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Advanced methods of searching the
game tree of 3-dimensional Tic-Tac-Toe

Department of Applied Mathematics

Supervisor of the bachelor thesis: RNDr. Tomáš Valla, Ph.D.
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Introduction

Playing games has always been a pastime of the human race. Along with every
game comes a question: How to play the game? There are two approaches how
to answer this question. The first one is by experience. Usually when we play
a game repeatedly, we learn with some time how to play this game good. The
second approach is more formal. We can use mathematics to describe the rules
and try to find the properties of the game. Mathematicians usually study games,
where no randomness occurs, because the state of the game is determined only by
players’ moves. Classical game theory studies games with imperfect information.
However in this thesis we are interested in tic-tac-toe, which is a game for 2 players
with perfect information. These games are studied by combinatorial game theory.

For some simple games with small state space only paper and pen suffice to
find out if the first player can force the win. However, when the games are more
complex the paper and pen do not suffice and we need computers. Computers
are mainly used for 2 problems according to games: finding the winning strategy
or creating the artificial intelligence for the game. Actually these problems are
very similar, both are solved by searching algorithms. However, a lot of games
have huge state space and searching the whole state space for finding the winning
strategy would last very long. So AI searches only part of the state space and
selects the best ply with respect to the searched part of the state space.

Tic-tac-toe is one of the most famous games for two players. Even little
children play it, because it has very simple rules. The size of a basic board of
tic-tac-toe is 3× 3 and it is easy to find by case analysis that the game ends with
a draw, if both players play optimally. However when the size and dimension of
the game board are bigger, the manual case analysis is impossible.

We are interested if the first player can force the win in 3-dimensional tic-tac-
toe. In tic-tac-toe with the board 2×2×2 and 3×3×3 the first player can force
the win and it can be shown by simple case analysis. Hence the first non-trivial
size of the board is 4 and tic-tac-toe with board 4× 4× 4 is called Qubic. Upon
our knowledge, Qubic was solved twice in history by Oren Patashnik [5] in 1980
and by Louis V. Allis [1] in 1994. However, we are the first ones, as far as we
know, who used the parallel algorithm. We apply Pn-search as a single-thread
task and each starting position is solved in one thread. We found that parallel
algorithm is easy to implement and it gives quite good results.

Usually people are not interested how many winning strategies exist for the
first or second player, but only if a winning strategy exists. Therefore automor-
phisms are used very often, when a game is analyzed. All automorphisms for
Qubic were characterized by Rolland Silver [7] in 1967. When we analyzed the
5× 5× 5, we found that the group of automorphism of 5× 5× 5 is isomorphic to
the group of Qubic automorphisms. Hence we started to study automorphisms a
little bit more. Some people ask about the automorphisms of general tic-tac-toe.
We answer these questions and we characterized all automorphisms for tic-tac-toe
played in general cube with arbitrary length of edge and dimension.

This thesis was motivated by solving the game 5 × 5 × 5, which is an open
problem. Unfortunately we did not manage to solve this game. The game 5×5×5
has a much bigger state space than Qubic and also the algorithms which we used
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are not as efficient as for Qubic. Nonetheless, we still have two results:

• We propose an easy-implemented parallelization of Pn-search, when there
are more starting positions.

• We characterize all automorphisms of the combinatorial cube nd with the
multidimensional tic-tac-toe set of lines.

In the first chapter, we present positional games and tic-tac-toe, how we divide
the games and we also formalize the rules. Chapter 2 is about algorithms, which
we use for Qubic. In Chapter 3 we present our results of Qubic solving and how
we use parallelization. In the last chapter we characterize the automorphism for
general tic-tac-toe nd.
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1. Positional games

Games can be divided by many parameters like:

• Number of players

• If the game contains any random element

• Perfect/imperfect information, i.e. if players know the whole state of the
game or not

Positional games are games for two players with perfect information and no
random element. J. Beck [2] started to study positional games and he did a lot
of work in this theory. He defines the positional game as follows:

Definition 1.1. Let H be a finite hypergraph, then the game with following
rules is a strong positional game:

1. Two players alternately colour colourless vertices of the hypergraph, each
player by his own colour.

2. Each player colours exactly one vertex per ply.

3. If a player makes a monochromatic edge of the hypergraph, he wins and
the game ends.

4. If all vertices are coloured and no player has monochromatic edge, the game
ends with a draw.

To solve the strong positional game means to find who win the game—if the
first player can force the win or if the second player can force the draw.

Theorem 1.1 (Strategy stealing). The second player in strong positional game
cannot force the win.

Idea of Proof. For contradiction let us suppose that the second player can force
the win and he writes his strategy on some paper. Now suppose that the first
player steals this paper. If the first player makes his first ply randomly and then
he plays by the stolen winning strategy, he cannot lose, which is a contradiction.

The positional games are connected to Ramsey theory. Let H = (V,E) be the
hypergraph, such that for every vertex colouring with two colours, there exists a
monochromatic edge e ∈ E. We know that such hypergraphs exist by Ramsey
theory. It implies that a draw does not exist in strong positional games played
on H. By strategy stealing we know that the second player cannot force the win.
Therefore the first player can force the win in the strong positional games played
on such hypergraphs H. There is other type of positional games motivated by
strategy stealing:

Definition 1.2. Let H be a finite hypergraph, then the game with the following
rules is a weak positional game:
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1. Two players alternately colour colourless vertices of the hypergraph, each
player by his own colour.

