
On the complexity of computing a random

Boolean function over the reals

Pavel Hrubeš∗

October 24, 2019

Abstract

We say that a first-order formula A(x1, . . . , xn) over R defines a Boolean
function f : {0, 1}n → {0, 1}, if for every x1, . . . , xn ∈ {0, 1}, A(x1, . . . , xn)
is true iff f(x1, . . . , xn) = 1. We show that:

(i). every f can be defined by a formula of size O(n),

(ii). if A is required to have at most k ≥ 1 quantifier alternations, there
exists an f which requires a formula of size 2Ω(n/k).

The latter result implies several previously known as well as some new
lower bounds in computational complexity. We note that (i) holds over
any field of characteristic zero, and (ii) holds for any real closed or alge-
braically closed field.

1 Introduction

In computational complexity, we are typically interested in computing a Boolean
function f : {0, 1}n → {0, 1}. The major computational model is a Boolean
circuit which obtains the function by means of the elementary operations ∧,∨,¬.
The major open problem is to prove super-polynomial (or even super-linear)
lower bounds on the circuit size of an explicit function f . On the other hand, it is
easy to prove, non-constructively, that hard Boolean functions exist: comparing
the number of circuits of a given size with the total number of functions, there
must exist Boolean functions which require circuits of exponential size.

The counting argument relies on the fact that the elementary operations
used are functions over a small finite set. In the complexity literature, we also
encounter algebraic models of computation which do not have this property.
While we are still interested in computing a Boolean function, we are allowed to
use intermediary operations over an infinite domain – typically the real numbers
or some other infinite field. To give a simple example: suppose we want to
obtain f by computing a real polynomial g by means of an arithmetic circuit

∗Institute of Mathematics of ASCR, Prague, pahrubes@gmail.com. Supported by GACR
grant 19-27871X.

1

(see [20, 11] for details) such that f(x) = g(x) holds over x ∈ {0, 1}n. Since an
arithmetic circuit can use arbitrary real numbers as constants, we can no longer
apply the counting argument in this case. A similar phenomenon occurs in the
case of span programs [13, 2], and others.

A well-known strategy is to replace the counting argument with Warren’s
theorem [22], or some variant of it [17, 1] (see also Section 5). The theorem
tells us how many sign patterns can be achieved in the image of a polynomial
map, which is quite enough to prove the existence of hard functions in the
aforementioned models [11, 2, 17]. There is however at least one instance where
this tool is apparently insufficient. Suppose we want to compute f by means
of a parametrized linear program as follows: we have a system L(x, y) of linear
inequalities over R in the variables x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , ym〉.
We require that for every x ∈ {0, 1}n, f(x) = 1 iff the system L(x, y) has a
solution y ∈ Rm. Is there a function f such that f requires an exponential
number of inequalities to be defined this way? This measure, which we call
linear separation complexity, has been considered at least in [23, 15] and arises
in the context of the so-called extension complexity of polytopes (see Section
3 for details). The author does not know how to resolve this question directly
using Warren’s theorem. Neither he knows how to extend the closely related
result of Rothvoß [19] to this situation.

We can view these algebraic models a bit more abstractly. Consider a
Boolean function defined by a first-order formula over the reals A(x1, . . . , xn).
The function accepts on x1, . . . , xn ∈ {0, 1} iff A(x1, . . . , xn) is true. Here, the
formula A may contain constant symbols representing arbitrary real numbers as
well as quantifiers over R. In all the above examples, we are in fact defining f in
terms of an existentially quantified formula over the reals (or another underlying
field). Are there functions which are hard for this model? As we will see, this
depends on whether we bound the quantifier complexity of A or not. First, if no
restriction is imposed, then every Boolean function can be defined by a linear
size formula. Second, if A is required to have at most k ≥ 1 quantifier alterna-
tions in the prenex form then there is a Boolean function requiring a formula
of size 2Ω(n/k). The latter implies an exponential lower bound on the linear
separation complexity as well as the other models discussed. Our first result is
achieved by a direct construction, the second one is a corollary of known results
on quantifier elimination over the reals. In this respect, our question is closely
related to the problem whether PR = NPR in the real Turing machine model
(see [4] and [14] for survey). We will see that both results hold in a greater
generality, in other fields besides the reals.

