instead of performing exhaustive search on
the disjoint parts of the CSP we can make a recursive call to the algorithm. It is easy to verify
that this improves the savings by a factor of two.

Corollary 10. Let r ≥ 1 be a fixed real, n, d, k ≥ 1 be integers such that k �
√
n. Let εr = (1 −

2−1/r)r. Let Ψ be an n-variable (d, k)-CSP with average variable frequency at most r. CSP-SAT(Ψ)
correctly decides the satisfiability of Ψ. Moreover, if d ≥ 3 then it runs deterministically in time
|Ψ|O(1)d(1−εd2re/2)n+o(n), if d = 2 then it runs in expected time |Ψ|O(1)2(1−εd2re/2)n+o(n) if we find R

randomly, and in deterministic time |Ψ|O(1)2
(1−ε2d2re)n+o(n)

if we find R deterministically.

Proof. Consider the case d ≥ 3. There are at most n/2 variables with frequency ≥ d2re. For all
possible settings of those variables run the CSP-SAT(Ψ) algorithm on Ψ restricted to that setting.
In such a restricted formula all variables have frequency at most d2re. By the previous theorem
the running time will be dn/2 · |Ψ|O(1)d(1−εd2re)n/2+o(n). The case for d = 2 is analoguous.

4 Upper Bounds for Tree-like Resolution

In this section we use our separator theorem to give non-trivial refutations of unsatisfiable (2, k)-
CSPs (recall that these CSPs can be represented by k-CNFs) with bounded variable frequency.
This class of CSPs includes the extensively studied Tseitin formulas which essentially encode that
in a simple graph the number of odd degree vertices is even. Here we consider a more general
definition for hypergraphs due to Pudlák and Impagliazzo [PI00].

Definition 11. Let H = (V,E) be a hypergraph and let λ : V → {0, 1}. The Tseitin tautology on
H, T (H,λ), has a variable xe for every edge e ∈ E and states that for every v ∈ V , ⊕e3vxe ≡ λ(v).
When ⊕v∈V λ(v) ≡ 1 (in which case we call λ an odd charge labelling) and each edge has even
cardinality, T (H,λ) is unsatisfiable. When H has maximum degree k, T (H,λ) is a (2, k)-CSP.

Theorem 12. Let Ψ be an unsatisfiable (2, k)-CSP with variable frequency at most r on n variables.
If r is fixed and k �

√
n, then there exists a tree-like resolution refutation of Ψ of size 2(1−εr)n+o(n),

where εr = (1− 2−1/r)r.

Proof. It is useful to think of a tree-like resolution proof as a Prover-Delayer game (due to Urquhart
[Urq11]). The players maintain a partial assignment ρ which is initially empty. At every step Prover
queries a variable x which is not given a value by ρ. Delayer then assigns a value b ∈ {0, 1} to x.
Then ρ is extended by (x = b) and they continue. The game stops when ρ falsifies some constraint
in C. Note that this will eventually happen since Ψ is unsatisfiable. It is easy to see that if there is
a strategy for Prover which can always force a contradiction in at most t steps, then there exists a
tree-like resolution refutation of size 2t for Ψ. We therefore give a strategy for Prover which forces
contradiction in at most (1− εr)n+ o(n) steps.

We will make use of Theorem 3 applied to HΨ and the strategy is quite immediate. Prover
queries all variables corresponding to the hyperedges in the balanced separator R given by Theorem
3 of size at most (1

2 − εr)n + o(n). Delayer assigns a value to these variables. Call the resulting
partial assignment ρ. By the separator property and Proposition 9 and Proposition 8 we can write
Ψ|ρ = ∧ti=1Ψi for some t, where Ψis are on disjoint sets of at most n/2 variables. Furthermore at
least one of Ψis is unsatisfiable. Prover then queries all the variables in Ψi. It is clear that once
Delayer assigns to these variables a contradiction is forced. The total number of queried variables
is at most (1

2 − εr)n+ o(n) + n/2 = (1− εr)n+ o(n).
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Corollary 13. Let H = (V,E) be an r-uniform hypergraph of maximum degree k where r is even
and let λ : V → {0, 1} be an odd charge labeling. If r is fixed and k �

√
|E| then T (H,λ) can be

refuted in tree-like resolution in size 2(1−εr)|E|+o(|E|), where εr = (1− 2−1/r)r.

Proof. Observe that each variable appears in r constraints.

The case r = 2 corresponds to the the usual Tseitin tautologies on simple graphs. We give a
finer analysis for this case which also involves a sharper derandomization.

Theorem 14. There exists a deterministic algorithm which on input T (G,λ) where graph G =
(V,E) satisfies ∆(G) = o(

√
|E|/ log |E|) and λ is any odd-charge labeling, produces a tree-like

resolution refutation of T (G,λ) in time |E|O(1)2
(1−(1− 1√

2
)2)|E|+o(|E|) ≤ |E|O(1)20.914|E|.

Proof. We will use a finer way of characterizing tree-like resolution size. A decision tree refuting
an unsatisfiable CNF ϕ, is a decision tree on variables from ϕ and each leaf is labeled by a clause
from ϕ with the condition every branch viewd as partial assignment falsifies the clause at the
corresponding leaf. It is known and easy to show that there is a tree-like resolution refutation of
ϕ of the same size as the decision tree (see e.g. [BGL13]). Thus it is sufficient to construct a small
decision tree.

Let n = |V | and m = |E|. We first compute the size of a small balanced separator of G. By
Theorem 3, G has a balanced separator of size at most (1

2 − ε2)m where ε2 = (1 − 1√
2
)2. We

now give a deterministic procedure for finding such a separator. The derandomization is based on
the following observation. If G has minimum degree at least 3 we have n ≤ 2m/3. We can then
exhaustively check all subsets S ⊆ V to find a small balanced separator in time mO(1)22m/3. We
need to address the assumption that the minimum degree is at least 3 and how we can afford this
exponential running time. We construct a rooted tree TG as follows. Each node νi on this tree
is labeled by a pair (Gi, Ri) where Gi is a subgraph of G and Ri is a subset of edges of Gi. For
any graph G, let G∗ be the result of removing all edges incident with vertices of degree at most
2 in G. Initially we set G0 = G. Then we set R0 to be the small balanced separator that we
deterministically find in G∗0. For each connected component H in G∗0 \R0 we add a child νi to ν0,
set Gi = H and continue recursively. It is clear that TG has depth at most log n and that at each
level it has at most m nodes (since there are at most n connected components). Therefore TG has

at most n log n nodes and the label of each node can be computed in time mO(1)2
2
3
m. Therefore

TG can be computed in this time.
We are now ready to construct the decision tree for T (G,λ). Starting with G0 = G, we first

query all edges incident with vertices of degree at most 2. Note that this can be done by a
polynomial size tree. Recall that assigning values to these edges amounts to removing those edges
and hence we have obtained G∗0 at the end of a branch which is not falsifying any axiom of T (G,λ).
We can now query all edges in R0 (which we have computed already). Each branch along these
queries puts the odd charge in some connected component in G0 \ R0. We can then move to the
corresponding node in TG and continue recursively.

Since we query some edges to get rid of small degree vertices, this causes a blow up of polynomial
factor in the size. The total running time is thus mO(1)2

2
3
m + 2(1−ε2)m = mO(1)2(1−ε2)m.

5 Conclusion

We showed that we can remove a small number of edges from r-uniform hypergraphs with bounded
vertex degree to break it into connected components each with at most half of the edges. This was
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used to solve the satsifiability of sparse CSPs. It would be interesting to find other applications of
this separator theorem.
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