2. Each player colours exactly one vertex per ply.

3. If the first player makes a monochromatic edge of the hypergraph, he wins
and the game ends.

4. If all vertices are coloured and the first player has not monochromatic edge,
the second player wins.

The first player in weak positional games is usually called the maker and the
second player the breaker.

Definition 1.3. Let H = (E, V ) be a finite hypergraph and e = {v1, . . . , vn} be
the arbitrary edge in E. Then threat of the player p in strong positional game
played on H is state, when the player p colours vertices {v1, . . . vn−1} and vn is
uncoloured.

When a player makes a threat, the other player must colour the last vertex
of the edge, otherwise he loses immediately. In this thesis, the attacker is player,
who creates the threat, and the defender is the other player, who tries to block it.
Positional games are good subjects for testing new searching algorithms, because
they usually have simple rules and a quite large state space. Weak positional
games are easier to solve, because the second player can not make threats. There
are a lot of known strategies for the weak games. However, for a lot of strong
games we have only strategy stealing. Therefore we need a brutal force to solve
these games. Moreover, the existence of the first player winning strategy in the
strong game played on hypergraph H(V,E) does not imply the existence of the
first player winning strategy in the strong game played on H(V,E ∪ e), where e
is the new edge, e ̸∈ E. An example of this extra edge paradox in strong games
is in Figure 1.1.

e

Figure 1.1: If we consider the strong game on tree T (V,E), where E contains
all branches of T (each has size 4) and e ̸∈ E. The first player clearly has the
winning strategy. He colours the root of T and then he colours the roots of the
subtrees with increasing depth, such that the second player did not colour any
vertex in the subtree. However if we add the edge e to E, the second player can
make a threat, break the first player strategy and force the draw.
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1.1 Tic-tac-toe

This thesis is about the strong version of tic-tac-toe, which is quite an old game.
There is evidence, that people in ancient Rome and Egypt played some variations
of this game. It is played on a 2-dimensional grid and each player puts his tokens
(usually crosses for first player, and rings for the second one) into the points on
the grid. A player wins, if he makes a line with his token vertically, horizontally or
diagonally (with same length as grid size). There are winning lines as hypergraph
edges and tokens as colours. There are many variations of this game, which are
more complicated than the basic tic-tac-toe 3× 3. The most famous variation is
Go-moku (also known as Five in a Row). The grid has size 19 × 19 (the same
as game Go) and a player wins, when he makes lines of length 5. Tic-tac-toe
can be generalized into more dimensions. Chapter 4 is about multidimensional
tic-tac-toe. This thesis is mainly about the game Qubic, which is 3-dimensional
tic-tac-toe played in a combinatorial cube with the edge length 4, winning lines
have also length 4.

1.1.1 Qubic solving

For the first time Qubic was solved by Oren Patashnik in 1980 [5]. He used DFS
with threat sequence searching for both players. Some plies of the first player
were not made by a computer but by Patashnik himself. He called them strategic
moves and there were 2929 of them. He supposed that the first player can force
the win Qubic. He also wanted a strategy for the first player (if it exists), not only
the verification if his assumption was true. It took about 1500 hours to solve it,
but about half of the time was wasted because of a hardware (memory) problem
and bad selections of strategic moves. His result, that the first player can win the
Qubic, was verified by Ken Thompson. His program did not create the strategy
and used the same 2929 strategic moves and it took 50 hours. Qubic was solved
a second time by Louis V. Allis in 1994 [1]. He introduced two new algorithms
for game solving Proof-number search (Pn-search) and Dependency-based search
(Db-search). He combined it for solving. The main algorithm was Pn-search, it is
a type of best-first search. Db-search was used for threat sequence searching for
both players. His program took 15 hours to solve Qubic. We used Allis algorithms
(Pn-search and Db-search) and parallelized the Pn-search. Recent computers can
solve the Qubic under 1 minute.
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2. Game tree searching
algorithms

2.1 Proof-Number search

Pn-search was invented by Louis V. Allis and it was introduced in his PhD the-
sis [1]. It is the best-first search algorithm. It creates a search tree and in every
step it expands “the best” node, which should be the node on the shortest path
to the goal. Pn-search is very popular and there are many improvements of the
basic algorithm.

2.1.1 AND/OR Tree

Pn-search builds AND/OR tree and tries to prove or disprove the root of the tree.

Definition 2.1. AND/OR tree is game a tree (nodes represent the states of
game, edges represent plies), where first player nodes are OR nodes, and second
player nodes are AND nodes.

Each node N of the tree has the following properties:

• Type: AND/OR—denoted as type(N)

• Value: denoted as val(N)

– True: first player can force the win from the represented state of the
game

– False: second player can force the win or draw

– Unknown: value cannot be determined in the actual state of the algo-
rithm

• Proof and Disproof number: denoted as p(N) and d(N)

Definition 2.2. To prove the node N means to determine, that val(N) is True.
To disprove the node N means to determine, that val(N) is False.

