
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Pavel Dvořák

Online Ramsey Theory

Computer Science Institute of Charles University

Supervisor of the master thesis: RNDr. Tomáš Valla, Ph.D.

Study programme: Computer Science

Study branch: Discrete Models and Algorithms

Prague 2015

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of the
Copyright Act.

In Prague 29.4.2015 Pavel Dvořák

i

ii

Title: Online Ramsey Theory

Author: Pavel Dvořák

Institute: Computer Science Institute of Charles University

Supervisor: RNDr. Tomáš Valla, Ph.D., Computer Science Institute of Charles
University

Abstract: An online Ramsey game is a game between Builder and Painter, alter-
nating in turns. In each round Builder draws an edge and Painter colors it either
red or blue. Builder wins if after some round there is a monochromatic copy of
the fixed graph H, otherwise Painter is the winner. In this thesis we investigate
the computational complexity of the related decision problem and we show that it
is PSPACE-complete. Moreover, we study a version of the game when Builder can
draw only planar graphs and a generalization of the game for hypergraphs. We
found a new class of graphs unavoidable on planar graphs. We provide a result
showing that Builder wins the online Ramsey game on 3-uniform hyperforests
when the goal graph H is 1-degenerate.

Keywords: online Ramsey game complexity strategies

iii

iv

I would like to thank my supervisor Tomáš Valla for introducing me to combi-
natorial game theory, for helping me with this thesis and for fruitful discussion
about online Ramsey theory. I would also like to thank Martin Böhm, who came
up with the idea to study the complexity of the online Ramsey game, and Karel
Král for checking the part of this thesis, despite his lack of time. Last but not
least, I would like to thank my family for supporting me during my studies.

v

vi

Contents

1 Introduction 3
1.1 Preliminaries and Notions . 3

1.1.1 Graph Theory . 3
1.1.2 Logic . 5
1.1.3 Computational Complexity 6
1.1.4 Notions of Online Ramsey Theory 8

1.2 Offline versus Online Ramsey Theory 9
1.3 Our Results . 11

2 Computational Complexity of Online Ramsey Game 13
2.1 Formula Games . 13
2.2 Multiple Ramsey Game . 17

2.2.1 Construction of the Background Graph 19
2.2.2 Hardness of Multiple Ramsey Game 21

2.3 Online Ramsey Game . 23
2.3.1 Construction of the Restricted Background Graph 24
2.3.2 Hardness of Online Ramsey Game 30

2.4 Star Ramsey Game . 33

3 Builder’s Strategies 35
3.1 Optimality of Strategies . 35
3.2 Strategies on Planar Graphs . 37
3.3 Unavoidability of Hypertrees . 44

Conclusion 53

List of Abbreviations 59

1

2

1. Introduction

The online Ramsey game is a two-player game with perfect information. It is
played on the background graph G = (V,E). At the beginning of the game the
edges in E are either uncolored or some of them are colored. In each round the
first player, usually addressed as Builder, draw an uncolored edge e ∈ E. The
second player, usually addressed as Painter, colors the recently drawn edge e by
red or blue. The goal of Builder is to force Painter to color a monochromatic
copy of the fixed goal graph H. If Builder does so he wins the game. Otherwise,
if all edges in E are colored and the graph G does not contain a monochromatic
copy of H as a subgraph then Painter wins. In the case the graph G is infinite
Painter wins if Builder can not win in finite time.

The online Ramsey game was introduced independently by Beck [2] and
Friedgut et al. [6]. Since then several results have been published. In Section 1.2
we present some known results about this topic and point out differences be-
tween online and offline Ramsey theory. We introduce in Section 1.1 some basic
notions which we use in this thesis. The summary of our results is presented in
Section 1.3.

1.1 Preliminaries and Notions

In this section we presented some notions of the graph theory, logic and com-
plexity. It should serve as a brief and a little bit informal introduction to these
fields. We try to explain here only some basic notions. If the reader is familiar
with the basics of these fields this section can be certainly skipped, except Sub-
section 1.1.4 where we present some our notions and some notions which are not
so widely known.

1.1.1 Graph Theory

A graph G is a pair (V,E) where V is a set of vertices and E ⊆
(
V
2

)
is a set

of edges, thus E contains pairs of the vertices. A degree of a vertex v ∈ V
is a number of edges in E which are incident with v. Thus, the degree of v,
deg(v) = |{e|e ∈ E, v ∈ e}|. The set of vertices (or edges) of G is also denoted as
V (G) (or E(G)). We say two vertices u, v ∈ V (G) are neighbors if {u, v} ∈ E(G).
A size of a graph G = (V,E) is the size of V and E. A path Pn is a graph (V,E)
such that

V = {v0, . . . , vn},
E =

{
{vi−1, vi}|i ∈ [n]

}
.

By [n] we mean the set {1, . . . , n}. Thus, the path Pn is a path with n edges and
n+ 1 vertices. By length of a path P we always mean the number of edges of P .
A cycle Cn is a graph (V,E) such that

V = {v0, . . . , vn},
E =

{
{vi−1, vi}|i ∈ [n]

}
∪
{
{v0, vn}

}
.

3

Thus, the cycle Cn arises from the path Pn by connecting the endpoints of Pn.
A complete graph Kn = (V,E) on n vertices contains all possible edges, i.e.
E =

(
V
2

)
. A subgraph H = (U, F) of G = (V,E) is a graph such that U ⊆ V

and F ⊆ E. A graph G is k-degenerate if every subgraph of G contains a vertex
of degree at most k. A subgraph of a graph G = (V,E) induced by a vertex set
U ⊆ V is a graph H = (U, F) such that F contains all edges whose endpoints are
in U , formally

F =
{
{u, v}|{u, v} ∈ E, u, v ∈ U

}
.

A graph G = (V,E) is connected if for all u, v ∈ V it holds that there is a path
between u and v as a subgraph of G. A connected component (or just component)
of a graph G = (V,E) is a maximal connected subgraph H = (U, F). Thus, H is
connected and there is no graph H1 such that H is a subgraph of H1 and H1 is
connected. A cut vertex is a vertex in a component C such that if we remove it
the component C split to more components.

A forest is a graph which does not contains any cycle as a subgraph. A tree is
a connected forest. An important property of the trees (or forests) is that every
tree T contains a vertex v ∈ V (T) (usually called leaf) such that the degree of v
is 1. Therefore, we can remove leaf v (with the incident edge) from a tree T and
get another tree. This is a common method of proving some properties for trees
by induction. A rooted tree T is a tree T with labeled vertex v ∈ V (T)—called
the root.

A planar graph is a graph that can be drawn on the plane in such a way that
its edges intersect only at their endpoints. Such drawing of the planar graph is
called embedding. A face in some embedding of the planar graph is a part of the
plane bounded by drawn edges. An outer face is the only unbounded part of the
plane when a planar graph is embedded. An outer planar graph G is a planar
graph such that there exists an embedding for G where all vertices in V (G) are
incident with the outer face.

A two-terminal graph is a graph G with two labeled vertices u, v ∈ V (G).
A series operation creates from two two-terminal graphs T1 = (G1, u1, v1) and
T2 = (G2, u2, v2) a two-terminal graph S(T1, T2) = (G, u, v) such that it arises
from edge disjoint union of G1 and G2 by identifying the vertices v1 and u2 and
u = u1 and v = v2. A parallel operation create from two two-terminal graphs
T1 = (G1, u1, v1) and T2 = (G2, u2, v2) a two-terminal graph P (T1, T2) = (G, u, v)
such that it arises from edge disjoint union of G1 and G2 by identifying the
vertices u1 and u2 into u and v1 and v2 into v. A series-parallel graph (G, u, v)
is a two-terminal graph which arises by using inductively the series and parallel
operation:

1. A 3-tuple (P1, u, v) is a series-parallel graph.

2. If T1 = (G1, u1, v1) and T2 = (G2, u2, v2) are series-parallel graphs then
S(T1, T2) is a series-parallel graph.

3. If T1 = (G1, u1, v1) and T2 = (G2, u2, v2) are series-parallel graphs then
P (T1, T2) is a series-parallel graph.

An independent set of a graph G is a set I ⊆ V (G) such that I induces a graph
with no edges. A clique of a graph G is a set C ⊆ V (G) such that C induces a

4

complete graph. A vertex cover of a graph G is a set C ⊆ V (G) such that for
every edge {u, v} ∈ E(T) it holds that u ∈ C or v ∈ C. A bipartite graph is a
graph G = (V,E) = (A∪B,E) such that V can be partitioned V = A∪̇B in such
a way that sets A and B induce independent sets1. A complete bipartite graph
G = (A ∪B,E) is a bipartite graph which contains all possible edges, formally

E =
{
{u, v}|u ∈ A, v ∈ B

}
.

Two graphs G1, G2 are isomorphic via bijection f : V (G1)→ V (G2) if for all
{u, v} ∈

(
V (G1)

2

)
it holds that {u, v} ∈ E(G1) if and only if {f(u), f(v)} ∈ E(G2).

A hypergraph H is a pair (V, F) where V is a set of vertices and F ⊆ P(V),
where P(V) denote the set of all subsets of V . The elements of F are called
hyperedges. A hypergraph H = (V, F) is k-uniform if every hyperedge f ∈ F
has the size k, thus

F ⊆
(
V

k

)
.

All meaningful notions like subhypergraph, degree and degeneracy of hypergraphs
are defined by the same way as for the graphs.

1.1.2 Logic

A formula contains variables, negations and binary connective and it is defined
inductively:

1. A variable x is a formula.

2. If ϕ is a formula then a negation ¬ϕ is a formula.

3. If ϕ and ψ are formulas and · is a binary connective then ϕ ·ψ are formulas.

A literal in a formula ϕ is a variable or its negation. A formula ϕ in conjunctive
normal form (or CNF) contains variables, their negations and binary connectives
∧ for conjunction and ∨ for disjunction. It is defined inductively:

1. A literal ` is a formula in CNF.

2. If `1, . . . , `n are literals then a clause `1 ∨ `2 ∨ · · · ∨ `n is a formula in CNF.

3. If C1, . . . , Cm are clauses then a conjunction of the clauses C1∧C2∧· · ·∧Cm
is a formula in CNF.

Let ϕ be a formula in CNF and X be a set of variables of ϕ. An evaluation
of ϕ is a function e : X → {0, 1} (or {false, true}). We denote the value of a
formula ϕ in CNF with an evaluation e as v(ϕ, e). It is computed inductively:

1. If ϕ is a literal x then v(ϕ, e) is true if and only if e(x) = 1.

2. If ϕ is a literal ¬x then v(ϕ, e) is true if and only if e(x) = 0.

3. If ϕ is a clause `1 ∨ · · · ∨ `n then v(ϕ, e) is true if and only if there exists a
literal `i such that v(`i, e) is true.

1The partition V = A∪̇B means that A ∩B = ∅ and A ∪B = V .

5

4. If ϕ is a conjunction of clauses C1 ∧C2 ∧ · · · ∧Cm then v(ϕ, e) is true if and
only if for every i ∈ [m] it holds that v(Ci, e) is true.

A formula ϕ is satisfiable if there exists an evaluation e such that a value of ϕ
with the evaluation e is true. We mean by e[x = c] an evaluation which evaluates
the variable x by the value c.

A quantified formula ϕ in prenex conjunctive normal form is a formula which
has two parts, the first one contains only quantifiers ∀x or ∃x for the variables
of ϕ and the second part is a formula ψ in CNF. A value v(ϕ, e) is computed
inductively:

1. If ϕ does not contain any quantifier then v(ϕ, e) is computed by the same
way as in the previous case.

2. If ϕ has a form ∀xϕ′ then ϕ is true if and only if v(ϕ′, e[x = 0]) is true and
v(ϕ′, e[x = 1]) is true.

3. If ϕ has a form ∃xϕ′ then ϕ is true if and only if v(ϕ′, e[x = 0]) is true or
v(ϕ′, e[x = 1]) is true.

1.1.3 Computational Complexity

An alphabet Σ is a finite set of characters. A word over Σ is a finite sequence
of the characters in Σ. A set of all words is usually denoted by Σ∗. A decision
problem (or a language) is a subset of Σ∗.

A deterministic Turing machine (or DTM) is an abstract machine defined by
a tuple (Q,Σ, ε, δ, q0, F) and it consists of:

1. An eventually infinite tape divided into cells. Each cell contains one symbol
from the alphabet Σ. Character ε ∈ Σ is the blank symbol which is the
only character in Σ allowed to be on the tape infinitely many times.

2. A head which can read and write characters on the tape and can move on
the tape.

3. A state register that stores an actual state. The machine can be in any state
in Q. The state q0 ∈ Q is the initial state. The subset F ⊆ Q contains
accepting states.

4. A program which is defined by the partial function

δ : Q× Σ→ Q× Σ× {L,N,R},

which is called the transition function.

Let M = (Q,Σ, ε, δ, q0, F) be a DTM. A configuration of M consists of a
state q ∈ Q of M , a content of the tape of M and a position of the head of M .
An initial configuration of M consists of the initial state q0, an input word x
over Σ written on the tape and an initial position of the head of M (usually at
the beginning of x). Other cells of the tape (besides those where x is written)
contains the blank symbol ε. A step of M is one use of the transition function.
Let c ∈ Σ be a character written in the cell under the head of M and q be a state
of M . Then, M executes a step δ(q, c) = (q1, c1,m) (if defined) by:

6

1. Changing the actual state to q1.

2. Writing the character c1 in the cell under the head.

3. Moving the head according to m—one cell left if m = L, one cell right if
m = R, do not move if m = N .

A computation of M is a sequence of the steps of M starting in the initial
state of M . The DTM M stops if the transition function is not defined for actual
state and the character under the head. An accepting computation of M is a
computation which stops in some accepting state in F—then we say M accepts
an input word x. A refusing computation of M is a computation which stops in
a state which is not in F or which never stops—then we say M refuses an input
word x. We can simulate all computers of our world and their computations
by deterministic Turing machines. Actually, DTM is stronger than a computer
because any computer has a finite memory.

A nondeterministic Turing machine (or NTM) M is defined analogously as
DTM. However, the transition function δ is a partially function

Q× Σ→ P(Q× Σ× {L,N,R}).

Thus, for a state q ∈ Q of M and a character c ∈ Σ, the result δ(q, c) is a set
of 3-tuples which describe all possibilities how the machine M can continue in
the computation. The NTM M accepts an input word x if there is an accepting
computation.

A Turing machine M decides a problem L if M accepts an input words x if
and only if x ∈ L. We measure efficiency of Turing machines by time and space
complexity. The time complexity of an Turing machine M is a function f(n) such
that M make at most f(n) steps on an arbitrary input of length n. The space
complexity is analogous only the number of cells used by M is bounded. However,
we do not need the exact number of steps (or cells). Therefore, the O-notation
was introduced.

Definition 1.1. Let f(n) : N → N and g(n) : N → N. The function f(n) is
in O(g(n)) if there exist constants c, n0 such that for all n ≥ n0 it holds that
f(n) ≤ cg(n). The function f(n) is in Θ(g(n)) if there exist constants c1, c2, n0

such that for all n ≥ n0 it holds that c1g(n) ≤ f(n) ≤ c2g(n).

There is also a notation to describe a function is substantially smaller than
another function. We say a function f(n) is in o(g(n) if a fraction f(n)

g(n)
goes to 0

when n goes to infinity.
For our thesis there are three important classes of decision problems. The

class P contains all decision problems which can be decided by a deterministic
Turing machine in polynomial time. Informally, a problem is in P if there is
an algorithm which solve the problem in polynomial time. The class PSPACE
contains all decision problems which can be decided by a deterministic Turing
machine in polynomial space. The class NP contains all decision problems which
can be decided by a nondeterministic Turing machine in polynomial time. An
equivalent definition of NP is that NP contains all decision problems which can
be verified in polynomial time. More precisely, let L ∈ NP. Then, there is a
polynomial size certificate c(x) for x ∈ L and a deterministic Turing machine

7

which decides in polynomial time if c(x) is valid for x (i.e. it proves that x ∈ L).
For example, the following well-known problem is in NP.

PROBLEM: Independent Set
Input: Graph G, k ∈ N
Question: Does G contains an independent set of size k?

It is easy to see that Independent Set is in NP. The certificate can be an
independent set I of the size k. It is obvious we can check in polynomial time
there is no edge between any two vertices in I. We can represent Independent
Set as a language of such words (over a suitable alphabet) which represents
graphs with an independent set of the size k.

