
DOCTORAL THESIS

Mgr. Pavel Dvořák

Limits of Data Structures,
Communication, and Cards

Computer Science Institute of Charles University

Supervisor of the doctoral thesis: prof. Mgr. Michal Koucký, Ph.D.
Study programme: Computer Science

Study branch: Theory of Computing, Discrete
Models and Optimization

Prague 2021

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor, Michal Koucký, who had enough patience
with me and guided me through the whole Ph.D. study. Further, I would like
to thank all my coauthors, without them this thesis would not exist, especially
Bruno Loff, with whom I spent hours discussing information theory; and I would
like to thank Anna Koucká, my high school teacher, who sparked my interest in
mathematics. Last but not least, I would like to thank my family who supports
me the whole time, even though they do not understand very much, what I
actually do.

ii

Title: Limits of Data Structures, Communication, and Cards

Author: Mgr. Pavel Dvořák

Institute: Computer Science Institute of Charles University

Supervisor: prof. Mgr. Michal Koucký, Ph.D., Computer Science Institute of
Charles University

Abstract: In this thesis, we study several aspects of computational complexity.
One of the main topics is the complexity of data structures, which are algorithms
for efficient storing data supporting efficient queries to the data. In the case of
dynamic data structures, they also allow modification of the data before querying.
A long-standing open problem in this area is to prove an unconditional polynomial
lower bound of the trade-off between the update time and the query time of an
adaptive dynamic data structure computing some explicit function.

We provide an unconditional polynomial lower bound for a restricted class of semi-
adaptive dynamic data structures computing functions of large corruption bound,
that generalizes the result by Ko and Weinstein [FOCS ’20] who provided such
a lower bound for data structures computing the Disjointness function. Further,
we provide conditional lower bounds for certain static data structures computing
permutation inversion, and polynomial evaluation and inversion. These lower
bounds beat the best-known unconditional lower bounds for the problems of
interest.

Further, we study the communication complexity of the elimination problem,
which is a problem closely related to the direct sum. In the elimination problem,
Alice and Bob get k n-bit strings each, x1, . . . , xk and y1, . . . , yk, respectively.
Their goal is to communicate as few bits as possible and then output a string
o ∈ {0, 1}k which is different from the string z, where zi = f(xi, yi) for some fixed
boolean function f : {0, 1}n×{0, 1}n → {0, 1} – thus they eliminate one incorrect
answer. We consider the elimination problem for f being the Greater-Then (GT)
function, i.e., GT(x, y) = 1 if and only if x ≥ y, where x and y are considered as
n-bits numbers. We prove the trivial protocol for this problem (where Alice and
Bob compute if xi ≥ yi for some i) is optimal.

The last topic of this thesis is so-called card-based protocols. In this model, Alice
and Bob represent their inputs by cards and they want to compute a given func-
tion without revealing their inputs. We identify a class of card-based protocols
that correspond to the circuit class NC1. Further, we study a connection between
card-based protocols and Turing machines, and we propose new card encodings
of the input.

Keywords: Lower Bound, Data Structure, Communication Complexity, Card-
based Protocol

iii

Contents

Introduction 3

1 Preliminaries 8

2 Lower Bounds for Semi-adaptive Data Structures via Corruption 10
2.1 Introduction . 10

2.1.1 Semi-adaptive Multiphase Problem 13
2.2 Preliminaries . 15
2.3 Finding Large Almost Monochromatic Rectangles 16
2.4 Applications . 22

3 Lower Bound for Elimination of Greater-Than via
Weak Regularity 24
3.1 Introduction . 24
3.2 The Elimination Problem . 25

3.2.1 Basic Observations . 26
3.2.2 Regularity . 26

3.3 Lower Bound for elim ◦GTk from First Principles 27

4 Network Coding Conjecture Implies Data Structure
Lower Bounds 32
4.1 Introduction . 32
4.2 Data Structure Problems . 33

4.2.1 Function Inversion . 33
4.2.2 Evaluation and Interpolation of Polynomials 34

4.3 Network Coding . 36
4.4 NCC Implies Weak Data Structure Lower Bounds 39

4.4.1 Function Inversion . 40
4.4.2 Polynomial Evaluation and Interpolation 44

5 Barrington Plays Cards 46
5.1 Introduction . 46

5.1.1 Previous Work . 47
5.2 Preliminaries . 49

5.2.1 Card-based Protocols . 49
5.2.2 Branching Programs . 51

5.3 Simulating Branching Programs 51
5.4 Simulating Turing Machines . 56

5.4.1 Read-write Protocols . 58
5.5 More Efficient Input Encodings 60

5.5.1 1-Card Encoding . 60
5.5.2 1/2-Card Encoding . 63

Bibliography 64

List of Publications 72

1

Funding. Chapter 3: The research leading to these results has received funding
from the European Research Council under the European Union’s Seventh Frame-
work Programme (FP/2007-2013)/ERC Grant Agreement n. 616787. Chap-
ters 2, 4, 5: The projects were supported by Czech Science Foundation GAČR
(grant #19-27871X).

2

Introduction
The typical question of a computational complexity scientist is: Is this algorithm
optimal, or can we design a better one? Without an answer to this question, we
do not know whether we should spend any effort to improve the algorithm or we
should rather focus on some other problem. If we suspect that some algorithm
is actually optimal, then it would be nice if we can also prove such a statement,
for example, prove that any algorithm that solves a problem P needs at least
time t. To state such a lower bound, we first need to define a computational
model, which formalizes what is an algorithm, what resource we actually measure
(usually computational time or space), etc. There are many models which are
studied. Favorite models for describing general algorithms are Turing machines
or circuits [8]. However, to prove (non-trivial) unconditional lower bound for
these models seems like a really hard task. On the other hand, improvements of
some best-known algorithms are long-standing open problems. Thus for many
problems, there is a substantial gap between the lower bounds and upper bounds
(given by the algorithms).

One way how to deal with this gap is to find at least conditional lower bounds,
in an ideal scenario, such a lower bound matches the upper bound. For a condi-
tional lower bound, one proves that too efficient algorithm for solving a problem
of interest would contradict some standard complexity assumption (such as Expo-
nential Time Hypothesis which asserts that deciding a given formula satisfiability
can not be solved in sub-exponential time [47]). Thus, if we have a conditional
lower bound that matches the upper bound, we provide at least some evidence
that we have the optimal algorithm (if we believe the underlying complexity as-
sumption). Also, it indicates that proving the unconditional lower bound for the
problem is hard, as popular complexity assumptions, that are used for the condi-
tional lower bounds, are usually based on some long-standing open problems. In
Chapter 4, we provide a conditional lower bound based on the Network Coding
Conjecture (NCC) by Li and Li [70], which recently got a lot of attention in the
area of conditional lower bounds.

Another way to overcome the difficulty of proving unconditional lower bounds
is to somehow restrict the class of possible algorithms and try to prove uncondi-
tional lower bounds for them. A favorite model for unconditional lower bounds is
a communication model introduced by Yao [105]. There are two parties – Alice
and Bob. Alice gets x ∈ {0, 1}n and Bob gets y ∈ {0, 1}n and their goal is to
compute f(x, y) where f is a Boolean function {0, 1}n × {0, 1}n → {0, 1}. They
have unlimited computational power and we measure how many bits they have
to exchange to compute f(x, y). In randomized models, they can use random
bits – shared or private. The (randomized) communication complexity of f is the
length of the shortest protocol computing f . This model is weak in the sense that
we are able to prove unconditional lower bounds in it. However, it is still strong
enough that there are some non-trivial protocols. A trivial protocol of length n
for a function f is the following: Alice sends her input to Bob and he computes
the output (or another way around). As mentioned above, there are some more
efficient protocols. For example, let EQ : {0, 1}n×{0, 1}n → {0, 1} be a function
which equals to 1 if and only if x = y. There is a randomized protocol using

3

hashing for EQ [65] of length O(log n) and error probability smaller than 1/n.
Although the communication model is quite abstract, it is closely related to data
structures, which are studied in several chapters of this thesis.

Data Structures. Informally, data structures are algorithms for efficiently
storing and retrieving data. Since data structures form a restricted class of al-
gorithms (but a very important class), we are able to prove some non-trivial
unconditional lower bounds for them (unlike for general algorithms).

A static data structure is a pair of algorithms where the first one encodes a
data D ∈ {0, 1}n into a memory consisting of c cells each of w bits (so-called cell
probe model, which was introduced by Yao [105]). Thus, the data structure uses
space s = c · w. The second algorithm is a query algorithm that should answer
queries from a fixed set Q, where formally each query is a function r : {0, 1}n →
{0, 1}k. The query time tq of the data structure is the maximum number of cells
accessed (so-called cell probes) by the query algorithm in order to compute r(D),
where the maximum is over r ∈ Q. The probes may be completely adaptive, i.e.,
the next cell probe may depend on the values of the probed cells so far. There
are two trivial solutions. The first one is to store the answers for all queries in
Q, thus s = |Q| · k and tq = k/w (it needs to read k bits in total). The second
one is to store the data D in a raw form and compute the whole answer for a
query during the query phase, thus s = n and tq = n/w (it needs to read n bits
in total). We are interested in whether we can have a better trade-off between s
and tq or the trivial solutions are optimal.

Lower bounds in the cell probe model are quite strong in a sense they also
apply for computations on real machines (as we charge only the access to the
memory and not the computation). By a counting argument, it can be shown [71]
that for most functions the trivial static data structures are optimal. However,
it is hard to prove it for some explicit function. One of the key tools in data
structure lower bounds is communication complexity as one can use an efficient
static data structure computing a function f to design an efficient protocol for
f [65, 73]. Despite the great interest in lower bounds for static data structures
(e.g. [6, 106, 72, 32, 40]), only little is known: The best known lower bound
for a static data structure computing an explicit function is tq ≥ Ω(log n) for
data structures of linear space and polynomial many queries (|Q| = poly(n)),
e.g. [83, 89, 67]. Improving such lower bound to tq ≥ ω(log2 n) even for non-
adaptive data structures seems like a really hard problem as shown by Dvir et
al. [35]. They proved that such an improvement would solve long-standing prob-
lems in circuit complexity and matrix rigidity [100]. In Chapter 4, we provide an
Ω(log n/ log log n) conditional lower bounds for certain static data structures for
permutation inversion, and polynomial evaluation and interpolation, based on the
Network coding conjecture. Although these bounds do not cross the logarithmic
barrier, they still beat the best-known lower bounds for the problems of interest.

A slightly better situation is in the area of dynamic data structures. In a
dynamic data structure problem, we wish to encode the data in such a way that
allows us also to update the data. There is a set of updates U where each update
is a function p : {0, 1}n → {0, 1}n. Thus, if there is an encoding of data D stored
in the memory after an update p ∈ U we want to have an encoding of data p(D)
in the memory. The update time tu of the data structure is the maximum number

4

of cells accessed during the update, where the maximum is over p ∈ U . The query
time tq is defined in the same way as for the static data structures.

Again, there are two trivial solutions in a similar way as for the static data
structures. A long-standing open problem in this area is to prove an uncondi-
tional polynomial lower bound on the trade-off between the update time and the
query time (with an assumption that the data structure uses polynomial space).
In contrast to static data structures, here we are interested in lower bounds for
adaptive data structures, as polynomial lower bounds for non-adaptive dynamic
data structures can be obtained by a simple coding argument [19]. The loga-
rithmic query time barrier was crossed for dynamic data structures. There are
lower bounds max{tq, tu} ≥ log1+δ n for several dynamic data structures prob-
lems [84, 85, 66, 68], where δ is between 1/2 and 1. In a recent paper, Ko and
Weinstein [64] provided a polynomial lower bound for a semi-adaptive dynamic
data structure that solves the Pătraşcu’s multiphase problem [88]. In Chapter 2,
we generalize their result to a similar lower bound for all functions of a large
corruption bound.

Direct Sum and Related Problems. Another important question in com-
plexity is the so-called direct sum question. It asks if we compute k independent
instances of f at once, do we need k times to run the optimal algorithm for f or
can we achieve some savings? In some models, we can not achieve any savings
– like decision trees [80, 50]. On the other hand, the direct sum is not true in
various communication models [53, 94, 63]. The understanding of the direct sum
question would shed light on various aspects of complexity. A direct sum theorem
for communication complexity would imply the separation of NC1 from NC2 [54],
where NCi is the class of circuits of polynomial size and depth O(logi n). The
direct sum for information complexity is used to prove lower bounds in commu-
nication complexity (see for example [11, 51, 12, 17]).

There are several problems related to the direct sum questions. Beimal et
al. [15] introduced a problem where Alice and Bob get k inputs x1, . . . , xk and
y1, . . . , yk, respectively, and they have to compute one instance f(xi, yi) accord-
ing to their choice. Provided that the instances are independent there is a hope
of picking some easy instance among the k instances. Another problem is to
select a positive instance among k independent instances – this problem is stud-
ied in structural complexity theory, starting by Selman [92]; or the problem of
distinguishing k positive instances from k negative instances [15].

The computationally least difficult problem among those is the problem of
elimination [7, 15]. Let f : X × Y → {0, 1} be a function, Alice and Bob get
again k inputs x1, . . . , xk and y1, . . . , yk, respectively, and they have to output
a string different from f(x1, y1) . . . f(xk, yk), i.e., they have to eliminate one
incorrect answer among all 2k possible strings. Trivial protocol is to compute
one instance f(xi, yi) and output a string where the i-th entry is 1 − f(xi, yi).
In Chapter 3, we study communication complexity of the elimination problem
when f is the Greater-Than function, and we discuss that the trivial protocol is
optimal for a large class of functions (of a small discrepancy).

Relations of Models and Security. Since there are many computational
models, other questions arise, which ask what are the relations between those

5

models. Considering two specific models, which one is more powerful? If we have
an efficient algorithm in one model, do we have also an efficient algorithm in
another model? And many others. As mentioned above there is such a relation
between data structures and circuits (e.g. [100, 101, 102, 28, 35]), and between the
communication model and data structures [73]. Another interesting connection,
which we use in Chapter 5, is Barrington’s theorem [13] that characterize the
circuit class NC1 by branching programs.

An important aspect of computation is security. A standard cryptographic
problem is how to secure communication in such a way that no eavesdropper can
recover the messages [57]. Further, how to convince somebody we have a proof
of some claim without telling him the actual proof (so-called zero-knowledge
proofs [8]); how to make a computation oblivious, thus making it impossible to
extract any information about data from memory accesses, e.g. [86, 43]; how to
share a secret among many parties in such a way that the secret can be revealed
only if all parties cooperate [95]; and many others. In this thesis, we study
a problem where two parties have private inputs, say x and y in {0, 1}n, and
they want to compute a value f(x, y) for a function f : {0, 1}n × {0, 1}n → {0, 1}.
However, they do not want to reveal any information about their inputs to the
other party (except for what is implied by the output value f(x, y)). This problem
was for example considered by Feige et al. [37]. There is interest in a model for
such protocols where the inputs are represented by cards and the computation is
done by moving, turning, and shuffling the cards. The study of such protocols was
initiated by den Boer [33] and since then a solid theory of card-based protocols
was built, e.g. [30, 79, 76]. In Chapter 5, we study connections between card-based
protocols and other computational models, like circuits and Turing machines, in
particular, we identify a class of card-based protocols that corresponds to NC1

circuits.

Organization of the Thesis. In this thesis, we study several complexity ques-
tions, which were indicated above. In Chapter 1, we give necessary notions of
information theory, which are used in several chapters. In Chapter 2, we provide
an unconditional polynomial lower bound for semi-adaptive dynamic data struc-
tures computing functions of large corruption bound. In Chapter 3, we provide
an unconditional lower bound for the elimination problem in the communication
model. In Chapter 4, we provide a conditional lower bound (based on Network
Coding Conjecture [70]) for certain static data structures. In Chapter 5, we study
complexity of card-based protocols.

This thesis is based on the following papers (the citation references are into
List of Publications):

Chapter 2: Lower Bounds for Semi-adaptive Data Structures via Corruption.
P. Dvořák, and B. Loff [5].

Chapter 3: Lower Bounds for Elimination via Weak Regularity. A. Chattopad-
hyay, P. Dvořák, M. Koucký, B. Loff, and S. Mukhopadhyay [12].

Chapter 4: Data Structures Lower Bounds and Popular Conjectures. P. Dvořák,
M. Koucký, K. Král, and V. Slívová [2].

6

Chapter 5: Barrington Plays Cards: The Complexity of Card-Based Protocols.
P. Dvořák, M. Koucký [3].

7

1. Preliminaries
In this section, we provide necessary notions of information theory that are used
in this thesis. For more details, we refer to the book by Cover and Thomas [29].

We use the following notational convention. Sets are denoted by uppercase
letters, such as X and Y . Random variables are denoted by uppercase boldface
letters, such as X and Y. By µX we denote a distribution of the random variable
X. Thus, if X and Y are distributed by a joint distribution µX,Y, then the
distributions µX and µY are marginal distributions of X and Y. By µX(x) we
denote the probability Pr[X = x] and by µX (x | E) we denote the probability of
X = x conditioned on an event E , i.e., Pr[X = x | E]. For a distribution µ, we
let supp(µ) denote the support of µ, i.e., the set of x with µ(x) > 0. Let X be a
random variable. The entropy of X is

H(X) =
∑︂

x

µX(x) · log 1
µX(x) .

Informally, the entropy of X measures how many bits in expectation we need
to encode a sample of X. The conditional entropy H(X | Y) for two random
variables X and Y is defined as

H
(︂
X | Y

)︂
=
∑︂

y

µY(y) ·H
(︂
X | Y = y

)︂
=
∑︂

y

µY(y)
∑︂

x

µX
(︂
x | Y = y

)︂
· log 1

µX
(︂
x | Y = y

)︂ .

With the entropy, we can define the mutual information I(X : Y) of two
random variables.

I
(︂
X : Y

)︂
= H(X)−H

(︂
X | Y

)︂
Informally, the mutual information of X and Y measures how many bits we know
about unknown sample of X if we know a sample of Y – or vice versa; it is not
clear from the definition, however it holds that I(X : Y) = I(Y : X). Similarly
to the entropy, we can define the conditional mutual information

I
(︂
X : Y | Z

)︂
=
∑︂

z

µZ(z) · I
(︂
X : Y | Z = z

)︂
.

Let µ, µ′ be two distributions such that supp(µ) ⊆ supp(µ′), then the Kullback-
Leibler divergence of µ from µ′ is

DKL
(︂
µ ∥ µ′

)︂
=

∑︂
x∈supp(µ)

µ(x) · log µ(x)
µ′(x) .

A product µ × µ′ of two distributions µ and µ′ is such distribution over
supp(µ)× supp(µ′) that for each pair (x, y) ∈ supp(µ)× supp(µ′) holds that

µ× µ′(x, y) = µ(x) · µ′(y).

With the Kullback-Leibler divergence, we can have an equivalent definition of the
mutual information.

I
(︂
X : Y

)︂
= DKL

(︂
µX,Y ∥ µX × µY

)︂
.

8

Thus, the mutual information also measures how close (according to the Kullback-
Leibler divergence) is a joint distribution to the product of its marginals.

Fact 1.1 (Chain Rule). For any random variables X1, X2, Y and Z holds that

H
(︂
X1, X2 | Z

)︂
= H

(︂
X1 | Z

)︂
+ H

(︂
X2 | X2Z

)︂
,

I
(︂
X1X2 : Y | Z

)︂
= I

(︂
X1 : Y | Z

)︂
+ I

(︂
X2 : Y | Z, X1

)︂
.

Since the mutual information is never negative, we have the following corollary.

Corollary 1.2. For any random variables X, Y and Z holds that

I
(︂
X : Y

)︂
≤ I

(︂
X : Y Z

)︂
.

The ℓ1-distance between two distributions µ and µ′ is defined as⃦⃦⃦
µ− µ′

⃦⃦⃦
1

=
∑︂

x

⃓⃓⃓
µ(x)− µ′(x)

⃓⃓⃓
.

We use two observations about the ℓ1-distance.

Observation 1.3. Let X, Y be two random variables and E1, . . . , Et be mutually
exclusive events. Then,⃦⃦⃦

µX − µY

⃦⃦⃦
1
≤
∑︂
i≤t

Pr[Ei] ·
⃦⃦⃦
µX|Ei

− µY|Ei

⃦⃦⃦
1
.

Observation 1.4. Let X be a random variable taking values in a set S. Let U
be a uniform variable over S and π, π′ : S → S be permutations. Then,⃦⃦⃦

µπ(X) − µπ′(X)

⃦⃦⃦
1
≤ 2 ·

⃦⃦⃦
µX − µU

⃦⃦⃦
1
.

There is a relation between ℓ1-distance and Kullback-Leibler divergence.

Fact 1.5 (Pinsker’s Inequality [31]). For any two distributions µ and µ′ such that
supp(µ) ⊆ supp(µ′), it holds that

⃦⃦⃦
µ− µ′

⃦⃦⃦
1
≤
√︃

2 ·DKL
(︂
µ ∥ µ′

)︂
By applying the Pinsker’s inequality for µ′ being a uniform distribution we have
the following corollary.

Corollary 1.6. Let X be a random variable taking values in a set S, and let U
be a random variable uniformly distributed over S. Then,

⃦⃦⃦
µX − µU

⃦⃦⃦
1
≤
√︃

2 ·
(︂
log |S| −H(X)

)︂
.

9

2. Lower Bounds for
Semi-adaptive Data Structures
via Corruption

2.1 Introduction
As mentioned above, the major unsolved question in the area of dynamic data
structures is to prove a polynomial lower bound for t = max{tu, tq}, where tu is
update time and tq is query time of an adaptive dynamic data structure comput-
ing an explicit function. In this chapter, we provide an unconditional polynomial
lower bound for semi-adaptive dynamic data structure computing a broad class
of functions (in particular, for all functions of large corruption bound).

For example, consider the dynamic reachability problem, where we wish to
maintain a directed n-vertex graph in memory, under edge insertions and dele-
tions, while being able to answer reachability queries (“is vertex i connected to
vertex j?”). Is it true that any scheme for the dynamic reachability problem
requires t = Ω(nδ), for some constant δ > 0? Indeed, such a lower bound is
known under various complexity-theoretic assumptions [88, 1]. Strictly speaking,
these conditional lower bounds only work if the preprocessing time, which is the
time taken to encode the data into memory, is also bounded. But we will ignore
this distinction. The question is whether such a lower bound may be proven
unconditionally.

In an influential paper [88], Mihai Pătraşcu proposed an approach to this
unsolved question. He defined a data structure problem, called the multiphase
problem. Let us represent partial functions f : {0, 1}n × {0, 1}n → {0, 1} as
total functions f ′ : {0, 1}n × {0, 1}n → {0, 1, ∗} where f ′(x, y) = ∗ if f(x, y) is not
defined. Then associated with a partial Boolean function f : {0, 1}n × {0, 1}n →
{0, 1, ∗}, and a natural number k ≥ 1, we may define a corresponding multiphase
problem of f as the following dynamic process:

Phase I - Initialization. We are given k inputs x1, . . . , xk ∈ {0, 1}n, and are
allowed to preprocess this input in time nk · tp.

Phase II - Update. We are then given another input y ∈ {0, 1}n, and we have
time n ·tu to read and update the memory locations from the data structure
constructed in Phase I.

Phase III - Query. Finally, we are given a query i ∈ [k], we have time tq to
answer the question whether f(xi, y) = 1. If f(xi, y) is not defined, the
answer can be arbitrary.

Typically we will have k = poly(n). Let us be more precise, and consider ran-
domized solutions to the above problem.

Scheme for the multiphase problem of f . Let f : {0, 1}n × {0, 1}n →
{0, 1, ∗} be a partial Boolean function. A scheme for the multiphase problem of

10

f with preprocessing time tp, update time tu and query time tq is a triple

D =
(︂
E, {Uy}y∈{0,1}n , {Qi}i∈[k]

)︂
,

where:

• E : ({0, 1}n)k → ({0, 1}w)s maps the input x to the memory contents E(x),
where each of the s memory locations holds w bits. The function E must
be computed in time nk · tp by a Random-Access Machine.