Let SN be the set of sons of node N. Leaves of the AND/OR tree are nodes
representing terminal states of the game (first or second player wins or it is a
draw). If the first player wins, the leaf has value true, if the second player wins
or it is a draw, the leaf has value false. The values of the internal node N are
counted from values of their sons:

• If type(N) = OR:

1. If there exists S1 ∈ SN , such that val(S1) = True, then val(N) = True.

2. If there exists S2 ∈ SN , such that val(S2) = Unknown, then val(N) = Un-
known.

3. If for all S3 ∈ SN val(S3) = False, then val(N) = False.
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• If type(N) = AND:

1. If there exists S1 ∈ SN , such that val(S1) = False, then val(N) = False.

2. If there exists S2 ∈ SN , such that val(S2) = Unknown, then val(N) = Un-
known.

3. If for all S3 ∈ SN val(S3) = True, then val(N) = True.

That is only the formal description of: “the player can win if he can make a
such ply, that his opponent can make only plies leading to lose”. The calculation
of values and types of nodes resembles the properties of logic operations conjunc-
tion and disjunction. To prove OR node, it is needed to prove at least one of its
sons. To disprove OR node, it is needed to disprove all of its sons.

Definition 2.3. The proof number of the node N is a minimal count of nodes,
which have to be proved to prove the node N , the set of these nodes is proof set
of node N . The disproof number of the node N is a minimal count of nodes,
which have to be disproved to disproved the node N , the set of these nodes is
disproof set of node N .

If the val(N) = True, then p(N) = 0 (no other node has to be proved to prove
the node N) and d(N) = ∞ (there is no such set of nodes, where disproving all
its nodes leads to disproving the node N). And vice versa if val(N) = False,
p(N) = ∞ and d(N) = 0. If val(N) = Unknown, the proof/disproof numbers are
counted from the numbers of sons of N (the calculation of the numbers resembles
the calculation of the values and properties of conjunction and disjunction):

• If type(N) =OR:

– p(N) = min{p(S)|S ∈ SN}
– d(N) =

∑
S∈SN

d(S)

• If type(N) = AND:

– p(N) =
∑

S∈SN

p(S)

– d(N) = min{d(S)|S ∈ SN}

If a node representing non-terminal state is created, it gets the value Unknown.
It gets an initial proof and disproof number (it cannot be counted from its sons,
because the new node has not any sons). The basic initial proof and disproof
number is 1 (at least one node has to be prove/disprove to prove/disprove the
recently created node). However, usually heuristic initial numbers are used.

2.1.2 Algorithm description

Pn-search creates the root of the AND/OR tree. The root represents some initial
state of the game, for which Pn-search counts if the first player can force the win
or the second player can force the draw (or win). The initial state can be a blank
game (without any plies) or a game where some plies were made as well. And
then it repeats the following 3 steps until the root is proved or disproved:
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• Select most proving node (MPN) in the tree

• Develop MPN

• Update MPN ancestors

When the algorithm stops and the root is proved, then the first player can force
the win from the initial state of the game. If the root is disproved, the second
player can force the win or draw. Pseudocode of the algorithm entry point is in
Algorithm 1.

Procedure PnSearch(Game G)
{

Data: G—representation of the current game state
Result: True—if the first player can force the win
False—if the second player can force the draw

initialization of the root R;
while (R is not proved nor disproved)
{

Node N = SelectMpn(R);
DevelopNode(N);
update proof and disproof numbers of all ancestors of N ;

}
return val(R);

}
Algorithm 1: Entry point of Pn-search

Selecting the most proving node

The question in the best-first algorithm is what is the best node and how to find
it. The best node in Pn-search is the most proving node.

Definition 2.4. The most proving node in AND/OR tree with root R is the leaf
L, which by proving L reduces the p(R) by 1 and by disproving L reduces the
d(R) by 1.

Surprisingly, in every AND/OR tree with root R, such that val(R) = Un-
known, the most proving node exists. Allis proved a stronger claim in his work [1]:

Theorem 2.1 (Allis). Let R be the root of AND/OR tree and val(R) = Unknown.
Then each pair of smallest proof set of R and disproof set of R has non-empty
intersection.

This theorem proves that the most proving node exists in every AND/OR
tree, where root has unknown value. Corollary is that the same effort is needed
to prove or to disprove the root. Pseudocode for selecting the most proving node
is in Algorithm 2.

Node developing

During developing node N all its possible sons are created and inserted into the
tree. The sons of the node N represent the state of the game after one ply after

11



Procedure SelectMpn(Root R)
{

Data: R—root of the AND/OR tree
Result: Most proving node
Node N = R;
while (N is not leaf )
{

if (type(N) = OR)
{

N = S ∈ SN , such that p(S) = p(N)
}
else
{

N = S ∈ SN , such that d(S) = d(N)
}

}
return N ;

}
Algorithm 2: Selecting the most proving node

the state, which is represented by node N . The sons are evaluated after creating.
The simple evaluation method is by terminal game state. Let S be the newly
created node, then:

1. If the state of S is victory for the first player, then val(S) = True.

2. If the state is victory for the second player or the state is a draw, then
val(S) = False.

3. Otherwise val(S) = Unknown.

However, smarter algorithm can be used as the evaluation method. We use Db-
search and λ-search. After evaluation the node gets a proof and disproof number
by its value.

