Minimal Counterexamples to Flow Conjectures

Peter Korcsok
supervisor: Mgr. Robert Šámal, Ph.D.

Faculty of Mathematics and Physics
Charles University in Prague

Prague, June 3, 2015
Overview

1. Introduction to the Problem
Overview

1. Introduction to the Problem
2. Restrictions on Counterexamples
Overview

1. Introduction to the Problem
2. Restrictions on Counterexamples
3. Kochol’s Approach

Overview

1. Introduction to the Problem
2. Restrictions on Counterexamples
3. Kochol’s Approach
4. Computations and Modifications

Martin Kochol.

Martin Kochol.
Smallest counterexample to the 5-flow conjecture has girth at least eleven. *Journal of Combinatorial Theory, Series B, 100(4):381–389, 2010.*
Introduction: \(k \)-Flow

![Graph Diagram]
Introduction: k-Flow

Definition

A \mathbb{Z}_k-flow (a k-flow) on a graph G is a mapping $f : E_G \rightarrow \mathbb{Z}_k$ s.t.

\[
\sum_{\bar{e} = (v,u)} f(\bar{e}) = \sum_{\bar{e} = (u,v)} f(\bar{e})
\]

holds for every vertex v.

![Diagram of k-flow on a graph](image-url)

Minimal Counterexamples to Flow Conjectures
Introduction: k-Flow

Definition

A \mathbb{Z}_k-flow (a k-flow) on a graph G is a mapping $f: E_{\vec{G}} \rightarrow \mathbb{Z}_k$ s.t.

$$\sum_{\vec{e}=(v,u)} f(\vec{e}) = \sum_{\vec{e}=(u,v)} f(\vec{e})$$

holds for every vertex v.

- Flow f is nowhere-zero if $f(\vec{e}) \neq 0$ holds for each arc \vec{e}.
For a planar graph G, let G^* be its dual graph:
- vertex v_F^* for each face F of G,
- edge e_e^* for each edge $e \in E_G$.
For a planar graph G, let G^* be its dual graph:

- vertex v_F^* for each face F of G,
- edge e_e^* for each edge $e \in E_G$.

Observation

Planar graph G admits a nowhere-zero k-flow if and only if its dual graph G^* has a k-coloring.
Conjecture (Tutte)

There exists $k \in \mathbb{N}$ s.t. each bridgeless graph admits a NZ k-flow.

Paul D. Seymour.
Nowhere-zero 6-flows.

William Thomas Tutte.
A contribution to the theory of chromatic polynomials.
Theorem (Seymour)
Each bridgeless graph admits a NZ 6-flow.

Paul D. Seymour.
Nowhere-zero 6-flows.

William Thomas Tutte.
A contribution to the theory of chromatic polynomials.
5-Flow Conjecture

Theorem (Seymour)
Each bridgeless graph admits a NZ 6-flow.

5-Flow Conjecture (Tutte)
Each bridgeless graph admits a NZ 5-flow.

Paul D. Seymour.
Nowhere-zero 6-flows.

William Thomas Tutte.
A contribution to the theory of chromatic polynomials.
Minimal Counterexample

- Seymour: minimal counterexample is cubic.

Minimal Counterexample

- Seymour: minimal counterexample is cubic.

Theorem

Neither C_3 nor C_4 can be subgraph of a minimal counterexample to the 5-Flow Conjecture.

Paul D. Seymour.

Nowhere-zero 6-flows.

Seymour: minimal counterexample is cubic.

Theorem

Neither C_3 nor C_4 can be subgraph of a minimal counterexample to the 5-Flow Conjecture.

Paul D. Seymour.

Nowhere-zero 6-flows.

Theorem (Kochol)

Any minimal counterexample to the 5-Flow Conjecture does not contain any circuit of length less than 9.

Martin Kochol.

Martin Kochol.
Theorem (Kochol)

Any minimal counterexample to the 5-Flow Conjecture does not contain any circuit of length less than 11.

Martin Kochol.

Martin Kochol.