• For each y ∈ {0, 1}n, Uy : ({0, 1}w)s → ({0, 1}w)u is a decision-tree of depth
≤ n · tu, which reads E(x) and produces a sequence Uy(E(x)) of u updates.

• For each i ∈ [k], Qi : ({0, 1}w)s × ({0, 1}w)u → {0, 1} is a decision-tree of
depth ≤ tq.

• For all x ∈ ({0, 1}n)k, y ∈ {0, 1}n, and i ∈ [k],

f(xi, y) ̸= ∗ =⇒ Qi

(︂
E(x), Uy(E(x))

)︂
= f(xi, y).

Note that the functions E, Uy’s and Qi’s consequently correspond to the phases
of the multiphase problem. In a randomized scheme for the multiphase problem
of f , each Uy and Qi are distributions over decision trees, and the scheme can
make an error (outputs a wrong answer) only with a small probability. Formally,
it must hold that for all x ∈ ({0, 1}n)k, y ∈ {0, 1}n, and i ∈ [k],

f(xi, y) ̸= ∗ =⇒ Pr
Qi,Uy

[︂
Qi

(︂
E(x), Uy(E(x))

)︂
= f(xi, y)

]︂
≥ 1− ε.

The value ε is called the error probability of the scheme.
Remark. In the usual way of defining the update phase (functions Uy’s), we have
a read/write decision-tree Uy which changes the very same cells that it reads.
But when w = Ω(log s), this can be seen to be equivalent, up to constant factors,
to the definition we present here, where we have a decision-tree Uy that writes
the updates on a separate location. In order to simulate a scheme that uses a
read/write decision tree, we may use a hash table with O(1) worst-case lookup
time, such as cuckoo hashing. Then, we have a read-only decision-tree U ′

y(E(x))
whose output is the hash table containing all the i ∈ [s] which were updated by
Uy(E(x)), associated with their final value in the execution of Uy(E(x)). Note
that the hash table itself is static.

All our results will hold even if a decision tree Qi is allowed to depend arbi-
trarily on xi, as the scheme was defined by Ko and Weinstein [64] in that way.
However, this makes for a less natural model, so we omit this from the definitions.

Pătraşcu [88] considered the multiphase problem where f = Disj is the Disjoint-
ness function:

Disj(x, y) =
⎧⎨⎩0 if there exists i ∈ [n] such that xi = yi = 1

1 otherwise

He conjectured that any scheme for the multiphase problem of Disj will neces-
sarily have max{tp, tu, tq} ≥ nδ for some constant δ > 0.

11

Pătraşcu shows that such lower bounds for the multiphase problem of Disj
would imply polynomial lower bounds for various dynamic data structure prob-
lems. For example such lower bounds would imply that dynamic reachability
requires t = Ω(nδ). He also shows that these lower bounds hold under the as-
sumption that there is no sub-quadratic algorithm for the 3SUM problem – given
n numbers, decide if there are 3 of them that sum to 0.

Finally, Pătraşcu then defines a 3-player Number-On-Forehead (NOF) com-
munication game, such that lower bounds on this game imply matching lower
bounds for the multiphase problem. The game associated with a function f :
{0, 1}n × {0, 1}n → {0, 1} is as follows:

1. Alice is given x1, . . . , xk ∈ {0, 1}n and i ∈ [k], Bob gets y ∈ {0, 1}n and
i ∈ [k] and Charlie gets x1, . . . , xk and y.

2. Charlie sends a private message of ℓ1 bits to Bob and then he is silent.

3. Alice and Bob communicate ℓ2 bits and want to compute f(xi, y).

Again, the steps of this communication game correspond to the phases of the
multiphase problem. Pătraşcu [88] conjectured that if ℓ1 is o(k), then ℓ2 has to be
bigger than the communication complexity of f . However, this conjecture turned
out to be false. The randomized communication complexity of Disj is Ω(n) [91,
52, 11], but Chattopadhyay et al. [23] constructed a protocol for f = Disj where
both ℓ1, ℓ2 = O(

√
n·log k). They further show that any randomized scheme in the

above model can be derandomized. The conjecture remains that if ℓ1 = o(k), then
ℓ2 has to be larger than the maximum distributional communication complexity
of f under a product distribution. This is Θ̃(

√
n) for Disjointness [10].

Thus, the above communication model is more powerful than it appears at
first glance. However, a recent paper by Ko and Weinstein [64] succeeds in prov-
ing lower bounds for a simpler version of the multiphase problem, which translate
to lower bounds for a restricted class of dynamic data structure schemes. They
manage to prove a lower bound of Ω(

√
n) for the simpler version of the multi-

phase problem which is associated with the Disjointness function f = Disj. We
generalize their result:

• We generalize their lower bound to any function f having large complexity
according to the smooth corruption bound, under a product distribution.
Disjointness is such a function [10], but so is Inner Product [65], Gap Or-
thogonality, and Gap Hamming Distance [96].

• The new lower-bounds we obtain (for Inner-product, Gap Orthogonality,
and Gap Hamming Distance) are stronger – Ω(n) instead of the lower-bound
Ω(
√

n) for Disjointness. As far as was known before our result, it could well
have been that every function had a scheme for the simpler version of the
multiphase problem using only O(

√
n) communication.

• Ko and Weinstein derived their lower bound via a cut-and-paste lemma
which works specifically for Disjointness. This cut-and-paste lemma is a
more robust version of the one appearing in a paper by Bar-Yossef et al. [11],
made to work not only for protocols, where the inputs X and Y are indepen-
dent given the transcript Z of the protocol, but also for random-variables

12

that are “protocol-like”, namely any (X, Y, Z) where I(X : Y | Z) is close to
0. Instead, we directly derive the existence of a large nearly-monochromatic
rectangle, from the existence of such protocol-like random variables, which
is what then allows us to use the smooth corruption bound. This result
is a core technical contribution of this chapter and may be of independent
interest.

All of the above lower bounds will be shown to hold also for randomized
schemes, and not just for deterministic schemes.

2.1.1 Semi-adaptive Multiphase Problem
Let us provide rigorous definitions.

Definition 2.1 (Semi-adaptive random data structure [64]). Let f : {0, 1}n ×
{0, 1}n → {0, 1, ∗} be a partial function. A scheme D =

(︂
E, {Uy}y∈{0,1}n , {Qi}i∈[k]

)︂
for the multiphase problem of f is called semi-adaptive if any path on the decision-
tree

Qi :
(︂
{0, 1}w

)︂s
×
(︂
{0, 1}w

)︂u
→ {0, 1}

first queries the first part of the input (the E(x) part), and then queries the second
part of the input (the U(E(x)) part). If D is randomized, then this property must
hold for every randomized choice of Qi.

We point out that the reading of the cells in each part is completely adaptive.
The restriction is only that the data structure cannot read cells of E(x) if it
already started to read cells of U(E(x)). Ko and Weinstein state their result for
deterministic data structures, i.e., ε = 0, thus the data structure always returns
the correct answer.

Theorem 2.2 (Theorem 4.9 of Ko and Weinstein [64]). Let k ≥ ω(n). Any
semi-adaptive deterministic data structure that solves the multiphase problem of
the Disj function, must have either tu · n ≥ Ω(k/w) or tq ≥ Ω(

√
n/w).

To prove the lower bound they reduce the semi-adaptive data structure into
a low correlation random process.

Theorem 2.3 (Reformulation of Lemma 4.1 of Ko and Weinstein [64]). Let
X1, . . . , Xk be random variables over {0, 1}n and each of them is independently
distributed according to the same distribution µ1 and let Y be a random variable
over {0, 1}n distributed according to µ2 (independently of X1, . . . , Xk). Let D be a
randomized semi-adaptive scheme for the multiphase problem of a partial function
f : {0, 1}n × {0, 1}n → {0, 1, ∗} with error probability bounded by ε. Then, for
any p ≤ o(k) there is a random variable Z ∈ {0, 1}m and i ∈ [k] such that:

1. Pr
[︂
f(Xi, Y) ̸= ∗, Zm ̸= f(Xi, Y)

]︂
≤ ε.

2. I
(︂
Xi : Y Z

)︂
≤ tq · w + o(tq · w).

3. I
(︂
Y : Z

)︂
≤ tq · w.

4. I
(︂
Xi : Y | Z

)︂
≤ O

(︂
tu·n·w

p

)︂
.

13

The random variable Z consists of some Xj’s and transcripts of query phases
of D for some j ∈ [k]. The theorem can be interpreted as saying that the last bit
of Z predicts f(Xi, Y), Z has little information about Xi and Y, and the triple
(Xi, Y, Z) is “protocol-like”, in the sense that Xi and Y are close to being inde-
pendent given Z. Ko and Weinstein [64] proved Theorem 2.3 for the deterministic
schemes for the Disj function and in the case where µ1 = µ2. However, their
proof actually works for any (partial) function f and any two, possibly distinct
distributions µ1 and µ2. Moreover, their proof also works for randomized schemes.
The resulting statement for randomized schemes for any function f is what we
have given above. To complete the proof of their lower bound, Ko and Weinstein
proved that if we set p (and k) large enough so that I(Xi : Y | Z) ≤ o(1) then
such random variable Z cannot exist when f is the Disj function. It is this second
step that we generalize.

Let f : X × Y → {0, 1, ∗} be a partial function and µ be a distribution over
X × Y . A set R ⊆ X × Y is a rectangle if there exist sets A ⊆ X and B ⊆ Y
such that R = A × B. For b ∈ {0, 1} and 0 ≤ ρ ≤ 1, we say the rectangle R is
ρ-error b-monochromatic for f under µ if

µ
(︂
R ∩ f−1(1− b)

)︂
≤ ρ · µ(R).

For 0 ≤ α ≤ 1
2 , the distribution µ is α-balanced according to f if µ(f−1(0)),

µ(f−1(1)) ≥ α. We will prove that the existence of a random variable Z given by
Theorem 2.3 implies that, for any b ∈ {0, 1}, any balanced product distribution
µ and any function g which is “close” to f , there is a large (according to µ)
ρ-error b-monochromatic rectangle for g in terms of tq. This technique is known
as smooth corruption bound [14, 21] or smooth rectangle bound [49]. We denote
the smooth corruption bound of f as scbρ,λ

µ . Informally, scbρ,λ
µ (f) ≥ s if there is

b ∈ {0, 1} and a partial function g : X × Y → {0, 1, ∗} which is close (measured
by the parameter λ ∈ R) to f such that any ρ-error b-monochromatic rectangle
R ⊆ X×Y for g has size (under µ) at most 2−s. We will define smooth corruption
bound formally in the next section. Thus, if we use Theorem 2.3 as a black box
we generalize Theorem 2.2 for any function of large corruption bound.

Theorem 2.4. Let λ, ε̃, α̃ ≥ 0 such that α ≥ 2ε for ε = ε̃+λ, α = α̃−λ. Let µ be
a product distribution over {0, 1}n×{0, 1}n such that µ is α̃-balanced according to
a partial function f : {0, 1}n×{0, 1}n → {0, 1, ∗}. Any semi-adaptive randomized
scheme for the multiphase problem of f , with error probability bounded by ε̃, must
have either tu · n ≥ Ω(k/w), or

tq · w ≥ Ω
(︂
α · scbO(ε/α),λ

µ (f)
)︂

.

We point out that Ω and O in the bound given above hide absolute constants
independent of α, ε, and λ.

As a consequence of the main result (Theorem 2.4), and of previously-known
bounds for the corruption, we are able to show new lower-bounds for tq = Ω(n

w
)

against semi-adaptive schemes for the multiphase problem of the Inner Product,
Gap Orthogonality and Gap Hamming Distance functions (where the gap is

√
n).

These lower-bounds hold assuming that tu = o(k
wn

). They follow from the small
discrepancy of Inner Product, and from a bound shown by Sherstov for the cor-
ruption of Gap Orthogonality, followed by a reduction to Gap Hamming Distance

14

[96]. This result also gives an alternative proof of the same lower bound proven by
Ko and Weinstein [64], for the Disjointness function, of tq = Ω(

√
n

w
). This follows

from the bound for the corruption of Disjointness under a product distribution,
shown by Babai et al. [10].

Organization. In Section 2.2 we give basic definitions from communication
complexity. The proof of Theorem 2.4 appears in Section 2.3. The various appli-
cations appear in Section 2.4.

2.2 Preliminaries
We now formally define the smooth corruption bound and related measures from
communication complexity and refer to the book by Kushilevitz and Nisan [65] for
more details. Let f : X × Y → {0, 1, ∗} be a partial function, where f(x, y) = ∗
means f is not defined on (x, y). Let µ be a distribution over X × Y . We say
that f is λ-close to a partial function g : X × Y → {0, 1, ∗} under µ if

Pr
(x,y)∼µ

[︂
f(x, y) ̸= g(x, y)

]︂
≤ λ.

For b ∈ {0, 1}, ρ ∈ [0, 1], let

Rρ,b
µ (f) =

{︂
R ⊆ X × Y rectangle | µ

(︂
R ∩ f−1(1− b)

)︂
≤ ρ · µ

(︂
R
)︂}︂

be the set of ρ-error b-monochromatic rectangles for f under µ. The complexity
measure mono quantifies how large almost b-monochromatic rectangles can be for
both b ∈ {0, 1}:

monoρ
µ(f) = min

b∈{0,1}
max

R∈Rρ,b
µ (f)

µ(R)

Using mono we can define the corruption bound cb and the smooth corruption
bound scb of a function as

cbρ
µ(f) = log 1

monoρ
µ(f) ,

scbρ,λ
µ (f) = max

g: λ-close to f under µ
cbρ

µ(g).

Thus, if scbρ,λ
µ (f) ≥ s then there is a b ∈ {0, 1} and a function g which λ-close

to f under µ such that for any ρ-error b-monochromatic rectangle for g under µ
it holds that µ(R) ≤ 2−s.

The notion monoρ
µ is related to the discrepancy of a function:

discµ(f) = max
R : rectangle of X × Y

⃓⃓⃓⃓
µ
(︂
R ∩ f−1(0)

)︂
− µ

(︂
R ∩ f−1(1)

)︂⃓⃓⃓⃓
.

It is easy to see that for a total function f holds that discµ(f) ≥ (1−2ρ)·monoρ
µ(f)

for any ρ. Thus, Theorem 2.4 will give us lower bounds also for functions of small
discrepancy.

15

Remark. In Razborov’s paper where an Ω(n) lower-bound for disjointness is first
proven [91], the (implicitly given) definition of a ρ-error b-monochromatic rect-
angle is

µ
(︂
R ∩ f−1(1− b)

)︂
≤ ρ · µ

(︂
R ∩ f−1(b)

)︂
.

Later, a strong direct product theorem for the corruption (under product dis-
tributions) was proven by Beame et al. [14], which uses instead the condition
that

µ
(︂
R \ f−1(b)

)︂
≤ ρ · µ(R).

The definition we present above comes from Sherstov [96], where the condition is

µ
(︂
R ∩ f−1(1− b)

)︂
≤ ρ · µ(R).

Thus, we have three different definitions of ρ-error b-monochromatic rectangle,
and thus three different corruption bounds. Now, if the distribution µ is sup-
ported on the domain of f , all these three definitions result in (roughly) equivalent
complexity measures. But if µ attributes some mass to inputs where f is unde-
fined (which is sometimes useful if µ is a product distribution and f is a partial
function, as in our case), then the definitions are no longer equivalent. Our lower
bound will hold for any of the definitions, but the proof is somewhat simpler for
the definition used in Sherstov’s paper [96], which is the only corruption-based
lower bound we use, where µ attributes mass to undefined inputs.

2.3 Finding Large Almost Monochromatic Rect-
angles

In this section, we prove Theorem 2.4, i.e., we prove that any function g, which
is λ-close to f , has a large almost monochromatic rectangle for both b = 0 and
b = 1. Let f : {0, 1}n × {0, 1}n → {0, 1, ∗} be a partial function. Suppose there
is a semi-adaptive random scheme D for the multiphase problem of f with error
probability bounded by ε̃ such that tu · n ≤ o(k/w). Let µ = µX,Y be a product
distribution over {0, 1}n × {0, 1}n of two distribution µ1 and µ2, such that µ is
α̃-balanced according to f . Let b ∈ {0, 1} and g : {0, 1}n×{0, 1}n → {0, 1, ∗} be
a partial function which is λ-close to f under µ. We will prove there is a large
almost b-monochromatic rectangle for g.

Let X1, . . . , Xk be independent random variables each of them distributed
according to µ1 and Y be an independent random variable distributed according
to µ2. Let the random variable Z ∈ {0, 1}m and the index i ∈ [k] be given by
Theorem 2.3 applied to the random variables X1, . . . , Xk, Y and the function f .
Thus, we will work with the the joint distribution of (X1, . . . , Xk, Y, Z). We will
then need to keep in mind that µZ is the Z-marginal of the joint distribution of
(X1, . . . , Xk, Y, Z). For simplicity we denote X = Xi.

By f(X, Y) ̸=∗ Zm we denote the event that the random variable Zm gives
us the wrong answer on an input from the support of f , i.e. f(X, Y) ̸= ∗ and
f(X, Y) ̸= Zm hold simultaneously. By Theorem 2.3 we know that

Pr
[︂
f(X, Y) ̸=∗ Zm

]︂
≤ ε̃.

16

Since f and g are λ-close under µ, we have that µ is still balanced according
to g and g(X, Y) ̸=∗ Zm with small probability, as stated in the next observation.

Observation 2.5. Let α = α̃− λ and ε = ε̃ + λ. For the function g it holds that

1. The distribution µX,Y is α-balanced according to g.

2. Pr
[︂
g(X, Y) ̸=∗ Zm

]︂
≤ ε.

Proof. Let b′ ∈ {0, 1}. We will bound µ
(︂
g−1(b′)

)︂
.

α̃ ≤ Pr
[︂
f(X, Y) = b′

]︂
= Pr

[︂
f(X, Y) = b′, f(X, Y) = g(X, Y)

]︂
+ Pr

[︂
f(X, Y) = b′, f(X, Y) ̸= g(X, Y)

]︂
≤Pr

[︂
g(X, Y) = b′

]︂
+ λ.

Thus, by rearranging we get µ(g−1(b′)) ≥ α̃ − λ = α. The proof of the second
bound is similar:

Pr
[︂
g(X, Y) ̸=∗ Zm

]︂
= Pr

[︂
f(X, Y) ̸=∗ Zm, f(X, Y) = g(X, Y)

]︂
+ Pr

[︂
g(X, Y) ̸=∗ Zm, f(X, Y) ̸= g(X, Y)

]︂
≤ ε̃ + λ = ε.

Let c be the bound on I(X : Y Z) and I(Y : Z) given by Theorem 2.3. Since
I(X : Z) ≤ I(X : Y Z), we have I(X : Z), I(Y : Z) ≤ tq · w + o(tq · w) = c. We
will prove that if we assume that tu · n < o(k/w) and we choose p large enough
(p of Theorem 2.3) then we can find a rectangle R ⊆ {0, 1}n × {0, 1}n such that
R is O(ε/α)-error b-monochromatic for g and µ(R) ≥ 1

2c′ for c′ = O(tq·w
α

). Thus,
we have monoO(ε/α)

µ (g) ≥ 2−c′ and consequently

scbO(ε/α),λ
µ (f) ≤ O

(︃
tq · w

α

)︃
.

By rearranging, we get the bound of Theorem 2.4.
Let us sketch the proof of how we can find such a rectangle R. Let µX|z be a

distribution of X conditioned on Z = z and similarly for distributions µY|z and
µX,Y|z. We will first fix the random variable Z to z such that X and Y are not
very correlated conditioned on Z = z, i.e., the joint distribution µX,Y|z is very
similar to the product distribution of the marginals µX|z × µY|z. Moreover, we
will pick z in such a way the probability of error Pr

[︂
g(X, Y) ̸=∗ zm|Z = z

]︂
is

still small. Then, since µX,Y|z is close to µX|z × µY|z, the probability of error
under the latter distribution will be small as well, i.e., if (X′, Y′) ∼ µX|z ×
µY|z, then Pr

[︂
g(X′, Y′) ̸=∗ zm

]︂
will also be small. Finally, we will find subsets

A ⊆ supp(µX|z), B ⊆ supp(µY|z) of large mass (under the original distributions
µ1 and µ2), while keeping the probability of error on the rectangle R = A × B
sufficiently small.

Let us then proceed to implement this plan. Let β = α − ε. We will show
that β is a lower bound for the probability that Zm is equal to b. Let γ be the
bound on I(X : Y | Z) given by Theorem 2.3, i.e., I(Xi : Y | Z) ≤ γ = O(tu·n·w

p
).

17

Lemma 2.6. There exists z ∈ supp(µZ) such that

1. zm = b.

2. I
(︂
X : Y | Z = z

)︂
≤ 5

β
· γ.

3. DKL
(︂
µX|z ∥ µX

)︂
, DKL

(︂
µY|z ∥ µY

)︂
≤ 5

β
· c.

4. Pr
[︂
g(X, Y) ̸=∗ zm | Z = z

]︂
≤ 5

β
· ε.

Proof. Since µ is α-balanced according to g, we find that

α ≤ Pr
[︂
g(X, Y) = b

]︂
= Pr

[︂
g(X, Y) = b, Zm = b

]︂
+ Pr

[︂
g(X, Y) = b, Zm ̸= b

]︂
≤ Pr

[︂
Zm = b

]︂
+ ε.

Thus, by rearranging we get Pr[Zm = b] ≥ α − ε = β. By expanding the
information I(X : Y | Z) we find

γ ≥ I
(︂
X : Y | Z

)︂
= E

z∼µZ

[︃
I
(︂
X : Y | Z = z

)︂]︃
and by the Markov’s inequality we get that

Pr
z∼µ(Z)

[︄
I
(︂
X : Y | Z = z

)︂
≥ 5

β
· γ
]︄
≤ β

5 .

Similarly, for the information I(X : Z):

c ≥ I
(︂
X Y : Z

)︂
≥ I

(︂
X : Z

)︂
= E

z∼µZ

[︃
DKL

(︂
µX|z ∥ µX

)︂]︃
and so

Pr
z∼µZ

[︄
DKL

(︂
µX|z ∥ µX

)︂
≥ 5

β
· c
]︄
≤ β

5 .

The bound for DKL(µY|z ∥ µY) is analogous. Let ez = Prµ

[︂
g(X, Y) ̸=∗ zm|Z = z

]︂
.

Then,

ε ≥ Pr
[︂
g(X, Y) ̸=∗ Zm

]︂
=

∑︂
z∈supp(µZ)

µZ(z) · ez = E
z∼µZ

[︂
ez

]︂

Pr
z∼µZ

[︄
ez ≥

5
β
· ε
]︄
≤ β

5 .

Thus, by a union bound we may infer the existence of the sought z ∈ µZ.

Let us now fix z ∈ supp(µZ) from the previous lemma. Let µz = µX,Y|z be
the distribution µ conditioned on Z = z, and let µ′

z = µX|z×µY|z be the product
of its marginals. Let S be the support of µz, and let SX and SY be the supports
of µX|z and µY|z, respectively, i.e., SX and SY are the projections of S into input
sets of Alice and Bob, respectively. Then, Pinsker’s inequality will give us that
µz and µ′

z are very close. Let δ =
√︂

10
β
· γ.

18

Lemma 2.7.
⃦⃦⃦
µz − µ′

z

⃦⃦⃦
1
≤ δ

Proof. Indeed, by Pinsker’s inequality,⃦⃦⃦
µz − µ′

z

⃦⃦⃦
1
≤
√︃

2 ·DKL
(︂
µz ∥ µ′

z

)︂
.

The right-hand side is
√︃

2 ·DKL
(︂
µX,Y|z ∥ µX|z × µY|z

)︂
, which by the alterna-

tive definition of mutual information equals to
√︂

2 · I(X : Y | Z = z), and by
Lemma 2.6 this is ≤

√︂
10
β
· γ = δ.

Recall that (X′, Y′) ∼ µ′
z are random variables chosen according to µ′

z =
µX|z × µY|z. Let ε′ = 5

β
· ε + δ. It follows from Lemma 2.6 and Lemma 2.7 that:

Lemma 2.8. Pr
[︂
g(X′, Y′) ̸=∗ zm

]︂
≤ ε′.