Update ancestors

After the developing of the node N , its ancestors (nodes on the path from the
node N to the root) are updated. Their values and proof and disproof numbers
are recalculated by formulas described in Section 2.1.1.

2.1.3 Transposition table

In lot of games the same (or isomorphic) state can be reached by different ways.
A transposition table (usually implemented as a hash table) is storage for solved
states. Before developing the node, the transposition table is searched. If the
solved state is in the table, the node is not developed but immediately evaluated.
This reduces the run-time by a large amount, but still some states can be solved
more than once in this case:
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1. Node J is selected as MPN, it is developed and node M ∈ SJ represented
the state S, which was not solved yet. Therefore the state S is not in the
transposition table.

2. Node K is selected as MPN, it is developed and also has son represented
the state S. If M was not solved before developing K, state S is not in the
transposition table yet. So both nodes J and K have the child representing
same state S and it can be solved two times.

To avoid this problem, all states, even unsolved, should be stored in the trans-
position table. Therefore transposition table is searched during developing node
N , before every M ∈ SN is created and there are 3 possible cases:

1. The M is not found: node M is a new son of N , and M is stored in the
table as unsolved.

2. The M is found as unsolved: add N as a new parent of M (node M has
more parents now).

3. The M is found as solved: node M is a new child of N , with known value
(True/False).

Now all states are solved once at the most, but the searched graph is not a tree
anymore. It is only DAG (directed acyclic graph). However it does not matter
very much. The algorithm is still valid, but it can overestimate proof and disproof
numbers of some nodes (see Figure 2.1). Pseudocode for node developing is in
Algorithm 3.

4

2

B C

A

D E F

4

1

5

1

3

5

1

1

4

2

Figure 2.1: Overestimation of proof and disproof numbers in Pn-search on DAG:
Circle nodes are OR nodes, square nodes are AND nodes, the top number is the
proof number, the bottom one is the disproof number. MPN is clearly node E.
If E is disproved, node A is disproved as well, but it has disproved number 2.
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Procedure DevelopNode(Node N)
{

Data: N—node to develop
GenerataAllSons(N);
for (Node S ∈ SN)
{

if (player on turn win)
{

if (type(S) is OR)
{

val(S) = True;
}
elif (type(S) is AND)
{

val(S) = False;
}
save S as solved node in transposition table;

}
else
{

val(N) = Unknown;
}

}
}
Procedure GenerateAllSons(Node N)
{

GS = states created from N by adding one ply;
for (Game G in GS)
{

search transposition table for G;
if (nothing found in transposition table)
{

C = new node represented state G;
add C into SN ;
insert C into transposition table as unsolved node;

}
elif (node C is in transposition table as unsolved)
{

add C as a new son to N ;
}
elif (node is in transposition table as solved)
{

add new solved son to N ;
}

}
}

Algorithm 3: Node developing with transposition table
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2.1.4 Weak Proof-number search

As is shown in the last section, if every states is solved at most once, the Pn-
search graph is DAG and it brings the problem with proof and disproof numbers
overestimation. This problem is partly solved by Weak Pn-search, which was
published by T. Ueada, T. Hashimoto, J. Hashimoto and H. Iida in 2008 [9]. It is
original Pn-search, only proof and disproof numbers calculation is changed. Let
k be the count of non-terminal sons of node N .

1. If N is leaf, then it gets the same numbers as in the original Pn-search:
Leaves with terminal state of the game get 0 or ∞ by its type. Leaves with
non-terminal states get initial values.

2. type(N) = OR:

• p(N) = min
M∈SN

{p(M)}

• d(N) = max
M∈SN

{d(M)}+ k − 1

3. type(N) = AND:

• p(N) = max
M∈SN

{p(M)}+ k − 1

• d(N) = min
M∈SN

{d(M)}

2.2 Dependency-based search

Dependency-based search (Db-search) was published also by L. V. Allis in his PhD
thesis [1]. Pn-search tries to find the solution in the quickest way by developing
the most proving node. Db-search tries to reduce the size of the searching graph
by structured states and by combining the states of the game, which can be played
together.

2.2.1 Structure states

Pn-search used atomic states, which means that nodes of the graph represent
only single states and nothing else. The structured state also has information
on how it was created from the previous state. Therefore we can recognize if
two states are independent, i.e. plies lead to that states do not interact. For
example, they are on different sides of board and it does not matter, which one
is played first. Db-search represents the states of a game as a set of attributes.
What is an attribute depends on the game. However in a positional game played
on hypergraph H(V,E), an attribute is a pair (v, c), where v ∈ V and c is a
state of the vertex v (empty, first player colour, second player colour). Nodes in
Db-search graph represent Db-operators:

Definition 2.5. Db-operator o is 3-tuple (opre, odel, oadd), where opre, odel, oadd are
sets of attributes.
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opre is a precondition, which state S has to comply with to apply Db-Operator
o on it (formally: if opre ⊆ S, then o can be applied to S). Applying Db-operator
o to state S means to delete attributes from odel and add attributes from oadd

(formally: o(S) = (S\odel) ∪ oadd). Note that odel is not empty in positional
games. For example, if the first player puts a cross on point p, then Db-operator
is: (

{(p, empty)}, {(p, empty)}, {(p, cross)}
)

Point p must be empty, then it is removed from state as an empty point and
added as a point with cross.