Minimal Counterexample

Theorem (PK)

Any minimal counterexample to the 5-Flow Conjecture does not contain any circuit of length less than 12.
Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_{pn}\) s.t.

\[
F_{G, U}(s) = \sum_{i=1}^{pn} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).
Introduction to Networks

Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_n\) s.t.

\[
F_{G,U}(s) = \sum_{i=1}^{p_n} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).
Introduction to Networks

Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_{p_n}\) s.t.

\[
F_{G, U}(s) = \sum_{i=1}^{p_n} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

\(p_4 = 4, \mathcal{P}_4 = \{ P_1 \}\)
Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_{pn}\) s.t.

\[
F_{G, U}(s) = \sum_{i=1}^{pn} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

\(p_4 = 4, \ P_4 = \{P_1, P_2\}\)
Lemma

For a network \((G, U), \vert U \vert = n\), there exist integers \(x_1, \ldots, x_{pn}\) s.t.

\[
F_{G, U}(s) = \sum_{i=1}^{pn} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

- \(p_4 = 4, \mathcal{P}_4 = \{P_1, P_2, P_3\}\)
Introduction to Networks

Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_{pn}\) s.t.

\[
F_{G,U}(s) = \sum_{i=1}^{pn} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

- \(p_4 = 4\), \(\mathcal{P}_4 = \{P_1, P_2, P_3, P_4\}\)
Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_p\) s.t.

\[
F_{G,U}(s) = \sum_{i=1}^{p_n} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

\[
p_4 = 4, \quad \mathcal{P}_4 = \{P_1, P_2, P_3, P_4\}
\]

\[
F_{G,U}(s) = 1 \chi(s, P_1) + 1 \chi(s, P_2) + 0 \chi(s, P_3) + 1 \chi(s, P_4)
\]
Introduction to Networks

Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_{pn}\) s.t.

\[
F_{G,U}(s) = \sum_{i=1}^{pn} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

- \(p_4 = 4\), \(P_4 = \{P_1, P_2, P_3, P_4\}\)
- \(s = (1, 1, 4, 4) \in S_4\)

\[
F_{G,U}(s) = 1\chi(s, P_1) + 1\chi(s, P_2) + 0\chi(s, P_3) + 1\chi(s, P_4)
\]
Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_{pn}\) s.t.

\[
F_{G, U}(s) = \sum_{i=1}^{pn} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

- \(p_4 = 4\), \(P_4 = \{P_1, P_2, P_3, P_4\}\)
- \(s = (1, 1, 4, 4) \in S_4\)

\[
2 = 1\chi(s, P_1) + 1\chi(s, P_2) + 0\chi(s, P_3) + 1\chi(s, P_4)
\]
Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_p\) s.t.

\[
F_{G, U}(s) = \sum_{i=1}^{p_n} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

\begin{itemize}
 \item \(p_4 = 4\), \(P_4 = \{P_1, P_2, P_3, P_4\}\)
 \item \(s = (1, 1, 4, 4) \in S_4\)
\end{itemize}

\[
2 = 1 \cdot 1 + 1 \chi(s, P_2) + 0 \chi(s, P_3) + 1 \chi(s, P_4)
\]
Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_p\) s.t.

\[
F_{G,U}(s) = \sum_{i=1}^{p} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

- \(p_4 = 4\), \(P_4 = \{P_1, P_2, P_3, P_4\}\)
- \(s = (1, 1, 4, 4) \in S_4\)

\[
2 = 1 \cdot 1 + 1 \cdot 0 + 0 \chi(s, P_3) + 1 \chi(s, P_4)
\]
Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_p\) s.t.

\[
F_{G,U}(s) = \sum_{i=1}^{p} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

- \(p_4 = 4\), \(P_4 = \{P_1, P_2, P_3, P_4\}\)
- \(s = (1, 1, 4, 4) \in S_4\)

\[
2 = 1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 + 1\chi(s, P_4)
\]
Lemma

For a network \((G, U)\), \(|U| = n\), there exist integers \(x_1, \ldots, x_{pn}\) s.t.

\[
F_{G,U}(s) = \sum_{i=1}^{pn} x_i \chi(s, P_i)
\]

holds for each \(s \in S_n\).

\(p_4 = 4\), \(P_4 = \{P_1, P_2, P_3, P_4\}\)

\(s = (1, 1, 4, 4) \in S_4\)

\[
2 = 1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 + 1 \cdot 1
\]
Forbidden Networks

Graph $H \rightarrow$ network (\tilde{H}, U), $|U| = n$.

\begin{center}
\begin{tikzpicture}
\node at (-2,0) {H};
\node at (2,0) {\tilde{H}};
\end{tikzpicture}
\end{center}
Forbidden Networks

- Graph $H \rightarrow$ network (\tilde{H}, U), $|U| = n$.

- $S_H = \left\{ s \in S_n : F_{\tilde{H}, U}(s) > 0 \right\}$.
Forbidden Networks

- Graph $H \rightarrow$ network (\tilde{H}, U), $|U| = n$.

- $S_H = \left\{ s \in S_n : F_{\tilde{H}, U}(s) > 0 \right\}$.