2 Preliminaries

Let F be a field. An F-formula, or simply a formula, is a first-order formula
built from the function and predicate symbols ”+, ·,=”, constant symbols ca
for every element a of the field, as well as the usual logical symbols (variables,
Boolean connectives, and quantifiers ∃,∀). If F is an ordered field, we allow

2

also the predicate symbols <,≤ representing the ordering.1 We define the size
of a formula as the number of symbols in the formula (constants and variables
having a unit cost). Every formula with no free variables is either true or false,
under the intended interpretation of symbols as operations over F.

Every quantifier-free formula over a field is of the form B(t1 = t′1, . . . , tm =
t′m), where B is a propositional formula defining a Boolean function and ti, t

′
i

are terms defining polynomials with coefficients from F. Over an ordered field,
we may also encounter the atomic formulas ti < t′i, ti ≤ t′i. We will take
the liberty to identify the constant ca with a and, occasionally, identify terms
with the polynomials they represent. A Σ1-formula is a formula of the form
∃x1 . . . ∃xnA, where A is quantifier-free. Similarly, Σ2-formula is of the form
∃x1 . . . ∃xn∀y1 . . . ∀ymA, and so on for Σk. Every formula can be converted to
an equivalent Σk-formula of nearly the same size, for some k. One could also
define Πk-formulas, but we have no need for that.

Let F be a field or an ordered field. Let A(x1, . . . , xn) be an F-formula with
no other free variables other than x1, . . . , xn. We will say that A defines a
Boolean function f : {0, 1}n → {0, 1} if the following holds:

f(σ1, . . . , σn) = 1 iff A(σ1, . . . , σn) is true, for every σ1, . . . , σn ∈ {0, 1} .

In Sections 4 and 5, we will prove the following main results:

Theorem 1. Let F be a field of characteristic zero. For every n-variate Boolean
function f , f can be defined by an F-formula of size O(n).

Theorem 2. Let F be either an ordered real closed field or an algebraically
closed field. Then for every k > 0 and n, there exists a Boolean function f in n
variables such that every Σk-formula defining f must have size at least 2Ω(n/k).

We emphasize that Theorem 1 is possible, and Theorem 2 non-trivial, only
due to the fact that we allow arbitrary constants from F to appear in the formula
defining f . Let us also note that Theorem 2 requires some assumption on the
underlying field: remarkably, it is false over the field of rationals. This follows
from the fact, proved by Robinson [16], that integers can be defined inside Q
and that, over Z, the truth-table of a function can be encoded as a single integer
(cf. the proof of Theorem 1).

The power of Σ1-formulas

We note that already the class of Σ1-formulas is quite robust. That is, many
syntactic restrictions or relaxations of the definition lead essentially to the same
class. Recall that Σ1-formula is of the form ∃y∈FrB(t1 = t′1,tm = t′m), where
B is a Boolean formula and ti, t

′
i are terms. The latter can be seen as the so-

called arithmetic formulas defining polynomials over F. Note that if we allow B
to be a Boolean circuit instead, we do not get a stronger model: introducing new

1The potential error resulting from forgetting the order in an ordered field would be small:
x ≤ y can be defined as ∃u(y = x + u2).

3

variables representing the gates of the circuit we can rewrite B as a Σ1-formula
of a linear size. The same applies if we allow the terms ti, t

′
i to be computed by

arithmetic circuits. In fact, all polynomial-time computations in the sense of [4]
can be expressed as small Σ1-formulas. In turn, every Σ1-formula A(x1, . . . , xn)
of size s can equivalently written as ∃y1 . . . ∃ym(h1 = 0 ∧ · · · ∧ ht = 0), where
m, t ≤ O(s), and h1, . . . , ht are polynomials of degree two. This is true both in
an ordered and an unordered field. In the ordered case, this can furthermore
be written as ∃y1 . . . ∃ym(h = 0), where h is a single polynomial of degree four.
That is, the complexity of a Σ1-formula can be captured as the number of bound
variables in an expression involving only low-degree polynomials. This would
allow us to redefine Σ1-complexity in a mathematically cleaner way.

3 An application: extension and separation com-
plexity

As mentioned in the introduction, Theorem 2 has several obvious applications,
and we focus on just one. Suppose we want to compute a Boolean function
f(x), x ∈ {0, 1}n, by the following parametrized linear program. We have y =
〈y1, . . . , ym〉 new variables and a set L(x, y) of linear inequalities or equalities
over R:

`1(x, y) ≥ a1, . . . , `r(x, y) ≥ ar , u1(x, y) = b1, . . . , ut(x, y) = bt .