2.2.2 Paths

Definition 2.6. Path P = (o1, o2, . . . , on) is a sequence of Db-operators. Path P
is applicable to state S, if P is empty or o1 is applicable to S and path (o2, . . . on)
is applicable to o1(S). Key operator of the path is the last one: key(P ) = on.

Let P be the set of all applicable paths to initial states.

Definition 2.7. Two paths P,Q ∈ P are equivalent (P ≡ Q) if P is a permutation
of Q.

Usually we do not look for every path but only if a path exists. Therefore we
do not have to traverse whole state space, but only equivalence classes (elements
of P/≡). Searching algorithms with transposition table work this way. But Db-
search restricts state space even more.

Definition 2.8. Let C be a element of P/≡. C is key class if: for all P,Q ∈ C :
key(P ) = key(Q).

Definition 2.9. The set of states S is singular if for all S ∈ S : |S| = 1.

Definition 2.10. The set of path Q is monotonous, if for every path Q =
(o1, . . . on) ∈ Q applicable to initial state S holds:

(∀i ̸= j : oaddi ∩ oaddj = ∅) ∧ (∀i : S ∩ oaddi = ∅)

Definition 2.11. Path P ∈ P is a solution, if goal state g exists, such that
g = P (s), where s is the initial state.

Allis proves the following theorem in his work [1]:

Theorem 2.2 (Allis). Let every path P ∈ P be monotonous and set of goals be
singular. Then set of key classes C is complete, i.e. each solution path q ∈ P is
element of class in C, and each class in C either consist of only solutions, or no
solutions.

It means that if P is monotonous and the set of goals is singular then it is
sufficient to traverse only key classes. It is easy to change the set of goal states
to singular: we add a new state with one new attribute and new operators which
change the previous goal states to the new one. But monotonicity of P depends
on the game rule (or another problem which we want to solve). But the set P for
positional games, where coloured vertices are not uncoloured during the game,
nor change their colours, is monotonous.
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2.2.3 Traversing the key classes

To traverse the key classes Allis defines the meta-operator, which combines and
creates new key classes.

Definition 2.12. Let o1 and o2 be Db-operators. We define two relations between
operators:

1. o1 ≺ o2 (o1 supports o2) if o
add
1 ∩ opre2 ̸= ∅

2. o1 ≪ o2 (o1 precedes o2) if o
pre
1 ∩ odel2 ̸= ∅

Definition 2.13. Let P1, . . . Pn be paths applicable to state S. Then the merge
of the paths P1|| . . . ||Pn is the set of all paths Q applicable to S, such that
Q is the permutation of the set of all operators from the merging paths. The
merge of equivalence classes is defined as the merge of their representatives:
[P1]≡|| . . . ||[Pn]≡ = P1|| . . . ||Pn.

Definition 2.14. LetN = {C1, . . . Cn} be the set of key classes and all key classes
and N are not empty. Let C = C1|| . . . ||Cn and C ̸= ∅. Let o be Db-operator
such that:

∀i ∈ {1, . . . , n} : (key(Ci) ≺ o) ∨ (key(Ci) ≪ o)

And o is applicable to P (S) (P ∈ C, S is the initial state). Then o is valid in N .
Meta-operator M(N, o) is applicable if and only if o is valid in N and there is
no proper subset K ⊂ N , such as o is valid in K. If M(N, o) is applicable, then
M(N, o) = [P.o]≡, where P.o is path P with operator o added to the end.

Allis proved that meta-operator is sound (it creates only key classes) and
complete (every key class can be created by meta-operator). Thus every step of
Db-search is a choice of a subset of created key classes, trying to apply meta-
operator and adding new key class to the set. However, trying meta-operator
to every subset would be very expensive. Fortunately, we will see that it is not
necessary to try meta-operator to every subset of created key classes.

2.2.4 Db-search and Qubic

We used Db-search in the same way as Allis. Db-search is started during evalu-
ation node in Pn-search. It searches sequences of threat, which leads to attacker
win (threat winning sequence). There are 12 Db-operators for each line and it
depends on the player, for which the forced win is searched. Let ℓ = (p1, p2, p3, p4)
be a Qubic line, so one of Db-operators o for this line (in case we search the first
player forced win) is:

1. opre = {(p1,cross), (p2,cross), (p3,empty), (p4,empty)}

2. odel = {(p3,empty), (p4,empty)}

3. oadd = {(p3,cross), (p4,ring)}

Other Db-operators for ℓ are the same, only the points are changed. To apply o
to line ℓ, the first player must have crosses on points p1 and p2 and the other two
points must be empty, then he plays one cross on p3 (he makes a threat) and the
second player has only one choice—to play the ring on p4. Db-operators for the
second player’s forced win are the same, only crosses and rings are switched.
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Qubic meta-operator

It is not necessary to try applying meta-operator to key class sets greater than 2:

1. Db-operator o is valid in key class set N if and only if for every C ∈ N :
key(C) ≺ o. If exists C ∈ N such as key(C) ≪ o and key(C) ̸≺ o, then
o would not be applicable to the merge path, because key(C) delete the
empty point (p, empty), which is in opre.