We say a problem L1 ⊆ Σ∗1 can be reduced to a problem L2 ⊆ Σ∗2 if there is a
function f : Σ∗1 → Σ∗2 such that for all x ∈ L1 it holds that x ∈ L1 if and only if
f(x) ∈ L2. There can be various requirements for the function f . However, in this
thesis we use only a polynomial reduction, i.e. the output of the function f can be
computed in polynomial time in the length of x. We say a problem L is NP-hard
(or PSPACE-hard) if every problem L′ ∈ NP (or PSPACE) can be reduced to L
(under polynomial reduction). We say a problem L is NP-complete (or PSPACE-
complete) if L is NP-hard (or PSPACE-hard) and L ∈ NP (or PSPACE). To prove
the hardness of a problem L we take another problem L′ which is complete for
the appropriate class and make a reduction from L′ to L. Thus, we need to find a
function f (computable in polynomial time) such that for all x ∈ L′ it holds that
x ∈ L′ if and only if f(x) ∈ L. To prove the completeness of a problem L we need
also to prove that L belong to the appropriate class, which is usually easy as in
the case of Independent Set. Actually, Independent Set is NP-complete.
It is easy to see Independent Set is as hard as the following problem.

PROBLEM: Clique
Input: Graph G, k ∈ N
Question: Does G contains a clique of size k?

Clique belongs to the famous Karp’s list of NP-complete problems [9].

1.1.4 Notions of Online Ramsey Theory

A drawn graph D is a subgraph of the background graph G = (V,E) induced by
the edges drawn by Builder. Formally, let {e1, . . . , ek} ⊆ E be a set of all edges
drawn by Builder. The drawn graph D is(

{v|∃ei : v ∈ ei}, {e1, . . . , ek}
)
.

In the proofs we use the notions of winning strategies of the players. Infor-
mally, a winning strategy is a kind of instructions how to win the game. More
formally, we can view the winning strategy for a player P as a function S from
sets of the adversary moves to moves of the player P . Thus, let m1, . . . ,mk be
moves of the adversary. Then, S({m1, . . . ,mk}) is the move of the player P after
k adversary’s moves. Since only the winning strategies concern us, we sometimes
omit the word winning.

There is a similar game called a graph Ramsey game. It is a typical positional
game of two players. In every round the first player colors an uncolored edge

8

by blue and the second player colors an uncolored edge by red. A winner is
the player who first colors a fixed monochromatic goal graph. The computational
complexity of some versions of the graph Ramsey game were studied by Slany [18].
However, this thesis is only about the online Ramsey game, which we sometimes
abbreviate to the Ramsey game.

There are a lot of graph coloring—vertex coloring, edge coloring, vertex list
coloring and so on. In this thesis (according to the rules of the online Ramsey
game) we use only edge 2-coloring. Formally, an edge 2-coloring of a graph G is
a function c : E(G) → {red, blue, uncolored}, which we sometimes abbreviate to
coloring. A colored edge of the graph G colored by c is an edge e ∈ E(G) such
that c(e) 6= uncolored.

A t-star is a complete bipartite graph G = (A ∪ B,E) where |A| = 1 and
|B| = t. The center of the star is the only vertex of the partition A.

Let H = (V, F) be a hypergraph. A graph G = (V,E) is a host graph for H if
every hyperedge f ∈ F induces a connected subgraph in G. The hypergraph H
is a hypertree (or hyperforest) if there exists a tree (or forest) which is the host
graph for H.

1.2 Offline versus Online Ramsey Theory

The online Ramsey game is related to Ramsey theory. A Ramsey number r(k) is
the least number n ∈ N such that every edge 2-coloring of the graph Kn contains
a monochromatic Kk as a subgraph. A basic result of Ramsey theory is that
the number r(k) exists and is finite for every k ∈ N. Conlon [5] studied the
differences between the offline theory and the online one. He studied the online
Ramsey game where the background graph is eventually infinite complete graph
and the goal graph is Kk. It is clear if Builder draws Kr(k) he certainly wins.
However, Conlon proved that it often suffices less edges than E(Kr(k)) to Builder
to force Kk. An online Ramsey number r̃(G) is the least number n such that
Builder uses n edges to force G.

Theorem 1.2 (Conlon [5]). There is a constant c > 1 such that for infinitely
many values of t ∈ N holds that

r̃(Kt) ≤ c−t
(
r(t)

2

)
We say the graph G is Ramsey big for H if any edge 2-coloring of G contains

a monochromatic copy of H as a subgraph. The relation between the offline
and the online theory is that if G is Ramsey big for H then Builder can force a
monochromatic copy of H on G. However, the opposite implication does not hold
as we see from the result of Grytczuk et al. [8]. They studied Builder’s strategies
when Builder has to draw a graph only from fixed classes.

Definition 1.3. Let C be a class of graphs. A graph G is unavoidable on C if
Builder wins the online Ramsey game even if the drawn graph is in C. A class of
graph D is unavoidable on C if every G ∈ D is unavoidable on C.

We say a class of graph C is self-unavoidable if C is unavoidable on C. Grytczuk
et al. [8] proved that the classes of forests and k-colorable graphs are self-unavoidable.

9

This is an interesting result because if we have a forest T we can color it such
that it contains only monochromatic copies of stars. We can root every compo-
nent C of T in some vertex v ∈ V (C) and color C alternatively by layers. The
edges incident with v are blue, edges in the distance 1 from v are red and so on.
Hence, any monochromatic subgraph of T is a star. Therefore, any forest T is
not Ramsey big for any forest T ′ such that T ′ contains a path P3 as a subgraph.
Grytczuk et al. [8] also proved the cycle C3 is avoidable on outer planar graphs
and cycles are unavoidable on planar graphs. Thus, the unavoidability is not a
trivial property which has every graph class.

They also conjectured that the unavoidable class on planar graphs is exactly
the class of outer planar graphs. This was disproved by Petř́ıčková [12]. She
proved outer planar graphs are unavoidable on planar graphs. Moreover, she
found an infinite subclass C of planar graphs which is unavoidable on planar
graphs and the graphs in C are not outer planar.

Definition 1.4. Let θi,j,k be a graph consisting of 2 vertices u, v and 3 internally
disjoint paths Pi, Pj, Pk connecting u and v.

Theorem 1.5 (Petř́ıčková [12]). Let j, k ∈ N be even. The graph θ2,j,k is un-
avoidable on planar graphs.

A part of the unavoidability is a study of an online degree Ramsey number.

Definition 1.6. Let H be a goal graph. An online degree Ramsey number r̃∆(H)
is the least number k such that H is unavoidable on graphs with the maximum
degree k.

Several results are known about online degree Ramsey numbers. Some bounds
were found by Butterfield et al. [4]. They proved a lower bound for general graphs
and they made some bounds for specific graph classes:

1. r̃∆(H) ≥ ∆(H) + t− 1 where

t = max
{u,v}∈E(H)

min{deg(u), deg(v)}.

2. r̃∆(H) ≤ 3 if and only if H is a disjoint union of paths or each component
of H is a subgraph of 3-star.

3. r̃∆(H) ≤ d1 + d2 − 1 for a tree H and d1, d2 are two largest vertex degrees.

4. 4 ≤ r̃∆(Cn) ≤ 5, with r∆(Cn) = 4 except finitely many values of n.

5. r̃∆(H) ≤ 6 for H with the maximum degree at most 2.

Rolnick [15] completed the result about cycles and proved r∆(Cn) = 4. In his
previous work, Rolnick [14] described a class of trees with the online degree
Ramsey number at most 4.

Definition 1.7. A tree T is a maple if the maximum degree of T is at most 3
and there are no two neighbors with degree 3.

Theorem 1.8 (Rolnick [14]). Let T be a tree. Then, r̃∆(T) ≤ 4 if and only if T
is a maple or a 4-star.

10

Another topic in online Ramsey theory is the optimality of strategies and com-
puting the exact online Ramsey number for specific graphs. We say a Builder’s
strategy for a goal graph H is optimal if he can force H on a graph with k edges
and he cannot force H on any graph with at most k − 1 edges. However, it
seems this topic is extremely hard and as far as we know there are not many
results about it. Let f(n) be the maximum value of r̃(T) over all trees T with n
edges. Grytczuk et al. [7] proved that f(n) is in Θ(n2). Moreover, they proved
r̃(Pn) ≤ 4n− 7 and some other upper and lower bounds. Belfrage et al. [3] com-
puted the optimal strategies for the paths of length 1 to 10 when Builder has
to draw only forests. Pra lat [13] computed the online Ramsey numbers for the
paths P7 and P8 and made a bound for the path P9. However, computers were
used to search for the optimal strategy in both results about the paths.

1.3 Our Results

In this thesis we study two topics of online Ramsey theory. We study the com-
putational complexity of the decision problem if Builder has a winning strategy
on a given game. As we saw there is a lot of versions of the online Ramsey game.
We ask a question how hard is to compute if Builder can win some version of
the online Ramsey game on the background (partly precolored) graph G with
the goal graph H. We formalize different versions of the game as rules for both
players and we define the online Ramsey game as a decision problem.

PROBLEM: Online Ramsey Game
Input: Partly edge-colored background graph G, goal

graph H.
Rules: Rules for Builder and Painter—rules have to be

independent on the input and a decision problem
if a move is valid is in PSPACE (measure against
the size of the graph G)

Question: Can Builder force a monochromatic copy of H in
G if both players make only valid moves?

We prove the problem Online Ramsey Game is PSPACE-complete even for
the bipartite background graph of the maximum degree 3 and the goal graph as
a tree. Moreover, we also found a version of the problem which is NP-complete.
Our results about the complexity are in Chapter 2.

The second topic we study are strategies for Builder. We study three versions
of the game. First one is a version where Builder can draw only planar graphs.
We found a new class which is unavoidable on planar graphs.

Theorem 1.9. Let Q(k, `, u, v) be a graph consisting of ` internally disjoint paths
of length k between the vertices u and v. The graph Q(k, `, u, v) is unavoidable
on planar graphs for arbitrary ` ∈ N and k ∈ N odd.

The second version is a generalization of the game where Builder can draw
3-uniform hyperforests. We prove 1-degenerate 3-uniform hyperforests are un-
avoidable on 3-uniform hyperforests. The third version is a game where Builder
can draw only forests. We remark the strategy of Grytczuk et al. [8] is not opti-

11

mal and we present a slight improvement of the strategy. The results about the
strategies are in Chapter 3.

12

2. Computational Complexity of
Online Ramsey Game

In this chapter we study the computational complexity of Online Ramsey
Game and other similar problems. Note that we can bound the input size of
Online Ramsey Game by the size of graph G (up to a multiplicative constant
2). The goal graph H has to be smaller than the background graph G, otherwise
Builder has no chance to win. Thus, the size of the input is fully determined by
the size of G. Actually for many Builder’s strategies, the goal graph is usually
much smaller then the background graph.

It is easy to see that Online Ramsey Game is in PSPACE regardless of the
rules. We may use a simple depth-first-search over the set of valid moves such
that in each position the algorithm iterates over all valid moves and recursively
searches each of the moves for a solution. The maximum depth of the recursion
is linear in the size of G. The number of moves which the algorithm has to keep
in memory in every step of the recursion is also linear in the size of G. Therefore,
the algorithm needs only memory of the polynomial size of G.

In this chapter we show Online Ramsey Game is PSPACE-complete. It is
not very surprising because many other decision problems about the existence
of game strategies are PSPACE-complete. However, it is PSPACE-complete even
for quite simple input. The proof is made by polynomial reduction from other
PSPACE-complete problem. In the first section we present formula games which
we use for the reduction. In Section 2.2 we show a hardness proof of a little
bit relaxed problem where we demonstrate basic ideas of the proof. The final
hardness proof of Online Ramsey Game is in Section 2.3. A version of Online
Ramsey Game which is NP-complete is presented in Section 2.4.

2.1 Formula Games

For the reduction we use a type of a formula game. The standard formula game is
played on a proposition formula ϕ in CNF with variables x1, y1, x2, y2, . . . , xn, yn.
In a round i the first player evaluates xi by 0 or 1 and the second player evaluates
yi. The game ends when all variables are evaluated. The first player wins if the
formula ϕ is true at the end of the game. The second player wins if ϕ is false.
The first player wins if and only if there is an evaluation of x1 such that for all
evaluation of y1 there is an evaluation of x2 and so on to an evaluation of yn such
that formula ϕ is true after all these evaluations. Thus, the first player wins if
and only if a formula ∃x1∀y1∃x2∀y2 . . . ∃xn∀ynϕ is true. Therefore, the question
who win the formula game is only a reformulated decision problem if a quantified
formula is true or false, which is a well-known PSPACE-complete problem [19].

We use a slightly different formula game, which is also played on a formula ϕ
in CNF. However, the variables are paired and the first player decides which pair
is evaluated at the beginning of each round.

13

PROBLEM: Paired Formula Game
Input: Formula ϕ in CNF, pairs of variables

Z = {(x1, y1), . . . , (xn, yn)}.

The formula ϕ contains only variables from the
pairs in Z.

Rules: In a round j the first player picks a pair (xi, yi) and
evaluates xi and the second player evaluates yi.
The game ends when all variables are evaluated.
The first player wins if and only if ϕ is true at the
end of the game.

Question: Can the first player win this instance?

There are many type of the formula games which are PSPACE-complete. They
were studied for example by Schaefer [17], whose proofs inspired us when we
proved the completeness of Paired Formula Game. However before we prove
the completeness, we define an auxiliary game. Let J` be an equation system
over Z2 consisting1 of an equation a1 = b1 and for every 2 ≤ i ≤ ` of an equation
bi = bi−1 + ai. Let equation game be a game on the system J` of two players
with the following rules. In each round the first player picks a variable which
will be evaluated. If the picked variable is bi for some i ∈ [`] then the first player
evaluates it by 0 or 1. Otherwise, the second player evaluates it. The game ends
when all variables are evaluated. The first player wins if all equations in J` holds
after the variable evaluation. Otherwise, the second player wins.

It is easy to see that the first player wins. He can pick first all variables ai and
then he evaluates all variables bi such that all equations in J` holds. However, if
he picks the variables in wrong order he can lose.

Lemma 2.1. If there exist j ≤ i ∈ [`] such that the variable aj is picked after the
variable bi then the second player wins the equation game on J`.

Proof. We prove the lemma by induction on `. The only equation of J1 is a1 = b1.
By the assumptions a1 is picked after b1. Thus, the second player evaluates a1 by
1− b1 and he wins the game.

Suppose the lemma holds for ` = k − 1. We prove the lemma for the system
Jk. If a variable aj is picked after a variable bi for j ≤ i < k then the second
player wins by induction hypothesis. Let aj be the first variable picked after bk for
j ≤ k. If j < k then the variable ak have been already evaluated and the variable
bk−1 has a determined value from the equation bk = bk−1 + ak. Therefore, we can
suppose bk−1 has been already evaluated. The second player wins by induction
hypothesis because bk−1 has been picked before aj.

It remains the case ak is picked after bk. Suppose the variable bk−1 has a
known value, i.e. it has been picked or bk−2 and ak−1 have known values. Hence,
the second player sets ak such that the equation bk = bk−1 +ak does not hold. Let
bk−1 has not a known value. Suppose there exists i ∈ [k− 1] such that ai has not
been picked. When the second player evaluates ak then he determined the value
of bk−1. Therefore, he can win by induction hypothesis. Suppose all a1, . . . , ak−1

1Variables has value 0 or 1 and an addition result is reduced by modulo 2—i.e. 1 + 1 = 0.

14

have been picked. The second player determined all values of b1, . . . , bk−1 by the
evaluation of ak. Thus, he evaluates ak such that the equation a1 = b1 does not
hold.

We can view a variable of an equation over Z2 also as a formula variable. If x
as the equation variable is equal to 1 than x as the formula variable is true and
vice versa. Thus, the equation E : x = y over Z2 can be view as an abbreviation
for the formula ε = (x ∨ ¬y) ∧ (¬x ∨ y). The equation S : x = y + z over Z2 can
be viewed as an abbreviation for

σ = (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z).

Note that the equation E (or S) holds if and only if the formula ε (or σ) is true.

Theorem 2.2. Paired Formula Game is PSPACE-complete.

Proof. It is clear the problem is in PSPACE by the same argument as Online
Ramsey Game is in PSPACE. For proving the hardness we make a reduction from
the standard game. Let formula ϕ in CNF with variables V = {x1, y1, . . . , xn, yn}
be a formula of the standard game. We create pairs with new variables

Z =
{

(x1, a1), (b1, y1), . . . , (xn, an), (bn, yn),
}

and new formulas

ψ′ =
∧

2≤i≤n
(bi = ai + bi−1) ∧ (b1 = a1)

ψ = ψ′ ∧ ϕ.

The abbreviate formulas x = y and x = y+ z are discussed above. The input for
Paired Formula Game is the formula ψ with the variable pairs Z. Informally,
the formula ψ′ forces the first player to pick pairs with x1, . . . , xi before the pair
with yi for each i. It is clear the size of the formula ψ with the set Z is linear in
the size of the formula ϕ with the set V . To finish the proof we need to prove
the first player wins the standard game if and only if he wins the paired game.