Proof. We prove that⃓⃓⃓⃓
Pr
[︂
g(X, Y) ̸=∗ zm | Z = z

]︂
− Pr

[︂
g(X′, Y′) ̸=∗ zm

]︂⃓⃓⃓⃓
≤ δ.

Since Pr
[︂
g(X, Y) ̸=∗ zm | Z = z

]︂
≤ 5

β
· ε by Lemma 2.6, the lemma follows. Let

B =
{︂
(x, y) ∈ SX × SY : g(x, y) ̸= zm, g(x, y) ̸= ∗

}︂
.

⃓⃓⃓⃓
Pr
[︂
g(X, Y) ̸=∗ zm | Z = z

]︂
− Pr

[︂
g(X′, Y′) ̸=∗ zm

]︂⃓⃓⃓⃓
=
⃓⃓⃓⃓ ∑︂
(x,y)∈B

µz(x, y)− µ′
z(x, y)

⃓⃓⃓⃓

≤
∑︂

(x,y)∈B

⃓⃓⃓⃓
µz(x, y)− µ′

z(x, y)
⃓⃓⃓⃓
≤ δ by the triangle inequality and Lemma 2.7

Let c′ = 5
β
· c. We will prove the ratio between µX|z(x) and µX(x) is larger

than 2O(c′) with only small probability (when x ∼ µX|z). The same holds for µY|z
and µY.

Lemma 2.9.

Pr
x∼µX|z

[︂
µX|z(x) ≥ 26c′ · µX(x)

]︂
, Pr

y∼µY|z

[︂
µY|z(y) ≥ 26c′ · µY(y)

]︂
≤ 1

6 .

Proof. We prove the lemma for µX|z, the proof for µY|z is analogous. By
Lemma 2.6 we know that DKL(µX|z ∥ µX) ≤ c′. We expand the Kullback-Leibler
divergence:

c′ ≥ DKL
(︂
µX|z ∥ µX

)︂
=

∑︂
x∈SX

µX|z(x) log µX|z(x)
µX(x) = E

x∼µX|z

[︄
log µX|z(x)

µX(x)

]︄
,

19

and then use the Markov’s inequality:

Pr
x∼µX|z

[︂
µX|z(x) ≥ 26c′ · µX(x)

]︂
= Pr

x∼µX|z

[︄
log µX|z(x)

µX(x) ≥ 6c′
]︄
≤ 1

6 .

We now split SX and SY into buckets Cx
ℓ and Cy

ℓ (for ℓ ≥ 1), where the ℓ-th
buckets are

Cx
ℓ =

{︄
x ∈ SX

⃓⃓⃓⃓ (ℓ− 1)
2c′ <

µX|z(x)
µX(x) ≤

ℓ

2c′

}︄
,

Cy
ℓ =

{︄
y ∈ SY

⃓⃓⃓⃓ (ℓ− 1)
2c′ <

µY|z(y)
µY(y) ≤

ℓ

2c′

}︄
.

In a bucket Cx
ℓ there are elements of SX such that their probability under µX|z is

approximately ℓ
2c′ -times bigger than their probability under µX. By Lemma 2.9,

it holds that with high probability the elements x ∈ SX, y ∈ SY are in the buckets
Cx

ℓ1 and Cy
ℓ2 for ℓ1, ℓ2 ≤ 27c′ . Thus, if we find a bucket Cx

ℓ1 for ℓ1 ≤ 27c′ which has
probability at least 1

2O(c′) under µX|z, then it has also probability at least 1
2O(c′)

under µX. The same holds also for buckets Cy
ℓ . In the next lemma we will show

that there are buckets Cx
ℓ1 and Cy

ℓ2 of large probability under µ′
z such that the

probability of error on Cx
ℓ1 × Cy

ℓ2 is still small.

Lemma 2.10. There exist buckets Cx
ℓ1 and Cy

ℓ2 such that

1. 1 < ℓ1, ℓ2 ≤ 27c′.

2. Pr
[︂
X′ ∈ Cx

ℓ1

]︂
, Pr

[︂
Y′ ∈ Cy

ℓ2

]︂
≥ 1

6·27c′ .

3. Pr
[︂
g(X′, Y′) ̸=∗ zm, (X′, Y′) ∈ Cx

ℓ1 × Cy
ℓ2

]︂
≤ 6ε′ · Pr

[︂
(X′, Y′) ∈ Cx

ℓ1 × Cy
ℓ2

]︂
.

Proof. We prove that ℓ1, ℓ2 exist via the probabilistic method. Let L1 and L2 be
bucket indices of X′ and Y′, respectively. Thus, Pr[L1 = ℓ] = Pr[X′ ∈ Cx

ℓ] and
Pr[L2 = ℓ] = Pr[Y′ ∈ Cy

ℓ].
Let B1, B2 ⊆ L′ = {1, . . . , 27c′} be sets of indices of small probability, i.e., for

i ∈ {1, 2}

Bi =
{︃

ℓ ∈ L′
⃓⃓⃓

Pr[Li = ℓ] ≤ 1
6 · 27c′

}︃
.

We will prove that with high probability we have 27c′ ≥ L1 > 1 and L1 ̸∈ B1.
The proof for L2 is analogous.

Pr
[︂
L1 = 1

]︂
= Pr

[︂
X′ ∈ Cx

1

]︂
=

∑︂
x∈Cx

1

µX|z(x) ≤
∑︁

x∈Cx
1

µX(x)
2c′ ≤ 1

2c′

By Lemma 2.9, we get Pr[L1 > 27c′] = Prx∼µX|z

[︂
µX|z(x) ≥ 26c′ · µX(x)

]︂
≤ 1

6 .
There is only small probability that L1 is in B1.

Pr
[︂
L1 ∈ B1

]︂
=
∑︂

ℓ∈B1

Pr[L1 = ℓ] ≤ |L′|
6 · 27c′ = 1

6

20

Thus, we have that Li ∈ Bi or Li = 1 or Li > 27c′ with probability at most
2
3 + 2

2c′ .
By Lemma 2.8, we have that Pr

[︂
g(X′, Y′) ̸=∗ zm

]︂
≤ ε′. By expanding the

probability and by Markov’s inequality we will now get the last inequality for Cx
ℓ1

and Cy
ℓ2 . Let

e(ℓ1, ℓ2) = Pr
[︂
g(X′, Y′) ̸=∗ zm | X′ ∈ Cx

ℓ1 , Y′ ∈ Cy
ℓ2

]︂
.

We will prove there is ℓ1 and ℓ2 such that e(ℓ1, ℓ2) ≤ 6ε′. This is equivalent to the
third bound of the lemma. We have: ε′ ≥ Pr

[︂
g(X′, Y′) ̸=∗ zm

]︂
= E

[︂
e(L1, L2)

]︂
and thus, by Markov, Pr

[︂
e(L1, L2) > 6ε′

]︂
≤ 1

6 . By a union bound we conclude
that there must exist 1 < ℓ1, ℓ2 ≤ 27c′ such that Pr[L1 = ℓ1], Pr[L2 = ℓ2] ≥ 1

6·27c′

and e(ℓ1, ℓ2) ≤ 6ε′.

As a corollary, we will prove that the rectangle Cx
ℓ1×Cy

ℓ2 (given by the previous
lemma) is a good rectangle under the original distribution µ. We remark that
the proof of the following corollary is the only place where we use the fact that
X and Y are independent.

Corollary 2.11. There exists a rectangle R ⊆ SX × SY such that

1. Pr
[︂
(X, Y) ∈ R

]︂
≥ 1

36·226c′ .

2. Pr
[︂
g(X, Y) ̸=∗ zm, (X, Y) ∈ R

]︂
≤ 24ε′ · Pr

[︂
(X, Y) ∈ R

]︂
.

Proof. Let R = Cx
ℓ1 × Cy

ℓ2 where Cx
ℓ1 and Cy

ℓ2 are buckets given by Lemma 2.10.
By Lemma 2.10, we get

1
6 · 27c′ ≤ Pr

[︂
X′ ∈ Cx

ℓ1

]︂
=

∑︂
x∈Cx

ℓ1

µX|z(x) ≤
∑︂

x∈Cx
ℓ1

ℓ1 · µX(x)
2c′ = Pr

[︂
X ∈ Cx

ℓ1

]︂
· ℓ1

2c′ .

By rearranging we get

Pr
[︂
X ∈ Cx

ℓ1

]︂
≥ 2c′

6ℓ1 · 27c′ ≥
1

6 · 213c′

The bound for Pr[Y ∈ Cy
ℓ2] is analogous, thus we have Pr[(X, Y) ∈ R] ≥ 1

36·226c′ .
(Here and below, we crucially use the fact that X, Y are given by a product
distribution.) Now we prove the second bound for R. Let

B =
{︂
(x, y) ∈ R : g(x, y) ̸= zm, g(x, y) ̸= ∗

}︂
.

6ε′ · Pr
[︂
(X, Y) ∈ R

]︂
·ℓ1ℓ2

22c′ ≥ 6ε′ · Pr
[︂
(X′, Y′) ∈ R

]︂
(by definition of buckets)

≥ Pr
[︂
(X′, Y′) ∈ B

]︂
(by Lemma 2.10)

≥ Pr
[︂
(X, Y) ∈ B

]︂
· (ℓ1 − 1)(ℓ2 − 1)

22c′

(by definition of buckets)

21

Thus, by rearranging we get

Pr
[︂
(X, Y) ∈ B] ≤ 6ε′ ·Pr

[︂
(X, Y) ∈ R

]︂
· ℓ1ℓ2

(ℓ1 − 1)(ℓ2 − 1) ≤ 24ε′ ·Pr
[︂
(X, Y) ∈ R

]︂
,

as ℓ1ℓ2
(ℓ1−1)(ℓ2−1) ≤ 4 for ℓ1, ℓ2 > 1 by Lemma 2.10.

Now, we are ready to prove the main theorem of this chapter.

Theorem 2.4. Let λ, ε̃, α̃ ≥ 0 such that α ≥ 2ε for ε = ε̃+λ, α = α̃−λ. Let µ be
a product distribution over {0, 1}n×{0, 1}n such that µ is α̃-balanced according to
a partial function f : {0, 1}n×{0, 1}n → {0, 1, ∗}. Any semi-adaptive randomized
scheme for the multiphase problem of f , with error probability bounded by ε̃, must
have either tu · n ≥ Ω(k/w), or

tq · w ≥ Ω
(︂
α · scbO(ε/α),λ

µ (f)
)︂

.

Proof. Suppose that tu · n ≤ o(k/w). Let R be the rectangle given by Corol-
lary 2.11. It holds that the rectangle R is 24ε′-error b-monochromatic for g under
µ. Therefore, for the function g holds that

mono24ε′

µ (g) ≥ Pr
[︂
(X, Y) ∈ R

]︂
≥ 1

36 · 226c′ . (2.1)

We need to argue that ε′ is O(ε/α). By definition,

ε′ = 5
α− ε

· ε + δ.

We recall that
δ = O

(︄√︄
tu · n · w

p

)︄
≤
√︄

o(k)
p

.

Thus, we can set p to be large enough so that δ is smaller than an arbitrary
constant and still p ≤ o(k). By the assumption we have 2ε < α. Thus, ε

α−ε
≤ 2ε

α

and we conclude that ε′ is O(ε/α). Since c′ = O(tq·w
α·(1−ε)) = O(tq·w

α
), we get the

result by rearranging Inequality (2.1).

2.4 Applications
In this section we apply Theorem 2.4 to derive lower bounds for several explicit
functions – Inner Product (IP), Disjointness (Disj), Gap Orthogonality (ORT)
and Gap Hamming Distance (GHD):

IP(x, y) =
∑︂
i∈n

xi · yi mod 2,

GHDn(x, y) =
⎧⎨⎩1 if ∆H(x, y) ≥ n

2 +
√

n,

0 if ∆H(x, y) ≤ n
2 −
√

n.

22

The function ∆H is the Hamming Distance of two strings, i.e., ∆H(x, y) is a
number of indices i ∈ [n] such that xi ̸= yi. For IPR(x, y) = ∑︁

i∈[n](−1)xi+yi we
define

ORTn,d(x, y) =
⎧⎨⎩1 if

⃓⃓⃓
IPR(x, y)

⃓⃓⃓
≥ 2d ·

√
n

0 if
⃓⃓⃓
IPR(x, y)

⃓⃓⃓
≤ d ·

√
n.

The standard value for d is 1, thus we denote ORTn = ORTn,1. Note that
∆H(x, y) = n−IPR(x,y)

2 and IPR(x, y) is the Inner Product of x′, y′ over R where x′

and y′ arise from x and y by replacing 0 by 1 and 1 by −1. We present previous
results with bounds for measures of interest under hard distributions.

Theorem 2.12 ([65]). Let µ1 be a uniform distribution on {0, 1}n × {0, 1}n.
Then,

discµ1(IP) ≤ 1
2n/2 .

Theorem 2.13 (Babai et al. [10]). Let ρ < 1/100 and µ2 be a a uniform distri-
bution over S × S, where S consists of n-bit strings containing exactly

√
n 1’s.

Then,
monoρ

µ2(Disj) ≤ 1
2Ω(

√
n) .

Sherstov [96] provided a lower bound of communication complexity of GHD
by lower bound of corruption bound of ORTn, 1

8
following by reduction to GHD.

Theorem 2.14 (Sherstov [96]). Let ρ > 0 be sufficiently small and µ3 be a
uniform distribution over {0, 1}n × {0, 1}n. Then,

cbρ
µ3(ORTn, 1

8
) ≥ ρ · n.

By this theorem and Theorem 2.4 we get a lower bound for data structures
for ORTn, 1

8
. By reductions used by Sherstov [96] we also get a lower bounds for

ORT and GHD.

ORTn, 1
8
(x, y) = ORT64n

(︂
x64, y64

)︂
ORTn(x, y) = GHD10n+15

√
n

(︂
x10115

√
n, y10015

√
n
)︂

∧ ¬GHD10n+15
√

n

(︂
x10015

√
n, y10015

√
n
)︂

Where si denote i copies of s concatenated together. Let D be a semi-adaptive
random scheme for the multiphase problem of the presented functions with suffi-
ciently small error probability. By the theorems presented in this section and by
Theorem 2.4, we can derive the following lower bounds for tq · w, assuming that
tu · n ≤ o

(︂
k/w

)︂
.

Function f Ballancedness Lower bound
of the hard distribution of tq · w

IP 1
2 Ω(n)

Disj ∼ 1
e

Ω(
√

n)
ORTn Θ(1) Ω(n)
GHDn N/A (lower-bound is via reduction) Ω(n)

23

3. Lower Bound for Elimination
of Greater-Than via Weak
Regularity

3.1 Introduction
In this chapter, we study a problem called elimination, which is closely related to
the direct sum question. Let f : {0, 1} × {0, 1} → {0, 1} be a two-player boolean
function, the elimination problem elim◦fk gives Alice and Bob k n-bit strings each
and asks them to find a k-bit vector z of answers to the k instances which differs
from the correct answer for at least one of the instances (i.e., zi ̸= f(xi, yi) for
some i). Hence, one eliminates a single incorrect vector of answers. In the context
of communication complexity, this problem was posed by Ambainis et al. [7]
and further studied by Beimel et al. [15]. A trivial solution for the elimination
problem is to solve one of the k instances and negate its answer. Both papers
[7, 15] provided examples where one can achieve some savings, typically≪ k bits
of communication, and they also provide lower bounds for particular functions.

Ambainis et al. established Ω(n/ log n log log n) lower bound on randomized
communication complexity of elimination for the Inner Product – elim ◦ IPk –
and Disjointness – elim ◦ Disjk – for constant k. Their result can be extended
to slightly growing k, but for k ≥ Ω(log n) the lower bound becomes trivial.
Beimel et al. [15] establish a general relationship, showing that the (public-coin)
randomized communication complexity of elimination for fk is lower-bounded by
the (public-coin) randomized complexity of f with error roughly 1

2 − 2−k. Due to
this large allowed error, the lower bound also becomes trivial for large k.

In this chapter, we consider the problem of elimination for the Greater-Than
function in the setting of (public-coin) randomized communication complexity.
The Greater-Than (GT : {0, 1} × {0, 1} → {0, 1}) function is defined as follows:

GT(x, y) = 1⇔ x ≥ y,

where x and y are considered as n-bits numbers. In this chapter, we will prove
that a trivial protocol for elim ◦GTk is optimal, as randomized communication
complexity of GT is Θ(log n) [65].

Theorem 3.1. Let k < o(n1/9). Then,

Rε
(︂
elim ◦GTk

)︂
≥ Ω(log n).

Above, R stands for randomized communication complexity of a given func-
tion. In our paper [22], we actually proved a more general result, which connects
the communication complexity of elim ◦ fk and the discrepancy of f .

Theorem 3.2. For any boolean function f and a distribution µ on inputs of f ,

Dε
µk

(︂
elim ◦ fk

)︂
≥ log 1

discµ(f) − log k + log(1− ε · 2k)−O(1).

24

Above, D stands for distributional communication complexity of a given func-
tion. Theorem 3.2 implies Theorem 3.1, as by Yao’s principle [65] we have that
for any boolean function f : {0, 1} × {0, 1} → {0, 1} holds that

Rε(f) = max
µ

Dε
µ(f).

Since the discrepancy of GT is O(1/
√

n) [18], Theorem 3.2 implies a lower bound
of Ω(log n) for communication complexity of the elimination of GTk, for k <
o(n1/2). Previous results by Beimel et al. [15] yielded interesting bounds only
for k ≤ log n. Another corollary is a lower bound of Ω(n) for elimination of IPk

(Inner Product) for k as large as exponential in n. The best-known result before
our work [15] does not give any non-trivial lower bound for k ≥ n.

To prove Theorem 3.2 we used a XOR lemma for the discrepancy by Lee et
al. [69], which is considered as “heavy machinery”. In this chapter, we provide
a direct proof of Theorem 3.1 from the first principles of information theory.
Although we get a worse bound for k (but still polynomial) than from the proof
via Theorem 3.2, the elementary proof is interesting on its own and it shed some
light on the structure of the elimination problem.

To prove Theorem 3.1, we identify a property of boolean functions that is
closely related to the randomized communication complexity of elimination: the
weak-regularity (this property was also used for the proof of Theorem 3.2). The
proof of weak-regularity of GT designs a hard distribution for GT. Our distri-
bution borrows ideas from the work of Viola [103] but extends them in a novel
way.

Organization. In the next section, we formally define the notion of weak-
regularity and prove that if a function f has small weak-regularity, then the
elimination of f is a hard problem in the communication model. In Section 3.3,
we prove that GT has small weak-regularity.

3.2 The Elimination Problem
To solve the elimination problem of a boolean function f : {0, 1}n × {0, 1}n →
{0, 1}, Alice and Bob are given k strings x̄ = x1, . . . , xk, and ȳ = y1, . . . , yk

respectively, of n-bits each; they must then communicate in order to agree on an
output string out ∈ {0, 1}k, such that out ̸= fk(x̄, ȳ).

Other problems of a similar flavor are studied in previous works – enumeration
and selection in [7], choice and agreement in [15]. However, proving lower bounds
for the elimination will give the same lower bounds for these other problems, thus
we will not describe the other problems in further detail.

Instead, we will focus on proving lower bounds against randomized protocols
for the elimination problem. In this setting, we say that Alice and Bob succeed
when they output a string out ∈ {0, 1}k other than fk(x̄, ȳ), as above; otherwise
we say that they made an error. There are two related concepts of randomness
in communication complexity.

Definition 3.3. The randomized communication complexity of elim◦fk, denoted
Rε(elim ◦ fk), is the length of the smallest randomized protocol with shared ran-
domness, which on every input x̄, ȳ will succeed except with error probability ≤ ε.

25

Definition 3.4. Let µ be a distribution over {0, 1} × {0, 1}, and f : {0, 1} ×
{0, 1} → {0, 1} be a boolean function. The distributional communication com-
plexity of elim ◦ fk over µ, denoted Dε

µ(elim ◦ fk), is the length of the smallest
deterministic protocol which succeeds with error probability ≤ ε on inputs drawn
from µ.

3.2.1 Basic Observations
By the trivial protocol, both players can compute f for a single instance, then
they can output any vector that negates f at that coordinate. Thus, clearly
Rε(elim ◦ fk) ≤ Rε(f).

The next thing to notice is that the randomized task becomes trivial for
ε ≥ 2−k. Indeed, both players can use their shared randomness to choose a
uniformly random out ∈ {0, 1}k, and outputting this out causes them to succeed
with probability 1 − 2−k. Hence we will assume from this point onward that
ε ≤ 2−k.

As usual, we will make use of Yao’s principle [65] to prove our lower bounds.
Thus to prove Theorem 3.1, we provide a hard input distribution µ for which
Dε

µ(elim ◦fk) is high. In preparation for this, let us think what it means when we
say Dε

µ(elim◦fk) ≤ C. It means that we can partition the space {0, 1}nk×{0, 1}nk

into ≤ 2C combinatorial rectangles R = A × B, and in each rectangle we will
output a single out = out(R) ∈ {0, 1}k. Now, each rectangle R is itself naturally
partitioned into 2k pieces, one piece for each z ∈ {0, 1}k:

Rz =
{︂
(x̄, ȳ) ∈ R | fk(x̄, ȳ) = z

}︂
.

These pieces are possibly non-rectangular and some of them might be empty.
Then, if the success probability is high, it must happen that on the µ-large
rectangles, Rout has very little mass. Indeed, the error probability is the sum of
every µ(Rout(R)) over the various rectangles R induced by the protocol.

This (vague) condition is both necessary and sufficient, because if we do have
a (protocol-induced) partition of {0, 1}nk×{0, 1}nk into rectangles, and on every
such rectangle R there is a piece Rz with very little mass (less than 2−kµ(R), say),
we may simply output out = z on this rectangle, and we will have a non-trivial
protocol for elimination.

3.2.2 Regularity
A natural way of proving a lower bound would be to show that, under some
carefully chosen hard distribution µ, every rectangle R gets split into pieces Rz

all of which are non-vanishing. We may eventually come to the following natural
definition:

Definition 3.5. Let n, k ≥ 1 be natural numbers, and δ ∈ [0, 1]; let f : {0, 1}n ×
{0, 1}n → {0, 1} be a boolean function, and µ be a distribution over {0, 1}nk ×
{0, 1}nk.

Then f is said to be δ-weakly-regular with respect to µ if for every R and z,

µ(Rz) ≥ 2−k
(︂
µ(R)− δ

)︂
,

26

where R ranges over combinatorial rectangles in {0, 1}nk × {0, 1}nk and z ranges
over {0, 1}k.

In this definition, if µ(R) < δ then the condition is satisfied trivially so δ bounds
from below the mass of rectangles for which each Rz should have a non-trivial
mass.

Theorem 3.6. If f is δ-weakly-regular with respect to µ, then

Dε
µ

(︂
elim ◦ fk

)︂
≥ log 1− ε · 2k

δ
.

Proof. Let π be an optimal protocol computing elim ◦ fk and communicating
C = Dε

µ(elim ◦ fk) bits. Let R range over the monochromatic rectangles induced
by π. Since f is δ-weakly-regular w.r.t. µ, π’s error probability is

ε =
∑︂
R

µ
(︂
Rout(R)

)︂
≥
∑︂
R

2−k ·
(︂
µ(R)− δ

)︂
≥ 2−k ·

(︂
1− δ · 2C

)︂
.

By rearranging, we get the following.

Dε
µ

(︂
elim ◦ fk

)︂
= C ≥ log 1− ε · 2k

δ

Remark. The notion of weak regularity naturally arises from first considerations
of the elimination problem. Interestingly, it is the weak version of a stronger
notion, which says that f is regular with respect to ρ if every large rectangle R
is partitioned into rectangles Rz of roughly equal mass (i.e., each Rz comprises
approximately 2−k fraction of all the ρ-mass of R). This strong regularity first
appeared in a paper of Raz and Wigderson [90] on randomized communication
complexity of Karchmer-Wigderson games [55], and also later – in disguise – in
related work on simulation theorems [44].