We say that L(x, y) computes f , if for every x ∈ {0, 1}n,

f(x) = 1 iff there exists y ∈ Rm such that L(x, y) is satisfied . (1)

In other words, f accepts precisely on the Boolean inputs

{x ∈ {0, 1}n : ∃y ∈ RmAx+By ≥ a, Cx+Dy = b} ,

where A,B,C,D, a, b are real matrices and vectors describing the linear system.
We define the linear separation complexity of f as the smallest r so that f can be
computed as in (1) by a linear system with r inequalities. Note that we disregard
m, the number of extra variables, as well as t, the number of equalities, in the
definition. This is because both these parameters can be bounded in terms of
n and r.

The geometric interpretation is as follows. A polyhedron P ⊆ Rn will be
called a separating polyhedron for f , if

f−1(1) ⊆ P , f−1(0) ∩ P = ∅ ,

i.e., the polyhedron contains all accepting inputs of f and excludes all its re-
jecting inputs. Following [23, 19, 8], define the extension complexity of P as the
smallest r such that P is a linear projection of a polyhedron Q ⊆ Rm where
Q can be defined using r inequalities (and any number of equalities). In this

4

language, the linear separation complexity of f equals the smallest r such that
there exists a separating polyhedron for f of extension complexity r.

While the phrase ”linear separation complexity” is introduced here, the same
concept has appeared earlier. Already in [21], Valiant has observed that linear
separation complexity is, up to a constant factor, a lower bound on the Boolean
circuit complexity of f . This appears again in the seminal paper of Yannanakis
[23]. A similar quantity was also investigated by Pudlák and Oliveira in [15] in
the context of proof complexity. The Yannanakis’ paper started a fruitful direc-
tion of research into the extension complexity of 0/1-polytopes. Rothvoß [19]
has shown that there exists a polytope P ⊆ Rn with vertices in {0, 1}n and ex-
tension complexity 2Ω(n). Since then, the same was proved for explicit polytopes
(see, e.g., [18] and references within).

In our setting, the smallest separating polyhedron for f is simply the convex
hull of accepting inputs of f , P0 = conv(f−1(1)). Hence, the result [19] says
that there exists an f such that P0 has exponential extension complexity. This
however does not imply a lower bound on the linear separation complexity, for
there are infinitely many other separating polytopes. Furthermore, it is not
apparent to the author how to adapt Rothvoß’ proof to this setting. On the
other hand, Theorem 2 readily implies:

Theorem 3. For every n, there exists a Boolean function f : {0, 1}n → {0, 1}
with linear separation complexity 2Ω(n).

Proof. Assume that f can be computed by a linear system L(x, y) as in (1). It
is easy to see that the number of extra variables y can be bounded by r and
the number of equalities by n. Hence, f can be defined by a Σ1-formula of size
O((r + n)2). By Theorem 2, this means that r ≥ 2Ω(n) for some f .

This also implies the result in [19]. However, Rothvoß’ proof achieves better
constants hidden in Ω(n) and is definitely more informative. The reasoning of
Theorem 3 could also be applied to ”semi-definite separation complexity” as
considered in [5].

4 Proof of Theorem 1

We now show that over a field of characteristic zero, every Boolean function f
can be computed by a linear size formula. The idea is to encode the truth table
of f as a natural number, af , so that the values of f can be efficiently recovered
from af . The main ingredient is to show that over the field, we can argue about
integers of doubly exponential size. This part is reminiscent of the construction
in [10, 7].

Let F be a field of characteristic zero. We identify a natural number n with
the finite sum 1 + · · ·+ 1 of length n. A formula will be called constant-free, if
it contains only the constants 0, 1 and −1.

Lemma 4. For every non-negative integer n, there exists a constant-free for-
mula An(x) of size O(n) such that An(x) defines the set {0, 1, . . . , 22n − 1}.

5

Proof. We first construct the formula using auxiliary constants, τ0, τ1, . . . , where
τi = 22i

. We set A0(x) as the formula x2 = x. Note that for an integer m ≥ 0,
the function

g(x1, x2) = mx1 + x2

is a bijection between {0, 1, . . . ,m − 1}2 and {0, 1, . . . ,m2 − 1}. Hence, given
An defining {0, 1, . . . , 22n − 1}, the formula

An+1(x) := ∃x1∃x2 ((x = τnx1 + x2) ∧ ∀z((z = x1 ∨ z = x2)→ An(z)))

defines the set {0, 1, . . . , 22n+1 − 1}.
Applying this recursively, we obtain the required formula, except that An

contains the constants τ0, . . . , τn−1. To remove them, view them as free variables
and let Tn(τ0, . . . , τn−1) be the conjunction of the equations

τ0 = 2, τ1 = τ2
0 , . . . , τn−1 = τ2

n−2 .