- V_n, V_H: linear hulls of $\left\{ \chi_n(s) : s \in S_n \right\}$, $\left\{ \chi_n(s) : s \in S_H \right\}$ (in \mathbb{Q}^{p_n}).
Forbidden Networks

- Graph $H \rightarrow$ network (\tilde{H}, U), $|U| = n$.

- $S_H = \left\{ s \in S_n : F_{\tilde{H}, U}(s) > 0 \right\}$.

- V_n, V_H: linear hulls of $\left\{ \chi_n(s) : s \in S_n \right\}$, $\left\{ \chi_n(s) : s \in S_H \right\}$ (in \mathbb{Q}^{p_n}).

Theorem (Kochol)

If $V_H = V_n$ then H cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture.
Forbidden Networks

Theorem (Kochol)

If $V_H = V_n$ then H cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture.

- G minimal counterexample, $H \leq G \implies I = G - H$.

![Graph Diagram](image-url)
Forbidden Networks

Theorem (Kochol)

If $V_H = V_n$ then H cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture.

- G minimal counterexample, $H \leq G \implies I = G - H$.

- $\forall s \in S_n: F_{\tilde{H},U}(s) \cdot F_{\tilde{I},W}(s) = 0 \implies \forall s \in S_H: F_{\tilde{I},W}(s) = 0.$
Forbidden Networks

Theorem (Kochol)

If $V_H = V_n$ then H cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture.

- G minimal counterexample, $H \leq G \implies I = G - H$.

- $\forall s \in S_n: \tilde{F}_{H,U}(s) \cdot \tilde{F}_{I,W}(s) = 0 \implies \forall s \in S_H: \tilde{F}_{I,W}(s) = 0$.

- $V_H = V_n \implies \forall s \in S_n: \tilde{F}_{I,W}(s) = 0$.
Forbidden Networks

Theorem (Kochol)

If $V_H = V_n$ then H cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture.

- G minimal counterexample, $H \leq G \implies I = G - H$.

- $\forall s \in S_n: F_{\bar{H},U}(s) \cdot F_{\bar{I},W}(s) = 0 \implies \forall s \in S_H: F_{\bar{I},W}(s) = 0$.
- $V_H = V_n \implies \forall s \in S_n: F_{\bar{I},W}(s) = 0$.
- G/H admits a NZ 5-flow \implies contradiction.
Computations

- M_n, M_H: matrices with rows $\chi_n(s)$ for $s \in S_n$ and $s \in S_H$.
Computations

- M_n, M_H: matrices with rows $\chi_n(s)$ for $s \in S_n$ and $s \in S_H$.

\[V_n = V_H \iff \text{rank } M_n = \text{rank } M_H \]
Computations

- M_n, M_H: matrices with rows $\chi_n(s)$ for $s \in S_n$ and $s \in S_H$.

\[
V_n = V_H \iff \text{rank } M_n = \text{rank } M_H
\]

<table>
<thead>
<tr>
<th>H</th>
<th>size of M_n</th>
<th>size of M_H</th>
<th>rank M_n</th>
<th>rank M_H</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_7</td>
<td>819×162</td>
<td>483×162</td>
<td>147</td>
<td>147</td>
<td>MK</td>
</tr>
<tr>
<td>C_8</td>
<td>3277×715</td>
<td>1513×715</td>
<td>568</td>
<td>568</td>
<td>MK</td>
</tr>
<tr>
<td>C_9</td>
<td>13107×3425</td>
<td>4665×3425</td>
<td>2227</td>
<td>2227</td>
<td>PK</td>
</tr>
</tbody>
</table>
Computations

- M_n, M_H: matrices with rows $\chi_n(s)$ for $s \in S_n$ and $s \in S_H$.

\[V_n = V_H \iff \text{rank } M_n = \text{rank } M_H \]

<table>
<thead>
<tr>
<th>H</th>
<th>size of M_n</th>
<th>size of M_H</th>
<th>rank M_n</th>
<th>rank M_H</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_7</td>
<td>819×162</td>
<td>483×162</td>
<td>147</td>
<td>147</td>
<td>MK</td>
</tr>
<tr>
<td>C_8</td>
<td>$3 277 \times 715$</td>
<td>$1 513 \times 715$</td>
<td>568</td>
<td>568</td>
<td>MK</td>
</tr>
<tr>
<td>C_9</td>
<td>$13 107 \times 3 425$</td>
<td>$4 665 \times 3 425$</td>
<td>2 227</td>
<td>2 227</td>
<td>PK</td>
</tr>
</tbody>
</table>