3.3 Lower Bound for elim ◦GTk from First Prin-
ciples

In this section we prove that there is a “hard” distribution µ such that GT is
n−1/9-weakly-regular with respect to µk. This implies Theorem 3.1. The distri-
bution µ on {0, 1}n × {0, 1}n is defined as follows. Let m and ℓ be integers such
that n = mℓ (think of m =

√
n). We split each n-bit output into m blocks of ℓ

bits each. We set X = X1 . . . Xm, where each block Xi is uniformly and inde-
pendently selected from the set Bℓ = {0, 1}ℓ − {0ℓ, 1ℓ} (i.e. we forbid the all-0’s
and all-1’s strings). Then, we pick a uniformly random block index J ∈ [m], and
a uniformly-random bit Z ∈ {−1, 1}, and set Y = X1 . . . XJ−1(XJ + Z)0 . . . 0,
where Xj is interpreted as an integer. Note that X ≥ Y (i.e., GT(X, Y) = 1) if
and only if Z = −1. Let µ̄ denote the distribution of (X, Y, Z, J) generated by
this process; then µ is the projection of µ̄ onto (X, Y).

27

Lemma 3.7. For x ≥ 2, it holds log(2x − 2) ≥ x− 1
2x−2 .

Proof. We will prove an equivalent inequality

log(2x − 2)− log(2x) ≥ − 1
2x−2 .

By convexity of the exponential function we have 1 − y ≥ 2−2y for y ∈ [0; 1
2].

Then

log(2x − 2)− log(2x) = log
(︂
1− 21−x

)︂
≥ log

(︂
2−22−x

)︂
= − 1

2x−2 .

In this section, we prove the following theorem, which, together with Theo-
rem 3.6, implies Theorem 3.1. Our proof is inspired by a paper of Viola [103]
who proved lower bound on the randomized communication complexity of GT.

Theorem 3.8. GT is n−1/9-weakly-regular with respect to µk, provided k ≤ n1/4.

Proof. Let the random variables X = X1 . . . Xk, Y = Y1 . . . Yk, J = J1 . . . Jk

and Z = Z1 . . . Zk be drawn according to the distribution µ̄k, by the process given
above, so that (X, Y) is distributed according to µk.

Fix a large rectangle R = R1×R2 – i.e., a rectangle such that µk(R) ≥ 1
n
. Let

X = (Bℓ)mk be the support of X. Since µk has zero mass outside of X ×{0, 1}kn,
assume without loss of generality that R1 ⊂ X .

Let W denote a random variable distributed as Y conditioned on X ∈ R1,
and Wz be distributed as Y conditioned on X ∈ R1 and Z = z. We slightly
abuse a notation and for two random variables A and B we denote ∥A−B∥1 the
ℓ1 distance of their distribution, i.e., the value ∥µA − µB∥1. We will prove that,
for any z ∈ {0, 1}k, ⃦⃦⃦

W−Wz

⃦⃦⃦
1
≤ 1

n1/9 . (3.1)

This implies Theorem 3.8, because

2kµk(Rz) = 2k · Pr
[︂
(X, Y) ∈ Rz

]︂
= 2k · Pr

[︂
X ∈ R1, Y ∈ R2, Z = z

]︂
= Pr[X ∈ R1] · Pr

[︂
Y ∈ R2 | X ∈ R1, Z = z

]︂
≥ Pr[X ∈ R1] ·

(︃
Pr[Y ∈ R2 | X ∈ R1]−

1
n1/9

)︃
≥ Pr[X ∈ R1] · Pr

[︂
Y ∈ R2 | X ∈ R1

]︂
− 1

n1/9

= µk(R)− 1
n1/9

Note that the same property will trivially hold if µk(R) < 1
n
. To prove Inequality

(3.1), it suffices bounding ∥Wb −Wa∥1 ≤ 1
n1/9 for arbitrary a, b ∈ {1,−1}k,

28

V1
1

V2
1

Vk−1
1

Vk
1

V1
j1

V2
j2

Vk−1
jk−1

Vk
jk

V1
m

V2
m

Vk−1
m

Vk
m

.

V1
j1 − z1

V2
j2 − z2

Vk−1
jk−1

− zk−1

Vk
jk − zk

. . .

V1
1

V2
1

Vk−1
1

Vk
1

V<j V<j 0

V Wz

Figure 3.1: Sketch of V and Wz. V<j appears in dark gray; light gray marks
zeros.

because:⃦⃦⃦
W−Wa

⃦⃦⃦
1

=
∑︂

ȳ

⃓⃓⃓⃓
Pr[W = ȳ]− Pr[Wa = ȳ]

⃓⃓⃓⃓

=
∑︂

ȳ

⃓⃓⃓⃓ ∑︂
b∈{1,−1}k

Pr[Z = b] · Pr[Wb = ȳ]− Pr[Wa = ȳ]
⃓⃓⃓⃓

≤
∑︂

b∈{1,−1}k

1
2k

∑︂
ȳ

⃓⃓⃓⃓
Pr[Wb = ȳ]− Pr[Wa = ȳ]

⃓⃓⃓⃓

=
∑︂

b∈{1,−1}k

1
2k

⃦⃦⃦
Wb −Wa

⃦⃦⃦
1

Then, let V denote a random variable distributed as X conditioned on X ∈ R1.
Since R1 ⊂ X and X is uniform over X , V itself is drawn uniformly from R1.
First we prove that

H(V) ≥ nk − o(1)− log n (3.2)
Since V is uniform on R1, H(V) = log |R1|. As we assumed R was large,

|R1|
|X |

= Pr[X ∈ R1] ≥
1
n

.

Thus, by Lemma 3.7:

H(V) ≥ log |X |
n

= log
[︂
(2n/m − 2)mk

]︂
− log n

≥ mk
(︃

n

m
− 1

2 n
m

−2

)︃
− log n = nk − o(1)− log n.

The variable V can be divided into the same blocks as the variable X. Thus,
V = V1, . . . , Vk where each Vi is an n-bit number. Each Vi is Vi

1 . . . Vi
m where

each Vi
j is an ℓ-bit number. Let j be a vector in [m]k. By V<j we denote

all blocks of V such that Vi
s for i ∈ [k] and s < ji. The support of V<j is

denoted by V<j. For j ∈ [m]k, v ∈ V<j and z ∈ {−1, 1}k, let Vj,v be the random
variable V1

j1 , . . . , Vk
jk

conditioned on V<j = v, and Vj,v,z be the random variable
V1

j1 − z1, . . . , Vk
jk
− zk, conditioned on V<j = v. This is the same distribution

as the projection of Y onto blocks given by j, conditioned on J = j, Z = z and
V<j = v. Figure 3.1 illustrates the notation. Since Wz contains only zeroes in
blocks “after J” and by Observation 1.3, we get,⃦⃦⃦

Wb −Wa

⃦⃦⃦
1
≤

∑︂
j∈[m]k

∑︂
v∈V<j

Pr[J = j, V<j = v] ·
⃦⃦⃦
Vj,v,b −Vj,v,a

⃦⃦⃦
1
.

29

Now notice that Vj,v,a = π(Vj,v,b) = π′(Vj,v) for some permutations π and π′ of
the domain {0, 1}nk

m . By Observation 1.4, we get for U uniform over {0, 1}nk
m ,⃦⃦⃦

Vj,v,b −Vj,v,a

⃦⃦⃦
1
≤ 2 ·

⃦⃦⃦
Vj,v −U

⃦⃦⃦
1
.

Then by Pinsker’s inequality (Corollary 1.6),

⃦⃦⃦
Vj,v −U

⃦⃦⃦
1
≤

⌜⃓⃓⎷2 ·
(︄

nk

m
−H

(︂
V1

j1 , . . . , Vk
jk
| V<j = v

)︂)︄
.

We may thus bound

⃦⃦⃦
Wb −Wa

⃦⃦⃦
1
≤

∑︂
j,v

2 · 1
mk
· Pr[V<j = v]

⌜⃓⃓⎷2 ·
(︄

nk

m
−H

(︂
V1

j1 . . . Vk
jk
| V<j = v

)︂)︄

≤ 2 ·
⌜⃓⃓⎷2 ·

∑︂
j,v

1
mk

Pr[V<j = v]
(︄

nk

m
−H

(︂
V1

j1 . . . Vk
jk
| V<j = v

)︂)︄
(by concavity of

√
·)

=

⌜⃓⃓⃓
⎷8 ·

⎛⎝nk

m
− 1

mk

∑︂
j

H
(︂
V1

j1 . . . Vk
jk
| V<j

)︂⎞⎠
(by definition of conditional entropy)

Now we need to bound the sum ∑︁
j H

(︂
V1

j1 . . . Vk
jk
| V<j

)︂
. The sum is over

all vectors j in [m]k. We will divide the summands into parts that allow us to
use the chain rule. We call a vector p ∈ [m]k a pattern if p contains 1 in some
coordinate. We denote the set of all patterns by P . For a pattern p ∈ P we
define a width w(p) of pattern p as the maximum of entries of p:

w(p) = max
i∈[k]

pi.

Denote the set of all patterns of width w by Pw. For an integer s, we denote
(p + s) = (p1 + s, p2 + s, . . . , pk + s). We can rewrite the sum of entropies:

∑︂
j∈[m]k

H
(︂
V1

j1 . . . Vk
jk
| V<j

)︂
=

∑︂
w∈[m]

∑︂
p∈Pw

m−w∑︂
s=0

H
(︂
V1

p1+s . . . Vk
pk+s | V<(p+s)

)︂
.

(3.3)
We fix some pattern p ∈ Pw and bound the last sum

Mp =
m−w∑︂
s=0

H
(︂
V1

p1+s . . . Vk
pk+s | V<(p+s)

)︂
.

Let p′ = p + (m − w). Let L be blocks of V “to the left” of p and R be blocks
“to the right” of p′. Formally,

Lp = V1
1 . . . V1

p1−1 . . . Vk
1 . . . Vk

pk−1 Rp′ = V1
p′

1+1 . . . V1
m . . . Vk

p′
k

+1 . . . Vk
m.

The variables Lp and Rp′ are chosen in a way that they, together with the blocks
used in the sum Mp, “cover” all blocks of V. For a better understanding see
Figure 3.2.

30

p

k
p

p

p
Lp

p′

p′

p′

p′

Rp′. . .

. . .

. . .

. . .

m

Lp

Lp

Rp′

Rp′
Rp′

Rp′

Figure 3.2: An example how to cover all blocks in the sum Mp (gray blocks) and
the variable Lp and Rp′ . Each rectangle represents a block of n

m
bits.

Note that variables Lp and Rp′ contains together (w−1)k blocks (i.e., n
m

(w−
1)k bits) independently of the choice of p ∈ Pw. The chain rule then says that

H(V) = H(Lp) + Mp + H(Rp′|V≤p′),

Mp = H(V)−H(Lp)−H(Rp′ |V≤p′) ≥ H(V)− n

m
(w − 1)k.

Now, we are ready to bound the sums from Equation (3.3).

∑︂
w∈[m]

∑︂
p∈Pw

m−w∑︂
s=0

H
(︂
V1

p1+s . . . Vk
pk+s | V<(p+s)

)︂
≥

∑︂
w∈[m]

∑︂
p∈Pw

H(V)− n

m
(w − 1)k

≥
∑︂

w∈[m]

∑︂
p∈Pw

nk − o(1)− log n− n

m
(w − 1)k (by Equation (3.2))

= nk

m

⎛⎝ ∑︂
w∈[m]

∑︂
p∈Pw

m− w + 1
⎞⎠− |P|(︂o(1) + log n

)︂

= mk nk

m
− |P|

(︂
o(1) + log n

)︂
Note that the last equality is given by that ∑︁w∈[m]

∑︁
p∈Pw

m−w + 1 equals to
the number of all j ∈ [m]k. Bounding the number of all patterns by |P| ≤ kmk−1,
we can also bound

⃦⃦⃦
Wa −Wb

⃦⃦⃦
1
≤

⌜⃓⃓⃓
⎷8 ·

⎛⎝nk

m
− 1

mk

∑︂
j

H
(︂
V1

j1 . . . Vk
jk
| V<j

)︂⎞⎠
≤

⌜⃓⃓⎷8 ·
(︄

nk

m
− 1

mk

(︃
mk

nk

m
− |P|

(︂
o(1) + log n

)︂)︃)︄

≤
√︄

8 · kmk−1

mk

(︂
log n + o(1)

)︂
≤
√︄

8 · 1
n

1
4

(︂
log n + o(1)

)︂
≤ 1

n
1
9

(for m =
√

n, k ≤ n1/4 and n large enough)

31

4. Network Coding Conjecture
Implies Data Structure Lower
Bounds

4.1 Introduction
In this chapter, we study lower bounds for static data structures. As mentioned
above, proving polynomial lower bounds on query time for certain static data
structure problems seems out of reach. To deal with this situation researchers
developed various conjectures which if true would imply the sought-after lower
bounds. For that aim, we use the Network Coding Conjecture (NCC) by Li
and Li [70]. This conjecture attracted recently a lot of attention and it was
used to prove various lower bounds such as lower bounds on the size of circuits
computing multiplication [5] or sorting [9], and the number of IO operations
needed for external memory sorting [36].

We study a certain data structure type problem for function inversion [46],
which is popular in cryptography. We show that the Network Coding Conjecture
implies certain weak lower bounds for the inversion data structure problem. We
show that similar results apply to a host of other data structure problems such
as the well-studied polynomial evaluation problem or the Finite Field Fourier
transform problem.

The data structures considered in this chapter are static, non-adaptive, and
systematic, i.e., a very restricted class of data structures for which lower bounds
should perhaps be easier to obtain. Such data structure problems have the follow-
ing structure: Given the input data described by N bits, create a data structure
of size s. Then, we receive a single query from a set of permissible queries and
we are supposed to answer the query while non-adaptively inspecting at most t
locations in the data structure and in the original data.

We show that logarithmic lower bounds on t for the data structures can be
derived from the Network Coding Conjecture even in the more generous setting
of s ≥ εN and when inspecting locations in the data structure is for free. Our
technique seems applicable to data structure problems that are involutions that
are inverses of themselves. Although we use a lot of the same technical machinery
as the previous papers on the Network Coding Conjecture our proofs involve new
ideas. An interesting aspect of our proofs is that they apply the hypothesized
data structure twice in the reductions. This is reminiscent of many quantum
algorithms that use Hadamard transform twice in a row (like Shor’s quantum
algorithm for the Satisfiability problem [8]).

Organization. In the next section, we review the data structure problems we
consider. Then we provide a precise definition of Network Coding Conjecture in
Section 4.3. The statement and the proof of the main results of this chapter are
in Section 4.4.

32

4.2 Data Structure Problems
In this chapter, we study lower bounds on systematic data structures for var-
ious problems – function inversion, polynomial evaluation, and polynomial in-
terpolation. We are given an input I = {x0, . . . , xn−1}, where each xi ∈ [n] =
{0, . . . , n − 1} or each xi is an element of some field F. First, a data structure
algorithm can preprocess I to produce an advice string ãI of s bits (we refer to
the parameter s as space of the data structure D). Then, we are given a query q
and the data structure should produce a correct answer (what is a correct answer
depends on the problem). To answer a query q, the data structure D has access
to the whole advice string ãI and can make t probes to the input I, i.e., read at
most t elements from I. We refer to the parameter t as the query time of the
data structure.

4.2.1 Function Inversion
In the function inversion problem, we are given a function f : [n] → [n] and a
point y ∈ [n] and we want to find x ∈ [n] such that f(x) = y. This is a central
problem in cryptography as many cryptographic primitives rely on the existence
of a function that is hard to invert. To sum up we are interested in the following
problem.

Function Inversion
Input: A function f : [n]→ [n] as an oracle.
Preprocessing: Using f , prepare an advice string ãf ∈ {0, 1}s.
Query: Point y ∈ [n].
Answer: Compute the value f−1(y), with a full access to ãf and

using at most t probes to the oracle for f .
We want to design an efficient data structure, i.e., make s and t as small as

possible. There are two trivial solutions. The first one is that the whole function
f−1 is stored in the advice string ãf , thus s = O(n log n) and t = 0. The second
one is that the whole function f is probed during answering a query y ∈ [n], thus
t = O(n) and s = 0. Note that the space s of the data structure is the length of
the advice string ãf in bits but with one oracle-probe xi the data structure reads
the whole f(xi), thus with n oracle-probes we read the whole description of f ,
i.e., n log n bits.

The question is whether we can design a data structure with s, t ≤ o(n).
Hellman [46] gave the first non-trivial solution and introduced a randomized sys-
tematic data structure which inverts a function with a constant probability (over
the uniform choice of the function f and the query y ∈ [n]) and s = O(n2/3 log n)
and t = O(n2/3 log n). Fiat and Naor [38] improved the result and introduced
a data structure that inverts any function at any point, however with a slightly
worse trade-off: s3t = O(n3 log n). Hellman [46] also introduced a more efficient
data structure for inverting a permutation – it inverts any permutation at any
point and st = O(n log n). Thus, it seems that inverting a permutation is an
easier problem than inverting an arbitrary function.

In this chapter, we are interested in lower bounds for the inversion problem.
Yao [106] gave a lower bound that any systematic data structure for the inversion
problem must have st ≥ Ω(n log n), however, the lower bound is applicable only

33

if t ≤ O(
√

n). Since then, only slight progress was made. De et al. [32] improved
the lower bound of Yao [106] to be applicable for the full range of t. Abusalah
et al. [3] improved the trade-off, that for any k it must hold that skt ≥ Ω(nk).
Seemingly, their result contradicts Hellman’s trade-off s = t = O(n2/3 log n) as
it implies s = t ≥ nk/k+1 for any k. However, for Hellman’s attack [46] we
need that the function can be efficiently evaluated and the functions introduced
by Abusalah et al. [3] cannot be efficiently evaluated. There is also a series of
papers [42, 99, 34, 27] that studied how the probability of successful inversion
depends on the parameters s and t. However, none of these results yields a better
lower bound than st ≥ Ω(n log n). Hellman’s trade-off is still the best-known
upper bound trade-off for the inversion problem. Thus, there is still a substantial
gap between the lower and upper bounds.

Another caveat of all known data structures for the inversion is that they
heavily use adaptivity during answering queries y ∈ [n]. I.e., probes to the oracle
depend on the advice string ã and answers to the oracle probes which have been
already made. We are interested in non-adaptive data structures. We say a
systematic data structure is non-adaptive if all oracle probes depend only on the
query y ∈ [n].

As non-adaptive data structures are weaker than adaptive ones, there is
a hope that for non-adaptive data structures we could prove stronger lower
bounds. Moreover, the non-adaptive data structure corresponds to circuits com-
putation [100, 101, 102, 28]. Thus, we can derive a circuit lower bound from a
strong lower bound for a non-adaptive data structure. Non-adaptive data struc-
tures were considered by Corrigan-Gibbs and Kogan [28]. They proved that
improvement by a polynomial factor of Yao’s lower bound [106] for non-adaptive
data structures would imply the existence of a function F : {0, 1}N → {0, 1}N for
N = n log n that cannot be computed by a linear-size and logarithmic-depth cir-
cuit. A connection similar to Corrigan-Gibbs and Kogan between data structures
and circuits was made also by Viola [104].

4.2.2 Evaluation and Interpolation of Polynomials
In this section, we describe two natural problems connected to polynomials. We
consider our problems over a finite field F to avoid issues with encoding reals.

Polynomial Evaluation over F
Input: Coefficients of a polynomial p ∈ F[x]: α0, . . . , αn−1 ∈ F

(i.e., p(x) = ∑︁
i∈[n] αix

i)
Preprocessing: Using the input, prepare an advice string ãp ∈ {0, 1}s.
Query: A number x ∈ F.
Answer: Compute the value p(x), with a full access to ãp and

using at most t probes to the coefficients of p.

34

Polynomial Interpolation over F
Input: Point-value pairs of a polynomial p ∈ F[x] of degree at

most n−1: (x0, p(x0)), . . . , (xn−1, p(xn−1)) ∈ F×F where
xi ̸= xj for any two indices i ̸= j

Preprocessing: Using the input, prepare an advice string ãp ∈ {0, 1}s.
Query: An index j ∈ [n].
Answer: Compute the j-th coefficient of the polynomial p, i.e.,

the coefficient of xj in p, with a full access to ãp and
using at most t probes to the oracle for point-value pairs.

We often use a version of polynomial interpolation where the points x0, . . . ,
xn−1 are fixed in advance and the input consists just of p(x0), . . . , p(xn−1). Since
we are interested in lower bounds, this makes our results slightly stronger.

Let F = GF(pk) denote the Galois Field of pk elements. Let n be a divisor of
pk − 1. It is a well-known fact that for any finite field F its multiplicative group
F∗ is cyclic (see e.g. Serre [93]). Thus, there is a primitive n-th root of unity
σ ∈ F (that is an element σ such that σn = 1 and for each 1 ≤ j < n, σj ̸= 1).
Pollard [87] defines the Finite Field Fourier transform (FFFT) (with respect to
σ) as a linear function FFFTn,σ : Fn → Fn which satisfies:

FFFTn,σ(α0, . . . , αn−1) = (β0, . . . , βn−1) where
βi =

∑︂
j∈[n]

αjσ
ij for any i ∈ [n]

The inversion FFFT−1
n,σ is given by:

FFFT−1
n,σ(β0, . . . , βn−1) = (α0, . . . , αn−1) where

αi = 1
n

∑︂
j∈[n]

βjσ
−ij for any i ∈ [n]

Here, 1
n

= (∑︁n
i=1 1)−1 over F. In our theorems we always set n to be a divisor of

|F| − 1 = pk − 1 thus n modulo p is non-zero and the inverse exists. Observe,
that FFFT−1

n,σ = 1
n
FFFTn,σ−1 .

FFFT is the finite field analog of Discrete Fourier transform (DFT) which
works over complex numbers. The FFT algorithm by Cooley and Tukey [26]
can be used for the case of finite fields as well (as observed by Pollard [87]) to
get an algorithm using O(n log n) field operations (addition or multiplication of
two numbers). Thus we can compute FFFTn,σ and its inverse in O(n log n) field
operations.

It is easy to see that FFFTn,σ is actually evaluation of a polynomial in mul-
tiple special points (specifically in σ0, . . . , σn−1). We can also see that it is a
special case of interpolation by a polynomial in multiple special points since
FFFT−1

n,σ = 1
n
FFFTn,σ−1 . We provide an NCC-based lower bound for data struc-

tures computing the polynomial evaluation. However, we use the data structure
only for evaluating a polynomial in powers of a primitive root of unity. Thus, the
same proof yields a lower bound for data structures computing the polynomial
interpolation.

There is a great interest in data structures for polynomial evaluation in a cell
probe model. In this model, some representation of a polynomial p = ∑︁

i∈[n] αix
i ∈

35

F[x] is stored in a table T of scell cells, each of w bits. Usually, w is set to
O(log |F|), that we can store an element of F in a single cell. On a query x ∈ F
the data structure should output p(x) making at most tcell probes to the table
T . A difference between data structures in the cell probe model and systematic
data structures is that a data structure in the cell probe model is charged for any
probe to the table T but a systematic data structure is charged only for probes to
the input (the coefficients αi), reading from the advice string ãp is for free. Note
that, the coefficients αi of p do not have to be even stored in the table T . There
are again two trivial solutions. The first one is that we store a value p(x) for each
x ∈ F and on a query x ∈ F we probe just one cell. Thus, we would get tcell = 1
and scell = |F| (we assume that we can store an element of F in a single cell). The
second one is that we store the coefficients of p and on a query x ∈ F we probe
all cells and compute the value p(x). Thus, we would get tcell = scell = n.

Let k = log |F|. Kedlaya and Umans [58] provided a data structure for the
polynomial evaluation that uses space n1+ε · k1+o(1) and query time logO(1) n ·
k1+o(1). Note that, n · k is the size of the input and k is the size of the output.