2. There cannot be 4 different Db-operators o1, o2, o3, o4 such that o1, o2, o3 ≺
o4 that can be applied in one path. Every Db-operator adds one cross (ring)
and it needs exactly 2 crosses (rings) to be applied.

To apply meta-operator Db-search repeats two stages: dependency and com-
bination. In the dependency stage the meta-operator tries applying only to sets
of size 1. If a meta-operator can be applied to new sets of size 1, it is applied
immediately. In the combination stage sets of size 2 are selected for the meta-
operator. Key classes created during this stage can not be selected in the same
combination stage. Pseudocode for Db-search is in Algorithm 4.

Procedure DbSearch(Game G)
{

Data: G—representation of the game current state
Result: True—if the attacker can force the win only by threats
False—otherwise

initialization of the root R;
while (new nodes are created)
{

apply meta-operator to combination nodes (or root) created in the
last cycle;
insert new nodes into tree as dependency nodes;
if (node, where attacker win, was created)
{

return True;
}
apply meta-operator to the pairs of dependency node, where at
least one node was created in the previous step;
insert new nodes into the tree as combination nodes;
if (node, where attacker win, was created)
{

return True;
}

}
return False;

}
Algorithm 4: Db-search algorithm

Failing forced win

There are 3 situations, when Db-search can find invalid forced win:
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Definition 2.15. Defender four is a state of Qubic, where line ℓ exists, such that
every point of ℓ is occupied by defender tokens. Closed defender three is a state
of Qubic, where line ℓ exists, such that 3 points of ℓ are occupied by defender
tokens and the last point of ℓ is occupied by attacker tokens. Open defender three
is a state of Qubic, where line ℓ exists, such that 3 points of ℓ is occupied by
defender tokens and the last point of ℓ is empty.

Each of these situations has to be handled in Db-search:

1. Defender four: If the defender creates his line only by forced move, then
the attacker forced win fails. There must be a control for defender four in
both stages of Db-search.

2. Closed defender three: Closed defender three is not a problem after
merging. However, a path must exists there, such that when the defender
creates open three, the attacker has to close it immediately. This is not
a problem in the dependency stage (first must open defend three must be
created) but it has to be handled in the combination stage. It is quite
expensive to search every path after key classes are merged. So a random
path is searched. By this Db-search is not complete: Forced win can exist
for some state, but it is not found, because in the random path the attacker
does not close the defender open three immediately. However this does not
occur very often and Db-search is still very efficient.

3. Open defender three: If the defender creates open three, the attacker
has to close immediately. This problem is handled during the combination
stage. It tries to create the path of Db-operator, which closes every defender
open three. If this path does not exist or if the defender creates more than
one open three, forced win does not exist.

2.3 λ-search

λ-search was introduced by Thomas Thomsen [8] in 2000. It is described as
improvement of alpha-beta pruning algorithm. However, any other game graph
searching algorithm can be used. λ-search uses order of threat, denoted as λ.
Informally λ is approximately the amount of turns to win. Searching algorithm
is executed repeatedly with increasing λ. λ-search is quite popular and there are
some improvements of the basic algorithm.

Definition 2.16. λn tree is a search tree, which contains only λn moves. λn
a tree

is λn tree, where the attacker moves first. λn move is a legal move in the game
with the following properties:

• If the attacker is to move and the defender passes, then there exists at least
one λi

a tree with value 1 (attacker win) and 0 ≤ i ≤ n− 1.

• If the defender is to move, then there does not exist any λi
a tree with value

1 and 0 ≤ i ≤ n− 1.
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We used λ-search in the same way as Db-search to evaluate node in Pn-search.
It searches if the attacker can win only with λ moves with limited λ and limited
depth. Pseudocode for main method of λ-search is in Algorithm 5.

Procedure LambdaSearch(Game G)
{

Data: G—representation of the current game state
Result: True—if the attacker can force the win with depth limited by

MAX DEPTH λ limited by MAX LAMBDA
False—otherwise

initialization of the searching tree;
for (i = 1 to MAX LAMBDA)
{

if (Lambda(i, MAX DEPTH))
{

return True;
}

}
return False;

}
Procedure Lambda(int Lambda, int Depth)
{

Data: Lambda—limit for λ in searching
Depth—limit for searching depth

Result: True—if the attacker can force the win with input limits
False—otherwise

if (Depth ≤ 0 )
{

return False;
}
for (i = 0 to Lambda)
{

if (i = 0 )
{

try to win only with one move;
}
else
{

if (SearchAlgorithm(i, depth))
{

return True;
}

}
}
return False;

}
Algorithm 5: Entry point of λ-search

Any searching algorithm such as SearchAlgorithm can be used. Pseudocode
for this part is in Algorithm 6.