Suppose the first player has a winning strategy S for the standard game on
ϕ. We create the first player strategy for the paired game. The first player just
picks pairs in the order (x1, a1), (b1, y1), . . . , (xn, an), (bn, yn). In a round 2i−1 the
pair (xi, ai) is picked. The variables yj for all j < i have been already evaluated.
Therefore, the first player can use the strategy S to evaluate xi. In a round 2i
the pair (bi, yi) is picked. If i = 1 then the first player evaluates b1 by the value of
a1, which has been evaluated in the round 1. Otherwise, the first player evaluates
bi in a way that the subformula bi = ai + bi−1 would be true, which he can do
because ai and bi−1 have been already evaluated. Since the variables xi for every
i have been evaluated according to S, the formula ϕ is true at the end of the
game. Every clause in ψ′ is also true. Therefore, the first player wins the paired
game.

Now suppose the second player has a winning strategy S for the standard
game. The first player plays soundly if he always picks a pair (bi, yi) after (xj, aj)
for all j ≤ i. Suppose the first player plays soundly. If a pair (bi, yi) is picked
then all variables xj for every j ≤ i have been evaluated. Therefore, the second

15

player can use S to evaluate all variables yi for every i. The second player wins
the game because at the end ϕ is false.

Suppose a pair (xj, aj) is picked after (bi, yi) for some j ≤ i. Thus, the second
player cannot use the strategy S for an evaluation of yi. However, the second
player can make the formula ψ′ false by Lemma 2.1.

Actually, Paired Formula game is still PSPACE-complete for more restrict-
ed input.

Definition 2.3. Let ϕ be a proposition formula. The formula ϕ is in 3-CNF if
it has at most 3 variables in each clause. The formula ϕ is in 3-bounded 3-CNF
if it is in 3-CNF and every variable has at most 3 occurrences in the formula ϕ.

In the proof we use the auxiliary formula

E(z1, . . . , zk) = (zk ∨ ¬z1) ∧
∧

2≤j≤k
(zi−1 ∨ ¬zi).

Observation 2.4. The formula ε = E(z1, . . . , zk) is true if and only if all vari-
ables z1, . . . , zk have the same value.

Proof. In every clause of the formula ε there is a positive and a negative literal.
Therefore if all variables z1, . . . , zk are true or false every clause of ε has to be
true. On the other hand, if there are zi 6= zj then there are z`, z`+1 (in cyclic
order, i.e. zk+1 = z1) such that z` = 0 and z`+1 = 1. Therefore, the clause
z` ∨ ¬z`+1 is false.

Theorem 2.5. Paired Formula game is PSPACE-complete even when it is
played on a formula in 3-bounded 3-CNF.

Proof. Actually, Stockmeyer [19] proved deciding if quantified formula in 3-CNF
is true is PSPACE-complete. Our reduction in the proof of Theorem 2.2 preserves
3-CNF. Therefore, Paired Formula Game is PSPACE-complete on formulas
in 3-CNF. It remains to prove the theorem for formulas in 3-bounded 3-CNF.

Let ϕ in 3-CNF and variable pairs Z = {(x1, y1), . . . , (xn, yn)} be an input
for Paired Formula Game. We create a new formula ψ with new variable
pairs Z ′ such that ψ would be in 3-bounded 3-CNF and the first player wins the
paired formula game on ϕ if and only he wins the game on ψ. We replace every
occurrence of each variable in ϕ by a new variable. Let (xi, yi) ∈ Z. Suppose xi
has k occurrences in ϕ and yi has ` occurrences in ϕ. To Z ′ we add pairs

(x1
i , y

1
i), (x

2
i , a

2
i) . . . , (x

k
i , a

k
i), (y

2
i , b

2
i), . . . , (y

`
i , b

`
i).

Let ϕ′ be a formula obtained from ϕ by replacing the j-th occurrence of the
variable xi by the variable xji (same with the second player variable yi). We denote
by o(z) the number of the variable z occurrences in ϕ. We set new formulas

ψ′ =
∧

1≤i≤n

(
E(x1

i , . . . , x
o(xi)
i) ∧

(
E(y1

i , . . . , y
o(yi)
i)

)
ψ = ϕ′ ∧ ψ′.

16

It is clear ψ is in 3-bounded 3-CNF. For abbreviation, we denote by ϕ-game
the original game on the formula ϕ with the variable pairs Z and by ψ-game the
new constructed game on the formula ψ with the variable pairs Z ′.

Suppose the first player has a winning strategy S in the ϕ-game. We construct
a winning strategy S ′ for the ψ-game. The strategy S ′ has two phases. In the
first phase the first player follows the strategy S. Suppose the first player picks
(xi, yi) in a round j of the ϕ-game. In a round j of the ψ-game he picks (x1

i , y
1
i).

He evaluates x1
i by the same value as he evaluates the variable xi in the ϕ-game.

He continues to copy the strategy S according to the evaluation of y1
i as if the

variable yi is set to the same value in the ϕ-game.

The first phase ends when all pairs (x1
i , y

1
i) have been picked. In the second

phase the first player picks all remaining pairs in arbitrary order. Note that all
second player variables which have occurrence in ψ have been evaluated in the
first phase. Thus, in this phase the second player has no chance to change the
outcome of the ψ-game. The first player evaluates xji (or yji) by the value of x1

i

(or y1
i).

For every ϕ-variable z and the new variables z1, . . . , zk which replace all oc-
currences of z in ϕ it holds that variables z1, . . . , zk have the same value. Thus,
the formula ψ′ is true by Observation 2.4. The strategy S is the winning strategy
for the first player in ϕ-game. Therefore, ϕ′ has to be true and the first player
win the ψ-game.

Suppose the second player has a winning strategy S in the ϕ-game. The first
player plays unsoundly if there exists i and j 6= k such that xji 6= xki or yji 6= yki .
Suppose the first player plays unsoundly. Thus, the formula ψ′ has to be false
by Observation 2.4 and the second player wins the ψ-game. From now we can
assume the first player plays soundly. This also implies the first player picks
(x1

i , y
1
i) before any pair (yji , b

j
i). If a pair (x1

i , y
1
i) is picked after (yji , b

j
i) then the

second player evaluates y1
i by the opposite value of yji and makes the formula ψ′

false.

If the first player picks a pair (xji , a
j
i) (or (yji , b

j
i)) the second player can evaluate

the variable aji (or bji) arbitrarily because it does not affect the outcome of the
ψ-game. Suppose the first player picks (x1

i , y
1
i) and let X be a set of the first

player variables in the ψ-game which have been already evaluated. Let

I = {j|∃k : xkj ∈ X}.

The second player evaluates y1
i by the same value as he would evaluate yi in the

ϕ-game when the variables xj, j ∈ I have been already evaluated. Since S is
the winning second player strategy, the formula ϕ has to be false. Hence, the
formulas ϕ′ and ψ have to be false as well.

2.2 Multiple Ramsey Game

We define more general problem where Builder’s goal is to force several monochro-
matic copies of the goal graph. However, these copies have not to be colored by
the same color.

17

PROBLEM: Multiple Online Ramsey Game
Input: Partly edge-colored background graph G, goal

graph H, repetition parameter m ∈ N.
Rules: Rules for Builder and Painter—rules have to be

independent on input and decision problem if a
move is valid is in PSPACE (measure against the
size of the graph G).

Question: Can Builder force m monochromatic copies of H
in G if both players make only valid moves?

Online Ramsey Game is a version of Multiple Online Ramsey Game
where the repetition parameter m equals to 1. Let us have a multiple game with
the goal graph H and a standard game with the goal graph consisting of exactly
m vertex disjoint copies of H. To win the standard game as Builder all copies of
H must have the same color, which is not necessary in the multiple game.

In this section we prove Multiple Online Ramsey Game is PSPACE-
complete. The problem is in PSPACE by the same reason as Online Ramsey
Game, which is discussed at the beginning of this chapter. Therefore, it remains
to prove the hardness of the problem. We prove it by reduction from Paired
Formula Game. In all reductions we call the formula game players as the first
and the second player and the Ramsey game players as Builder and Painter. We
will use the following type of graphs.

Definition 2.6. Let (n, a, b)-shackles be a graph consisting of two disjoint cycles
Ca and Cb connected by a path Pn. The path Pn is called a chain. If n is even we
call the center vertex of Pn as the center of shackles. The edge of Pn connected
to the cycle Ca (or Cb) is called a-connection (or b-connection) and the number
a (or b) is a parameter of the connection.

In our proof copies of (4, 4, 6)-shackles represent occurrences of the formula
variables. All these shackles are precolored in the same way. Edges of the cycles
are precolored alternatively by red and blue and the connecting paths will be
red, except the connections. The connection type edges have no color and they
can be drawn by Builder. The cycle vertices which are closest to the connecting
path are called locks. A color of the lock is determined by a color of the edge
which connects the lock and the chain endpoint. For better understanding the
definition of the shackles and how it is precolored see Figure 2.1.

Let x be a variable of formula ϕ and C be a clause. By x ∈j C we mean the
j-th occurrence of variable x is positive and it is in C. If the j-the occurrence of
x is negative we denote it by ¬x ∈j C.

Definition 2.7. Let (n, a)-lollipop be a graph consisting of a cycle Ca with an
attached path Pn.

In the proof, (6, 8)-lollipop is the goal graph H. We call (n, a)-lollipop almost
complete if all its edges have the same color except the last edge of the lollipop
path (the one which is the furthest from the lollipop cycle). We say the lollipop
is completed when the last uncolored lollipop edge is colored by the color which
have the rest of the lollipop edges.

18

blue locks

red locks

Figure 2.1: Figure of (4, 4, 6)-shackles with the black connections and marked
locks.

2.2.1 Construction of the Background Graph

In this section we describe the background graph and the goal graph for the
Ramsey game which we create from a given formula of the paired formula game.
Let formula ϕ and pairs of variables Z =

{
(x1, y1), . . . , (xn, yn)

}
be an input

for Paired Formula Game. We construct the background graph G(ϕ,Z)
containing gadgets for variables and clauses.

First, we describe a variable gadget. Let (x, y) be a variable pair in Z. For
all occurrences x1, . . . , xk, y1, . . . , y` of the variables (x, y) in ϕ we create (4, 4, 6)-
shackles and precolor them as it is described above (see Figure 2.1). We de-
note the shackles for the j-th occurrence of a variable z by Sj(z). We add one
more vertex which is connected by blue edges to the centers of the shackles
S1(x), . . . , Sk(x), S1(y), . . . , S`(y). See Figure 2.2 for an example of such a gad-
get. We denote the whole gadget for the variable pair (x, y) by R(x, y).

x1 x2 y1 y2

Figure 2.2: Example of a gadget R(x, y) when both variables (x, y) have 2 occur-
rences. Almost all edges are precolored, only 4- and 6-connections can be drawn
by Builder.

The idea of equivalence between strategies in the formula game and the Ram-
sey game is as follows. If the first player sets a variable x to 1 then in the
corresponding gadget R(x, y) only 4-connections are drawn by Builder. If x = 0
then only 6-connections are drawn. If the second player sets a variable y to 1
then all drawn edges in the gadget R(x, y) are colored by blue, otherwise red.

For consistency of the equivalence we need to assure that in every variable
gadget Builder draws only connections of one parameter and Painter colors all
drawn edges by one color. We force it by two simple rules.

19

Rule 1 Builder has to draw all edges such that the drawn graph does not
contain (4, 4, 6)-shackles or (6, 4, 6)-shackles as a subgraph.

Rule 2 Painter has to color the edges such the every (6, 4, 4)-shackles or
(6, 6, 6)-shackles in the drawn graph contains an even number of red
edges and an even number of blue edges.

Lemma 2.8. Let variable gadget R(x, y) for a pair (x, y) be a background graph
for the Ramsey game restricted by Rules 1 and 2. Let Builder draws a connection
e of the parameter p and Painter colors e by a color c in the first round of the
game. Then for the rest of the game, Builder has to draw only connections of the
parameter p and Painter has to color all drawn edges by the color c.

Proof. Suppose Builder draws a 4-connection e and Painter colors it by blue
in the first round. If Builder draws a 6-connection e1 in any other round then
(4, 4, 6)-shackles arises if e and e1 are in the same Sj(x) or Sj(y) otherwise (6, 4, 6)-
shackles arises. Every (6, 4, 4)-shackles and (6, 6, 6)-shackles in R(x, y) has an
even number of blue edges and an even number of red edges at the beginning of
the game. Therefore, if Painter colors a 4-connection by red in any round i for
i > 1 then (6, 4, 4)-shackles with an odd number of red edges and an odd number
of blue edges arises. The other cases of moves are treated similarly.

Observation 2.9. A valid move can be checked in time polynomial in the size of
the background graph.

Proof. Rules forbid only structures up to 15 vertices. Therefore, we can check in
polynomial time if there is a forbidden structure in any 15-tuple of the background
graph vertices.

Let C be a clause of the formula ϕ. We create a clause gadget L(C) consisting
of a red and a blue 8-cycle connected by one vertex v(C). We connect v(C) by
paths of length 4 to the locks of the shackles which represents variables occurring
in C. There is a (4, 4, 6)-shackles for every variable occurrence. Therefore, every
(4, 4, 6)-shackles Sj(z) is connected only to the one clause gadget. The connec-
tion clause and variable gadgets is quite technical, for better understanding see
Figure 2.3.

As we stated before the 4-connections represent positive occurrences of the
first player variables and the 6-connections represent negative ones. Let x be a
first player variable such that x ∈j C. We connect v(C) to the blue lock of 4-cycle
in the variable shackles Sj(x) by a blue path. We connect v(C) to the red lock
of 4-cycle in Sj(x) by a red path. If ¬x ∈j C then we connect v(C) to the locks
of the 6-cycle in Sj(x) in the same way.

Blue color represents positive occurrences of the second player variables and
red color represents negative ones. Let y be a second player variable such that
y ∈j C. We connect v(C) to the blue locks of both cycles in the variable shackles
Sj(y) by blue paths. If ¬y ∈j C we connect v(C) to the red locks of both
cycles in Sj(y) by red paths. This finished the construction of the background
graph G(ϕ,Z) for the Ramsey game. Note that all edges are precolored only the
connection type edges in the variable gadgets can be drawn by Builder. We show
some easy but important observations about the background graph and the rules.

20

x ∈i C1

Si(x)

P4 P4

¬x ∈j C2

Sj(x)

P4 P4

y ∈i C3

Si(y)

P4

¬y ∈j C4

Sj(y)

P4

v(C1) v(C2) v(C4)v(C3)

Figure 2.3: Connection of clause and variable gadgets. Almost all edges are
precolored only 4- and 6-connections can be drawn by Builder. Every clause
gadget is connected to the variable gadget by a path of length 4, which are
depicted as dotted arcs and lines.

Observation 2.10. The size of the graph G(ϕ,Z) is linear in the size of the
formula ϕ.

Proof. Let n be the number of occurrences of all variables in ϕ and m be the
number of clauses in ϕ. The size of all clause gadgets is linear in m and the size
of all variable gadgets with connections to the clause gadgets is linear in n.

Observation 2.11. Let R(x, y) be a variable gadget in the graph G(ϕ,Z). Let e
be the first Builder’s move in R(x, y) and Painter colors it by a color c. According
to Rules 1 and 2:

1. Builder can draw e as a 4- or 6-connection and painter can color e by red
and blue regardless of moves in the other variable gadgets in G(ϕ,Z).

2. Builder can draw all other connections in R(x, y) of the parameter of e.

3. Painter can color all drawn edges in R(x, y) by the color c.

Proof. Rules forbid only some type of shackles of the chain length up to 6. The
shortest path between two variable gadgets has at least 8 edges. Thus, there
cannot be some forbidden structure using vertices and edges of two variable gad-
gets. All 4-cycles and 6-cycles in G(ϕ,Z) are only in variable gadgets. Thus, any
forbidden structure can be only inside single variable gadget. Therefore, moves
in R(x, y) are not affected by any moves in the other variable gadgets.

2.2.2 Hardness of Multiple Ramsey Game

In this section we show the hardness of Multiple Online Ramsey Game. We
use the graph containing variable and clause gadgets described in the previous
section.

Theorem 2.12. Multiple Online Ramsey Game is PSPACE-hard.

21

Proof. Let formula ϕ and variable pair Z =
{

(x1, y1), . . . , (xn, yn)
}

be an input
for Paired Formula Game. We create the background graph G(ϕ,Z) as it is
described above and use Rules 1 and 2 for the Ramsey game. By Observation 2.9
and Observation 2.10 Rules 1 and 2 and the graph G(ϕ,Z) are suitable input for
Multiple Online Ramsey Game to make a reduction.

The goal graph H is a (6, 8)-lollipop. We set the repetition parameter m to
the number of clauses in ϕ. There are a lot of almost complete (6, 8)-lollipops in
the graph G(ϕ,Z). Therefore, it is sufficient for Builder to complete m of these
these lollipops to win the game. We claim the first player wins the formula game
on the formula ϕ with variable pairs Z if and only if Builder wins the Ramsey
Game on the constructed background graph G(ϕ,Z) with the goal graph H and
the repetition parameter m.

Suppose the first player has a winning strategy S for the formula game. We
create a winning Builder’s strategy S ′ for the Ramsey game. The interpretation
of the Ramsey game moves to the formula game moves is as follows. If Builder
draws a 4-connection in a variable gadget R(x, y) then first player evaluates x by
1, otherwise by 0. If Painter colors a drawn edge in a variable gadget R(x, y) by
blue then the second player evaluates y by 1, otherwise by 0. The strategy S ′ has
two phases.