The first lower bound for the cell probe model was given by Miltersen [72].
He proved that for any cell probe data structure for the polynomial evaluation
it must hold that tcell ≥ Ω(k/ log scell). This was improved by Larsen [67] to
tcell ≥ Ω(k/ log(scellw/nk)), that gives tcell ≥ Ω(k) if the data structure uses linear
space scell · w = O(n · k). However, the size of F has to be super-linear, i.e.,
|F| ≥ n1+Ω(1), and it is not known if the bound holds for smaller fields, e.g.,
of linear size. Data structures in a bit probe model were studied by Gál and
Miltersen [40]. The bit probe model is the same as the cell probe model but each
cell contains only a single bit, i.e., w = 1. They studied succinct data structures
that are data structures such that scell = (n + r) · k for r < o(n). Thus, the
succinct data structures are related to systematic data structures but still, the
succinct data structures are charged for any probe (as any other data structure
in the cell probe model). Note that a succinct data structure stores only a few
more bits than it is needed due to an information-theoretic requirement. Gál
and Miltersen [40] showed that for any succinct data structure in the bit probe
model it holds that r · tcell ≥ Ω(n · k). We are not aware of any lower bound for
systematic data structures for the polynomial evaluation.

Larsen et al. [68] also gave a log-squared lower bound for dynamic data struc-
tures in the cell probe model. Dynamic data structures also support updates of
the polynomial p which usually impacts their query time.

There is a great interest in algorithmic questions about the polynomial inter-
polation such as how fast we can interpolate polynomials [41, 16, 45], how many
probes we need to interpolate a polynomial if it is given by oracle [24, 48], how to
compute the interpolation in a numerically stable way over infinite fields [97] and
many others. However, we are not aware of any results about data structures for
the interpolation, i.e., when the interpolation algorithm has an access to some
precomputed advice.

4.3 Network Coding
We prove our conditional lower bounds based on the Network Coding Conjec-
ture. In network coding, we are interested in how much information we can send

36

through a given network. A network consists of a graph G = (V, E), positive
capacities of edges c : E → R+ and k pairs of vertices (s0, t0), . . . , (sk−1, tk−1).
We say a network R = (G, c, (si, ti)i∈[k]) is undirected or directed (acyclic) if the
graph G is undirected or directed (acyclic). We say a network is uniform if the
capacities of all edges in the network equal to some q ∈ R+ and we denote such
network as (G, q, (si, ti)i∈[k]).

A goal of a coding scheme for directed acyclic network R = (G, c, (si, ti)i∈[k])
is that at each target ti it will be possible to reconstruct an input message wi

which was generated at the source si. The coding scheme specifies messages sent
from each vertex along the outgoing edges as a function of received messages.
Moreover, the length of the messages sent along the edges has to respect the edge
capacities.

More formally, each source si of a network receives an input message wi as
a sample of a uniform random variable Wi over a set Wi (Wi is independent
on the other input random variables Wj’s). Without loss of generality we can
assume that each source si has an in-degree 0 (otherwise we can add a vertex s′

i

and an edge (s′
i, si) and replace si by s′

i). There is an alphabet Σe for each edge
e ∈ E(G). For each source si and each outgoing edge e = (si, u) there is a function
fsi,e : Wi → Σe which specifies the message sent along the edge e as a function of
the received input message wi ∈ Wi. For each non-source vertex v ∈ V, v ̸= si and
each outgoing edge e = (v, u) there is a similar function fv,e : ∏︁e′=(u′,v) Σe′ → Σe

which specifies the message sent along the edge e as a function of the messages
sent to v along the edges incoming to v. Finally, each target ti has a decoding
function di : ∏︁e′=(u′,ti) Σe′ → Wi. The coding scheme is executed as follows:

1. Each source si receives an input message wi ∈ Wi. Along each edge e =
(si, u) a message fsi,e(wi) is sent.

2. When a vertex v receives all messages m1, . . . , ma along all incoming edges
(u′, v) it sends along each outgoing edge e = (v, u) a message

fv,e(m1, . . . , ma).

As the graph G is acyclic, this procedure is well-defined and each vertex
of non-zero out-degree will eventually send its messages along its outgoing
edges.

3. At the end, each target ti computes a string w̃i = di(m′
1, . . . , m′

b) where m′
j

denotes the received messages along the incoming edges (u′, ti). We say the
encoding scheme is correct if w̃i = wi for all i ∈ [k] and any input messages
w0, . . . , wk−1 ∈ W0 × · · · ×Wk−1.

The coding scheme has to respect the edge capacities, i.e., if Me is a random
variable that represents a message sent along the edge e, then H(Me) ≤ c(e).
Note that it means that only the expected length of the message sent along an
edge e does not exceed the capacity of e. A coding rate of a network R is the
maximum r such that there is a correct coding scheme for input random variables
W0, . . . , Wk−1 where H(Wi) = log |Wi| ≥ r for all i ∈ [k]. A network coding can
be defined also for directed cyclic networks or undirected networks but we will
not use it here.

37

Network coding is related to multicommodity flows. A multicommodity flow
for an undirected network R̄ = (Ḡ, c, (si, ti)i∈[k]) specifies flows for each com-
modity i such that they transport as many units of commodity from si to ti as
possible. A flow of the commodity i is specified by a function f i : V × V → R+

0
which describes for each pair of vertices (u, v) how many units of the commodity
i are sent from u to v. Each function f i has to satisfy:

1. If u, v are not connected by an edge, then f i(u, v) = f i(v, u) = 0.

2. For each edge {u, v} ∈ E(Ḡ), it holds that f i(u, v) = 0 or f i(v, u) = 0.

3. For each vertex v that is not the source si or the target ti, it holds that
what comes to the vertex v, it goes out from the vertex v, i.e.,∑︂

u∈V

f i(u, v) =
∑︂
u∈V

f i(v, u).

4. What is sent from the source si comes to the target ti, i.e.,∑︂
u∈V

f i(si, u)− f i(u, si) =
∑︂
u∈V

f i(u, ti)− f i(ti, u).

Moreover, all flows together have to respect the capacities, i.e., for each edge
e = {u, v} ∈ E(Ḡ) it must hold that ∑︁i∈[k] f i(u, v) + f i(v, u) ≤ c(e). A flow
rate of a network R̄ is the maximum r such that there is a multicommodity flow
F = (f 0, . . . , fk−1) that for each i transports at least r units of the commodity
i from si to ti, i.e., for all i, it holds that ∑︁u∈V f i(u, ti) − f i(ti, u) ≥ r. A
multicommodity flow for directed graphs is defined similarly, however, the flows
can transport the commodities only in the direction of edges.

Let R be a directed acyclic network of a flow rate r′. It is clear that for a
coding rate r of R it holds that r ≥ r′. As we can send the messages without
coding and thus reduce the encoding problem to the flow problem. The opposite
inequality does not hold: There is a directed network R = (G, c, (si, ti)i∈[k]) such
that its coding rate is Ω(|V (G)|)-times larger than its flow rate as shown by Adler
et al. [4]. Thus, the network coding for directed networks provides an advantage
over the simple solution given by the maximum flow. However, such a result is
not known for undirected networks. Li and Li [70] conjectured that the network
coding does not provide any advantage for undirected networks, thus for any
undirected network R̄, the coding rate of R̄ equals to the flow rate of R̄. This
conjecture is known as Network Coding Conjecture (NCC) and we state a weaker
version of it below.

For a directed graph G = (V, E) we denote by un(G) the undirected graph
(V, Ē) obtained from G by making each directed edge in E undirected (i.e., re-
placing each (u, v) ∈ E(G) by {u, v}). For a directed acyclic network R =
(G, c, (si, ti)i∈[k]) we define the undirected network un(R) = (un(G), c̄, (si, ti)i∈[k])
by keeping the source-target pairs and capacities the same, i.e,

c((u, v)) = c̄({u, v}).

Conjecture 4.1 (Weaker NCC). Let R be a directed acyclic network, r be a
coding rate of R and r̄ be a flow rate of un(R). Then, r = r̄.

As mentioned above, this conjecture was used to prove a conditional lower
bound for certain algorithms and circuites [36, 5, 9].

38

4.4 NCC Implies Weak Data Structure Lower
Bounds

In this section, we provide a connection that the Network Coding Conjecture
(Conjecture 4.1) implies lower bounds for data structures for the permutation
inversion and the polynomial evaluation and interpolation. Assuming NCC, we
show that a query time t of a non-adaptive systematic data structure for any of
the above problems satisfies t ≥ Ω(log n/ log log n), even if it uses linear space,
i.e., the advice string ã has size εn log n for sufficiently small constant ε > 0.
Formally, we define tInv(s) as a query time of the optimal non-adaptive systematic
data structure for the permutation inversion using space at most s. Similarly, we
define tFEval(s) and tFInterp(s) for the polynomial evaluation and interpolation over
F.

Theorem 4.2. Let ε > 0 be a sufficiently small constant. Assuming NCC, it
holds that tInv(εn log n) ≥ Ω(log n/ log log n).

Theorem 4.3. Let F be a field and n be a divisor of |F| − 1. Let s = εn log |F|
for a sufficiently small constant ε > 0. Then assuming NCC, it holds that

tFEval(s), tFInterp(s) ≥ Ω(log n/ log log n).

Note that by Theorem 4.2, assuming NCC, it holds that

s · t ≥ Ω
(︂
n log2 n/ log log n

)︂
for s = εn log n and t = tInv(s). The same holds for tFEval and tFInterp by Theorem 4.3.
Thus, these conditional lower bounds cross the barrier Ω(n log n) for s · t given
by the best unconditional lower bounds known for the function inversion [106,
32, 3, 42, 99, 34, 27] and the lower bound for the succinct data structures for
the polynomial evaluation by Gál and Miltersen [40]. Note that our lower bound
does not contradict Hellman’s attack [46] for the permutation inversion, as his
data structure is heavily adaptive.

Our lower bound for the data structure for the polynomial evaluation and
interpolation is applicable even for linear size field (i.e., linear number of queries).
Larsen’s lower bound for the data structure for the polynomial evaluation [67] is
applicable only for superlinear fields, i.e., |F| ≥ n1+Ω(1). We give the result for the
polynomial evaluation here as it has an analogous proof as the lower bound for the
polynomial interpolation and it might illustrate a more general phenomenon that
our technique might be applicable to a broader class of functions that contains
an involution as a subproblem.

To prove Theorems 4.2 and 4.3, we build on the technical machinery of Farhadi
et al. [36]. The proof can be divided into two steps:

1. From a data structure for the problem we derive a network R with O(tn)
edges such that R admits an encoding scheme that is correct on a large
fraction of the inputs. This step is distinct for each problem and the reduc-
tions are shown in Sections 4.4.1 and 4.4.2. This step uses new ideas and
interestingly, it uses the data structure twice in a sequence.

39

2. If there is a network R with dn edges that admits an encoding scheme which
is correct for a large fraction of inputs, then d ≥ Ω(log n/ log log n). This
step is common to all the problems. It was implicitly proved by Farhadi et
al. [36] and Afshani et al. [5].

4.4.1 Function Inversion
In this section, we prove Theorem 4.2 that assuming NCC, any non-adaptive sys-
tematic data structure for the permutation inversion requires query time at least
Ω(log n/ log log n) even if it uses linear space. Let D be a data structure for in-
verting permutations of a linear space s = εn log n, for sufficiently small constant
ε < 1, with query time t = tInv(s). Recall that tInv(s) is a query time of the opti-
mal non-adaptive systematic data structure for the permutation inversion using
space s. From D we construct a directed acyclic network R = (G, c, (si, ti)i∈[n])
and an encoding scheme of a coding rate log n. By Conjecture 4.1 we get that
the flow rate of un(R) = (Ḡ, c, (si, ti)i∈[n]) is log n as well. We prove that there
are many source-target pairs of distance at least Ω(logt n). Since the number of
edges of Ḡ will be O(tn) and flow rate of un(R) is log n, we are able to derive a
lower bound t ≥ Ω(log n/ log log n).

We will design the network based on the probe graph of the data structure. By
the probe graph of the data structure, we understand a graph with n input vertices
corresponding to possible oracle probes and n output vertices corresponding to
possible data structure queries. Each query vertex is connected to the vertices of
oracle probes executed by the data structure when answering that query. Here,
we use the non-adaptivity of the studied data structures as the probe graph
does not depend on the stored data but only on the data structure itself. Our
construction will utilize two copies of the probe graph connected in a sequence.
The network will have input vertices s0, . . . , sn−1 and output vertices u0, . . . , un−1
where each target ti is set to ui+b mod n for a suitable constant b. The input
vertices s0, . . . , sn−1 correspond to the oracle vertices of the first copy of the
probe graph. (See Fig. 4.1 for an illustration.)

We will feed distinct values x0, . . . , xn−1 ∈ [n] to the input vertices which
then send them to the query vertices of the first copy of the probe graph. Values
x0, . . . , xn−1 define a permutation f(i) = xi. Each query vertex j of the first
copy of the probe graph can determine f−1(j) if it is provided with the advice
string ãf of the data structure corresponding to f . (We will fix the most common
advice string ãf and restrict ourselves to inputs x0, . . . , xn−1 consistent with it.)
Each query vertex j can also determine the value of a newly defined function
h(j) = f−1(j)+b which it sends along its outgoing edges. The second copy of the
data structure serves to invert the function h similarly to inverting f . The oracle
vertices of the second copy of the probe graph coincide with the query vertices of
the first copy. The query vertices of the second copy of the probe graph are the
output vertices u0, . . . , un−1. Hence, the query vertex i+b of the second copy will
be used to determine h−1(i + b) = xi. Thus, xi is directed from si to ti = ui+b.

The above construction gives a network R with an encoding scheme E that
is correct only on a substantial fraction of all possible inputs. Namely on inputs
x0, . . . , xn−1 ∈ [n] which are distinct and consistent with the fixed advices. This
might bring correlations among messages received by the sources. However, the

40

Network Coding Conjecture requires independently sampled messages for each
source. To overcome this issue we use the technique introduced by Farhadi et
al. [36] to augment R so that it admits an encoding scheme for independent
messages. We provide technical details next.

Let R = (G, c, (si, ti)i∈[k]) be a directed acyclic network. Let each source re-
ceive a binary string of length r as its input message, i.e., each Wi = {0, 1}r. If we
concatenate all input messages wi we get a string of length r ·k, thus the set of all
possible inputs for an encoding scheme for R corresponds to the set I = {0, 1}rk.
We say an encoding scheme is correct on an input w̄ = (w0, . . . , wk−1) ∈ I if it is
possible to reconstruct all messages wi at appropriate targets. An (ε, r)-encoding
scheme is an encoding scheme which is correct on at least 2(1−ε)rk inputs in I.

We say a directed network R = (G, c, (si, ti)i∈[k]) is (δ, d)-long if for at least
δk source-target pairs (si, ti), it holds that distance between si and ti in un(G)
is at least d. Here, we measure the distance in the undirected graph un(G), even
though the network R is directed. The following lemma is implicitly used by
Farhadi et al. [36] and Afshani et al. [5].

Lemma 4.4 (Implicitly used in [36, 5]). Let R = (G, r, (si, ti)i∈[k]) be a (δ, d)-long
directed acyclic uniform network for δ > 5

6 and sufficiently large r ∈ R+. Assume
there is an (ε, r)-encoding scheme for R for sufficiently small ε. Then assuming
NCC, it holds that |E(G)|

k
≥ δ′ · d, where δ′ = δ−5/6

10 .

Now we are ready to prove a conditional lower bound for the permutation
inversion. For the proof we use the following fact which follows from well-known
Stirling’s formula:

Fact 4.5. The number of permutations [n]→ [n] is at least 2n log n−2n.

Theorem 4.2. Let ε > 0 be a sufficiently small constant. Assuming NCC, it
holds that tInv(εn log n) ≥ Ω(log n/ log log n).

Proof. LetD be the optimal data structure for the inversion of permutation on [n]
using space εn log n. We set t = tInv(εn log n). We will construct a directed acyclic
uniform network R = (G, r, (si, ti)i∈[n]) where r = log n. Let ε′ = 2 · ε + 2

q
+ 2

log n

for sufficiently large q so that we could apply Lemma 4.4. The network R will
admit an (ε′, r)-encoding scheme E. The number of edges of G will be at most
2tn and the network R will be (9

10 , d)-long for d = 1
2 logqt n. Thus, by Lemma 4.4

we get that
2t = 2tn

n
≥ Ω(logqt n),

from which we can conclude that t ≥ Ω(log n/ log log n). Thus, it remains to
construct the network R and the scheme E.

First, we construct a graph G′ which will yield the graph G by deleting some
edges. The graph G′ has three layers of n vertices: a source layer A of n sources
s0, . . . , sn−1, a middle layer M of n vertices v0, . . . , vn−1 and a target layer B of n
vertices u0, . . . , un−1. The targets t0, . . . , tn−1 of R will be assigned to the vertices
u0, . . . , un−1 later.

We add edges according to the data structure D: Let Qj ⊆ [n] be the set
of oracle probes which D makes during the computation of f−1(j), i.e., for each
i ∈ Qj, the query j probes the oracle f for f(i). As D is non-adaptive, the sets

41

Input messages from [n] x0 x1 xi xn−1

t

h−1(i+ b) = xi

s0 s1 si sn−1

t

v0

v1

vn−1

u0 un−1ui

A

B

M

u1

vi

ti = ui+b

si+b

vi+b

xi+b

f−1(i)

si sends f(i) = xi

vj sends h(j) = f−1(j) + b

Figure 4.1: A sketch of the graph G′ and encoding scheme E.

Qj are well-defined. For each j ∈ [n] and i ∈ Qj we add edges (si, vj) and (vi, uj).
We set a capacity of all edges to r = log n. This finishes the construction of G′,
see Fig. 4.1 for illustration of the graph G′.

The graph G′ has exactly 2tn edges. Moreover, the vertices of the middle
and the target layer have in-degree at most t as the incoming edges correspond
to the oracle probes made by D. However, some vertices of the source and the
middle layer might have large outdegree, which is a problem that might prevent
the network R to be (9

10 , d)-long. For example, the data structure D could always
probe f(0). Then, there would be edges (s0, vj) and (v0, uj) for all j ∈ [n], hence
all vertices would be at distance at most 4 in un(G′). Thus, we need to remove
edges adjacent to high-degree vertices. Let W ⊆ V (G′) be the set of vertices of
out-degree larger than qt. We remove all edges incident to W from G′ to obtain
the graph G. (For simplicity, we keep the degree 0 vertices in G). Thus, the
maximum degree of G is at most qt. Since the graph G′ has 2tn edges, it holds
that |W | ≤ 2

q
· n.

Now, we assign the targets of R in such a way that R is (9
10 , d)-long. Let Cv

be the set of vertices of G which have distance at most d from v in un(G). Since
the maximum degree of G is at most qt and d = 1

2 logqt n, for each v ∈ V (G),
|Cv| ≤ 2

√
n. In particular, for every source si it holds that |Csi

∩B| ≤ 2
√

n, i.e.,
there are at most 2

√
n vertices in the target layer B at distance smaller than d

from v. It follows from an averaging argument that there is an integer b such that
there are at least n− 2

√
n sources si with distance at least d from ui+b in un(G).

(Here the addition i + b is modulo n.) We fix one such b and set ti = ui+b. For n

large enough, it holds that n−2
√

n ≥ 9
10 ·n. Thus, the network R is

(︂
9
10 , d

)︂
-long.

It remains to construct the (ε′, r)-encoding scheme E for R (see Fig. 4.1 for
a sketch of the encoding E). Each source si receives a number xi ∈ [n] as an
input message. We interpret the string of the input messages x0, . . . , xn−1 as a
function. We define the function f : [n]→ [n] as f(i) = xi. We will consider only
those inputs x0, . . . , xn−1 which are pairwise distinct so that f is a permutation.

At a vertex vj of the middle layer M we want to compute f−1(j) using the
data structure D. To compute f−1(j) we need the appropriate advice string ãf

and answers to the oracle probes Qj. We fix an advice string ãf to some particular
value which will be determined later, and we focus only on inputs x0, . . . , xn−1
which have the same advice string ãf . In G′ the vertex vj is connected exactly

42

to the sources si for i ∈ Qj, but some of those connections might be missing in
G. Thus for each i such that si ∈ W , xi will be fixed to some particular value ci

which will also be determined later. Each source si sends the input xi along all
outgoing edges incident to si. Thus, at a vertex vj we know the answers to all f -
oracle probes in Qj. Recall that f(i) = xi and each xi for i ∈ Qj was either fixed
to ci or sent along the incoming edge (si, vj) ∈ E(G). We also know the advice
string ãf as it was fixed. Therefore, we can compute f−1(j) at every vertex vj.
Note that f−1(j) is the index of the source which received j as an input message,
i.e., if f−1(j) = i, then xi = j.

Now, we define another permutation h : [n]→ [n] as h(j) = f−1(j) + b where
the addition is modulo n. Since b is fixed, we can compute h(j) at each vertex
vj. The goal is to compute h−1(ℓ) at each vertex uℓ of the target layer. First,
we argue that h−1(i + b) = xi. The permutation f−1 maps an input message xi

to the index i. The permutation h maps an input message xi to the index i + b.
Thus, the inverse permutation h−1 maps the index i + b to the input message xi.
If we are able to reconstruct h−1(i + b) at the target ti = ui+b, then in fact we are
able to reconstruct xi, the input message received by the source si.

To reconstruct h−1(ℓ) at the vertex uℓ we use the same strategy as for recon-
structing f−1(j) at vertices vj. We use again D, but this time for the function
h. Again, we fix the advice string ãh of D, and we fix h(j) to some dj for each
vertex vj ∈ W . Each vertex vj sends the value h(j) along all edges outgoing from
vj. To compute h−1(ℓ) we need values h(j) for all j ∈ Qℓ, which are known to
the vertex uℓ. Again, they are either sent along the incoming edges or are fixed
to dj. Since the value of the advice string ãh is fixed, we can compute the value
h−1(ℓ) = xℓ−b at the vertex uℓ.

The network R is correct on all inputs x0, . . . , xn−1 which encode a permuta-
tion and which are consistent with the fixed advice strings and the fixed values
at the degree zero vertices. Now, we argue that we can fix all the values so that
there will be many inputs consistent with them. By Fact 4.5, there are at least
2(n log n)−2n inputs x0, . . . , xn−1 which encode a permutation. In order to make R
work, we fixed the following values:

1. Advice strings ãf and ãh, in total 2ε · n log n bits.

2. An input message ci for each source si in W and a value dj for each vertex
vj in W . Since |W | ≤ 2

q
· n and ci, dj ∈ [n], we fix 2

q
· n log n bits in total.

Overall, we fix at most (2ε + 2
q
) ·n log n bits. Thus, the fixed values divide the in-

put strings into at most 2(2ε+ 2
q

)·n log n buckets. In each bucket all the input strings
are consistent with the fixed values. We conclude that there is a choice of values
to fix so that its corresponding bucket contains at least 2(1−2ε− 2

q
− 2

log n
)·n log n =

2(1−ε′)·n log n input strings which encode a permutation. We pick that bucket and
fix the corresponding values. Thus, the scheme E is (ε′, r)-encoding scheme,
which concludes the proof.

43

4.4.2 Polynomial Evaluation and Interpolation
In this section, we prove Theorem 4.3. The proof follows the blueprint of the
proof of Theorem 4.2. The construction of a network R from a data structure is
basically the same. Thus, we mainly describe only an (ε′, r)-encoding scheme for
R.

Theorem 4.3. Let F be a field and n be a divisor of |F| − 1. Let s = εn log |F|
for a sufficiently small constant ε > 0. Then assuming NCC, it holds that

tFEval(s), tFInterp(s) ≥ Ω(log n/ log log n).

Proof. Let D be the optimal non-adaptive systematic data structure for the
evaluation of polynomials of degree up to n − 1 over F and using space s =
εn log |F|. We set t = tFEval(s), r = log |F| and ε′ = 2ε + 2

q
for sufficently large q.

Again, we will construct a network R = (G, r, (si, ti)i∈[n]) from D. To construct
an (ε′, r)-encoding scheme for R, we use entries of FFFT, i.e., we will evaluate
polynomials of degree at most n − 1 in powers of a primitive n-th root of the
unity. Thus, we fix a primitive n-th root of unity σ ∈ F, which we know exists,
as discussed in Section 4.2.2.