These equations have 220

, . . . , 22n−1

as their only solution, and hence

∃τ0, . . . , τn−1(Tn ∧An)

is a constant-free formula defining {0, 1, . . . , 22n − 1}.

The following is a stronger version of Theorem 1.

Theorem 5. Let F be a field of characteristic zero. For every n, there exists a
constant-free formula B(x1, . . . , xn, y) of size O(n) such that the following holds.
For every f : {0, 1}n → {0, 1} there exists af ∈ F such that B(x1, . . . , xn, af)
defines the function f .

Proof. For x = 〈x1, . . . , xn〉 ∈ {0, 1}n, let b(x) :=
∑n

i=1 2i−1xi. Given f :
{0, 1}n → {0, 1}, let

af :=
∑

x∈{0,1}n
f(x)2b(x) .

In other words, af is the integer such that for every x, the b(x)-th bit of af is
f(x). Note that af lies in {0, 1, . . . , 22n −1}. Furthermore, f(x) = 1 if and only
if

∃y1, y2 ∈ {0, 1, . . . , 22n

− 1} , y1 < 2b(x), af = 2b(x)+1y2 + 2b(x) + y1 . (2)

From the previous lemma, the conditions y1, y2 ∈ {0, 1, . . . , 22n − 1} can be
replaced by An(y1), An(y2). Also, the ordering y1 < z on {0, 1, . . . , 22n − 1} can
be defined as ∃u(u 6= 0 ∧ z = y1 + u ∧An(u)). Finally,

2b(x) = 2
∑n

i=1 2i−1xi =

n∏
i=1

22i−1xi =

n∏
i=1

(xi(2
2i−1

− 1) + 1) .

This allows to write 2b(x) and 2b(x)+1 = 2 · 2b(x) as linear-size terms using the
auxiliary constants τi = 22i

. As noted in the previous lemma, the constants
can be defined by the formula Tn. Altogether, condition (2) can be written as
a linear size formula.

6

Let us remark that in the definition of constant-free formula, one can insist
that the formula contains no constants at all: this is because 0, 1 and −1 can
be defined by such a formula. Furthermore, in the proof of Theorem 5, we did
not use the fact that F is a field. It would be quite enough to assume that F
is a ring or even a semiring with multiplicative unit 1 such that the ”natural
numbers” 1, 1 + 1, 1 + 1 + 1, . . . are distinct.

5 Proof of Theorem 2

Our proof of Theorem 2 uses tools from algebraic geometry, namely, counting
the number of sign patterns of a polynomial map and quantifier elimination.
The author would be happy to see a more direct and self-contained proof at
least for the case of Σ1-formulas. We first overview the results required.

Sign patterns of a polynomial map

For b ∈ R, let

sgn(b) =

1 , b > 0

0 , b = 0

−1 , b < 0

Let f = 〈f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)〉 be a sequence of real polynomials
of degree at most d. For a ∈ Rn, let sgnf(a) := 〈sgnf1(a), . . . , sgnfm(a)〉 ∈
{−1, 0, 1}m, be the sign-pattern of f at a. Warren [22] has obtained a bound
on the number of sign-patterns of f lying in {−1, 1}m; as noted by Alon [1], a
similar bound applies to the total number of sign-patterns. Assuming 2m ≥ n
and d ≥ 1, the number of sign patterns can be bounded as

|{sgnf(a) : a ∈ Rn}| ≤ (8edm/n)n . (3)

The same estimate clearly holds over any real closed field2.
Over unordered fields, a similar bound holds on the number of zero patterns.

For b ∈ F, let

sgn∗(b) :=

{
1 , b 6= 0

0 , b = 0

For a ∈ Fn, let sgn∗f(a) := 〈sgn∗f1(a), . . . , sgn∗fm(a)〉 ∈ {0, 1}m, be the zero-
pattern of f at a. A bound on the number of zero-patterns of f has been
obtained by Heintz [10], and the estimates were recently improved and simplified
by Rónyai et al. in [17]. The number of zero-patterns can be bounded by
(assuming d ≥ 1, m ≥ n)

|{sgn∗f(a) : a ∈ Fn}| ≤ (edm/n)n .