The first phase is copying the strategy S in the Ramsey game. In a round i
Builder interprets all moves of both players as it was described. Let (x, y) be a
pair which have to be picked according to S in the round i of the formula game.
Builder draws an edge e in the variable gadget R(x, y). Note that e is the first
drawn edge in R(x, y). If x = 1 then Builder draws an arbitrary 4-connections in
a variable gadget R(x, y) otherwise he draws arbitrary 6-connections. The first
phase ends after n rounds. Thus, in the moment when the formula game would
end. There is exactly one connection type edge drawn (and colored) in every
variable gadget.

The second phase of S ′ is just drawing remaining edges in all variable gadgets
in a way to not violate the rules. Thus, if in a variable gadget R(x, y) is drawn
a 4-connection from the first phase then Builder draws all 4-connections in the
gadget R(x, y) and vice versa with 6-connections. By Lemma 2.8, moves in this
phase are fully determined by moves in the first phase and players have no possible
choice (up to the order of drawn edges by Builder, which is not important in this
phase). All Builder’s moves are valid by Observation 2.11.

Since the strategy S is a Builder’s winning strategy, every clause of ϕ has a
literal which is true at the end of the formula game. Let C be an arbitrary clause
of ϕ and ` be a literal which is true.

Suppose ` is the first player variable x. Let x ∈j C. Hence, x is set to 1
and only the 4-connections are drawn in a variable gadget R(x, y) where y is
the second pair variable paired with x. It does not matter if the drawn edges in
R(x, y) are blue or red because red and blue 8-cycles from the clause gadget L(C)
are connected to the 4-cycle locks in the variable shackles Sj(x). Therefore, the
drawn 4-connection e from Sj(x) completed a red or blue lollipop whose cycle is
in L(C). The case when ¬x ∈j C is similar, only the 6-connection is used.

Suppose ` is the second player variable. Let y ∈j C. Hence, the connection
type edges are colored by blue in a variable gadget R(x, y). It does not matter
if the drawn edges in R(x, y) are 4-connections or 6-connections because blue

22

8-cycle from L(C) is connected with the blue locks of the variable shackles Sj(y).
Therefore, the drawn blue edge e completed a blue lollipop. The case when
¬y ∈j C is similar only red color is used. Builder forces one monochromatic copy
of H for every clause of ϕ and each of these copies are disjoint. Therefore, he
wins the Ramsey game.

Suppose the second player has a winning strategy S in the formula game.
We construct a winning strategy for Painter. Let Builder draws an edge e in a
variable gadget R(x, y). If Builder has already drawn another edge e′ in R(x, y)
then Painter colors e by the same color as he has colored the edge e′. Otherwise,
he would violate the rules. If the edge e is the first drawn edge in R(x, y) then
he colors it according to the strategy S. He interprets all his and Builder’s moves
to the moves of the formula game as it is described above. Strategy S described
how to evaluate the variable y. Painter colors e by blue if y = 1, otherwise by
red. By Observation 2.11 all Painter’s moves are valid.

Since the strategy S is a winning for the second player, there exists a clause
C which is false. Thus, all literals of C are false. We claim there is no complete
(6, 8)-lollipop containing any 8-cycle from the clause gadget L(C). Let (x, y) be
a variable pair. Suppose x ∈j C. Thus, x is set to 0 and only 6-connections are
drawn in the variable gadget R(x, y). Since the clause gadget L(C) is connected
to the 4-cycle of Sj(x) there is no complete (6, 8)-lollipop containing any 8-cycle
from L(C) and the 6-connection in Sj(x). The case ¬x ∈j C is similar.

Suppose y ∈j C. Thus, y is set to 0 and all drawn edges in the variable gadget
R(x, y) are red. However, both 8-paths from L(C) to Sj(y) are blue. Therefore,
there is no complete (6, 8)-lollipop containing any 8-cycle from L(C) and the red
connection type edge in Sj(y). The case ¬y ∈j C is similar. Hence, the 8-cycles
from L(C) cannot be in any complete (6, 8)-lollipop.

There are m − 1 other clause gadgets. Since both 8-cycles in every clause
gadget are connected there cannot be two vertex disjoint (6, 8)-lollipops whose
8-cycles are from the same clause gadget. Note that 8-cycles in the background
graph G are only inside the clause gadgets. Therefore, Builder can force only at
most m − 1 monochromatic vertex disjoint (6, 8)-lollipops and Painter wins the
Ramsey game.

2.3 Online Ramsey Game

In this section we prove Online Ramsey Game is PSPACE-complete for quite
simple background and goal graphs and when Painter has no rule. The main
task is to remove the repetition parameter m from Multiple Online Ramsey
Game. The main idea is to double the background graph and switch the color
in one copy. We need to force Painter that he colors corresponding edges in both
copies by different colors. In speak of a reduction, if Painter is forced to color
k blue goal graphs and m − k red goal graphs in the original game then after
doubling Painter is forced to color k blue and m− k red goal graphs in the first
copy and m− k blue and k red goal graphs in the second one. Hence, Painter is
forced to color m blue and m red copies of the goal graph. We can set the new
goal graph as m vertex disjoint copies of the original goal graph. Therefore, we
can remove the repetition parameter.

Let e1, e2 be edges such that we want Painter colors these edges by different

23

colors. Suppose the goal graph H has two leaves v1, v2. Let u1, u2 be the only
neighbors of v1, v2 and H ′ be a copy of H without the vertices v1, v2. We attach
the red and blue copy of H ′ by u1, u2 to the endpoints of e1 and e2. Therefore, if
Painter colors edges e1 and e2 by the same color he loses immediately. For better
understanding the idea see Figure 2.4. As we state later by this construction we
also remove rules for the Painter. We formalize these ideas in the next section.

H ′

v1 v2

u1 u2
H ′

u2

H ′

u1e1 e2

Goal graph H

Figure 2.4: If Painter colors the edges e1 and e2 by the same color he loses
immediately because a monochromatic copy of the goal graph H arises.

2.3.1 Construction of the Restricted Background Graph

We again use a polynomial reduction from Paired Formula Game to prove the
hardness of Online Ramsey Game. The gadgets would by similar with gadgets
for Multiple Ramsey Game. However, we want to restrict the background and
the goal graph. We construct the bipartite background graph of the maximum
degree 3 and the goal graph as a tree.

Let formula ϕ and variable pairs Z be an input for Paired Formula Game.
By Theorem 2.5, we can assume the formula ϕ is in 3-bounded 3-CNF.

First, we describe the goal graph H = H(ϕ,Z) because part of it will appear
in variable gadgets. Let m be a number of clauses in ϕ. The goal graph H consists
of a main path P ′ of length 2m − 2 (i.e. it has 2m − 1 vertices) and there is a
path P12 attached to every odd vertex of P ′. Thus, there are m paths of length
12 attached to P ′. Let H ′ = H ′(ϕ,Z) be a graph obtain in the same way as H,
however there are paths of length 10 attached to the endpoints of P ′ instead of
P12. The endpoints of P10 in H ′ are called gadget vertices. By the gadget vertices
the graph H ′ will be attached to variable gadgets to force Painter to color some
edges by different colors. Graphs H and H ′ are depicted in Figure 2.5.

H H ′

2m− 2

12 10

gadget vertex

gadget vertex

Figure 2.5: The goal graph H and the graph H ′ which will be used in variable
gadgets.

A variable gadget is similar to the gadget from the proof of Theorem 2.12.
However, every occurrence of each variable is represented by two shackles. For
the j-th occurrence of the variables z in ϕ we create two (6, 4, 6)-shackles. Cycles

24

of these shackles are precolored in the same way as in the proof of Theorem 2.12,
connections are also uncolored, chain edges connected to the connections are red
and other two chain edges are blue. Moreover, we connect another blue edges
e1, e2 to both connections in the shackles. Vertices connected by the edges e1, e2

are called blue goal vertices and vertices in the chain connected by red edges to
the connections are called red goal vertices. To the goal vertices we will connect
copies of the graph H ′ by the gadget vertices. The occurrence gadget for a variable
occurrence is depicted in Figure 2.6. The goal vertices near to 4-cycle (or 6-cycle)
are called 4-goal or (6-goal) vertices. We call two occurrence gadgets for the j-th
occurrence of a variable z as original and inverse occurrence gadget and denote
them by Sj(z) and S ′j(z). Our goal is to force Painter to color drawn edges in
original and inverse occurrence gadget by different colors.

blue goal vertices

red goal vertices

Figure 2.6: For every occurrence of each variable in ϕ we create 2 copies of this
gadget.

We again connect all occurrence gadgets created for a variable pair. However,
it is a little bit more complicated because every vertex must have the degree at
most 3. Since every variable has at most 3 occurrences there are at most 12
occurrence gadgets created for a variable pair. Let T be a rooted binary tree
such that T has 12 leafs and all leafs are in the depth 4. To avoid monochromatic
long path in the precolored graph we colored edges of T alternatively by layers.
Thus, root incidence edges are blue, edges in distance 1 from the root are red
and so on. We attach one occurrence gadget by its shackles center to every leaf
of T . Note that edges in T incident with leafs are red and edges incident with
shackles centers in the occurrence gadgets are blue. For better understanding
how occurrence gadgets are connected into a variable gadget see Figure 2.7

S1(x) S ′
1(x) S2(x) S ′

2(x) S3(x) S ′
3(x) S1(y) S ′

1(y) S2(y) S ′
2(y) S3(y) S ′

3(y)

Figure 2.7: For simplicity occurrence gadgets are depicted only as dash dotted
circles. They are connected by centers of shackles to the tree.

To finish the variable gadget R(x, y) we attach copies of the graph H ′ to the
goal vertices. We want to force Painter to color drawn edges in Si(z) and S ′i(z)

25

for any variable z by a different color. We fix a cyclic order O of the occurrence
gadgets for a variable pair (x, y): S1(x), S ′1(x), . . . , S ′3(x), S1(y), . . . , S ′3(y). The
same order is in Figure 2.7. Let R1, R2 be two consecutive occurrence gadgets2

in the order O. Suppose R1 is an original occurrence gadget and R2 is an inverse
occurrence gadget—i.e. R1 = Si(z) and R2 = S ′i(z) for some i ∈ [3] and z ∈
{x, y}. We attach a blue copy of H ′ by the gadget vertices to the blue 4-goal
vertices of the occurrence gadgets R1 and R2 and another blue copy of H ′ to
the blue 6-goal vertices of gadgets R1 and R2. If R1 is an inverse occurrence
gadget and R2 is an original occurrence gadget the attaching of the copies of H ′

is analogous. However, red copies of H ′ are attached to the red goal vertices in
R1 and R2. We connect all pairs of consecutive gadgets with copies of H ′ in the
same way as R1 and R2. A sketch of the connecting occurrence gadgets by copies
of the graph H ′ is depicted in Figure 2.8.

H ′

H ′ H ′

Figure 2.8: For clearness, connecting of the occurrence gadgets by the copies of
H ′ are depicted only for four occurrence gadgets. The copies of H ′ are depicted
as dash dotted arcs. Only connecting of 4-goal vertices is depicted, 6-goal vertices
are connected by the copies of H ′ in the same way. Copies of H ′ are connected
to the occurrence gadgets by identifying the gadget vertices and the goal vertices
(marked vertices as squares).

We create a variable gadget for every variable pair from Z. To finish the
background graph G(ϕ,Z) we need to create clause gadgets. We create a path
Q of length 2m − 2. Every odd vertex on the path Q represents a clause. The
other m− 1 vertices on Q are there only to create the background graph G(ϕ,Z)
bipartite. Let v(C) be a vertex on Q representing a clause C. We need to connect
v(C) to the occurrence gadgets of variables in C. However, if we attach the paths
from the occurrence gadgets directly to the vertex v(C) then the degree of v(C)
can be bigger than 3. Therefore, we attach by an edge a rooted binary tree T (C)
with 3 leafs in the depth 2 to the vertex v(C). Let p, r, q be variables of the clause
C. We denote the 3 leafs of T (C) as `(p), `(q) and `(r). If some clause has less
then 3 variables then some leafs of the corresponding tree remain unused. The
path Q with attached copy of T (C) for every clause C of the formula ϕ creates
the clause gadget.

We create red and blue copy of the clause gadget. We connect clause gadgets
and variable gadgets in a similar way as in the proof of Theorem 2.12. However,
it is more complicated for better understanding how the clause gadgets look like

2Note that O is cyclic, thus R1 can be S′
3(y) and R2 can be S1(x).

26

and how they are connected to the first player variable occurrence gadgets see
Figure 2.9 and how they are connected to the second player variable occurrence
gadgets see Figure 2.10. All connections between clause gadgets and occurrence
gadgets are made by red and blue paths of length 7. Let `(x, L, c) be the leaf `(x)
from the copy of T (L) of the color c (b for blue and r for red). Let x be a first
player variable and x ∈i C. We connect `(x,C, b) to the blue locks in the 4-cycle
of Si(x) and S ′i(x) by blue paths. We connect `(x,C, r) to the red locks in the
4-cycle of Si(x) and S ′i(x) by red paths. If ¬x ∈j C we connect `(x) to 6-cycles in
occurrence gadgets. We connect `(x,C, b) to the blue locks in the 6-cycle of Sj(x)
and S ′j(x) by blue paths. We connect `(x,C, r) to the red locks in the 6-cycle of
Sj(x) and S ′j(x) by red paths.

Si(x) S ′
i(x) Sj(x) S ′

j(x)

Q
v(C1)

T (C1)

P7

`(x)

x ∈i C1

Q
v(C1)

T (C1)

P7

`(x)

Q
v(C2)

T (C2)

P7

`(x)

Q
v(C2)

T (C2)

P7

`(x)

¬x ∈j C2

Figure 2.9: Example how a clause gadget and a variable gadget are connected
for the first player variable. The paths P7 connecting variable and clause gadgets
are depicted as dotted lines and arcs.

Let y be a second player variable and y ∈i C. We connect `(y, C, b) to the
blue locks of the 4-cycle and the 6-cycle in Si(y) by blue paths. We connect
`(y, C, r) to the red locks of the 4-cycle and the 6-cycle in S ′i(y) by red paths. If
¬y ∈j C the colors switch. We connect `(y, C, r) to the red locks of the 4-cycle
and the 6-cycle in Sj(y) by red paths. We connect `(y, C, b) to the blue locks of
the 4-cycle and the 6-cycle in S ′j(y) by blue paths. This finished the construction
of the background graph G(ϕ,Z).

Observation 2.13. The graph G = G(ϕ,Z) is polynomial in the size of ϕ and Z.
Moreover, the graph G is bipartite and its maximum degree is 3.

Proof. Let n be a number of occurrences of all variables in ϕ and m be a number
of clauses of ϕ. Every variable gadget contains constant number of copies of the
graph H ′. The size of H ′ is in O(m). Other parts of a variable gadget have
constant size. Therefore, every variable gadget has size in O(m) and there are
|Z| of such gadgets. The clause gadget has size in O(m) as well. Therefore, the
size of the graph G is polynomial in the size of the formula ϕ and the size of the
set Z.

27

Si(y) S ′
i(y) Sj(y) S ′

j(y)

Q
v(C1)

T (C1)

P7

`(y)

y ∈i C1

Q
v(C1)

T (C1)

P7

`(y)

Q
v(C2)

T (C2)

P7

`(y)

Q
v(C2)

T (C2)

P7

`(y)

¬y ∈j C2

Figure 2.10: Example how a clause gadget and a variable gadget are connected for
the second player variable. The paths P7 connecting variable and clause gadgets
are depicted as dotted lines and arcs.

It is clear the maximal degree of the graph G is 3. Every constructed gadget is
bipartite and they are connected in such way it does not violate the bipartiteness.
See Figure 2.11 how the graph G can be partitioned.

H ′

10
Occurrence gadget

α

α
β

β
Connection of occurrence gadgets P ′

P7

γ

γ

T (Ci)

T (Ci−1) T (Ci+1)

Clause gadget

Figure 2.11: Example how vertices of the background graph G(ϕ,Z) can be
divided into two partitions. The vertices of one partition are depicted as disks
and the vertices of the other partition are depicted as squares. How individual
gadgets are connected together is indicated by Greek letters.

The equivalence between the evaluation of variables in the formula game and
the drawing and coloring edges in the Ramsey game is similar to the equivalence
in the previous reduction. Let (x, y) be a variable pair. The variable x is set to
1 if and only if the 4-connections are drawn in the variable gadget R(x, y). The
variable y is set to 1 if and only if the connections from the original occurrence

28

gadgets in R(x, y) are colored by blue and the connections from the inverse oc-
currence gadgets in R(x, y) are colored by red. That Painter will color the edges
in original and inverse occurrence gadgets differently is treated by the copies of
graph H ′ in variable gadgets—we prove it later. However, we need a rule to force
Builder to draw only connections of one parameter.
Rule B Builder has to draw all edges such that the drawn graph does not

contain shackles with the following parameters:

(6, 4, 6), (8, 4, 6), (10, 4, 6), (12, 4, 6), (14, 4, 6)

Rule B is similar to Rule 1 from the previous section. We obtain analogous
observations for Rule B.