We create a network R from D in the same way as we created in the proof of
Theorem 4.2. By Lemma 4.4 we are able to conclude that t ≥ Ω(log n/ log log n).
First, we create a graph G′ of three layers A = {s0, . . . , sn−1}, M = {v0, . . . , vn−1}
and B = {u0, . . . , un−1} and we add 2tn edges to G′ according to the probes of D
– on the vertex vj we will evaluate a polynomial in a point σj and on the vertex
uj we will evaluate a polynomial in a point σ−j. Then, we create a graph G from
G′ by removing edges incident to vertices in a set W , which contains vertices of
degree higher than qt. Finally, we set a shift b ∈ [n] and set ti = ui+b in such a
way that the network R is (9

10 , d)-long for d = 1
2 logqt n.

Now, we desribe an (ε′, r)-encoding scheme E for R using D. Each source si

receives an input message αi ∈ F which we interpret as coefficients of a polynomial
p ∈ F[x] (that is p(x) = ∑︁

i∈[n] αix
i). Each source si sends its input message αi

along all outgoing edges from si. Each vertex vj computes p(σj) using D. Again,
we fix the advice string ãp and the input messages αi for the sources si in W .
Each vertex vj computes a value h(j) = p(σj) ·σjb and sends it along all outgoing
edges from vj. We define a new polynomial p′(x) = ∑︁

j∈[n] h(j)xj. We fix the
advice string ãp′ and the values h(j) for each vertex vj ∈ W . Thus, each vertex
uℓ can compute a value p′(σ−ℓ). We claim that p′(σ−ℓ)

n
= αℓ−b.

p′(σ−ℓ)
n

= 1
n

∑︂
j∈[n]

h(j)σ−ℓj = 1
n

∑︂
j∈[n]

p(σj)σjbσ−ℓj = 1
n

∑︂
j∈[n]

⎛⎝∑︂
i∈[n]

αiσ
ji

⎞⎠σjbσ−ℓj

= 1
n

∑︂
i∈[n]

αi

⎛⎝∑︂
j∈[n]

σjiσjbσ−ℓj

⎞⎠ = 1
n

∑︂
i∈[n]

αi

⎛⎝∑︂
j∈[n]

σj(i+b−ℓ)

⎞⎠
= α(ℓ−b mod n)

The last equality is by noting that∑︁j∈[n] σj(i+b−ℓ) = n for i = ℓ−b and 0 otherwise.
Therefore, at each target ti = ui+b we can reconstruct the input message αi. See
Fig. 4.2 for a sketch of the scheme E.

44

Input messages from F αi αn−1

t

s0 s1 si sn−1

t

v0

v1

vn−1

u0 un−1ui

A

B

M

u1

vi

ti = ui+b

si+b

vi+b

αi+b

p
(
σi
)

si sends αi

vj sends h(j) = p
(
σj
)
· σjb

α0 α1

p(x) =
∑

i∈[n] αi · xi

p′(x) =
∑

j∈[n] h(j)x
j

p′
(
σ−(i+b)

)
= αi

Figure 4.2: Sketch of the encoding scheme E.

Again, we can fix values of advice strings ãp and ãp′ (at most 2ε ·n log |F| fixed
bits), input messages αi for each si ∈ W and value of h(j) for each vj ∈ W (at
most 2

q
·n log |F| fixed bits) in such a way there is a set F of inputs (α0, . . . , αn−1)

consistent with such fixing and |F| ≥ 2(1−2ε− 2
q

)n log |F|. Therefore, the scheme E is
(ε′, r)-encoding scheme. This finishes the proof that tFEval(s) ≥ Ω(log n/ log log n).

Essentially, the same proof can be used to prove the lower bound for tFInterp(s).
Note that, the data structure D is used only for evaluating some polynomials in
powers of the primitive root σ, i.e., computing entries of FFFTn,σ(α0, . . . , αn−1).
However as discussed in Section 4.2.2, it holds that FFFTn,σ = n · FFFT−1

n,σ−1 .
Moreover, entries of FFFT−1

n,σ−1(β0, . . . , βn−1) can be computed by a data struc-
ture for the polynomial interpolation. Thus, we may replace both uses of the data
structure for the polynomial evaluation with a data structure for the polynomial
interpolation. Therefore, we can use a data structure for the interpolation as
D and with slight changes of R and E, we would get again an (ε′, r)-encoding
scheme.

45

5. Barrington Plays Cards

5.1 Introduction
A study of card-based protocols as a means for secure two-party computation
was initiated by den Boer [33]. In this scenario, we have two players – Alice and
Bob – who hold inputs x and y, respectively. Their goal is to securely compute
a given function f on those inputs. By secure computation, we mean that the
players learn nothing from observing the computation except for what is implied
by the output f(x, y). Den Boer introduced a model where the inputs x and y
are encoded by a sequence of playing cards and the players operate on the cards
to compute the function. They can use additional cards for computation. In
particular, den Boer showed how to securely compute AND of two bits using five
cards in total.

Crépeau and Kilian [30] improved this results. They represent each input bit
by two face-down cards: 1 is represented as ♡♣, and 0 as ♣♡. They provided
a secure protocol for AND which takes two bits b1 and b2 represented by two
face-down cards and outputs b1 ∧ b2 represented again by two face-down cards.
Since NOT can be obtained by swapping the two cards representing a given bit
this allows us to use their technique to compute any function. This allows us to
evaluate any Boolean circuit on the inputs by a protocol of length proportional
to the size of the circuit and using a number of auxiliary cards that corresponds
to the width of the circuit.

Nishida et al. [81] reduced the number of auxiliary cards to 6 for any Boolean
function. For most functions, the protocol will be of exponential length as it
essentially evaluates the DNF of f . Several other works studied the number of
cards necessary for computing various elementary functions such as AND and
XOR [39, 62, 59, 56, 81, 98, 78, 75, 77, 62, 2, 59].

Motivated by the question of what can be efficiently computed by such pro-
tocols and how many cards one needs to compute various functions, in this work,
we investigate secure efficient protocols that are protocols of polynomial length.
The result provided in this chapter is two-fold: We classify a large class of pro-
tocols with respect to the computational complexity of functions they compute,
and we propose other encodings of inputs that require fewer cards than the 2-card
representation. We summarize our results next:

1. We show that oblivious protocols of polynomial length that do not modify
their input (they are read-only) and use only a constant number of aux-
iliary cards compute precisely the functions in NC1, the class of functions
computed by Boolean circuits of logarithmic depth. (Alternatively, NC1 is
the class of functions computed by Boolean formulas of polynomial size.)
By oblivious protocol we mean a protocol whose actions depend only on
the current visible state.

2. Oblivious read-only protocols of polynomial length with a logarithmic num-
ber of auxiliary cards correspond to the class of functions computable by
polynomial-size branching programs. (This class is also known as L/poly,
the non-uniform version of deterministic log-space.)

46

3. We also investigate protocols that use a constant number of auxiliary cards
but are allowed to use the cards representing the input for their computation
provided that they guarantee that by the end of the computation the input
will be restored to its original value. We show that such protocols can
compute functions that are believed to be outside of NC1. For example,
they can compute languages that are complete for NL, the non-deterministic
log-space. Hence, read-only protocols are presumably weaker than protocols
that may modify their input.

4. We study alternative encodings of inputs that are more efficient than the
2-card encoding. We look at 1-card encoding where 1 is represented by ♡
and 0 by ♣. In this encoding, Alice and Bob need only one card per bit
to commit the bit. We show similar complexity results for this encoding
as for the 2-card encoding: read-only protocols with a constant number of
auxiliary cards are NC1, with a logarithmic number of cards it is the non-
uniform log-space, and if we allow using the input cards for computation
we get potentially more powerful protocols.
A disadvantage of the 1-card protocol is that it still needs a supply of n
cards ♡ and n cards ♣ to represent any n-bit input. Although, if one
restricted his attention to inputs that contain the same number of 1’s and
0’s, it would suffice to have n/2 cards ♡ and n/2 cards ♣. Such inputs form
a substantial fraction of all n-bit inputs, they are Θ(2n/

√
n) many.

5. We propose a new 1/2-card encoding which requires only n/2 cards ♡ and
n/2 cards♣ to represent any n-bit input. The 1/2-card encoding is obtained
from the 2-card encoding by removing from each pair of cards one card, in
total one half of the ♡-cards and one half of the ♣-cards. There is an empty
space left instead of each removed card. There is a way for each player to
encode his input so that the other player learns no information about the
opponent’s input. We show that using this encoding we can simulate any
read-only protocol that uses 2-card encoding. Hence, any NC1 function on
n bits can be securely computed using only n + O(1) cards, counting also
the input cards. We do not know how to securely perform protocols for
1/2-card encoding that would modify their input.

5.1.1 Previous Work
As mentioned above, a study of card-based protocols was initiated by den Boer [33]
who introduced a secure 5-card protocol for computing AND. However, this pro-
tocol does not produce output in a face-down 2-card format, thus it can not be
used for designing protocols for arbitrary function. Since then a lot of work was
done in improving AND protocols and other primitive functions. Crépeau and
Kilian [30] provided a 1-party card-based protocol where the player can pick a
random permutation π with no fixed point and the player has no information
about π. They introduced an AND protocol, which takes two bits b1, b2 rep-
resented in the 2-card format as input and outputs two cards which represent
b1 ∧ b2 in face-down 2-card format. They also introduced a protocol for copying
a bit in the 2-card format, which is used during the simulation of circuits. Their
protocols with a protocol for NOT (which is trivial) can be used for computing

47

any Boolean function f and the number of used cards is at most linear in the
size of a circuit (using AND and NOT gates) computing f . However, during the
computation, they use helping cards of other suits than ♣ and ♡. Niemi and
Renvall [79] improved it and they designed a protocol computing arbitrary func-
tion f which uses only cards of suits ♣ and ♡. They also introduced a protocol
to copy a single card with almost perfect security – the card suit is revealed only
with a small probability. Such protocol cannot exist with perfect security as was
proved by Mizuki and Shizuya [76]. The copying and AND protocols were further
improved and simplified in [98, 78, 75, 77, 62, 2, 59].

Nishida et al. [81] proved that any Boolean function f : {0, 1}n × {0, 1}n →
{0, 1} can be computed with 4n cards encoding the input and 6 additional helping
cards. Mizuki [74] proved that at most 2n + 2 is needed to compute AND of n
bits. Francis et al. [39] provided protocols and tight lower bounds on the number
of cards needed for computing any two-bit input two-bit output function. Other
lower bounds for AND of 2 bits and of n bits in various regimes were provided
by Koch et al. [62, 59] and by Kastner et al. [56].

The security of card-based protocols is provided by shuffling the cards – one
player shuffles the cards (applies some random permutation to them) in a way
so that the other player has no information about the new order of shuffled
cards. Koch et al. [62] provided a 4-card AND protocol. However, they used a
non-uniform distribution for picking a random permutation, which is difficult to
perform by humans. Nishimura et al. [82] suggested an “easy-for-human” proce-
dure how to apply a shuffling permutation picked from a non-uniform distribution
using envelopes.

Koch and Walzer [60] studied private function evaluation. In this setting,
Alice has an encoding of some program P which computes a function f . They
studied various models, thus the program P can be a Turing machine, RAM, a
circuit, or a branching program. Bob has an encoding of a string x and their
goal is to compute securely f(x). (Again, after the computation they know only
f(x) and they have no other information about each other input, i.e., Alice has
no other information about x and Bob has no other information about f .) They
proved that such universal computation exists for those models. They did not
study the complexity of such simulations. Whereas, we study the complexity of
computing a function f when the input to f is divided between Alice and Bob.

One can distinguish two types of attack.

1. Passive: honest-but-curious player – she follows the protocol but she wants
to retrieve as much information as possible about the other player input.

2. Active: malicious player – she can deviate from the protocol.

Koch and Walzer [61] proved that if a passive-secure protocol Π uses only uni-
form closed shuffles (each shuffling permutation is picked uniformly from some
permutation group) then the protocol Π can be transformed into an active-secure
protocol.

Organization. In the next section, we provide formal definitions needed to
state and prove our results. In Section 5.3, we prove the main result of this
chapter, i.e., characterization of the circuit class NC1 by card-based protocols. In

48

Section 5.4, we study connections between Turing machines and card-based pro-
tocols and differences between read-only and read-write protocols. In Section 5.5,
we study more efficient encodings than the 2-card encoding.

5.2 Preliminaries

5.2.1 Card-based Protocols
In this section, we define card-based protocols which securely compute some
Boolean function on a joint input of Alice and Bob. Alice gets an input x ∈ {0, 1}n

and Bob gets an input y ∈ {0, 1}n, and their goal is to compute f(x, y) for some
function f : {0, 1}n × {0, 1}n → {0, 1}, while not revealing anything about their
input to the other player. The protocol proceeds first by Alice and Bob com-
mitting their input into a sequence of cards, and then operating on the cards
together with some auxiliary cards. At the end of the protocol, the players learn
the output f(x, y).

In this section, we consider the usual 2-card encoding of the input, where
each input is represented as a sequence of cards, two cards per bit: value 1 is
represented by ♡♣ and value 0 is represented by ♣♡ where the cards are put
face-down on the table. Hence each player needs 2n cards to commit his input.
All the cards have the same back. In the beginning, face-down cards representing
the player inputs are in front of the players. Between them, there is a deck of s
prescribed auxiliary cards of ♡ and ♣. There is available some empty space on
the table to operate with the cards. We assume that the cards are placed on the
table in some specific positions (locations), numbered 1, . . . , m, where:

• 1, . . . , 2n are positions of Alice’s input cards,

• 2n + 1, . . . , 4n are positions of Bob’s cards,

• 4n + 1, . . . , 4n + s are the initial positions of the helping cards in the deck,

• 4n + s + 1, . . . , m are initially empty positions.

We call the positions 1, . . . , 4n as the input positions and the remaining positions
as the work space. We say a position is occupied if there is a card on it, otherwise,
it is empty. Let q = m − 4n denote the amount of the work space. We assume
q = O(s). Thus, there are 4n + s cards on the table and 4n + q = m positions.

The players can move their input cards and cards from the deck to the work
space and back. Formally, the basic actions which can be executed by the players
are:

Move(p, i, j): The player p moves a card from the position i to position j.

Shuffle(p, T, Γ): The player p applies a random permutation from Γ to the cards
on the table on positions T ⊆ {4n + 1, . . . , m}.

Turn(p, i): The player p turns the i-th card on the table face-up if it is face-down,
and vice versa.

49

The protocol specifies which action to take next based on the sequences of
visible states seen on the table so far. The current visible state of the table
is what an external viewer could observe, that is which positions are currently
occupied and what is the top of each card laying on the table. If there are c distinct
cards then there are at most (c + 2)m distinct visible states. Hence, based on the
sequence of visible states from the beginning of the game the protocol specifies
which action to take next or whether to end. In the end, the protocol specifies
which cards represent the output of the run of the protocol. (They might be face-
down.) We say a protocol Π computes a function f : {0, 1}n×{0, 1}n → {0, 1} if
for all inputs x, y ∈ {0, 1}n, on the inputs x and y the protocol outputs f(x, y).
The length of the protocol is the maximum number of actions executed by the
protocol over all inputs (x, y) ∈ {0, 1}n × {0, 1}n and all possible outcomes of
shuffling. We say that a protocol is oblivious if the action executed next depends
only on the current visible state and the number of actions taken so far.

The shuffling operation provides randomness for the execution of the protocol.
Hence, the sequence of visible states the protocol passes through is a random
variable. We will say that a protocol is secure if for any pair of inputs (x, y)
and (x′, y′) to Alice and Bob, where f(x, y) = f(x′, y′), the distribution of the
sequence of visible states of the protocol on inputs (x, y) and (x′, y′) is the same.
Notice, that this implies that neither of the players learns anything about the
input of the other player except for what is implied by f(x, y).

Often we will be interested in protocols that provide their output encoded in
face-down cards. In such a scenario we will require for the security of the protocol
that the distributions of visible states during the protocol will be identical for all
input pairs (x, y).

We say the protocol is robust if a cheating player, that is a player who deviates
from the protocol, is either caught by reaching an invalid visible state (where cards
have unexpected values or positions) or the distribution of visible states does not
leak any information about the other player input except for what would be leaked
by honest players. In particular, if say Bob is cheating and Alice is honest, for a
robust protocol we require that for any two inputs x, x′ of Alice and any input y
of Bob, where f(x, y) = f(x′, y), the distribution of the sequence of visible states
during the game on inputs (x, y) and (x′, y) is the same. We will be designing
only robust oblivious protocols.

We say the protocol is read-only if the value of cards placed on the input
positions 1, . . . , 4n is always the same whenever a position is occupied.

Let s-SP be the class of function families {fn : {0, 1}n × {0, 1}n → {0, 1}}n≥0
for which we have a sequence of secure read-only oblivious protocols, one for
each n, which are of length polynomial in n, with deck size s and work space
size 2s. (At the beginning the first s work space positions are occupied by the
deck of cards, and the remaining s positions are empty). We might allow s
to be a function of n. We define a class of secure polynomial-length protocols
SP = ⋃︁

s≥1 s-SP. That is, a function belongs to SP if it has polynomial length
protocols which use a constant number of auxiliary cards and constant size work
space.

50

5.2.2 Branching Programs
A branching program B is a directed acyclic graph G such that each vertex has an
out-degree either 2 or 0. The set of edges E of the graph G is split into two sets,
zero-edges E0 and one-edges E1, in such a way that every vertex v of out-degree 2
is incident to exactly one outgoing zero-edge and exactly one outgoing one-edge.
Each vertex of out-degree 2 is labeled by an index ℓ ∈ [n], by [n] we mean a set
{1, . . . , n}.

A branching program B is layered if the vertices are partitioned into layers
L1, . . . , Ld. The edges go only from a layer Li to a layer Li+1 (for all i < d).
Vertices of out-degree 0 are exactly vertices in the layer Ld. The number of layers
d is the length of B and the width w of B is the maximum size of its layers, i.e.,
w = maxi |Li|.

A layered branching program is oblivious if vertices in the same layer have
the same label. A branching program is a permutation branching program if each
layer has exactly w vertices and for every two consecutive layers Lj and Lj+1
zero-edges and one-edges form matching M0

j and M1
j , respectively. We can view

the matchings M0
j and M1

j as two permutations π0
j , π1

j : [w]→ [w]. Note that we
can rearrange all layers such that all permutations π0

j are identities.
One vertex of in-degree 0 is an initial vertex v̄. Some vertices of out-degree

0 are denoted as accepting vertices. The computation of a branching program B
on an input string x ∈ {0, 1}n proceeds as follows. It starts in the initial vertex
v̄ which is the first active vertex. Suppose v is an active vertex and ℓ ∈ [n] is the
label of v. If the out-degree of v is 2, then the next active vertex is determined by
the zero- or one-edge according to the value of xℓ. More formally, let e = {v, v′}
be the edge in Exℓ

. Then, the vertex v′ is the new active vertex. We repeat
this procedure until a vertex u of out-degree 0 is reached. An input x ∈ {0, 1}n

is accepted if and only if u is an accepting vertex. The branching program B
computes a function f : {0, 1}n → {0, 1} if it accepts exactly those x ∈ {0, 1}n

such that f(x) = 1.
The class of functions PB contains all the functions computable by layered

branching programs of constant width and polynomial length. A permutation
branching program is restricted if it has exactly one accepting vertex vacc and ex-
actly one rejecting vertex vrej in the last layer Ld. The computation of a restricted
permutation branching program ends always in the vertices vacc or vrej and it ac-
cepts an input if it ends in the accepting vertex vacc. A class w-PBP contains
Boolean functions which are computable by restricted permutation branching
programs of width w and polynomial length. We use the famous Barrington’s
theorem [13], which says that constant-width (permutation) branching programs
are as powerful as NC1-circuits.

Theorem 5.1 (Barrington [13]). PB ⊆ NC1 ⊆ 5-PBP.

5.3 Simulating Branching Programs
In this section, we prove one of the main theorems of this chapter that read-only
oblivious protocols of polynomial length that use constant work space compute
the same functions as polynomial-size constant-width branching programs.

51

Theorem 5.2. SP = NC1.

To simulate a branching program by SP-protocol we need an oblivious imple-
mentation of copying a bit in the committed 2-card format. We use a procedure
by Crépeau and Kilian [30]. It is straightforward to implement the procedure
to be oblivious. We state the proof of the following theorem for the sake of
completeness.

Theorem 5.3. There is a secure oblivious protocol that takes a bit b in 2-card
representation placed in the work space and produces two 2-card copies of the bit
in the work space. The protocol needs an auxiliary deck with three cards ♡ and
three ♣ with the same back as the input bit.

Proof.

1. Alice arranges the cards from the auxiliary deck face-up to create the fol-
lowing configuration.

? ?⏞⏟⏟⏞
b

♡♣♡♣♡♣

2. She turns the last six cards. Both, Alice and Bob, apply a random cyclic
shift (denoted by ⟨, ⟩) to them.

? ?⏞⏟⏟⏞
b

⟨ ? ?⏞⏟⏟⏞
b′

? ?⏞⏟⏟⏞
b′

? ?⏞⏟⏟⏞
b′

⟩

3. They apply a random cyclic shift to the first four cards.

⟨ ? ? ? ? ⟩ ? ?⏞⏟⏟⏞
b′

? ?⏞⏟⏟⏞
b′

4. She turns the first four cards face-up.

(a) If the sequence is alternating (i.e., ♡♣♡♣ or its shift) then b = b′.
Thus, the last 4 cards represent two copies of b.

♡♣♡♣ ? ?⏞⏟⏟⏞
b

? ?⏞⏟⏟⏞
b

(b) Otherwise (i.e., ♡♣♣♡ or its shift) then b = 1 − b′. Thus, the last 4
cards represent two copies of negation of b. In that case, she switches
the fifth with the sixth card and the seventh with the eighth card to
represent two copies of b as well.

♡♣♣♡ ? ?⏞⏟⏟⏞
1−b

? ?⏞⏟⏟⏞
1−b

Alice and Bob might want to turn over and shuffle the first four left-over
auxiliary cards after step 4. The last four cards represent two copies of b
face-down in the 2-card format. To make the protocol oblivious we must
implement both 4.a) and 4.b) by the same number of actions. To do so we
include additional actions in 4.a) which have no effect such as shuffling a
single card.

52

The only step where Alice or Bob can gain some information about b is Step
4, when Alice turns some cards. However, the cyclic shifts in Steps 2 and 3 were
done by both players. Thus, Alice reveals the alternating sequence (♡♣♡♣) in
Step 4 with the probability exactly 1

2 (independently on the value of b) even if
one of the players would be cheating. Thus, the protocol is secure.

To prove NC1 ⊆ SP we use as the first step Barrington’s theorem [13]. By
Barrington’s theorem, each function f : {0, 1}n × {0, 1}n → {0, 1} from NC1 can
be computed by a polynomial length width-5 restricted permutation branching
program. We will build a protocol that simulates the actions of the branching
program layer by layer. We will keep track of the image of the initial vertex
of the branching program. For that, we will use five cards ♡♣♣♣♣, where the
position of ♡ corresponds to the image of the initial vertex (the active vertex),
and we will apply the permutations prescribed by the branching program on those
five cards. If the input variable assigned to a particular level of the branching
program is set to 1 we are expected to perform the permutation otherwise we are
supposed to do nothing, i.e., apply the identity permutation. Any permutation
can be decomposed into a sequence of simple transpositions (swaps) so we will
use swaps conditioned by the input variable to either permute the five cards or
leave them the way they are. We will implement the following primitive: Alice
and Bob want to conditionally swap two cards α, β according to the value of bit
b represented in the face-down 2-card form in the work space without revealing
the value of b. They also want to make sure that if b = 1 the swap occurs and if
b = 0 the swap does not occur.

Theorem 5.4. Let α̃, β̃ be two sequences of face-down cards of the same length in
the work space, and let γ δ be a face-down 2-card representation of b in the work
space. There is a secure oblivious protocol such that during the protocol players
swap the sequences α and β if and only if b = 1. The protocol uses two auxiliary
cards ♣.