λ moves are found recursively using the same search algorithm (Algorithm 5).
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Procedure SearchAlgorithm(int Lambda, int Depth)
{

Data: Lambda—limit for λ in searching
Depth—limit for searching depth

Result: True—if the attacker can force the win with input limits
False—otherwise

if (Depth ≤ 0 )
{

return False;
}
while (LambdaMove(Lambda, Depth) finds λ moves M)
{

apply M to current state;
if (attacker can win in SearchAlgorithm(Labmda, Depth - 1 )
{

return True;
}
remove M from current state;

}
}

Algorithm 6: Search algorithm for λ-search

Pseudocode for searching the λ moves is in Algorithm 7.
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Procedure LambdaMove(int Lambda, int Depth)
{

Data: Lambda—limit for λ in searching
Depth—limit for searching depth

Result: λ move
while (exists some valid move M)
{

apply M to current state;
if (M is attacker move)
{

if (Lambda(Lambda - 1, Depth - 2))
{

return M ;
}

}
else
{

if (Lambda(Lambda - 1, Depth - 1))
{

return M ;
}

}
remove M from current state;

}
}

Algorithm 7: Searching for λ moves
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3. Solving Qubic

3.1 Properties of Qubic and its game tree

The branching factor at the root of the game tree is 64 and it is decreased by 1
in each level. Maximal depth is also 64. A draw is possible (as you can see in
Figure 3.1), so we can not use only strategy stealing for answering the question, if
the first player can force the win. The number of all different states of the game
is:

64∑
i=0

(
64

i

)(
i

⌈ i
2
⌉

)
.
= 410.79× 1027

Explanation of the formula: First we choose some occupied points:
(
64
i

)
. Then we

choose, on which points crosses are:
(

i
⌈ i
2
⌉

)
(on the remaining points are rings). It

is quite a large number, fortunately we do not have to search all states. Searching
algorithm does not create a lot of them, because searching is stopped when one
player wins. Qubic has 192 automorphisms, which is quite a lot and it is very
useful at the top of the game tree (see Section 3.5.1 and Chapter 4). Threats are
very important in Qubic, because it is very easy to make them. A player needs
only two tokens in one line and the other two points in the line have to be free
and he can make a threat in his turn. Therefore some procedure for searching
threats sequence should be in the searching algorithm.

3.2 Choice of algorithm

First we tried to solve Qubic with simple DFS algorithm, but it is a harder
problem than we thought. DFS algorithm failed, so we tried better ones. The
second algorithm was Pn-search. It failed as well. The first success was Pn-
search with Db-search as the evaluation method (Allis used these algorithms in
his thesis [1]). The first version of Pn-search uses tree as game graph and it takes
3 3

4
minutes to solve. The second version uses DAG (directed acyclic graph). It

shortened the computing time by half a minute. However standard Pn-search
has a problem with overestimating the proof and disproof number of the DAG
nodes. This problem is partly solved by Weak Pn-search. Qubic is solved in 2 1

4

minutes by Weak Pn-search on DAG with Db-search as the evaluation method.
Then we tried λ-search instead of Db-search and it also failed. λ-search is much
more slower and it evaluates less nodes than Db-search. It takes over 10 hours
to solve Qubic with λ-search and Db-search together. If only Db-search is used
it takes a few minutes. After parallelization it is solved under 1 minute when 8
threads are used.

Figure 3.1: Example of draw in Qubic
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3.3 Program architecture

The fastest algorithm for Qubic solving, which we implemented, is Pn-search with
Db-search as the evaluation method. Pn-search does not start on a blank game.
We generated a set of starting games in depth 4 (as Allis [1] did). Pn-search loads
one starting game and solves it. Solved and unsolved Pn-search nodes are saved
in the transposition table during solving. When the game is solved, the whole
Pn-search tree is deleted and unsolved nodes are removed from transposition
table. After that Pn-search loads another game. The diagram of architecture is
in Figure 3.2. Documentation of the program is in Appendix A.

Starting states

Pn–search

Db-search

Pn–search is

started for every

starting state

Every Pn–search

node is evaluated

by Db–search

Transposition table

Solved and unsolved

Pn–search nodes are

saved in transposition

table

Figure 3.2: Diagram of single-thread Qubic solver

3.3.1 Parallelization

A lot of work in parallelization of Pn-search exists. As far as we know, A. Kishimo-
to and Y. Kotani brought the first parallelization of Pn-search [4] in 1999. They
tested it on the game Othello and the speed-up rate was 3.6 on 16 distributed
processors. Other parallelizations brought better speed-up rate, but usually the
procedures of Pn-search are parallelized, like randomized parallel Pn-Search [6]
and job-level Pn-search [10] parallelize the nodes expanding and parallel depth
first Pn-search parallelizes the selecting of the most proving node. We focus on
how to parallelize Pn-search from the “outside”. We consider Pn-search as a
single-thread task. We solve how it can be executed in more threads and how the
threads should be synchronized. Our speed-up rate is 2.7 on quadcore processor
with hyperthreading, when we use 8 threads.