Observation 2.14. Valid Builder’s move can be checked in polynomial time in
the size of the graph G(ϕ,Z).

Observation 2.15. Let R(x, y) be a variable gadgets in the graph G(ϕ,Z). Let
e be the first Builder’s move in R(x, y). According to Rule B:

1. Builder can draw e as a 4- or 6-connection.

2. Builder can draw all other connection in R(x, y) of the parameter of the
connection e.

Lemma 2.16. Let G(ϕ,Z) be a background graph for the online Ramsey game
with the goal graph H(ϕ,Z) and Builder is restricted by Rule B. Let R(x, y) be a
variable gadget in the graph G(ϕ,Z) such that all connections of one parameter
have been already drawn. If Painter have colored some drawn connections in
original and inverse occurrence gadget in R(x, y) by the same color then Builder
wins.

Proof. Let S1, . . . , S12 is the cyclic order of the occurrence gadgets in R(x, y)
in which they are connected by the copies of H ′. Without loss of generality
S1, S3, . . . , S11 are the original occurrence gadgets and S2, S4, . . . , S12 are the in-
verse ones. Let ei be a drawn connection in Si. Suppose there are two connections
ei, ej colored by the same color such that ei is in the original occurrence gadget
Si and ej is in the inverse occurrence gadget Sj. Since i is odd and j is even, the
number of the connections ei+1, . . . , ej−1 between ei and ej is also even (it can
be 0). Therefore, there must exists a pair ek, ek+1 among ei, . . . , ej such that ek
and ek+1 have the same color, without loss of generality blue. If k is odd then Sk
is an original occurrence gadget and there is a blue copy of H ′ between Sk and
Sk+1. Therefore, a blue copy of H arises and Builder wins.

If k is even we find another pair e`, e`+1 such that both connections have the
same color. The pair e`, e`+1 surely exists because there is an even number of the
connections ek+2, . . . , ek−1 between ek+1 and ek (in the cyclic order). Let the pair
e`, e`+1 be the closest possible pair to the pair ek, ek+1—it also includes the case
` = k + 1. Thus, connections ek+1, . . . , e` are colored alternatively. If ` is even
then e` and e`+1 have to be red. However, S` is an inverse occurrence gadget and
it is connected by a red copy of H ′ with S`+1. Thus, a red copy of H arises. If `
is odd then e` and e`+1 have to be blue and a blue copy of H arises.

29

2.3.2 Hardness of Online Ramsey Game

In this section we prove Online Ramsey Game is PSPACE-complete even for
the restricted background graph and the goal graph.

Theorem 2.17. Online Ramsey Game is PSPACE-complete even with the
following restrictions:

1. The background graph G is bipartite and its maximum degree is 3.

2. The goal graph H is a tree.

3. Painter has no rule.

4. Valid Builder’s move can be checked in polynomial time.

Proof. We discuss that Online Ramsey Game is in PSPACE at the begin-
ning of this chapter. It remains to prove the hardness. We prove it again by
reduction from Paired Formula Game. Let formula ϕ and variable pairs
Z =

{
(x1, y1), . . . , (xn, yn)

}
be an input for Paired Formula Game. We con-

struct the background graph G(ϕ,Z) and the goal graph H(ϕ,Z) as it is described
above. The only rule of the game is Rule B. By Observation 2.13 and Obser-
vation 2.14 the graph G(ϕ,Z) and H(ϕ,Z) with Rule B is a suitable input for
Online Ramsey Game to make a reduction.

We claim the first player wins the formula game on ϕ with the variable pairs
Z if and only if Builder wins the Ramsey game on the background graph G(ϕ,Z)
with the goal graph H(ϕ,Z) and Rule B.

Recall that for every clause C of ϕ there are two copies of the vertex v(C) in
a red and a blue copy of the path Q. We denote the copy of v(C) in the red copy
of Q by vr(C) and in the blue copy of Q by vb(C). Let Pb(C) (or Pr(C)) be a set
of blue (or red) paths of length 11 connecting vb(C) (or vr(C)) and connection
type edges in the variable gadgets. Note that the paths in Pb(C) (or Pr(C)) are
not edge disjoint they have common edges from a copy of the tree T (C). Thus,
the Builder goal is to extend at least one path in sets Pb(C) (or Pr(C)) for every
clause C by an blue (or red) edge. On the other hand, the Painter goal is to play
in such a way there exists clause C1, C2 such that any path in Pb(C1) and Pr(C2)
is not extended by an edge of the same color.

In fact, if the first player has a winning strategy in the formula game then
Builder can extend at least one path from the sets Pb(C) and Pr(C) by an edge
of an appropriate color. On the other hand, if the second player has a winning
strategy for the formula game then Painter can color the drawn edges in such a
way there exists a clause C such that any path in Pb(C)∪ Pr(C) is not extended
by an edge of an appropriate color. We denote by P d

j (x, i) a path in Pd(C)
connecting vd(C) and j-connection in Si(x) and by Qd

j (x, i) a path in Pd(C)
connecting vd(C) and j-connection in S ′i(x). For example, Qr

4(x, i) ∈ Pr(C) is the
red path connecting vr(C) and the 4-connection in S ′i(x), if such a path exists.

Suppose the first player has a winning strategy S for the formula game. We
construct a winning strategy S ′ for Builder. It is described above how to interpret
Builder’s and Painter’s moves into the moves of the first and the second player.
Strategy S ′ has again 2 phases. In the first phase Builder follows the strategy
S. Let the first player pick a variable pair (x, y) in a round i. Builder draws

30

an edge in S1(x) in the gadget R(x, y). If the first player evaluates x by 1 then
Builder draws the 4-connection in S1(x). Otherwise, if x = 0 Builder draws the
6-connection. When the first phase ends there is exactly one drawn edge in every
variable gadget.

In the second phase Builder just draws all connection edges in a way to not
violate the rule. Thus, if there is a drawn 4-connection in the variable gadget
R(x, y) from the first phase then Builder draws all 4-connections in R(x, y) and
vice versa with the 6-connections. We can suppose Painter colors edges in the
original and the inverse occurrence gadgets by different colors by Lemma 2.16.
Therefore, moves of both players in the second phase are fully determined by the
moves in the first phase. All Builder’s moves are valid by Observation 2.15.

Let C be a clause of ϕ. Since the strategy S is winning for the first player,
there must be a true literal ` in C. Suppose ` is the first player variable x
and x ∈j C. Thus, the 4-connections are drawn in the gadget R(x, y). If the
4-connection in Sj(x) is blue then the 4-connection in S ′j(x) is red and paths
P b

4 (x, j) ∈ Pb(C) and Qr
4(x, j) ∈ Pr(C) are extended. If the 4-connection in Sj(x)

is red then Qb
4(x, j) ∈ Pb(C) and P r

4 (x, j) ∈ Pr(C) are extended.

If ¬x ∈j C then paths from vb(C) and vr(C) are extended by the 6-connections
from Sj(x) and S ′j(x). This case is similar to the previous one. Therefore, if C is
true due to the first player variable then there are a blue path P12 connected to
the vertex vb(C) and a red path P12 connected to the vertex vr(C).

Suppose ` is the second player variable y and y ∈j C. Thus, drawn edges
in a gadget R(x, y) are blue in the original occurrence gadgets in R(x, y) and
red in the inverse ones. If the drawn edges in R(x, y) are the 4-connections
than P b

4 (y, j) ∈ Pb(C) and Qr
4(y, j) ∈ Pr(C) are extended. On the other hand,

if the drawn edges in R(x, y) are the 6-connections than P b
6 (y, j) ∈ Pb(C) and

Qr
6(y, j) ∈ Pr(C) are extended. If ¬y ∈j C the case is similar only colors are

switched. Therefore, if the clause C is true due to the second player variable then
there is a path P12 of the appropriate color connected to vb(C) and vr(C) as well.

There is a path P12 of the appropriate color connected to the vertices vb(C)
and vr(C) for every clause C of ϕ. These paths together with red and blue copies
of the path Q create red and blue copy of the goal graph H(ϕ,Z). Thus, Builder
wins the Ramsey game.

Suppose the second player has a winning strategy S in the formula game.
Painter uses the strategy S to win the Ramsey game. Suppose Builder draws
an edge e in R(x, y). If some edge is already drawn in R(x, y) Painter colors e
in such way to not lose immediately. Thus, he colors the edges in the original
and the inverse occurrence gadgets by different colors. If the edge e is the first
drawn edge in R(x, y) then Painter use S to determine the color of e. If y is set
to 1 according to S then Painter colors the edge e by blue if it is in the original
occurrence gadget and by red if it is in the inverse occurrence gadget. Otherwise,
if y = 0 then Painter colors the edge e by red if it is in the original occurrence
gadget and by blue if it is in the inverse occurrence gadget.

Since the strategy S is winning for the second player, there is a false clause
C in ϕ at the end of the formula game. Thus, every literal in C is false. Suppose
x ∈j C and x is the first player variable. Thus, only the 6-connections are drawn
in the variable gadget R(x, y). However, there are no path in Pb(C) (or Pr(C))
connecting vb(C) (or vr(C)) and the 6-connections in R(x, y). If ¬x ∈j C then

31

only the 4-connections are drawn in R(x, y) and no path in Pb(C) (or Pr(C))
connects vb(C) (or vr(C)) and the 4-connections in R(x, y). Therefore, there
cannot be a path P12 of the appropriate color attached to vb(C) or vr(C) due to
the occurrence of the first player variable in C.

Suppose y ∈j C and y is the second player variable. Thus, drawn edges are
red in the original occurrence gadgets in R(x, y) and blue in the inverse ones.
However, there is no path in Pr(C) connecting vr(C) and the connection type
edges in Sj(y) and no path in Pb(C) connecting vb(C) and the connection type
edges in S ′j(y). The case ¬y ∈j C is similar, only colors are switched. Therefore,
there is no path P12 of the appropriate color attached to vb(C) or vr(C).

As we saw there cannot be a monochromatic copy of H containing the whole
copy of the path Q. There are a lot of monochromatic copies of the graph H ′.
Note that at the beginning of the game there are attached only blue edges to
the red copies of H ′ in the variable gadgets to connect all occurrence gadgets.
There are no attached edges to the blue copies of H ′ besides the edges on the
goal vertices. Painter colored edges in the original and the inverse occurrence
gadgets by different colors. Therefore, there cannot be a monochromatic copy of
H containing the whole main path of the copy of H ′ connecting two shackles in
variable gadgets.

However, what if a monochromatic copy of H arises somewhere else? Suppose
there is a monochromatic copy Hm of the graph H in the background graph G
at the end of the game. The goal graph H contains paths of length 12. Any such
long paths, which can be used in Hm, are only in the copies of H ′ in the variable
gadgets and as the connecting path between the variable and the clause gadgets.
We know Hm have to use some edges of a copy Qm of the path Q and some edges
of a copy Hm

1 of H ′ in a variable gadget. Thus, the main path of Hm has to use
edges of the path between Qm and Hm

1 . Every second vertex on the main path
of H has the degree 3. However, Qm is connected with H1

m by a long path where
almost all vertices have the degree 2—see Figure 2.12.

Hm
1

Qm
v(C1)

T (C1)

P7

`(x)Si(x)

Figure 2.12: Sketch that the background graph does not contain any unwanted
subgraph in the case when the 6-connection in Si(x) is colored red. Note that Qm

and Hm
1 are connected by a long path where almost all vertices have the degree

2.

Therefore, a monochromatic copy of the goal graph H cannot arise on a set
of edges using some edges of the copies of H ′ and some edges of the copies of Q.
Hence, the second player wins the Ramsey game.

32

Note that Theorem 2.17 is optimal in some sense. If the background graph
G has the maximal degree 2 then G is a disjoint union of cycles and paths.
Therefore, Builder can force a monochromatic path of length 2 if and only if he
can build an odd cycle. Otherwise, he can force only a monochromatic edge.

Rules for Builder are also important. If Builder has no rules he can eventually
draw all edges of the background graph. Therefore, he can win if and only if every
edge 2-coloring of the background graph G contains a monochromatic copy of the
goal graph H. However, this is problem of the classic Ramsey theory, which
lies in Π2 class of the polynomial hierarchy3 and some version of the problem
is Π2-complete [16]. Therefore, it is unlikely Online Ramsey Game would be
PSPACE-complete when Builder has no rules.

2.4 Star Ramsey Game

Even Online Ramsey Game is PSPACE-complete for quite simple graphs we
found a type of the problem which is NP-complete.

PROBLEM: Star Online Ramsey Game
Input: Background graph G, s, t ∈ N.
Rules: Builder can build only vertex disjoint union of

stars.
Question: Can builder force s copies of t-stars of the same

color?

We call the parameter t of a t-star S the diameter of S. The key result about
Star Online Ramsey Game describes the following theorem.

Theorem 2.18. Builder wins Star Online Ramsey Game if and only if the
background graph G contains 2s− 1 vertex disjoint (2t− 1)-stars.

Proof. Let G be a graph containing 2s− 1 vertex disjoint (2t− 1)-stars. Builder
eventually draws edges of all (2t−1)-stars. There are at least t edges of the same
color in every colored (2t− 1)-star. These t-tuples of edges form monochromatic
t-stars. There are 2s− 1 vertex disjoint monochromatic t-stars. Therefore, there
are at least s vertex disjoint t-stars of the same color.

Suppose G = (V,E) contains at most 2s − 2 vertex disjoint (2t − 1)-stars.
Due to the rules every component of the drawn graph has to be a star. We say
a colored star S is maximal if there is no colored edge in E \ E(S) connected to
S.

Painter colors edges of small stars alternatively (up to the diameter 2t − 2).
Thus, every maximal (2t − 2)-star has t − 1 blue edges and t − 1 red edges. In
the moment when a drawn edge e is connected to some maximal (2t− 2)-star S
Painter is forced to draw a monochromatic t-star. However, he can decide if the
t-star will be blue or red. He counts the number of blue and red t-stars he has
already colored. If there are more red t-stars then he colors the edge e by blue,
otherwise red. If the drawn edge e is connected to a maximal k-star S where
k > 2t − 2 then S has to contains a monochromatic t-star S ′ as a subgraph. In

3If you are not familiar with the polynomial hierarchy see some book about complexity, for
example Arora and Barak [1]

33

that case Painter colors the edge e by the color of the star S ′. Therefore, any
maximal k-star for k > 2t− 2 contains only red or blue t-star as a subgraph but
not both of them. Note that the numbers of red and blue t-stars differ by at most
1 in any moment of the game. Since the graph G contains at most 2s− 2 vertex
disjoint (2t−1)-stars Builder can force at most s−1 vertex disjoint t-stars of the
same color.

By Theorem 2.18 we obtain Star Online Ramsey Game is as hard as the
following problem.

PROBLEM: Star Subgraphs
Input: Graph G, s, t ∈ N
Question: Does the graph G contain s vertex disjoint t-stars

as subgraphs?

Theorem 2.19. Star Subgraphs is NP-complete.

Proof. It is clear that Star Subgraph is in NP. We can use s vertex disjoint
t-stars as a certificate. To show the hardness of the problem we use a reduction
from Independent Set.

Let graph G = (V,E) and k ∈ N be an input for Independent Set. Let d
be a maximum degree of G. We can assume d > 2 because Independent Set
for graphs with the maximum degree 2 is actually in P. We construct a graph
G′ as follows. For every v ∈ V we create a d-star Sv. We label leafs of every
such star Sv by neighbors of the vertex v. If v has less then d neighbors then
some leafs of Sv remain unlabeled. For every {u, v} ∈ E we identify the leaf of
Su labeled by v with the leaf of Sv labeled by u. Thus, {u, v} 6∈ E if and only if
stars Su and Sv are vertex disjoint.

Note that only vertices in V (G′) of degree bigger then two are centers of stars
Sv. Thus, for every t-star S for t > 2 which is a subgraph of G′ there must exist
v ∈ V such that S is a subgraph of Sv. Therefore, G has an independent set of
the size k if and only if G′ contains k vertex disjoint d-stars.

As a corollary of Theorem 2.18 and Theorem 2.19 we obtain the following
theorem.

Theorem 2.20. Star Online Ramsey Game is NP-complete.

34

3. Builder’s Strategies

The online Ramsey theory study mainly strategies for Builder and Painter. In
this chapter we study Builder’s strategies for the games played on an infinite
complete graph. However, Builder can draw graphs only from a fixed class,
usually planar graphs. In our strategies we often use known strategies for forcing
several copies of some graph of the same color. We say copies of a graph are
strongly monochromatic if all these copies have the same color.