Minimal Counterexamples to Flow Conjectures
Computations

- \(M_n, M_H \): matrices with rows \(\chi_n(s) \) for \(s \in S_n \) and \(s \in S_H \).

\[V_n = V_H \iff \text{rank } M_n = \text{rank } M_H \]

<table>
<thead>
<tr>
<th>(H)</th>
<th>size of (M_n)</th>
<th>size of (M_H)</th>
<th>rank (M_n)</th>
<th>rank (M_H)</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_7)</td>
<td>819 \times 162</td>
<td>483 \times 162</td>
<td>147</td>
<td>147</td>
<td>MK</td>
</tr>
<tr>
<td>(C_8)</td>
<td>3 277 \times 715</td>
<td>1 513 \times 715</td>
<td>568</td>
<td>568</td>
<td>MK</td>
</tr>
<tr>
<td>(C_9)</td>
<td>13 107 \times 3 425</td>
<td>4 665 \times 3 425</td>
<td>2 227</td>
<td>2 227</td>
<td>PK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(H)</th>
<th>size of (M_H)</th>
<th>size of (M_{H'})</th>
<th>rank (M_H)</th>
<th>rank (M_{H'})</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_9)</td>
<td>262 \times 238</td>
<td>430 \times 238</td>
<td>151</td>
<td>151</td>
<td>MK</td>
</tr>
<tr>
<td>(C_{10})</td>
<td>792 \times 1 079</td>
<td>1 415 \times 1 079</td>
<td>539</td>
<td>539</td>
<td>MK</td>
</tr>
<tr>
<td>(C_{11})</td>
<td>1 972 \times 4 752</td>
<td>3 937 \times 4 752</td>
<td>1 699</td>
<td>1 699</td>
<td>PK</td>
</tr>
</tbody>
</table>
Modification

- Even circuit $H \rightarrow$ perfect matching H'.

$H = C_{10}$

$H' = 5 \times e$
Modification

- Even circuit $H \rightarrow$ perfect matching H'.

$H = C_{10}$

$H' = 5 \times e$

Theorem

Let G be a 3-edge-connected cubic graph containing $H = C_{2k}$ ($k > 1$) as a subgraph. Then there exists some non-crossing perfect matching H' s.t. $G_{H \rightarrow H'}$ is bridgeless.
Modification

- Even circuit $H \rightarrow$ perfect matching H'.

\[
H = C_{10} \quad H' = 5 \times e
\]

Theorem

Let G be a 3-edge-connected cubic graph containing $H = C_{2k}$ ($k > 1$) as a subgraph. Then there exists some non-crossing perfect matching H' s.t. $G_{H \rightarrow H'}$ is bridgeless.

<table>
<thead>
<tr>
<th>H</th>
<th>size of M_H</th>
<th>size of M_{H_e}</th>
<th>size of $M_{H_m'}$</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_8</td>
<td>122×81</td>
<td>176×81</td>
<td>149×81</td>
<td>62</td>
</tr>
<tr>
<td>C_{10}</td>
<td>$792 \times 1,079$</td>
<td>$1,415 \times 1,079$</td>
<td>$1,129 \times 1,079$</td>
<td>539</td>
</tr>
</tbody>
</table>
Closing Remarks

Implementation issues:
Closing Remarks

Implementation issues:

- written in Sage – Kochol used Maple
Closing Remarks

Implementation issues:

- written in **Sage** – Kochol used Maple
- **large matrices** – computing using “buffered” matrix
Closing Remarks

Implementation issues:

- written in **Sage** – Kochol used Maple
- **large matrices** – computing using “buffered” matrix

Future work:
Closing Remarks

- Implementation issues:
 - written in Sage – Kochol used Maple
 - large matrices – computing using “buffered” matrix

- Future work:
 - optimization of the program, use of different language or structures
Closing Remarks

- **Implementation issues:**
 - written in **Sage** – Kochol used Maple
 - **large matrices** – computing using “buffered” matrix

- **Future work:**
 - optimization of the program, use of different language or structures
 - use of different graphs in the role of H and H'
Closing Remarks

- Implementation issues:
 - written in Sage – Kochol used Maple
 - large matrices – computing using “buffered” matrix

- Future work:
 - optimization of the program, use of different language or structures
 - use of different graphs in the role of H and H'
 - study of other reductions of the size of matrices
Closing Remarks

Implementation issues:

- written in **Sage** – Kochol used Maple
- **large matrices** – computing using “buffered” matrix

Future work:

- optimization of the program, use of different language or structures
- use of different graphs in the role of H and H'
- study of other reductions of the size of matrices
- use of the method on other open problems
Thank you!

I will gladly answer your questions and ideas.