Proof. The swapping protocol works as follows.

1. Alice rearranges the input cards together with two auxiliary face-up cards
♣ as follows:

♣γ α̃ ♣δ β̃

Thus, if b = 0 we have ♣♣α̃♣♡β̃ and if b = 1 we have ♣♡α̃♣♣β̃. The
players do not know which situation are they in.

2. Both, Alice and Bob, apply a random cyclic shift to the cards, e.g.:

α̃ ♣δ β̃ ♣γ

3. Alice turns the cards γ and δ representing b face-up. She knows what cards
to turn, as the cards γ and δ are preceded by ♣ face-up. At the end she
reorders the sequence (keeping the cyclic order) so that ♣♣ are the first
cards, e.g.:

α̃♣♡β̃♣♣ → ♣♣α̃♣♡β̃

53

If b = 0 then γδ = ♣♡ and the sequences α̃β̃ are not swapped. On the
other hand if b = 1 then γδ = ♡♣ and the sequences are swapped.

Note that the cards in α̃ and β̃ are face-down during the whole protocol. It is
also clear that this is a robust protocol, and it can be implemented obliviously.
In Step 3 the cards δ and γ representing the bit b are revealed. However, because
of random cyclic shifts in Step 2 (again done by both players), these cards are
in the order ♡♣ with probability 1

2 , independently of the value of b. Thus the
swapping protocol is secure.

Remark. We point out that there is a more efficient swap protocol that does not
use any auxiliary card. In step 2 Alice and Bob could perform a random bisection
cut introduced by Mizuki and Sone [78]. During the random bisection cut, they
split the deck into two halves of the same number of cards and then they swap
them or not (at random). Thus, in step 3 of the swap protocol, they would know
which cards they should turn, even without the face-up ♣ cards. Mizuki and
Sone [78] also introduced a more efficient copy protocol (it uses 6 cards instead
of 8) but it also uses the random bisection cut. We prefer the standard random
cut as it is easier to cheat during the random bisection cut.
Now, we prove the first inclusion of Theorem 5.2.

Theorem 5.5. 5-PBP ⊆ SP.

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function in 5-PBP. Then,
the function f can be computed by a branching program P with the following
properties:

1. Each layer has exactly 5 vertices. The input vertex is the first vertex in the
first layer. The computation ends either in the accepting vertex vacc or in
the rejecting vertex vrej.

2. The permutation from each layer i to the layer i + 1 corresponding to 0 is
the identity.

Alice and Bob represent the first layer as ♡♣♣♣♣, each card represents one
vertex in the layer. The card ♡ represents the active vertex in the layer (the initial
vertex in the first layer). We call these 5 cards the program cards. Alice and Bob
put the program cards in the work space and turn them face-down. Alice and
Bob simulate the program P layer by layer. They apply permutations determined
by P to the program cards according to the player’s input bits. Suppose we have
a representation of the active vertex in the i-th layer and we want to calculate
the active vertex at the (i + 1)-th layer. Without loss of generality the label of
the i-th layer is Alice’s bit xℓ (otherwise the roles of Alice and Bob are reversed).
Thus, we want to apply some permutation ρi ∈ S5 to the program cards if xℓ = 1
and keep the order of the program cards if xℓ = 0.

We decompose the permutation ρi into transposition τ1 ◦ · · · ◦ τr. For j =
1, . . . , r, Alice will apply the transposition τj to the program cards. She runs the
protocol Γ1 of Theorem 5.3 to get cards γ, δ representing her bit xℓ in the work

54

space. More formally, after the execution of Γ1, there are two pairs of cards such
that each pair represent the bit xℓ in the 2-card format. She puts one pair back
to the input positions, i.e., the protocol Π is indeed read-only. We denote the
cards of the second pair as γ and δ. Alice will use them for a conditional swap.
She runs the protocol Γ2 given by Theorem 5.4 (applied to the cards γ, δ and to
the two program cards which should be affected by the transposition τj). That
is, Alice swaps the two cards that τj is acting on if and only if xℓ = 1. After
applying this procedure for all transpositions τ1, . . . , τr, the permutation ρi got
applied to the program cards if and only if xℓ = 1 (otherwise the order of the
program cards does not change).

Alice and Bob repeat this procedure for each layer of the branching program.
Let α be the card representing the accepting vertex vacc and β be the card rep-
resenting the rejecting vertex vrej at the end of the simulation. The cards α, β
represent the output of the program. If the input is accepted, then the accepting
vertex vacc is active at the end of the simulation and thus the card α has suit ♡
and the card β has suit ♣. Thus, the cards α, β represent 1. On the other hand,
if the input is rejected, then the rejecting vertex vrej is active. Thus, the cards
α, β have suits ♣ and ♡, respectively, and they represent 0.

The protocol Π is clearly SP-protocol as the players only sequentially apply
the copying protocol Γ1 and the swapping protocol Γ2 to the program cards. We
claim the simulation protocol Π is secure. Both protocols Γ1 and Γ2 are secure.
The other helping cards which are not used only during a single run of Γ1 or Γ2
are exactly the program cards. They are placed face-up from the deck and then
turned face-down for the rest of the protocol. Thus, the program cards could only
reveal the output f(x, y) at the end of the protocol (if they are turned face-up)
and no other information. Therefore, we conclude that protocol Π is secure.

Now, we prove the opposite inclusion of Theorem 5.2.

Theorem 5.6. SP ⊆ PB.

Proof. Consider a family of functions
{︂
fn : {0, 1}n × {0, 1}n → {0, 1}

}︂
n≥0

for
which we have a sequence of secure read-only oblivious protocols, one for each
n, which are of length polynomial in n, with deck size s and work space size 2s.
Let c be the number of different cards used by the protocol. At any moment,
the work space can be in at most (2c + 1)2s different states which we call the
internal states of the protocol. For any n ≥ 1 we will build a width-(2c + 1)2s

branching program of the same length Tn as the protocol for fn. Each layer of
the branching program consists of vertices where each vertex corresponds to one
internal state of the protocol. We need to define edges between the layers of the
branching program.

Let v be a vertex at layer t ∈ {0, . . . , Tn− 1}. It corresponds to some internal
state which in turn determines a visible state that together with t determines the
action taken by the protocol at such a state. We define the edges based on the
type of that action. If the action is a move of a card from some input position
into the work space then the node v queries the value of the corresponding input
variable and the outgoing edges lead to nodes corresponding to internal states
that reflect a move of the card into the work space. If the action is a shuffle

55

operation then the node v queries variable x1 and irrespective of its value both
outgoing edges go to the node in the next layer corresponding to the internal
state obtained by applying one of the allowed permutations. (The particular
choice of the permutation does not matter.) Similarly, for a turn of a card or
a move of a card within the work space or out from the work space, the edges
will go into a node that reflects the internal state after the move. Note that
during an execution of a secure read-only protocol, the players never turn any
card at an input position. Thus, the suit of a turned card is always determined
by the current internal state. Therefore, we can add edges for a turn action
without querying any specific input bit. In the last layer, we designate vertices
that correspond to accepting states of the protocol as accepting all other nodes
will be rejecting.

It should be clear from the construction that the resulting branching program
computes fn and has the required properties.

Theorem 5.2 is a corollary of Theorems 5.5 and 5.6 and Barrington’s theorem
(Theorem 5.1).

5.4 Simulating Turing Machines
In this section, we will look at computation that obliviously and securely com-
putes on committed inputs in 2-card representation. The exact split of the input
between Alice and Bob is irrelevant in this section so we assume that the total
length of the input is n bits. The protocols are expected to preserve the commit-
ted inputs: Although they may be allowed to modify the committed input during
the computation, by the end of the computation the committed input must be
restored to its original form. The protocols do not leak any information about the
committed inputs except for what can be derived from the output cards if they
are inspected. The protocols can be carried out by either player. To guarantee
robustness and security shuffle operations should be always done by both players.
(We use only uniformly random shuffle and random cyclic shift so performing
them twice does not change their output distribution.)

Theorem 5.7. Let s(n) ≥ log n be a non-decreasing function. Let f be a function
computable by a polynomial-time Turing machine in space s(n). Then f is in
O(s(n))-SP.

Let SEL : {0, 1}3 → {0, 1} be the selection function that SEL(c, b, a) = a if
c = 0 and SEL(c, b, a) = b otherwise.
Proof. We describe the algorithm for the protocol in high-level form and leave
details of the construction to the interested reader. Let f be computable by
a Turing machine M . Without loss of generality, we assume M uses a binary
alphabet, on inputs of length n it uses work space exactly s(n) bits and computes
for t(n) steps. The output of M is determined by the first bit of its work tape.
We will simulate the computation of M step by step.

The protocol will use 8s(n) + 4 log n + O(1) auxiliary cards. Two blocks w
and w′ will represent 2s(n) bits, each, and two blocks p and j will represent log n

56

bits each. In addition to that there is a block q of O(1) bits, and some additional
auxiliary bits. We need a constant number of positions to be empty. All the bits
are encoded in the 2-card representation. The block w represents the content
of the work tape of M , 2 bits per tape cell, where the second bit indicates the
presence of the work tape head on that particular tape cell. The block p encodes
in binary the current position of the input head of M . The block q encodes the
internal state of M .

The protocol simulates one step of M as follows: first, it determines the value
b of the bit scanned by the input head, then it calculates into w′ the content of
the work tape of M after this step. Then, it updates the internal state, the input
head position p, and switches w′ and w.

To determine b the protocol looks at each input bit xi one by one and records
the one that has an index corresponding to p. Set b to 0. For i = 1, . . . , n, the
protocol copies xi into some work space b′, it sets j to represent i, obliviously
compares p and j while recording the result into c. (Comparing bit strings can
be done by an NC1 circuit so there is an oblivious protocol for that of poly-
logarithmic length.) From c, b and b′ we can calculate the new value of b by
evaluating SEL(c, b, b′). This can be done obliviously. After processing all the
input bits, b has the value of the currently scanned input bit.

Now, we can determine w′, the content of the work tape of M after this step of
the computation. We compute w′ cell by cell. The value of each cell is a function
of the input bit b, M ’s state q, and the previous content of the cell in w together
with the content of adjacent cells. Hence, the value of each bit of w′ is a function
of constantly many bits and can be computed obliviously.

After computing w′, we can also calculate d, the direction in which the input
head of M should move, and the new state q′ of M . This can be done by scanning
w for the work tape position, and recording the relevant information for q′ and d
when we pass over the current work cell similarly to determining the value of the
input bit b.

From p and d, we obliviously calculate the next position of the input head
into j. (Each bit of j can be computed by an NC1 circuit from p and d.) Finally,
we switch the contents of w and w′, p and j, and q and q′.

We repeat this procedure t(n) times. In the end, the first bit of w indicates
the output of M . As each step of the computation can be implemented securely,
obliviously, and robustly, we obtain a secure, oblivious, and robust protocol for
f that uses O(s(n)) work space and O(s(n)) auxiliary cards.

Remark. Note that in the proof of the previous theorem, the length of the protocol
corresponds to the time of the simulating Turing machine and we do not need
the assumption of the polynomial time for the simulation. Thus, for a function
f computable by a Turing machine in space s(n) and time t(n), we would get a
protocol computing f of length poly(t(n)) and using O(s(n)) auxiliary cards.

As the card-based protocols allow for non-uniformity by protocols using work
space of size O(log n) we can simulate not only log-space Turing machines but
also polynomial-size branching programs (the non-uniform log-space). The above
proof can be extended to Turing machines taking advice: the protocol can provide
the advice bit by bit during the phase when the input is scanned bit by bit to

57

determine b. (We assume that the advice is provided to the Turing machine on bit
positions with index > n. For those positions instead of copying the non-existent
input bits, the protocol hardwires the appropriate bit into b′. As the advice is
the same for each input, this can be done publicly.)

By essentially the same proof as Theorem 5.6 we can obtain a simulation of
oblivious, read-only secure protocols that use a logarithmic amount of work space
by branching programs of polynomial size. Let O(log n)-SP = ⋃︁

k(k +k log n)-SP.
We get:

Theorem 5.8. The class of functions computable by polynomial-size branching
programs equals to O(log n)-SP.

5.4.1 Read-write Protocols
So far we have looked only at read-only protocols. If we remove the condition
to be read-only we get a potentially larger class of functions computable by such
protocols. When the protocol is not read-only, we still require the protocol to
restore its input into the original state by the end of the computation. We also
require the protocol to be secure so not to leak any information about the input
except for what is implied by the protocol output cards.

We give examples of functions that can be computed by protocols modify-
ing their input which we conjecture are outside of the read-only protocol class
with similar bound on the work space. Proving this conjecture would amount to
separating NC1 from log-space, a major open problem in complexity theory.

Let s(n) be a non-decreasing function such that log n ≤ s(n) ≤ n/2 log∗ n.
Let g : {0, 1}n → {0, 1} be in NC1, and h : {0, 1}n−s(n) log∗ n → {0, 1} be a function
computable by a Turing machine in space O(s(n)) and polynomial time. Define
f : {0, 1}n → {0, 1} as follows:

f(x) =
{︄

g(x) if xn+1−s(n) log∗ n · · ·xn ̸= 0 · · · 0,
h(x1 · · ·xn−s(n) log∗ n) otherwise.

Theorem 5.9. The function f defined above is computable by secure robust obliv-
ious protocols of polynomial length that use a constant amount of work space.

Proof. The protocol for f proceeds as follows. It first computes the OR of the
input bits xn+1−s(n) log∗ n · · ·xn using a protocol for NC1 functions where the output
c of the protocol is encoded in the 2-card representation in its work space. Then
it computes the value g of g(x) encoded in 2-card representation in the work
space. Finally, it uses the cards representing input bits xn+1−s(n) log∗ n · · ·xn to
simulate the computation of a Turing machine for h as in the proof of Theorem 5.7.
The simulation is done so that if c = 1 then nothing is done to the input (the
simulation is vacuous) and if c = 0 the simulation is really happening. The
simulation uses the input bits xn+1−s(n) log∗ n · · ·xn to store w, w′, p and j (from
the simulation), everything else is done in the actual work space of constant size.
Whenever the simulation wants to write some value a into an input position used
for the simulation, it copies the value into the work space, it copies there the
current value d of the destination position, computes SEL(c, a, d), and replaces
cards in the destination by the output of SEL(c, a, d). (Hence, if c = 0 nothing

58

has happened.) Reading a value can be done by copying the particular bit into
the work space and then working with the copied cards. This way the input is
undisturbed if c = 1 and it is overwritten if c = 0. At the end of simulation, the
protocol copies the output bit h, which is the first bit of w into the actual work
space, and writes value 0 to all input bits xn+1−s(n) log∗ n · · · xn conditionally on
c = 0. (Bit values read from the storage, taking part in the vacuous computation,
will be the same throughout the computation. So the simulations of the NC1

circuits implementing various steps of the computation will be secure.)
Finally, the protocol computes SEL(c, h, g) which is the output of the pro-

tocol. All parts of the protocol can be done securely and obliviously. (This is
true also when c = 0 and the simulation of the Turing machine is bogus.) The
protocol restores its committed input by the end of the computation.

One can also use the technique of catalytic computation to construct protocols
for functions not know to be in NC1. Buhrman et al. [20, 25] show how to
use memory that contains some information for computation while restoring the
memory to its original content by the end of the computation. For example, they
can solve the connectivity on directed graphs this way, the problem CONN(G):
Given an n × n adjacency matrix of a directed graph G decide whether there is
a path from vertex 1 to vertex n. They present a polynomial-size program for
CONN(G), which uses 3n2 +1 work registers and n2 input registers, each holding
one bit of information. The program consists of instruction of the form

ri ← ri ⊕ u · v,

where u and v are arbitrary registers different from ri or constants 0 and 1. The
program is oblivious, so it is a straight line program consisting of such instruc-
tions. The program has the property that all registers are guaranteed to have the
initial value by the end of the computation except for one specified work register
which contains the output value. It is straightforward to implement each such an
instruction by secure and robust protocol since the instructions are computable
in NC1.

This allows to design an oblivious, secure protocol of polynomial length with
constant work space for a function f ′ : {0, 1}4n2 → {0, 1} that is defined as:

f ′(G1, G2, G3, G4) = 1

if and only if from the vertex 1 we can reach the vertex n in each of the graphs
represented by adjacency matrices G1, G2, G3 and G4. Such a function is unlikely
to be contained in NC1, as CONN(G) is known to be complete for nondetermin-
istic log-space computation. Hence, it is unlikely that protocols that are allowed
to modify their input could be simulated by read-only protocols using similar
resources.

59

5.5 More Efficient Input Encodings

5.5.1 1-Card Encoding
In this section, we consider other ways how Alice and Bob can commit their input
which use fewer cards. The first natural encoding is to represent each bit 1 by
face-down card ♡ and bit 0 by ♣. These cards would be stored in front of the
players in input positions 1, . . . , 2n. Whenever the players want to operate with
the committed bit they need to extend it to the 2-card representation.

There are two ways we know how to do it. Niemi and Renvall [79] gave
a protocol that is able to extend the bit without knowing its value. However,
there is a small probability of leaking the value of the bit being extended. The
probability is inversely proportional to the number of cards used for the protocol.
Hence, one would need a large number of helping cards in order to make sure
that the probability of leaking information is negligible. That would erase any
savings from the 1-card representation.

The other way which we use here is to allow the player who owns the particular
input bit to extend it using a designated deck of two face-down cards ♣ and ♡.
Once the bit is extended it can be copied by the protocol from Theorem 5.3,
the first card of the first copy can be put back in the input position, the second
card can be put back into the auxiliary deck, and the second copy can be used
for further computation. The auxiliary deck containing the same cards as earlier
should be shuffled by both players at the end of this procedure. The protocol is
robust since a player cheating by extending the input bit by a wrong card will be
caught in Step 4 of the copying protocol.

For this procedure, we need to augment our set of actions by the action of
extending a bit by a complementary card from a designated deck. This action
can be performed by shuffling the auxiliary deck, then peeking at the value of the
card we are extending, and selecting the complementary card by peeking at each
card in the deck.

With this operation in mind, we need to extend the definition of protocol
security. We say a protocol is secure from Alice if for any pair of inputs (x, y) and
(x, y′) to Alice and Bob, the distribution of the sequence of visible states of the
protocol together with the sequence of cards seen by Alice while peeking at them
during the extension action on inputs (x, y) and (x, y′) is the same. Similarly,
the protocol is secure from Bob if for any pair of inputs (x, y) and (x′, y) to Alice
and Bob, the distribution of visible states and cards peeked at by Bob will be the
same on both inputs (x, y) and (x′, y). The protocol is secure if it is secure from
both Alice and Bob.

Using the extension action we can perform all read-only protocols that used
the 2-card bit commitment of inputs even for inputs committed in 1-card repre-
sentation. They will be secure as long as the player performing each extension is
the owner of the input bit as seeing his/her input bits does not affect the security
definition. Hence, the power of the model stays essentially the same with this
modification.

Security becomes more of an issue for protocols that are allowed to modify
their inputs. Yet, we can prove a result similar to Theorem 5.9 for slightly mod-
ified function f ′. Let g : {0, 1}n → {0, 1} be in NC1, and h : {0, 1}n−s(n) log∗ n →

60

{0, 1} be a function computable by a Turing machine in space O
(︂
s(n)

)︂
and poly-

nomial time, where log n ≤ s(n) ≤ n/2 log∗ n. Define f ′ : {0, 1}n → {0, 1} as
follows:

f ′(x) =
{︄

g(x) if xn+1−s(n) log∗ n · · · xn ̸= 0101 · · · 01,
h(x1 · · ·xn−s(n) log∗ n) otherwise.

We assume s(n) log∗ n is even, and the first half of xn+1−s(n) log∗ n · · ·xn is held
by Alice and the other half by Bob. The other bits can be split between the
players arbitrarily.

Theorem 5.10. The function f ′ defined above is computable by secure robust
oblivious protocols of polynomial length that use a constant amount of work space
and 1-card encoding of input bits.

Proof. The protocol for f ′ proceeds similarly to the one in Theorem 5.9. It
first verifies whether the input bits xn+1−s(n) log∗ n · · ·xn differ from 0101 · · · 01
(assuming their number is even) using protocol for NC1 functions. The output c
of the verification is encoded in 2-card representation in the work space. Then,
the protocol computes the value g of g(x) encoded in the 2-card representation
in the work space. Up until this point, we use the protocol described above to
extend input bits into 2-card representations by the player who owns the input
bit.

Now we want to use the cards representing input bits xn+1−s(n) log∗ n · · ·xn to
simulate computation of a Turing machine M for computing

h = h(x1, . . . , xn−s(n) log∗ n)

as in the previous proofs. We will use these input cards for storage when c = 0
and when c = 1 we will keep them intact. In the former case, we will eventu-
ally reset the input bits/cards to the initial state. Let I be positions of cards
which represent bits x1 · · ·xn−s(n) log∗ n at the beginning of the protocol. Thus,
the cards on the positions I represent (in the 1-card encoding) the input for M .
These cards will be in a read-only regime during the whole computation. Let J
be the positions of cards representing xn+1−s(n) log∗ n · · ·xn. The cards on J will
represent in 2-card encoding the content of tapes of M during the computation.
Thus, |J | = s(n) log∗ n but the cards on J will represent 1

2s(n) log∗ n bits. As
xn+1−s(n) log∗ n · · ·xn = 0101 · · · 01 (if c = 0), the cards on J represent 1

2s(n) log∗ n
zeros at the beginning of the protocol.

The simulation proceeds in a similar way as the simulation in proof of Theo-
rem 5.9. For reading bits from I that encode the input bits to M we use the same
1-card extension protocol as above to copy them into work-space. Now, we need
procedures that will read and write bits in 2-card representations from positions
J . However, if c = 1 some two consecutive positions would not represent a bit
correctly (the two cards on them would have the same suit). The read/write pro-
cedures need to work and be secure even in this case. The players cannot simply
inspect the cards on positions J because they may represent some intermediate
results of the computation.

First, we describe how to read a bit b encoded in J . We want to create a 2-
card representation of bit b in work space if c = 0 or a valid 2-card representation

61

of some bit if c = 1. The bit b is represented by 2 cards α, β on positions in J .
Note that α and β can be of the same suit if c = 1. Suppose Alice owns the
positions in J representing the bit b, the case of Bob’s positions is symmetric.
First, Alice will add complementary cards to α and β as follows. Alice prepares
the sequence: ♣♣α♣♡β, then she turns the second and fifth card face-down to
get a sequence

♣?α♣?β.

Bob shuffles the six cards cyclically at random. Now, Alice extends the card
preceding each ♣ that is face-up (cards α and β) by a complementary card to
the right taken from an auxiliary deck. Alice sees the suit of the cards α and
β during this action but she does not know their actual order. Bob shuffles the
cards cyclically again and turns face-up the cards following the two ♣ that are
face-up. Now, by a cyclic shift, they rearrange the cards so that they look like

♣♣αα♣♡ββ,

where α and β are cards complementary to α and β, respectively. They can copy
each of the card pairs α, α and β, β to verify that Alice used complementary cards
and the pairs α, α and β, β indeed represent two bits in 2-card encodings.

By following this protocol, Alice learns whether the two cards α, β have the
same suit or are distinct. If the suits are the same she also learns the suit.
However, in that situation, c = 1 and she already knew all this information. In
the later case, she knows that the bits at those input positions are distinct, but
she knew that already. She does not learn their relative order because of the
shuffle by Bob. Thus, she does not know whether they were altered since the
beginning of the protocol or not.

To finish the read procedure, Alice copies the pair α, α (by the protocol of
Theorem 5.3) to get two copies represented by cards α′, α′, α′′, α′′. She returns
the cards α′′ and β back to the positions in J from which she moved the cards α
and β at the beginning. The cards α′ and α′ are used further in the computation.
Other cards (α′′, β) are moved back to the auxiliary deck. If the cards α and β
have different suits then the cards α′, α′ represent the bit b, as the card α and
α′ have the same suit. If the cards α and β have the same suit then the cards
α′, α′ are a valid representation of some bit b′. However, in that case c = 1
and the value of b′ is irrelevant for the computation. Bit values read from the
storage, taking part in the bogus computation, will be consistent throughout the
computation. Thus, the simulations of the NC1 circuits implementing various
steps of the computation are secure.