We construct our strategies by induction. In the induction step we use a
step operation. In the step operation we apply a known strategy on vertices
which are already in a monochromatic copies of some graph. Suppose we have
a strategy S for forcing a graph G. Let k be a number of vertices needed by
the strategy S to force the monochromatic copy of G. Let H, I be graphs such
that V (H) ∩ V (I) = {w}. Suppose we obtain a Builder’s strategy Q to force a
graph pair (H, I) where both graphs are monochromatic. However, H and I does
not have to be colored by the same color. By step operation we mean using the
strategy Q at most 2k− 1 to force k disjoint copies C1, . . . , Ck of pair (H, I) such
that all copies of H are strongly monochromatic and all copies of I are strongly
monochromatic as well. Let wi be a copy of w in Ci. On the vertices w1, . . . , wk
we use the strategy S to force a monochromatic copy of G. We use also a step
operation where I is empty graph. In that case the vertex w is a fixed vertex in
V (H). After the step operation there is a monochromatic copy of G such that
strongly monochromatic copies of H and strongly monochromatic copies of I are
attached to every vertex of G by the copies of the vertex w. Specific use of the
step operation is presented in proofs in this chapter.

In this chapter we also study properties of drawn graphs. Let Q be a Builder’s
strategy. A drawn graph which Builder draws using the strategy Q is denoted
by D(Q). If the strategy Q is used n times on the different sets of vertices the
drawn graph is denoted by D(Q)n.

Grytczuk et al. [8] and Petř́ıčková [12] conjectured the graph K4 is avoidable
on planar graphs. We suspect the class of series-parallel graph is exactly the
unavoidable class on planar graphs. We have not found the proof of this proposi-
tion. However, we present some techniques and results which might be useful for
proving the conjecture. Our strategies were inspired by the result of Grytczuk et
al. [8] that forests are unavoidable on forests. Thus, in Section 3.1 we present a
slight improvement of the strategy for forests for better understanding the other
strategies. Strategies on planar graphs are presented in Section 3.2. We also
study strategies for hypergraphs. Our result about hyperforests is in Section 3.3.

3.1 Optimality of Strategies

Result of Grytczuk et al. [8] that forests are unavoidable on forests is interesting
because an analogous result does not hold in the classic Ramsey theory. How-
ever, we found their strategy is not optimal. In this section we describe an easy
improvement of the strategy for forests by Grytczuk et al. [8] which decreases
the number of vertices needed by Builder. Usually to describe optimality of a
strategy the number of the drawn edges is used because it is also the number

35

of the Ramsey game rounds. However, we use the number of vertices used by
Builder because it is easier for computation and if T = (V,E) is a forest without
single vertices then |V | ∈ O(|E|).

Let Tn be a tree on n vertices and T ′ be a tree obtained from Tn by removing
one leaf. The original strategy for forcing needs n strongly monochromatic copies
of T ′ to force Tn. In the worst case Builder has to force (2n− 1) monochromatic
copies of T ′ to force n copies of T ′ of the same color. Let Gn be a maximum
number of vertices needed by Builder for forcing Tn. Thus, we obtain the following
recurrence formula for Gn:

G2 = 2

Gn = (2n− 1)Gn−1

The solution for n > 2 of the recurrence is as follows:

Gn = 2 ·
n∏
i=3

(2i− 1) = 2 · 5 · 7 · · · (2n− 1)

3 ·Gn · 2 · 4 · · · (2n− 2) = 2(2n− 1)!

Gn =
(2n− 1)!

3(n− 1)!

Proposition 3.1. Forests are unavoidable in the online Ramsey game on forests.
Moreover, Builder needs at most n! vertices where n is the number of vertices of
the goal forest.

Proof. Let T = (V,E) be the goal graph. We can assume the goal graph is a
tree. If the goal graph T is a forest we can connect the components of T by edges
to obtain a tree. We prove the proposition by induction on n = |V |. If n = 2
Builder needs only one edge, i.e. two vertices, to force T and the proposition
holds.

Suppose n > 2. Let T ′ be a tree obtained from T by removing a leaf `. Let
u be the only neighbor of `. Builder has a strategy for forcing T ′ by induction
hypothesis. In the first phase Builder forces some copies of T ′. Now it comes our
improvement. In the original strategy Builder forces n strongly monochromatic
copies of T ′. Let C = {v1, . . . , vk} be a minimal vertex cover of T . In our strategy
Builder forces only k monochromatic copies T1, . . . , Tk of T ′. Let ui be a copy of
u in Ti. If there are two copies Ti, Tj of different colors Builder connects ui and
uj. The color of {ui, uj} does not matter, a monochromatic copy of T arises.

In the other case all copies T1, . . . , Tk have the same color, say blue. Let
V \ C = {vk+1, vn}. For every vi ∈ V \ C we take a vertex ui of the background
graph such that ui is not in a drawn graph after the first phase. In the second
phase Builder draws an edge {ui, uj} if and only if {vi, vj} ∈ E. Since C is a
vertex cover of T , there is attached a blue copy of T ′ to at least on vertex of
each drawn edges in the second phase. Therefore, all edges drawn in the second
phase have to be red, otherwise Painter loses immediately. All edges drawn in
the second phase create a red copy of T , therefore Builder wins. An example how
the strategy works for binary tree of the depth 2 is depicted in Figure 3.1.

Let In be a number of vertices needed by Builder when he uses the improved
strategy for forcing a tree Tn on n vertices. Since vertex cover of Tn has at most

36

T1 T2v1 v2

v3

v4 v5 v6 v7

Figure 3.1: Example of the improved strategy on binary tree with a vertex cover
C = {v1, v2}.

bn
2
c vertices, in the first phase of the n-th step Builder needs at most bn

2
cIn−1

vertices. In the second phase of the n-th step Builder needs at most n vertices.
Therefore, the sequence In is upper bounded by Jn with the following recurrence
formula:

J2 = 2

Jn =
⌊n

2

⌋
Jn−1 + n

It can be easily proved by induction that Jn ≤ n!.

The bound of the number of vertices needed by Builder in the proof of Propo-
sition 3.1 is quite inaccurate. However, n! ∈ o(Gn). Thus, our improvement really
decreases the number of vertices needed by Builder.

3.2 Strategies on Planar Graphs

In this section we present two technical lemmas about Builder’s strategies on
planar graphs. We hope these lemmas would be useful for the future work on
this topic. As a corollary we found a new class of graphs which is unavoidable on
planar graphs. The first lemma is about reusing existing strategy in a tree-like
structure.

We define a tree-like structure where each edge of a tree is replaced by some
graph. Let T = (U, F) be a tree and G = {Gf |f ∈ F} be a set of graphs. We call
a function r : U → P(V (G)) by a tree function1 if r has the following properties
for every f ∈ F :

1. |r(v) ∩ V (Gf)| ≤ 1

2. r(v) ∩ V (Gf) 6= ∅ ⇔ v ∈ f

Observation 3.2. For a tree function r and an edge f ∈ F there are exactly 2
vertices u, v ∈ U such that r(u) ∩ V (Gf) and r(v) ∩ V (Gf) are not empty.

Proof. The size of a set {v|v ∈ U : r(v) ∩ V (Gf) 6= ∅} is exactly the size of the
edge f , which is 2.

1By V (G) we mean a disjoint union of vertices of all graphs in G. By P we mean a set of all
subsets.

37

We define an extended tree T (G, r) for a tree T as an edge disjoint union of all
graphs in G and for all v ∈ U we identify all vertices in r(v) into the connecting
vertex rv.

Informally, the extended tree T (G, r) arises by replacing every edge f ∈ F
by a graph Gf ∈ G. The tree function r determined how the graphs in G are
connected. An example of an extended tree is in Figure 3.2. An extended forest
T (G, r) is defined in the same way but the graph T can be a forest. Let T (G, r)
be an extended tree and R be a subtree of T . For simplicity, we use notation
R(G, r) for extended tree such that the graph family G and the tree function r
are restricted to the edges and the vertices of R.

v

T a b

dc

Ga Gb

Gc Gd

u1

u2
w

y z

x
u2

u3

u5

u6

T (G, r)

u7 u8

rx : r(x) = {u2}

ry : r(y) = {u6}

rz : r(z) = {u8}

rw : r(w) = {u2, u5, u7}

rv : r(v) = {u1, u3}

Figure 3.2: Example of an extended tree T ({Ga, Gb, Gc, Gd}, r).

Definition 3.3. Let G = (V,E) be a connected graph and u, v ∈ V . An uniform
extended tree T (G, u, v, r) is an extended tree T (G, r) such that every Gi ∈ G is
isomorphic to G via isomorphism fi : V (Gi)→ V (G) and

{fi(v)|v ∈ V (T) : r(v) ∩ V (Gi) 6= ∅} = {u, v}.

Informally, the uniform extended tree arises by replacing every edge of a tree
T by a copy of the fixed graph G such that all copies of G are connected by
copies of two fixed vertices in V (G). An example of an uniform extended tree is
depicted in Figure 3.3.

T G

u

v
T (G, u, v, r)

a b

dc

Ga Gb

Gc Gd

rp : r(p) = {ua, vb}

rw : r(w) = {va, vc, ud}
ry : r(y) = {uc} rz : r(z) = {vd}

rx : r(x) = {ub}

p

w

y z

x

Figure 3.3: Example of an uniform extended tree T (G, u, v, r).

Let τ1 = T1(G1, r1) be an extended forest for a forest T1 = (U1, F1) and
τ2 = R(G2, r2) be an extended forest for a forest T2 = (U2, F2). We say the
extended forest τ1 is a proper subforest of τ2 if:

38

1. The forest T1 is a subgraph of T2

2. For every f ∈ F1 it holds that G1
f ∈ G1 is a subgraph of G2

f ∈ G2.

3. For every u ∈ U1 it holds that r1(u) = r2(u).

Lemma 3.4. Let G = (V,E) be a graph, u, v ∈ V and T = (U, F) be a tree. Let
Builder has a strategy S such that he can force a monochromatic copy of G on
planar graphs. Then, there exists a Builder’s strategy S ′ such that Builder force a
monochromatic copy of an uniform extended tree τ1 = T (G, u, v, r) such that the
drawn graph D(S ′) is a planar extended forest τ2 = T (G, r′) and τ1 is a proper
subtree of τ2. Moreover, if G is forced by S such that u and v are always in the
same face of the drawn graph D(S) then all copies of u and v are in the same
face of a drawn graph D(S ′).

Proof. We prove the lemma by induction on the set of tree edges F . If |F | = 1
then τ1 = G and the strategy S ′ is exactly the strategy S.

Suppose |F | > 1. Let T ′ be a tree obtained from T by removing one leaf `. We
denote the only neighbor of ` by z and the edge {`, z} ∈ F by e. By induction hy-
pothesis we obtain a Builder’s strategy S0 which forces a graph τ = T ′(G, u, v, r)
on a graph with the required properties. Builder uses a step operation with the
strategy S0. Let k be a number of vertices needed to force G by the strategy S.
Builder forces k disjoint strongly monochromatic copies T1, . . . , Tk of τ , without
loss of generality blue.

Let zi be a copy of the connecting vertex rz in Ti. Builder applies the strategy
S on the vertices z1, . . . , zk to force a monochromatic copy Ge of the graph G.
There is attached a blue copy of τ to every vertex used for S in this step. Thus,
if the graph Ge is blue then a blue copy of T (G, u, v, r) arises and Builder wins
because in particular there is blue copy of τ attached to the vertex rz ∈ V (Ge).
An Example of the case when Ge is blue is depicted in Figure 3.4.

e
`

z

u

v

τ = T ′(G, u, v, r)

rz

T1 T2

T3 T4 T5

z1 z2

z3 z5
z4

T G Forcing T (G, u, v, r)

Figure 3.4: Example of how to force an extended tree T (G, u, v, r). In the last
graph copies of τ are depicted as dash dotted triangles.

However, the graph Ge can be red. In this case Builder can build a red
copy of the graph T (G, u, v, r). Let t(H) be a colored graph consisting of a
monochromatic copy Hm of a graph H and there is a monochromatic copy of τ
of the other color than Hm attached to every vertex of Hm. We already obtain
a strategy for forcing t(G). Let R be a subtree of T and R′ be a graph obtained
from R by removing a leaf o. We denote the only neighbor of o by y and the
edge {o, y} ∈ E(R) by f . Let ρ = R(G, u, v, r) and ρ′ = R′(G, u, v, r). By

39

induction hypothesis we have a strategy S1 for forcing t(ρ′). We need to attach
a monochromatic copy of G to the copy of t(ρ′).

Builder again uses a step operation with the strategy S1. He forces k copies
R1, . . . , Rk of t(ρ′) such that all copies are colored in the same way. Without loss
of generality the copies of ρ′ in R1, . . . , Rk are red and the copies of τ are blue.
Let yi be a copy of the connecting vertex ry in Ri. Builder uses the strategy S on
the vertices y1, . . . , yk to force a monochromatic copy Gf of the graph G. If Gf

is blue then Builder wins immediately because a blue copy of T (G, u, v, r) arises.
If Gm is red then a copy of t(ρ) arises such that copy ρr of ρ is red and there
is a blue copy of τ attached to every vertex of ρr. By repeating this procedure
|F |-times Builder eventually forces a red copy of T (G, u, v, r).

Now we show the properties of the drawn graph D(S ′). We show it by induc-
tion on steps of strategy S ′. If |F | = 1 then S ′ is exactly the strategy S and the
drawn graph has the required properties by assumptions.

Suppose |F | > 1. The strategy S ′ uses only the step operation. Therefore, it
suffices to prove the one application of the step operation preserves the required
properties. In the step operation O we have a strategy Q to force an extended tree
σ1 = S(G, u, v, s) such that for every edge e ∈ S the graph Ge is monochromatic.
Let σ3 = S(G, u, v, s3) be an extended tree containing a monochromatic copy
Gm of the graph G such that there is a copy of σ1 attached to every vertex of
Gm and all these copies of σ1 are colored in the same way. The goal of the step
operation O is to create σ3. By induction hypothesis a drawn graph D(Q) is a
planar extended forest σ2 = S(G ′, s′) and σ1 is a proper subtree of σ2.

If Builder uses 2k− 1 times the strategy Q on disjoint sets of the background
graph vertices then a drawn graph D(Q)2k−1 is still planar extended forest and
there are 2k − 1 components of D(Q)2k−1 which have a copy of σ1 as a proper
subtree. Let K be a set of k vertices used by Builder for the strategy S in the
step operation O. Vertices in K is in different components C1, . . . Ck of the drawn
graph D(Q)2k−1 before the strategy S is applied during the operation O. The
graph D(S) contains a monochromatic copy Gm of the graph G. For every i it
holds that |V (Ci) ∩ V (Gm)| ≤ |V (Ci) ∩ V (D(S))| = 1. Therefore, the drawn
graph after the operation O is a planar extended forest and contains σ3 as a
proper subforest. The sketch of the drawn graph is in Figure 3.5.

G D(S)

C2 C3
C4

C5

C1

C9 C8 C7

C6

Figure 3.5: Sketch of the drawn graph after a step operation. The dash dotted
black triangles represent drawn graphs of the strategy Q. The dash dotted ellipse
represents a drawn graph D(S). Each Ci contains a copy of σ1 as a proper subtree.

Suppose u and v are always in the same face in the drawn graph D(S). We
can embed the drawn graph D(S ′) into the plane in such a way the all copies of u

40

and v in T (G, u, v, r) are in the outer face of D(S ′). We construct the embedding
by induction. If T is only one edge then T (G, u, v, r) = G and S ′ = S and the
lemma holds. Let R be a tree obtained from T by removing a leaf `. We denote
the only neighbor of ` by x and an edge {`, x} by e. A monochromatic Ge is
connected by the vertex rx to a monochromatic copy ρm of R(G, u, v, r) to create
the monochromatic graph Tm. Since the graph Tm is a proper subforest of the
graph D(S ′), the vertex rx is a cut vertex in the whole graph D(S ′).

Let D1 and D2 be parts of D(S ′) when D(S ′) is cut by rx. Suppose the graph
ρm is a subgraph of D1. By induction hypothesis the graph D1 can be embedded
in the plane such that all copies of u and v in the graph ρm are in the outer face
of D(S ′). Note that the vertex rx is among these copies of u and v. The strategy
S has been used for forcing the monochromatic graph Ge. Therefore, the copies
of u and v (denoted as ue and ve) in the graph Ge are in the same face of D2. We
can simply embed the graph D2 (which is actually D(S)) such that vertices ue
and ve are in the outer face of D2. Actually, the vertex rx is one of the vertices
ue and ve. Therefore, we can join both embedded parts D1 and D2 by the vertex
rx and obtain the required embedding of the graph D(S ′).

If a drawn graph has to be planar then Builder has to draw only edges between
two vertices in the same face of the drawn graph. Trivially, one edge is always
monochromatic. Thus, we ask a question if there are two vertices u and v in the
same face of a drawn graph, can Builder force a monochromatic path between u
and v? The next lemma shows our result.

Lemma 3.5. Let G = (V,E) be a graph and u, v ∈ V . Let S is a Builder’s
strategy for forcing a monochromatic copy of G such that u and v are always in
the same face of the drawn graph. Then, there exists a Builder’s strategy S ′ which
forces a monochromatic copy of G and a monochromatic path Pk of the odd length
connecting u and v. Moreover, u and v are in the same face of a graph drawn by
Builder when using the strategy S ′.