2Hence, also any ordered field

7

Quantifier elimination

The celebrated Tarski-Seidenberg theorem asserts that every formula over a
real closed field is equivalent to a quantifier-free formula. We are interested
in the size of the resulting formula. It is known ([10, 7]) that in general, the
size can increase doubly-exponentially if we allow a linear number of quantifier
alternations. The situation is better if the number of quantifier alternations
is small. The result of Grigoriev [9], see also [3], Chapter 14, Theorem 14.16,
implies the following: every Σk-formula A of size s is equivalent to a quantifier-

free formula of size 2s
O(k)

. More specifically, A can be written as

G(sgn(f1) = σ1, . . . , sgn(fm) = σm) , (4)

where f1, . . . , fm are polynomials in the free variables ofA, σ1, . . . , σm ∈ {−1, 0, 1}
and G : {0, 1}m → {0, 1} is a Boolean function. Moreover, the degrees of fi,

formula size of G, and the parameter m, can all be bounded by 2s
O(k)

.
The same result holds over any algebraically closed field, as shown by Chistov

and Grigoriev [6], see also Corollary 6.4 in [12]. The expression (4) is replaced
by G(f1 = 0, . . . , fm = 0).

Let us remark that the cited bounds are more informative than presented
here: they bound the number of fi’s in (4) and their degree separately, in
terms of the number of atomic formulas in A, their degrees, and the number
of quantifier alternations. Moreover, the constants in the big-O are different in
the two cases (algebraically closed versus real closed field).

We now proceed to prove Theorem 2. At a high level, we use quantifier
elimination to reduce to the quantifier-free case, and apply Warren’s theorem
to atoms of the quantifier-free formula.

For a formula A with no free variables, let [A] ∈ {0, 1} denote its truth-value.
Let

β = 〈β1(y1, . . . , yn), . . . , βm(y1, . . . , yn)〉 (5)

be a sequence of formulas with all their free variables among y1, . . . , yn. For
a ∈ Fn, [β(a)] := 〈[β1(a)], . . . , [βm(a)]〉 ∈ {0, 1}m will be called the truth-pattern
of β at a. We want to bound the number of truth-patterns of β in terms of its
complexity,

Lemma 6. Let F be an algebraically closed or an ordered real closed field. Let β
as in (5) be a sequence of Σk-formulas, each of size at most s. Then the number

of truth-patterns can be bounded as |{[β(a)] : a ∈ Fn}| ≤ (2s
O(k)

m)n.

Proof. We focus on the real closed case, the argument is the same for alge-
braically closed field. The bounds on quantifier elimination in (4) imply the
following. Given βi, there exists a sequence fi = 〈fi,1, . . . , fi,mi〉 of polynomials
in the variables y1, . . . , yn such that the truth value of βi(a), a ∈ Fn, is de-
termined by the sign-pattern of fi at a. Moreover, mi as well as the degrees

of fi,j are bounded by 2s
O(k)

. Let f be a sequence of all the polynomials fi,j ,

8

i ∈ {1, . . . ,m}, j ∈ {1, . . . ,mi}. The length of the sequence is M ≤ m2s
O(k)

and each polynomial has degree d ≤ 2s
O(k)

. Given a ∈ Fn, the truth-pattern
of β at a is determined be the sign-pattern of f at a, and hence the number of
truth-patterns is at most the number of sign patterns of f . Using (3), the latter

can be bounded by (8edM)n which can be written3 as (2s
O(k)

m)n.

Proof of Theorem 2. Assume that s ≥ n is such that every Boolean function in
n variables can be defined by a Σk-formula of size at most s. Let F be the set
of such formulas with free variables among x1, . . . , xn. Introduce fresh variables
y = 〈y1, . . . , ys〉 and z = 〈z1, . . . , zs〉. A formula S(x, y), with x = 〈x1, . . . , xn〉,
will be called a skeleton if a) it contains only variables from x, y, z and no
constant symbols, and b) its free variables are from x or y. Let S be the
set of Σk-skeletons of size at most s. Hence, for every A(x) ∈ F there exists
S(x, y) ∈ S and a ∈ Fs such that A(x) = S(x, a) (up to renaming of the bound
variables z). Unlike F , S is a finite set. A skeleton is a string of symbols from
the alphabet x, y, z, ∀,∃,∧, . . . of size O(s). Therefore,

|S| ≤ 2O(s log s) .