Now, we describe how to store a bit in 2-card encodings on to some positions
in J . Again, suppose we want to store a bit b on to positions owned by Alice
and occupied by cards γ1 and γ2. Let α and β be cards representing b. We want
a procedure that will do the following. If c = 0 then the cards γ1 and γ2 are
replaced by cards of the same suits as α and β, respectively. Otherwise, if c = 1
then the new cards need to have the same suits as γ1 and γ2. First, Alice will add
complementary cards to γ1 and γ2 to get a sequence γ1, γ1, γ2, γ2 (she proceeds in
the same was as in the read procedure above). Let d1 and d2 be bits represented
by γ1, γ1 and γ2, γ2, respectively. She creates two copies of b, negates the second
one, and computes a1 = SEL(c, b, d1) and a2 = SEL(c, 1 − b, d2). Let δ1, δ1 and
δ2, δ2 be cards representing a1 and a2 respectively. If c = 0 then the cards δ1, δ2

62

represent the bit b. If c = 1 then the cards δ1 and δ2 have the same suits as
the cards γ1 and γ2, respectively. Thus, Alice moves the cards δ1 and δ2 into the
positions of the cards γ1 and γ2 and moves the rest of the cards to the deck.

To avoid leakage of information from the way Alice picks the cards from the
auxiliary deck when picking a card of a particular suit, she proceeds as follows.
She knows how many cards of that suit are in the deck. Thus, she shuffles the
cards at random and then proceeds left to right to pick one of the cards of that
suit uniformly at random. To achieve that she picks each card of the desired suit
with probability 1/(k + 1), where k is the number of unseen cards of the desired
suit still in the deck. This process guarantees that Alice will pick a card from a
completely random position.

In this way the protocol can use xn+1−s(n) log∗ n · · ·xn to compute h = h(x).
After obtaining value h it outputs SEL(c, h, g).

Hence, also in the case of the 1-card representation of the input one can take
advantage of the input cards to compute functions that seem unattainable with
read-only protocols.

5.5.2 1/2-Card Encoding
In the 1/2-card encoding we represent value 1 by either ♡× or ×♣, and value
0 by either ♣× or ×♡, where × represents an empty position. To commit her
input Alice picks n/2 of her input bits, and for those input bits, she leaves the
empty spot × in the position of ♡, for the remaining bits she leaves the empty
spot in place of ♣ (in the 2-card encoding of the bit). This way, she uses exactly
n/2 cards ♣ and ♡ to commit her input. It is easy to verify that for each bit
there is exactly a 1/2 probability that the missing card will be on the left. Hence,
the positions of the missing cards do not leak any information about her input.
Bob proceeds in the same way to commit his input.

After committing their inputs they can run any read-only protocol similar to
the case of 1-card encoding. Whenever an input bit is needed it is copied into
a 2-card representation by essentially the same protocol as in the case of 1-card
encoding. This means that we need only n + O(1) cards to compute any NC1

function on n-bit inputs.
We do not know how to implement protocols that could modify their inputs.

Modifying an input bit would require either picking the empty spot in the repre-
sentation at random (which could lead to using substantially more cards of each
type) or reusing the cards that are there. In the latter case, we do not know how
to do it without leaking information.

63

Bibliography
[1] A. Abboud and V. V. Williams, Popular conjectures imply strong lower

bounds for dynamic problems, in Proceedings of the 55th FOCS, 2014.

[2] Y. Abe, Y.-i. Hayashi, T. Mizuki, and H. Sone, Five-card and proto-
col in committed format using only practical shuffles, in Proceedings of the
5th ACM on ASIA Public-Key Cryptography Workshop, 2018.

[3] H. Abusalah, J. Alwen, B. Cohen, D. Khilko, K. Pietrzak, and
L. Reyzin, Beyond hellman’s time-memory trade-offs with applications to
proofs of space, in Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part II, 2017.

[4] M. Adler, N. J. A. Harvey, K. Jain, R. Kleinberg, and A. R.
Lehman, On the capacity of information networks, in Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, 2006.

[5] P. Afshani, C. B. Freksen, L. Kamma, and K. G. Larsen, Lower
Bounds for Multiplication via Network Coding, in 46th International Collo-
quium on Automata, Languages, and Programming (ICALP 2019), 2019.

[6] M. Ajtai, A lower bound for finding predecessors in yao’s cell probe model,
Combinatorica, 8 (1988).

[7] A. Ambainis, H. Buhrman, W. Gasarch, B. Kalyanasundaram,
and L. Torenvliet, The communication complexity of enumeration,
elimination, and selection, Journal of Computer and System Sciences, 63
(2001).

[8] S. Arora and B. Barak, Computational Complexity: A Modern Ap-
proach, Cambridge University Press, 2009.

[9] G. Asharov, W.-K. Lin, and E. Shi, Sorting short keys in circuits of
size o (n log n), in Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2021.

[10] L. Babai, P. Frankl, and J. Simon, Complexity classes in communi-
cation complexity theory, in Proceedings of the 27th FOCS, 1986.

[11] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar, An
information statistics approach to data stream and communication complex-
ity, in Proceedings of the 43rd Symposium on Foundations of Computer
Science (FOCS), 2002.

[12] B. Barak, M. Braverman, X. Chen, and A. Rao, How to compress
interactive communication, in Proceedings of the 42nd Symposium on The-
ory of Computing (STOC), 2010.

64

[13] D. Barrington, Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in nc1, Journal of Computer and System
Sciences, 38 (1989).

[14] P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson, A strong
direct product theorem for corruption and the multiparty communication
complexity of disjointness, Computational Complexity, 15 (2006).

[15] A. Beimel, S. B. Daniel, E. Kushilevitz, and E. Weinreb, Choos-
ing, agreeing, and eliminating in communication complexity, Computa-
tional Complexity, 23 (2014).

[16] M. Ben-Or and P. Tiwari, A deterministic algorithm for sparse mul-
tivariate polynomial interpolation, in Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, 1988.

[17] M. Braverman and A. Rao, Information equals amortized communica-
tion, in Proceedings of the 52nd Symposium on Foundations of Computer
Science (FOCS), 2011.

[18] M. Braverman and O. Weinstein, A discrepancy lower bound for infor-
mation complexity, in Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, 2012.

[19] J. Brody and K. G. Larsen, Adapt or die: Polynomial lower bounds
for non-adaptive dynamic data structures, Theory Comput., 11 (2015).

[20] H. Buhrman, R. Cleve, M. Koucký, B. Loff, and F. Speelman,
Computing with a full memory: Catalytic space, in Proceedings of the Forty-
Sixth Annual ACM Symposium on Theory of Computing, 2014.

[21] A. Chakrabarti, R. Kondapally, and Z. Wang, Information
complexity versus corruption and applications to orthogonality and gap-
hamming, in Proceedings of the 16th RANDOM, 2012.

[22] A. Chattopadhyay, P. Dvořák, M. Koucký, B. Loff, and
S. Mukhopadhyay, Lower bounds for elimination via weak regularity, in
34th Symposium on Theoretical Aspects of Computer Science, STACS 2017,
March 8-11, 2017, Hannover, Germany, 2017.

[23] A. Chattopadhyay, J. Edmonds, F. Ellen, and T. Pitassi, A Little
Advice Can Be Very Helpful, in Proceedings of the 23rd SODA, 2012.

[24] M. Clausen, A. Dress, J. Grabmeier, and M. Karpinski, On zero-
testing and interpolation of k-sparse multivariate polynomials over finite
fields, Theoretical Computer Science, 84 (1991).

[25] R. E. Cleve, Methodologies for Designing Block Ciphers and Crypto-
graphic Protocols, PhD thesis, University of Toronto, 1989.

[26] J. W. Cooley and J. W. Tukey, An algorithm for the machine calcu-
lation of complex fourier series, Mathematics of computation, 19 (1965).

65

[27] S. Coretti, Y. Dodis, S. Guo, and J. Steinberger, Random oracles
and non-uniformity, in Advances in Cryptology - EUROCRYPT 2018 -
37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2018 Proceedings, 2018.

[28] H. Corrigan-Gibbs and D. Kogan, The function-inversion problem:
Barriers and opportunities, in Theory of Cryptography - 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Pro-
ceedings, Part I, 2019.

[29] T. M. Cover and J. A. Thomas, Elements of Information The-
ory (Wiley Series in Telecommunications and Signal Processing), Wiley-
Interscience, 2006.

[30] C. Crépeau and J. Kilian, Discreet solitary games, in Advances in
Cryptology — CRYPTO’ 93, 1994.

[31] I. Csiszar and J. Körner, Information theory: coding theorems for
discrete memoryless systems, Cambridge University Press, 2011.

[32] A. De, L. Trevisan, and M. Tulsiani, Time space tradeoffs for attacks
against one-way functions and prgs, in Advances in Cryptology – CRYPTO
2010, 2010.

[33] B. den Boer, More efficient match-making and satisfiability the five card
trick, in Advances in Cryptology — EUROCRYPT ’89, 1990.

[34] Y. Dodis, S. Guo, and J. Katz, Fixing cracks in the concrete: Ran-
dom oracles with auxiliary input, revisited, in Advances in Cryptology –
EUROCRYPT 2017, 2017.

[35] Z. Dvir, A. Golovnev, and O. Weinstein, Static data structure lower
bounds imply rigidity, in Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, 2019.

[36] A. Farhadi, M. Hajiaghayi, K. G. Larsen, and E. Shi, Lower bounds
for external memory integer sorting via network coding, in Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019.

[37] U. Feige, J. Killian, and M. Naor, A minimal model for secure com-
putation, in Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 1994.

[38] A. Fiat and M. Naor, Rigorous time/space trade-offs for inverting func-
tions, SIAM Journal on Computing, 29 (1999).

[39] D. Francis, S. R. Aljunid, T. Nishida, Y.-i. Hayashi, T. Mizuki,
and H. Sone, Necessary and sufficient numbers of cards for securely com-
puting two-bit output functions, in Paradigms in Cryptology – Mycrypt
2016. Malicious and Exploratory Cryptology, 2017.

[40] A. Gál and P. B. Miltersen, The cell probe complexity of succinct data
structures, in Automata, Languages and Programming, 2003.

66

[41] J. v. z. Gathen and J. Gerhard, Modern Computer Algebra, Cam-
bridge University Press, 2013.

[42] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan, Bounds on the
efficiency of generic cryptographic constructions, SIAM Journal on Com-
puting, 35 (2005).

[43] O. Goldreich and R. Ostrovsky, Software protection and simulation
on oblivious rams, Journal of the ACM, 43 (1996).

[44] M. Göös, S. Lovett, R. Meka, T. Watson, and D. Zuckerman,
Rectangles are nonnegative juntas, in Proceedings of the 47th Symposium
on Theory of Computing (STOC), 2015.

[45] D. Grigoryev, M. Karpinski, and M. Singer, Fast parallel algorithms
for sparse multivariate polynomial interpolation over finite fields, SIAM
Journal on Computing, 19 (1990).

[46] M. Hellman, A cryptanalytic time-memory trade-off, IEEE Transactions
on Information Theory, 26 (1980).

[47] R. Impagliazzo and R. Paturi, On the complexity of k-sat, J. Comput.
Syst. Sci., 62 (2001).

[48] G. Ivanyos, M. Karpinski, M. Santha, N. Saxena, and I. E. Sh-
parlinski, Polynomial interpolation and identity testing from high powers
over finite fields, Algorithmica, 80 (2018).

[49] R. Jain and H. Klauck, The partition bound for classical communication
complexity and query complexity, in Proceedings of the 25th CCC, 2010.

[50] R. Jain, H. Klauck, and M. Santha, Optimal direct sum results for
deterministic and randomized decision tree complexity, Information Pro-
cessing Letters, 110 (2010).

[51] T. S. Jayram, R. Kumar, and D. Sivakumar, Two applications of
information complexity, in Proceedings of the 35th Symposium on Theory
of Computing (STOC), 2003.

[52] B. Kalyanasundaram and G. Schintger, The Probabilistic Commu-
nication Complexity of Set Intersection, SIAM Journal of Discrete Mathe-
matics, 5 (1992).

[53] M. Karchmer, E. Kushilevitz, and N. Nisan, Fractional covers
and communication complexity, SIAM Journal on Discrete Mathematics,
8 (1995).

[54] M. Karchmer, R. Raz, and A. Wigderson, Super-logarithmic depth
lower bounds via the direct sum in communication complexity, Computa-
tional Complexity, 5 (1995).

[55] M. Karchmer and A. Wigderson, Monotone circuits for connectivity
require super-logarithmic depth, SIAM Journal on Discrete Mathematics, 3
(1990).

67

[56] J. Kastner, A. Koch, S. Walzer, D. Miyahara, Y.-i. Hayashi,
T. Mizuki, and H. Sone, The minimum number of cards in practical
card-based protocols, in Advances in Cryptology – ASIACRYPT 2017, 2017.

[57] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chap-
man & Hall/CRC, 2007.

[58] K. S. Kedlaya and C. Umans, Fast modular composition in any char-
acteristic, in 2008 49th Annual IEEE Symposium on Foundations of Com-
puter Science, 2008.

[59] A. Koch, The landscape of optimal card-based protocols. Cryptology ePrint
Archive, Report 2018/951, 2018. urlhttps://eprint.iacr.org/2018/951.

[60] A. Koch and S. Walzer, Private function evaluation with cards. Cryp-
tology ePrint Archive, Report 2018/1113, 2018. https://eprint.iacr.
org/2018/1113.

[61] , Foundations for actively secure card-based cryptography, in 10th In-
ternational Conference on Fun with Algorithms, FUN 2021, May 30 to June
1, 2021, Favignana Island, Sicily, Italy, 2021.

[62] A. Koch, S. Walzer, and K. Härtel, Card-based cryptographic pro-
tocols using a minimal number of cards, in Advances in Cryptology – ASI-
ACRYPT 2015, 2015.

[63] G. Kol, S. Moran, A. Shpilka, and A. Yehudayoff, Direct sum fails
for zero-error average communication, in Proceedings of the 5th Innovations
in Theoretical Computer Science (ITCS), 2014.

[64] Y. Kun-Ko and O. Weinstein, An adaptive step toward the multiphase
conjecture, in 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, 2020.

[65] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge
University Press, 1996.

[66] K. G. Larsen, The cell probe complexity of dynamic range counting, in
Proceedings of the 44th STOC, 2012.

[67] , Higher cell probe lower bounds for evaluating polynomials, in Proceed-
ings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, 2012.

[68] K. G. Larsen, O. Weinstein, and H. Yu, Crossing the logarithmic
barrier for dynamic boolean data structure lower bounds, in Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
2018.

[69] T. Lee, A. Shraibman, and R. Špalek, A direct product theorem for
discrepancy, in Proceedings of the 23rd Conference on Computational Com-
plexity (CCC), 2008.

68

https://eprint.iacr.org/2018/1113
https://eprint.iacr.org/2018/1113

[70] Z. Li and B. Li, Network coding: The case of multiple unicast sessions, in
Proceedings of the 42nd Allerton Annual Conference on Communication,
Control, and Computing, 2004.

[71] P. B. Miltersen, The bit probe complexity measure revisited, in STACS
93, 1993.

[72] , On the cell probe complexity of polynomial evaluation, Theoretical
Computer Science, 143 (1995).

[73] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson, On data
structures and asymmetric communication complexity, in Proceedings of the
Twenty-Seventh Annual ACM Symposium on Theory of Computing, 1995.

[74] T. Mizuki, Card-based protocols for securely computing the conjunction of
multiple variables, Theoretical Computer Science, 622 (2016).

[75] T. Mizuki, M. Kumamoto, and H. Sone, The five-card trick can be
done with four cards, in Advances in Cryptology – ASIACRYPT 2012, 2012.

[76] T. Mizuki and H. Shizuya, A formalization of card-based cryptographic
protocols via abstract machine, International Journal of Information Secu-
rity volume, 13 (2014).

[77] , Practical card-based cryptography, in Fun with Algorithms, 2014.

[78] T. Mizuki and H. Sone, Six-card secure and and four-card secure xor,
in Frontiers in Algorithmics, 2009.

[79] V. Niemi and A. Renvall, Secure multiparty computations without com-
puters, Theoretical Computer Science, 191 (1998).

[80] N. Nisan, S. Rudich, and M. Saks, Products and help bits in decision
trees, SIAM Journal on Computing, 28 (1999).

[81] T. Nishida, Y.-i. Hayashi, T. Mizuki, and H. Sone, Card-based pro-
tocols for any boolean function, in Theory and Applications of Models of
Computation, 2015.

[82] A. Nishimura, Y.-i. Hayashi, T. Mizuki, and H. Sone, An imple-
mentation of non-uniform shuffle for secure multi-party computation, in
Proceedings of the 3rd ACM International Workshop on ASIA Public-Key
Cryptography, 2016.

[83] R. Panigrahy, K. Talwar, and U. Wieder, Lower bounds on near
neighbor search via metric expansion, in 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, 2010.

[84] M. Pătraşcu and E. D. Demaine, Tight bounds for the partial-sums
problem, in Proceedings of the 15th SODA, 2004.

[85] , Logarithmic lower bounds in the cell-probe model, SIAM Journal on
Computing, 35 (2006).

69

[86] N. Pippenger and M. J. Fischer, Relations among complexity mea-
sures, Journal of the ACM, 26 (1979).

[87] J. M. Pollard, The fast fourier transform in a finite field, Mathematics
of computation, 25 (1971).

[88] M. Pătraşcu, Towards Polynomial Lower Bounds for Dynamic Problems,
in Proceedings of the 42nd STOC, 2010.

[89] , Unifying the landscape of cell-probe lower bounds, SIAM J. Comput.,
40 (2011).

[90] R. Raz and A. Wigderson, Probabilistic communication complexity of
boolean relations, in Proceedings of the 30th Symposium on Foundations of
Computer Science (FOCS), 1989.

[91] A. A. Razborov, On the distributional complexity of disjointness, Theo-
retical Computer Science, 106 (1992).

[92] A. L. Selman, P-selective sets, tally languages, and the behavior of poly-
nomial time reducibilities on NP, in Proceedings of the 6th International
Colloquium on Automata, Languages and Programming (ICALP), 1979.

[93] J.-P. Serre, A course in arithmetic, Springer Science & Business Media,
2012.

[94] R. Shaltiel, Towards proving strong direct product theorems, in Proceed-
ings of the 16th Conference on Computational Complexity (CCC), 2001.

[95] A. Shamir, How to share a secret, Commununications of the ACM, 22
(1979).

[96] A. A. Sherstov, The communication complexity of gap hamming distance,
Theory of Computing, 8 (2012).

[97] A. Smoktunowicz, I. Wróbel, and P. Kosowski, A new efficient
algorithm for polynomial interpolation, Computing, 79 (2007).

[98] A. Stiglic, Computations with a deck of cards, Theoretical Computer
Science, 259 (2001).

[99] D. Unruh, Random oracles and auxiliary input, in Advances in Cryptology
- CRYPTO 2007, 2007.

[100] L. G. Valiant, Graph-theoretic arguments in low-level complexity, in
Mathematical Foundations of Computer Science 1977, 1977.

[101] L. G. Valiant, Exponential lower bounds for restricted monotone circuits,
in Proceedings of the fifteenth annual ACM symposium on Theory of com-
puting, 1983.

[102] E. Viola, On the power of small-depth computation, Foundations and
Trends in Theoretical Computer Science, 5 (2009).

70

[103] , The communication complexity of addition, Combinatorica, 35 (2015).

[104] , Lower bounds for data structures with space close to maximum imply
circuit lower bounds, Theory of Computing, 15 (2019).

[105] A. C. Yao, Some complexity questions related to distributive computing
(preliminary report), in Proceedings of the 11h STOC, 1979.

[106] A. C.-C. Yao, Coherent functions and program checkers, in Proceedings
of the Twenty-Second Annual ACM Symposium on Theory of Computing,
1990.

71

List of Publications
[1] Václav Blažej, Pavel Dvořák, and Michal Opler. Bears with hats and inde-

pendence polynomials, 2021.

[2] Pavel Dvořák, Michal Koucký, Karel Král, and Veronika Slívová. Data struc-
tures lower bounds and popular conjectures, 2021.

[3] Pavel Dvořák and Michal Koucký. Barrington plays cards: The complexity
of card-based protocols. In 38th International Symposium on Theoretical As-
pects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken,
Germany (Virtual Conference), 2021.

[4] Pavel Dvořák and Tomáš Valla. Automorphisms of the cube nd. Discrete
Mathematics, 344, 2021.

[5] Pavel Dvořák and Bruno Loff. Lower bounds for semi-adaptive data struc-
tures via corruption. In 40th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2020,
December 14-18, 2020, BITS Pilani, K K Birla Goa Campus, Goa, India
(Virtual Conference), 2020.

[6] Pavel Dvořák, Andreas Emil Feldmann, Ashutosh Rai, and Paweł Rzążewski.
Parameterized inapproximability of independent set in h-free graphs. In
Graph-Theoretic Concepts in Computer Science - 46th International Work-
shop, WG 2020, Leeds, UK, June 24-26, 2020, Revised Selected Papers, 2020.

[7] Václav Blažej, Pavel Dvořák, and Tomáš Valla. On induced online ramsey
number of paths, cycles, and trees. In Computer Science - Theory and Appli-
cations - 14th International Computer Science Symposium in Russia, CSR
2019, Novosibirsk, Russia, July 1-5, 2019, Proceedings, 2019.

[8] Pavel Dvořák and Dušan Knop. Parameterized complexity of length-bounded
cuts and multicuts. Algorithmica, 80, 2018.

[9] Pavel Dvořák, Dušan Knop, and Tomáš Toufar. Target set selection in
dense graph classes. In 29th International Symposium on Algorithms and
Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan,
2018.

[10] Pavel Dvořák, Andreas Emil Feldmann, Dušan Knop, Tomáš Masarík,
Tomaš Toufar, and Pavel Veselý. Parameterized approximation schemes
for steiner trees with small number of steiner vertices. In 35th Symposium
on Theoretical Aspects of Computer Science, STACS 2018, February 28 to
March 3, 2018, Caen, France, 2018.

[11] Pavel Dvořák, Eduard Eiben, Robert Ganian, Dušan Knop, and Sebastian
Ordyniak. Solving integer linear programs with a small number of global
variables and constraints. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, August 19-25, 2017, 2017.

72

[12] Arkadev Chattopadhyay, Pavel Dvořák, Michal Koucký, Bruno Loff, and
Sagnik Mukhopadhyay. Lower bounds for elimination via weak regularity.
In 34th Symposium on Theoretical Aspects of Computer Science, STACS
2017, March 8-11, 2017, Hannover, Germany, 2017.

[13] Pavel Dvořák and Tomáš Valla. On the computational complexity and strate-
gies of online ramsey theory. Electron. Notes Discret. Math., 49, 2015.

73

	Introduction
	Preliminaries
	Lower Bounds for Semi-adaptive Data Structures via Corruption
	Introduction
	Semi-adaptive Multiphase Problem

	Preliminaries
	Finding Large Almost Monochromatic Rectangles
	Applications

	Lower Bound for Elimination of Greater-Than via Weak Regularity
	Introduction
	The Elimination Problem
	Basic Observations
	Regularity

	Lower Bound for elim∘GTk from First Principles

	Network Coding Conjecture Implies Data Structure Lower Bounds
	Introduction
	Data Structure Problems
	Function Inversion
	Evaluation and Interpolation of Polynomials

	Network Coding
	NCC Implies Weak Data Structure Lower Bounds
	Function Inversion
	Polynomial Evaluation and Interpolation

	Barrington Plays Cards
	Introduction
	Previous Work

	Preliminaries
	Card-based Protocols
	Branching Programs

	Simulating Branching Programs
	Simulating Turing Machines
	Read-write Protocols

	More Efficient Input Encodings
	1-Card Encoding
	1/2-Card Encoding

	Bibliography
	List of Publications