Proof. Since P1 is only an edge, we suppose k ≥ 3. We know forests are unavoid-
able on forests by Grytczuk et al. [8]. Let α be a number of vertices needed to

force a path of the length z = (k−1)2

2
+ k − 1 on forests by a strategy Yα. Let β

be a number of vertices needed to force a path of the length k− 1 on forests by a
strategy Yβ. Let T be a tree containing an α-star S called the major star rooted
by the center c of S. There are β-stars S1, . . . , Sα called the minor stars attached
by their center vertex to the leafs of S. The tree T is depicted in Figure 3.6.

major star

minor stars

β

α

c

Figure 3.6: Tree T consisting of one α-star and α β-stars.

By Lemma 3.4 there exists a strategy Y for forcing graph τ = T (G, u, v, r)
for any tree function r on planar extended forests. Let Ge (subgraph of τ) be a

41

copy of G corresponding to e ∈ E(T). We denote the copy of u and v in Ge by
ue and ve. We define the function r as follows:

• For the root c of T we define r(c) = {ue|e ∈ E(S)}.

• For every leaf ` of the major star S and the minor star S ′ rooted in ` we
define

r(`) = {ve|e = {c, `} ∈ E(S)} ∪ {ue|e ∈ E(S ′)}.

• For every leaf m of the tree T we define r(m) = {ve} where e is the only
edge in E(T) incident to m.

We know all copies of u and v in V (τ) are in the same face of a drawn graph
D(Y). Without loss of generality, the face is outer. Let σ = S(G, u, v, r) be a
subgraph of τ . Builder forces a path P of the length z by the strategy Yα on the
copies of v in the graph σ. Let

V (P) = {p0, . . . , pz}
E(P) =

{
{pi, pi+1}|0 ≤ i ≤ z − 1

}
.

Let W be a set of every k − 1-th vertex of P beside the vertices p0 and pz.
Formally,

W ⊂ V (P) = {pi|1 ≤ i < z, i mod k − 1 = 0}

=
{
wi|wi = pi(k−1), 1 ≤ i ≤ k − 1

2

}
.

Let q = k−1
2

, thus |W | = q. Let S1, . . . , Sq be strongly monochromatic ex-
tended minor stars rooted in w1, . . . , wq ∈ W . Builder forces paths Q1, . . . , Qq

on the copies of v of every Si by repeating the strategy Yβ. A part of τ with the
monochromatic paths P,Q1, . . . , Qq is depicted in Figure 3.7.

Let G = {Ge|e ∈ E(S), V (Ge) ∩ V (P) 6= ∅}. Informally, the set G contains
the copies Ge of G such that ve in V (Ge) is also in V (P). We order the copies of
G in G in the order of the vertices of P and embed them into the plane in that
order. We do not need other copies of G in the extended major star σ beside
of G. Therefore, we can embed them into inner faces according to D(Yα) to not
violate the planarity. In such embedding of τ with D(Yα) the copies of u and v
of all extended minor stars Si rooted in the vertices of P are still in the outer
face of the drawn graph. The embedding of the extended minor stars S1, . . . , Sq

with a forest D(Yβ)q drawn for forcing Q1, . . . , Qq can be done by the similar way.
Therefore, all vertices of the monochromatic paths P,Q1, . . . , Qq are in the outer
face of a drawn graph. A sketch of the drawn graph embedding into the plane is
in Figure 3.8.

We distinguish two cases when all paths Q1, . . . , Qq have the same color as
P and when there exists a path Qi with different color as P . Suppose all paths
P,Q1, . . . , Qq have the same color, say blue. Let di be an endpoint of Qi, it does
not matter which one. Builder draws k edges

F =
{
{rc, w1}, {dq, pz}

}
∪
{
{wi, di}, {di, wi+1}|1 ≤ i ≤ q − 1

}
.

If any edge in F is blue a monochromatic copy Ge of G with a blue copy of Pk
connecting the vertices ue, ve arises. Otherwise, if all edges of F are red then the

42

Gf

P

Q1

Qq

rc

pk−1 = w1 = r`

Gh

rm

k − 1

(k−1)2

2
+ k − 1

p0 wq pz
p1

Figure 3.7: Part of τ with monochromatic paths which Builder needs for con-
necting the vertices u, v by a monochromatic path. The copies of G are depicted
as red dash dotted lines and paths P and Qi as blue lines. The marked vertices
are copies of u and v. The vertex rc arises by identifying the vertices ue in V (Ge)
for all e in the major star S. The vertex r` arises by identifying the vertex vf
and the vertices ue in V (Ge) for all e in the minor star rooted in ` ∈ V (T). The
vertex rm is the vertex vh.

T (G, u, v, r)

P

Qi

Figure 3.8: Sketch how we can embed the drawn graph when Builder forces a
monochromatic τ with the monochromatic paths P,Q1, . . . , Qq. The copies of G
in τ are depicted as dash dotted red lines, the paths P and Qi as blue lines and
other edges of graphs D(Yα) and D(Yβ)q+1 as black lines.

copies of u and v are connected by red copy of Pk. For better understanding see
Figure 3.9. Vertices of edges in F are still in the outer face of a drawn graph. A
monochromatic path between copy of u and v arises always between vertices on
the paths P,Q1, . . . , Qq, no matter if all edges in F are red or one edges in F is
blue. Therefore, the copies of u and v connected by a monochromatic copy of Pk
remains in the outer face of a drawn graph.

Now suppose P is blue and there is a path Qi which is red. Let c1, c2 be
endpoints of Qi and c3 be a vertex of Qi in the distance 2 from c1. Let b1, b2 be
vertices of P in the distance k − 1 from wi. Builder draws 3 edges

J =
{
{b1, c3}, {c2, b2}, {b2, rc}

}
.

If any edge e ∈ J is blue then the edge e with a part of P create a blue path
between the copies of u and v. If all edges in J are red then part of Qi with edges
in J create a red path between the copies of u and v. Again both endpoints of
the monochromatic path Pk remains in the outer face of the drawn graph. The
sketch of this case is in Figure 3.10

43

P

Q1 Q2 Qq

rc

w2

(k−1)2

2

w1 pz

d1 d2 dq

wq

Ge

Figure 3.9: The strongly monochromatic copies of G are depicted as black dash
dotted lines and the paths P,Q0, . . . , Qq as blue lines. The edges in F are depicted
as solid red arcs and lines. If any of these edges in F is blue then a monochromatic
copy Gm of G with a blue path Pk between um and vm arises. If all edges in F are
red then the monochromatic copy Ge of G with a red path Pk between rc = ue
and pz = ve arises.

Theorem 1.9 is only a corollary of Lemma 3.5.

Corollary 3.6. Let Q(k, `, u, v) be a graph consisting ` internally disjoint paths
of the length k between the vertices u and v. The graph Q(k, `, u, v) is unavoidable
on planar graphs for arbitrary ` ∈ N and k ∈ N odd.

Proof. Builder uses 2`−1 times a strategy given by Lemma 3.5 to connect vertices
u and v by a monochromatic path of the length k. At least ` of these paths must
have the same color.

3.3 Unavoidability of Hypertrees

Natural generalization of the online Ramsey game is to allow Builder drawing
hyperedges. I.e. in each round Builder draws a set of vertices (instead of a vertex
pair) and Painter colors the set by red or blue. As far as we know, the online
Ramsey theory for hypegraphs has not been studied very much. Kierstead and
Konjevod [10] studied Builder’s strategies for complete hypergraphs. In this sec-
tion we study Builder’s strategy for hyptertrees. We can restrict the study only
to uniform hypergraphs.

Observation 3.7. Builder can not force any non-uniform hypergraph.

Proof. Let H = (V, F) be a non-uniform hypergraph. Therefore, there are two
hyperedges f1, f2 ∈ F with different sizes. If Builder draws a hyperedge of the
size |f1| then Painter colors it by blue. Painter colors hyperedges of other sizes
by red. Therefore, Builder can not force a monochromatic copy of H.

By Observation 3.7 we can assume the goal hypergraph in the online Ramsey
game is k-uniform. Hence, we can assume Builder draws only hyperedges of
the size k because there is no use for edges of different size. We wanted to

44

P

Qi

rc

wib1

c2c1

b2

c3

k − 3

Ge

k − 1 k − 1

Figure 3.10: The strongly monochromatic copies of G are depicted as black dash
dotted lines and the path P as a blue line and the path Qi as a red line. The
edges in J are depicted as solid red arcs and lines. If any of these edges in J is
blue then a monochromatic copy Gm of G with a blue path Pk between um and
vm arises. If all edges in J are red then the monochromatic copy Ge of G with a
red path Pk between rc = ue and b1 = ve arises.

generalize result of Grytczuk et al. [8] for hyperforests. In this section we present
a hypergraph class which is unavoidable on 3-uniform hyperforests.

Let H be a 3-uniform hypertree and O be a host tree for H. We denote a
subgraph of a O induced by a hyperedge f ∈ F by O(f). Let H ′ be a copy of
subgraph of H and m : V (H ′)→ V (H) be a mapping such that for all {u, v, w} ∈(
V (H′)

3

)
it holds that {u, v, w} ∈ E(H ′) if and only if {m(u),m(v),m(w)} ∈ E(H).

We say a host tree O′ of H ′ is based on O if for all {u, v} ∈
(
V (H′)

2

)
it holds that

{u, v} ∈ E(O′) if and only if {m(u),m(v)} ∈ E(O). We used the notion also
when H ′ is a subgraph of H, then the mapping m is the identity on the vertices
of H ′. First we show some properties of 1-degenerate 3-uniform hypertrees. We
say a hyperedge f ∈ F is a leaf hyperedge if f contains a vertex of degree 1. A
leaf hyperedge f is proper if H without f is connected.

Proposition 3.8. Every 1-degenerate 3-uniform hypertree H with at least two
edges has at least two proper leaf hyperedges.

Proof. Let H be a minimal counterexample and f = {v, u, w} be a leaf hyperedge
of H. Let v ∈ f be a vertex of degree 1 and H ′ be a hypertree arising from H by
removing f .

If f is a proper leaf hyperedge then H ′ is connected and has 2 proper leaf hy-
peredges g, i. However, at least one hyperedge from g, i is a proper leaf hyperedge
also in H, which is a contradiction.

Suppose H has no proper leaf hyperedge and H ′ has two components C1 and
C2 such that u ∈ V (C1) and w ∈ V (C2). Since H is a minimal counterexample,
C1 must have two proper leaf hyperedges g, i. However, one of the hyperedges g, i
has to be disjoint with f and thus be proper also in H. By the same argument
we find another proper hyperedge of H in C2, which is a contradiction.

Definition 3.9. Let H be a 1-degenerate 3-uniform hypertree and O be a host
tree for H. Let S be a strategy which forces H on 3-uniform hyperforests. A host

45

forest O′ for a drawn graph D(S) properly contains O if a subtree of O′ induced
by the vertices of the monochromatic copy of H is a copy of O. The strategy
S respects the tree O if the drawn graph D(S) has a host tree O′ such that O′

properly contains O.

We use a structure similar to the uniform extended forest. Let T = (U, F) be
a forest and H = {Hf |f ∈ F} be a set of hypertrees such that every Hf ∈ H is
isomorphic to a hypertree H = (V,E). We define a hypertree function g : U →
P(V)F with the following properties2 for every f ∈ F and v ∈ U :

1. |g(v)f ∩ V (Hf)| ≤ 1

2. g(v)f ∩ V (Hf) 6= ∅ ⇔ v ∈ f

An extended hyperforest T (H, g) for the tree T arises as |F | edge disjoint copy
of H and for every v ∈ U we identify all vertices in g(v) into the connecting
vertex gv. Let O be a host tree for H. An extended host tree T (O, g) for T (H, g)
arises in the same way as T (H, g). Note that the definition of an extended host
tree is correct because a hypertree and its host tree have the same set of vertices.
It is easy to see the extended host tree T (O, g) is a host tree for T (H, g). First
we prove a technical lemma, which is similar to Lemma 3.4.

Lemma 3.10. Let H = (V, F) be a 3-uniform hypertree and T = (U,E) be a
tree. If Builder has a strategy S for the hypertree H on 3-uniform hyperforests
then Builder has a strategy S ′ for an extended hypertree T (H, g) on 3-uniform
hyperforests for any hypertree function g. Moreover, if S respects a host tree O
for H then S ′ respects the extended host tree T (O, g) for T (H, g).

Proof. We prove the lemma by induction on |E|. For |E| = 1 the lemma is trivial.
Suppose |E| > 1. We again uses a step operation like in proof of Lemma 3.4, now
using for hypergraphs.

Let R be a tree obtained from T by removing a leaf ` and e = {`, v} be the
only edge incident with `. Builder has a strategy for forcing ρ = R(H, g) by
induction hypothesis. Let k be a number of vertices needed to force H by the
strategy S. Builder forces k strongly monochromatic copies R1, . . . , Rk of ρ, say
blue. Let vi be a copy of the connecting vertex gv in Ti. Builder applies the
strategy S on the vertices v1, . . . , vk and a monochromatic copy Hm of H arises.
If Hm is blue then Builder wins because there is a blue copy of ρ attached to
every vertex of Hm, in particular to the copy of gv.

Suppose Hm is red. In this case Builder forces a red copy of T (H, g). We
construct the strategy again by induction. Let t(I) be a colored hypergraph con-
sisting a monochromatic copy Im of a hypergraph I and there is a monochromatic
copy of ρ of the other color then Im attached to every vertex of Im. We already
have a strategy S0 for forcing t(H). Let R1 = (U1, F1) be a subtree of T and R′1
be a tree obtained from R by removing a leaf o. Let e = {o, w} ∈ E(R) be the
only edge incident with o.

By induction hypothesis we obtain a strategy S1 for forcing t(R′1(H, g)) on
3-uniform hypertrees. Builder uses S1 to force k copies t1, . . . , tk of t(R′(H, g))

2The function g maps a vertex v ∈ U to a set S of subsets of V such that each hyperedge
f ∈ E has a set Vf ⊆ V in S.

46

such that all copies are colored in the same way. Without loss of generality copies
of R′1(H, g) in t1, . . . , tk are red and copies of ρ are blue. Let wi be a copy of the
connecting vertex gw in ti. Builder forces a monochromatic copy Hm of H on the
vertices w1, . . . , wk. If Hm is blue then Builder wins immediately because there
is a blue copy of ρ attached to every wi. Therefore, a blue copy of T (H, g) would
arise. If Hm is red then Builder forces a copy of t(R(H, g)) arises because also
a red copy of R′(H, g) is attached to every wi. By this procedure Builder can
eventually force a red copy of t(T (H, g)) and wins the game.

Builder uses only step operation. The strategy S forces the hypertree H on
3-uniform hyperforests and respects the host tree O. If the strategy S is used on
some vertices of a drawn graph these vertices are always in different components
C1, . . . , Ck of the drawn graph. After applying the strategy S in a step operation
the components C1, . . . , Ck are connected by 3-uniform hypertree. Moreover,
for every i ∈ [k] it holds that intersection of the drawn graph D(S) and the
component Ci consists only one vertex. Since C1, . . . , Ck are 3-uniform hypertrees
by induction hypothesis, the whole drawn graph after the step operation is a 3-
uniform hyperforest as well.

Let M1, . . . ,M` be all components from C1, . . . , Ck such that the component
Mi is incident with the monochromatic copy Hm of H forced during the step op-
eration. Every component Mi contains a copy Ti of some extended tree T ′(H, r′).
Moreover, Mi has a host tree which properly contains T ′(O, r′) by induction hy-
pothesis. By operation step Builder forces a copyHm ofH with a copy of T ′(H, r′)
(somehow colored) attached to the every vertex of Hm which forms some extend-
ed hypertree R1(H, r1). The drawn graph D(S) (containing Hm) has a host tree
which properly contains O. Since intersection of Hm and any component Mi

consists only one vertex, the drawn graph after the step operation has a host tree
which properly contains R1(O, r1). Thus, the strategy S ′ respects T (O, r).

Theorem 3.11. The 1-degenerate 3-uniform hyperforests are unavoidable on 3-
uniform hyperforests.

Proof. Let H = (V, F) be a 1-degenerate 3-uniform hyperforest. Let C1, C2 be
components of H and v1 ∈ V (C1), v2 ∈ V (C2). We can create a hypertree H ′ by
connecting the components C1, C2 by a new edge {v1, v2, u} such that u 6∈ V . The
hypergraph H ′ has one component less then H and is still 1-degenerate 3-uniform
hyperforest. Thus, we can connect the original hypergraph H into the connected
hypergraph H ′. Since H is a subgraph of H ′, Builder can force H ′ and wins.
From now, we assume the goal hypergraph H is connected.