We will say that a skeleton S(x, y) defines a Boolean function f : {0, 1}n →
{0, 1}, if there exists a ∈ Fs such that S(x, a) defines f . Hence, every f is defined
by some skeleton in S. We now want to bound the number of functions defined
by a given skeleton S(x, y) ∈ S. Let β be a sequence of the 2n formulas S(σ, y),
σ ∈ {0, 1}n. Each formula in β has free variables in y. For a given a ∈ Fs,
the function defined by S(x, a) is uniquely determined by the truth-pattern of
β at a: indeed, S(x, a) defines the function f such that f(σ) = [S(σ, a)] for all
σ. Hence, the number of functions defined by S(x, y) is at most the number of

truth-patterns of β. By the previous lemma, this can be bounded by (2s
O(k)

2n)s

which is of the form 2s
O(k)

(we assumed s ≥ n).

Altogether, skeletons in S can define at most 2O(s log s)2s
O(k)

Boolean func-
tions. Since the total number of functions is 22n

, we must have s ≥ 2Ω(n/k).

Acknowledgement The author thanks Pavel Pudlák and James Lee for use-
ful discussions.

References

[1] N. Alon. Tools from higher algebra. In Handbook of Combinatorics. Elsevier
and MIT Press, 1995.

[2] L. Babai, A. Gál, and A. Wigderson. Superpolynomial lower bounds for
monotone span programs. Combinatorica, 19(3):301–319, 1999.

[3] S. Basu, R. Pollack, and M.F. Roy. Algorithms in real algebraic geometry.
Springer-Verlag, 2006.

3As s ≥ 2, the additional constants can be swallowed by the big-O.

9

[4] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real compu-
tation. Springer-Verlag, 1998.

[5] J. Briet, D. Dadush, and S. Pokutta. On the existence of 0/1 polytopes
with high semidefinite extension complexity. J. Mathematical Program-
ming, 153(1):179–199, 2015.

[6] A. L. Chistov and D. Grigoriev. Complexity of quantifier elimination in
the theory of algebraically closed fields. In Mathematical Foundations of
Computer Science, pages 17–31, 1984.

[7] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly expo-
nential. J. Symbolic Computation, 5(29–35), 1988.

[8] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and
Ronald de Wolf. Linear vs. semidefinite extended formulations: Exponen-
tial separation and strong lower bounds. CoRR, abs/1111.0837, 2011.

[9] D. Grigoriev. Complexity of deciding Tarski algebra. J. Symbolic Compu-
tation, 5(1–2):1988, 1988.

[10] J. Heintz. Definability and fast quantifier elimination in algebraically closed
fields. Theoretical Computer Science, 26:239–277, 1983.

[11] P. Hrubeš and A. Yehudayoff. Arithmetic complexity in ring extensions.
Theory of Computing, 7:119–129, 2011.

[12] D. J. Ierardi. The complexity of quantifier elimination in the theory of an
algebraically closed field. PhD thesis, Cornell University, 1989.

[13] M. Karchmer and A. Wigderson. On span programs. In Proceedings of the
Eigth Annual Structure in Complexity Theory Conference, pages 102–111,
1993.

[14] P. Koiran. Circuits versus trees in algebraic complexity. In STACS, pages
35–52, 2000.

[15] P. Pudlák and M. de Oliveira Oliveira. Representations of monotone
Boolean functions by linear programs. In Proceedings of the 32nd Com-
putational Complexity Conference, 2017.

[16] J. Robinson. Definability and decision problems in arithmetic. J. Symb.
Log., 14(2):98–114, 1949.

[17] L. Rónyai, L. Babai, and M. K. Ganapathy. On the number of zero-patterns
of a sequence of polynomials. J. Amer. Math. Soc., 14(3):717–735, 2001.

[18] T. Rothvoss. The matching polytope has exponential extension complexity.
J. of the ACM, 64(6), 2017.

10

[19] Thomas Rothvoß. Some 0/1 polytopes need exponential size extended for-
mulations. CoRR, abs/1105.0036, 2011.

[20] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of re-
cent results and open questions. Foundations and Trends in Theoretical
Computer Science, 5(3):207–388, 2010.

[21] L. G. Valiant. Reducibility by algebraic projections. Enseign. Math.,
28:253–268, 1982.

[22] H. E. Warren. Lower bounds for approximations by nonlinear manifolds.
Trans. AMS, 133:167–178, 1968.

[23] Mihalis Yannakakis. Expressing combinatorial optimization problems by
linear programs. Journal of Computer and System Sciences, 43(3):441–
466, 1991.

11

	Introduction
	Preliminaries
	An application: extension and separation complexity
	Proof of Theorem 1
	Proof of Theorem 2