We construct a Builder’s strategy S for H by induction on |F |. Actually, we
prove a stronger proposition. Let O be a host tree for H. We construct a strategy
S such that S respects the host tree O. If |F | = 1 the strategy is trivial. Suppose
F = {f1, . . . , fm} for m > 1. Let H ′ be a hypergraph arising from H by removing
a proper leaf hyperedge f . Let O′ be a host tree for H ′ based on O. We obtain a
Builder’s strategy S ′ for H ′ by induction hypothesis. Moreover, the strategy S ′

respects the host tree O′.
The strategy S has always two phases. The first one is forcing strongly

monochromatic copies H1, . . . H` of H ′, say blue. The second phase is a recon-
struction of H on vertices of Hi. In the second phase Builder draws copies of the

47

edges f1, . . . , fm. The edges are drawn in such a way if an hyperedge f ′ drawn
in the second phase is blue then it creates with some copy Hi a blue copy of H.
Otherwise, if all edges drawn in the second phase are red then it create a red
copy of H.

Since f is a leaf hyperedge, the intersection of the edge f and V (H ′) consists at
most two vertices. Let V = {v1, . . . , vn}. Suppose f ∩V (H ′) = {u}. The strategy
for this case is the same as the strategy for trees by Grytczuk et al. [8]. In the first
phase Builder uses the strategy S ′ for forcing n strongly monochromatic copies
H1, . . . , Hn of H ′, say blue. Let ui be a copy of u in the blue hypertree Hi. In
the second phase Builder draws hyperedges h1, . . . , hm which are copies of the
hyperedges f1, . . . , fm. If f` = {vi, vj, vk} then Builder draws h` = {ui, uj, uk}. If
a hyperedge hi is blue then with some copy Hj creates a blue copy of H and the
game ends. If all edges h1, . . . , hm are red then a red copy of H arises.

Let M1, . . . ,M` be components of the drawn graph before the second phase
and Ri be a host tree of the component Mi. Since an intersection of any com-
ponent Mi and all the edges drawn in the second phase contains at most one
vertex, it is clear the drawn graph D(S) is a 3-uniform hyperforest. Suppose the
hyperedges h1, . . . , hm form a red copy Hr of H. Let R be a host tree of Hr based
on O, thus R is a copy of O. Since an intersection of any tree Ri and R contains
at most one vertex, there exists a host tree for D(S) which properly contains O.

Now suppose a hyperedge h` = {ui, uj, uk} is blue. There are the blue copies
Hi, Hj, Hk of H ′ attached to the vertices ui, uj, uk. Thus, the copies Hi, Hj, Hk

with the hyperedge h` form 3 blue copies of H. The hyperedge h` act as a copy
of f = {u, v, w} in the blue copy of H. Recall the vertex u is the only vertex in
f ∩ V (H ′). Let I be a hypergraph induced by h1, . . . , h`. Let B be a host tree
for I based on O. Without loss of generality {ui, uj} and {uj, uk} are edges of
B. Suppose O contains edges {u, v} and {u,w}. Thus, we take Hj with h` as
the blue copy of H and the drawn graph D(S) properly contains the host tree
O. If there are {v, u} and {v, w} (or {w, u} and {w, v}) edges of T then we take
Hi with h` as the blue copy of H. Therefore, if |f ∩ V (H ′)| = 1 the strategy S
respects the host tree O. A sketch how we choose the copy of H ′ is depicted in
Figure 3.11.

Now suppose f ∩V (H ′) = {u,w}. We create a set which covers all hyperedges
by vertex ordered pairs and each pair is an edge of O. Let f = {u, v, w} such
that E(O(f)) =

{
{u,w}, {v, w}

}
. Let K =

{
(x1, y1), . . . , (xm, ym)} be a set with

the following properties:

1. For every i ∈ [m] it holds that fi = {xi, yi, zi} and

E(O(fi)) =
{
{xi, yi}, {yi, zi}

}
.

2. For every (xi, yi) ∈ K it holds there is no pair (yi, xi). Thus, there are no
two pairs with the same vertices only in the opposite order.

The pairs in K have not to be disjoint, i.e. there can be a vertex x which is in
several pairs. However, each intersection of two pairs (xi, yi), (xj, yj) contains at
most one vertex, thus |{xi, yi} ∩ {xj, yj}| ≤ 1 for every i 6= j. Therefore, the set
K can be easily create by induction on |F |.

48

f

v

u

w

H ′

h`

uj

ui

uk

Hi

u
H ′

f
wv

h`

uj

ui

uk

Hj

Goal graphs Parts of drawn graphs

Figure 3.11: Sketch how a copy of H ′ is chosen for both cases of O(f) that the
strategy S respects the host tree O. The hypergraph H ′ and its copies Hi and
Hj are depicted as dash dotted triangles, the hyperedges f and h` as ellipses and
the edges of the host graphs as black lines among the marked vertices.

The idea of Builder’s strategy is similar to the previous case. First, suppose all
pairs inK are disjoint. In the first phase Builder forcesm strongly monochromatic
copies H1, . . . , Hm of H ′, say blue. We denote the copies of u and w in the blue
hypertree Hi by ui, wi. Let

Z = V (H) \
⋃

1≤i≤m
{xi, yi} = {z1, . . . , z`}.

The set Z contains vertices of H which are not in any pair in K. For every zi ∈ Z
we take a vertex z′i of the background graph such that z′i is not incident to any
drawn hyperedge (before the second phase).

In the second phase Builder draws edges h1, . . . , hm as copies of the edges
f1, . . . , fm. Suppose Builder wants to draw a copy of fi = {xi, yi, ai}. If ai ∈
Z then ai = zk for some k and Builder draws a hyperedge hi = {ui, wi, z′k}.
Otherwise, ai 6∈ Z and ai have to be in some pair in K. If ai = xk for some
k then Builder draws a hyperedge hi = {ui, wi, uk}. If ai = yk for some k then
Builder draws a hyperedge hi = {ui, wi, wk}. If hi is blue then with Hi form a
blue copy of H. Otherwise, if all edges h1, . . . , hm are red then a red copy of H
arises.

Let Mi be a component of the drawn graph before the second phase which
contains Hi. Let Oi be a host tree of Hi based on O. The component Mi is
a 3-uniform hypertree and it has a host tree Ri which properly contains Oi by
induction hypothesis. Thus, {ui, wi} is an edge of Ri. Let I be a hypergraph
induced by the edges drawn in the second phase and R be a host tree for I based
on O. Suppose all hyperedges h1, . . . , hm are red. Hence, the hypergraph I is a
monochromatic copy of H and R is a copy of O. By construction of K, for every
i ∈ [m] it holds that {ui, wi} is an edge of R. Union of R and trees Ri (for all
i ∈ [m]) is a host tree of a component of D(S) containing a monochromatic copy
of H. Therefore, the whole drawn graph D(S) is a 3-uniform hypertree and the
strategy S respects the tree O.

49

f

w
u

v

H ′

hi

wi

ui

bi

Hi

fi

fi−1
xi
yi

hi−1

Goal graph H Part of a drawn graph

Figure 3.12: Sketch how a copy Hi of H ′ is connected to the hyperedge hi by
the vertex pair (ui, wi). The hypergraph H ′ and its copy Hi are depicted as dash
dotted triangles, the hyperedges f and hi as ellipses and the edges of the host
graphs as black lines among the marked vertices.

Now suppose a hyperedge hi is blue. The whole drawn graph D(S) is a 3-
uniform hypertree by the same argument as in the previous case. The hyperedge
hi = {ui, wi, bi} with the hypergraph Hi forms a blue copy Hb of H. The hyper-
edge hi has a role of f in Hb. By construction of K, the edges of the graph R(hi)
are {ui, wi} and {wi, bi}. Recall E(O(f)) =

{
{u,w}, {w, v}

}
and ui is the copy

of u and wi is the copy of wi. Therefore, the strategy S respects the host tree O.

However, the pairs in K do not have to be disjoint. Unfortunately, these
hypertrees really exists—see Figure 3.13. Thus, the hypergraphs H1, . . . , Hm do
not have to be disjoint.

Figure 3.13: An example of a 3-uniform hypertree which can not be covered by
disjoint pairs of vertices.

However, every intersection of two hypergraph Hi and Hj consists at most one
vertex. To deal with this problem we use Lemma 3.10. Let J be a union of all
Hi. Note that J is also 1-degenerate 3-uniform hyperforest. Moreover, for every
component C of J there exists a tree TC such that C is an extended hypertree
TC(H ′, rC) for some hypertree function rC . We can join all components of J to
obtain J ′ such that J ′ = T (H ′, r) for some tree T and some hypertree function r.
Since there is a Builder’s strategy for forcing H ′, there is a strategy for forcing
T (H ′, r) by Lemma 3.10. Hence in the first phase of the strategy S, Builder
forces m strongly monochromatic copies T1, . . . , Tm of T (H ′, r) instead of copies
H1, . . . , Hm. For every i it holds that Hi is a subgraph of T (H ′, r). Builder uses
only the parts of T (H ′, r) which he needs in the second phase. There is a host
tree of T (H ′, r) which properly contains the host tree T (O′, r). Therefore, the

50

whole drawn graph D(S) is a 3-uniform hypertree and also S respects O by the
analogous arguments to the previous case.

There can be used an improvement similar to the improvement used in the
proof of Theorem 3.1 in the strategies for 3-uniform hypertrees or extended trees.
However, we omit it that the main ideas of the proofs stay clear.

51

52

Conclusion

In this thesis we studied two topics about the online Ramsey game. First one is
the computational complexity of the decision problem Online Ramsey Game,
derived from the online Ramsey game. We proved that deciding if Builder has
a winning strategy on a given partly precolored background graph and a given
goal graph is PSPACE-complete. Moreover, we proved the problem is PSPACE-
complete even for the bipartite background graph with the maximum degree 3
and for the goal graph as a tree. We showed the problem is trivial for the back-
ground graph with the maximum degree 2. However, there are other interesting
questions in this topic. For example, how hard is Online Ramsey Game when
the background graph is not precolored? How hard is the problem when the
background graph is planar?

Lichtenstein [11] proved the decision problem if a quantified boolean formula
ϕ is true is PSPACE-complete even if the formula ϕ has a planar incident graph.
The incident graph Gϕ for the formula ϕ in CNF is a bipartite graph (A∪B,E)
such that the vertices in A represent the variables of ϕ, the vertices in B represent
the clauses of ϕ. There is an edge {x,C} ∈ E(Gϕ) if and only if the variable
x occurs in the clause C. However, our reduction for Paired Formula Game
does not preserves the planarity of the input formula incident graph. We have an
idea how to treat the crossing of two path with different colors. If two paths of
the background cross and they have different colors the crossing can be in some
vertex of these paths—see Figure 3.14.

Figure 3.14: Sketch how to treated two crossing paths of different colors.

By this operation there can not arise a new unwanted copy of the goal graph,
which is crucial in proving the completeness by a reduction. However, we do not
know how to treat the crossing of two paths with the same color. Moreover, the
maximum degree of the background graph increases to 4. Thus, another question
is how hard is Online Ramsey Game with the planar background graph of the
maximum degree 3.

Another topic we studied are strategies of Builder, especially when Builder
has to draw only planar graphs. By previous and our work we made a conjecture.

Conjecture. A graph G is unavoidable on planar graphs if and only if G is
series-parallel.

We did not manage to prove nor disprove the conjecture. However, we showed
some results which we hope to be helpful for proving the conjecture. We developed
some techniques how to reuse strategies and create new strategies. As a corollary
we found a new class of graphs which is unavoidable on planar graphs. We showed
1-degenerate 3-uniform hypertrees are unavoidable on 3-uniform hypertrees. It
would be interesting to generalize the result to k-uniform hypertrees.

53

54

Bibliography

[1] S. Arora and B. Barak, Computational Complexity A Modern Approach,
Cambridge University Press, 1st ed., 2009, ch. 5.

[2] J. Beck, Achievement games and the probabilistic method, Combinatorics,
Paul Erdős is Eighty, 1 (1993).

[3] M. Belfrage, T. Mütze, and R. Spöhel, Online ramsey games involv-
ing trees.

[4] J. Butterfield, T. Grauman, W. B. Kinnersley, K. G. Milans,
C. Stocker, and D. B. West, On-line ramsey theory for bounded degree
graphs, Electronic Journal of Combinatorics, 18 (2011).

[5] D. Conlon, On-line ramsey numbers, SIAM J. Discrete Math., 23 (2009),
pp. 1954–1963.

[6] E. Friedgut, Y. Kohayakawa, V. Rödl, A. Ruciński, and
P. Tetali, Ramsey games against one-armed bandit, Combinatorics, Prob-
ability and Computing, 12 (2003), pp. 515–545.

[7] J. Grychzuk, H. Kierstead, and P. Pra lat, On-line ramey numbers
for paths and stars, Discrete Mathematics and Theoretical Computer Sci-
ence, 10 (2008).

[8] J. A. Grytczuk, M. Ha luszczak, and H. A. Kierstead, On-line
ramsey theory, Electronic Journal of Combinatorics, 11 (2004).

[9] R. M. Karp, Reducibility among combinatorial problems, in Proceedings of
a symposium on the Complexity of Computer Computations, held March 20-
22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York., 1972, pp. 85–103.

[10] H. A. Kierstead and K. Goran, Coloring number and on-line ramsey
theory for graphs and hypergraphs, Combinatorica, 29 (2009), pp. 49–64.

[11] D. Lichtenstain, Planar formulae and their uses, SIAM Journal on Com-
puting, 11 (1982), pp. 329–343.

[12] Š. Petř́ıčková, Online ramsey theory for planar graphs, Electronic Journal
of Combinatorics, 21 (2014).

[13] P. Pra lat, A note on small on-line ramsey numbers for paths and their
generalization, Australasian Journal of Combinatorics, 40 (2008), pp. 27–36.

[14] D. Rolnick, Trees with an on-line degree ramsey number of four, Electronic
Journal of Combinatorics, 18 (2011).

[15] , The on-line degree ramsey number of cycles, Discrete Mathematics,
313 (2013), pp. 2084–2093.

55

[16] M. Shaefer, Graph ramsey theory and the polynomial hierarchy, Journal
of Computer and System Sciences, 62 (2001), pp. 290–322.

[17] T. J. Shaefer, On the complexity of some two-person perfect-information
games, Journal of Computer and System Sciences, (1978), pp. 185–225.

[18] W. Slany, The complexity of graph ramsey games, in Computers and
Games, vol. 2063 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2001, pp. 186–203.

[19] L. J. Stockmeyer, Thy polynomial-time hierarchy, Theoretical Computer
Science, 3 (1976), pp. 1–22.

56

List of Figures

2.1 Example of a shackles graph . 19
2.2 Example of a variable gadget . 19
2.3 Connection of clause and variable gadgets 21
2.4 Sketch how to force Painter colors two edges by different colors . . 24
2.5 Goal graph for the online Ramsey game 24
2.6 Occurrence gadget . 25
2.7 Variable pair gadget for the online Ramsey game 25
2.8 Sketch how to force Painter to color edges in variable gadgets by

different colors . 26
2.9 Example how a clause gadget and a variable gadget are connected

for the first player variable . 27
2.10 Example how a clause gadget and a variable gadget are connected

for the second player variable . 28
2.11 Partitions of the background graph 28
2.12 Sketch that the background graph does not contain any unwanted

subgraph . 32

3.1 Example of forcing binary tree with the improved strategy 37
3.2 Example of an extended tree . 38
3.3 Example of an uniform extended tree 38
3.4 Example of how to force an extended tree 39
3.5 Sketch of a drawn graph when forcing an extended tree 40
3.6 Tree T consisting of one α-star and α β-stars. 41
3.7 Auxiliary graph for Builder forcing a monochromatic path con-

necting two fixed vertices . 43
3.8 Sketch of planarity of a drawn graph when Builder forces a monochro-

matic path between two vertices 43
3.9 The first case of a monochromatic path between two vertices . . . 44
3.10 The second case of a monochromatic path between two vertices . 45
3.11 Sketch how a copy of H ′ is chosen that the strategy S respects the

host tree O . 49
3.12 Sketch how a copy of H ′ is connected to the hyperedge that the

strategy S respects the host tree O 50
3.13 Example of a hypertree which can not be covered by disjoint pairs

of vertices . 50
3.14 Sketch how to treated two crossing paths of different colors. . . . 53

57

58

List of Abbreviations

• CNF—Conjunctive normal form

• DTM—Deterministic Turing machine

• NTM—Nondeterministic Turing machine

59

60

	Introduction
	Preliminaries and Notions
	Graph Theory
	Logic
	Computational Complexity
	Notions of Online Ramsey Theory

	Offline versus Online Ramsey Theory
	Our Results

	Computational Complexity of Online Ramsey Game
	Formula Games
	Multiple Ramsey Game
	Construction of the Background Graph
	Hardness of Multiple Ramsey Game

	Online Ramsey Game
	Construction of the Restricted Background Graph
	Hardness of Online Ramsey Game

	Star Ramsey Game

	Builder's Strategies
	Optimality of Strategies
	Strategies on Planar Graphs
	Unavoidability of Hypertrees

	Conclusion
	List of Abbreviations