If there is more than one starting game, it is not very difficult to parallelize
the solving algorithm. Each thread loads one starting game and solves it like
in single thread algorithm. When a game is solved, the thread loads another
one. The whole solving of one starting game is within one thread, so the most
of algorithm is not changed. There are two main changes from single thread to
multithread algorithm:

• In loading the starting games

• In transposition table

The starting game loading has to be done with a lock, otherwise one starting
game could be solved more than once. The transposition table is divided into
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two tables (local and global). Every thread has a local table, so it is implemented
without locks. It is for unsolved nodes. Local tables are cleared after a thread
solved the starting game, because the whole Pn-search tree is deleted. All threads
have a common transposition table for solved Pn-search nodes. This table needs
a lock, because it is shared with all threads. Items are only inserted into the
global table. Therefore the table is locked only for inserting. Reading is done
without a lock. A diagram of 2-threads program is in Figure 3.3.

Starting states

Pn–searchDb-search

Pn–search is

started for every

starting state in

differnt threads

Every Pn–search

node is evaluated by

Db–search within

the threads

Local transposition table

Unsolved Pn–search

nodes are saved in local

transposition table

Pn–search Db-search

Local transposition table

Global transposition table

Solved Pn–search nodes

are saved in global trans-

position table

Figure 3.3: Diagram of Qubic solver with 2 threads

3.4 Our Result

3.4.1 Starting depth

For Pn-search it is very important to have a not-regular game tree. If the tree
is almost regular (nodes have very similar degrees), Pn-search works as standard
BFS and it is not very efficient. Hence it is good when the evaluating method
evaluates (with the value true or false) some nodes as soon as possible and makes
the search tree non-regular. Therefore there is quite a difference (see Table 3.1)
when solving starts in depth of 3 (as in Patashnik solution [5]) or 4 (as in Allis
solution [1]).

3.4.2 Single-thread algorithms

In Table 3.1 the variants of Pn-search are compared. Nodes counts differed slight-
ly (about hundreds) in every run, because random numbers are used in one part
of Db-search. So all nodes counts are rounded to thousands. There were not
any significant differences in times (about one second). The program is written
in language C and all runs were made on the computer with Intel Core i7-2600
Quadcore 3,4 GHz, 8GB RAM and operation system Ubuntu 10.

3.4.3 Parallel algorithm

Some states can be solved more than once in parallel algorithm by the following
process:
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Nodes
Algorithm Start

depth
Created Expanded Evaluated Time

Pn-search
on tree

4 31.002.000 609.000 16.724.000 3:46

Pn-search
on DAG

4 21.525.000 419.000 11.298.000 3:10

Weak Pn-search
on DAG

4 15.910.000 304.000 7.753.000 2:13

Weak Pn-search
on DAG

3 27.862.000 562.000 13.915.000 4:10

Table 3.1: Algorithm comparison: Created/Expanded nodes—nodes creat-
ed/expanded by Pn-search, Evaluated nodes—nodes evaluated by Db-search
(with value true or false) or Pn-search and nodes which get their value from
transposition table.

1. Thread T1 creates node N1 representing state S and saves it in local table
Tt1 .

2. Thread T2 creates node N2 representing state S and saves it in local table
Tt2

3. Thread T1 solve the node N1, but N2 is still in local table Tt2 , so it can be
solved for the second time.

Solving this problem would be quite complicated. It would mean that the
Pn-search tree would have its nodes in different threads. Global table would
be more complicated (entries would also have to be deleted not only inserted).
Therefore we think that overhead of the treatment this problem would be quite
big. Moreover, it does not occur very often and algorithm, where this problem
is not handled, gives good result. We counted every event, when solved game is
inserted into global table, but the value is already there, to know how many nodes
are solved more than once. There are less than a thousand of thees nodes, which
is less than per mile of whole count of created Pn-search nodes. In Table 3.2 are
the results of parallelized Weak Pn-search on DAG where we changed the number
of threads. You can see from the table that it is almost useless to use more than
4 threads for this problem on a quadcore processor. Usage of hyperthreading
shortens the computation time only a little. We use the same computer for
parallel algorithm as for single-thread algorithm.

Num. of Threads Hyperthreading Nodes solved then once Time
2 yes 578 1:11
4 yes 579 0:50
4 no 578 0:52
8 yes 714 0:48
8 no 709 0:58

Table 3.2: Comparison of parallel algorithm with different numbers of threads
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3.5 Discussion

3.5.1 Automorphisms

All created nodes are saved in the transposition table to avoid solving any node
more than once. To solve even less nodes, we tried to add automorphisms into
searching transposition table. An automorphism image is counted for every node,
which is searched in the transposition table. Qubic has 192 automorphism, so
counting all images for every created node is quite expensive. We tried to acceler-
ate the image-counting by a pre-generated code. We generated a method for every
one automorphism. In the automorphism method, there are only bit operations
between Qubic game representation (two 64-bit integer) and integer constants.
However, it is still slower than solving without using the automorphisms.

Nonetheless, automorphisms are very important in generating starting games.
Our solving algorithm starts with games in depth 4 (with 2 crosses and 2 rings).
With assumption that the first player makes his first ply into the points with the
highest degree (points on diagonals), there is only one possibility how to start
the game. Points in corners and inside the cube are isomorphic. If the second
ply of the first player is also to the point with the highest degree, there are only
7 non-isomorphic games with depth 3. If one ring is added to these 7 games,
there are only 195 games with depth 4 when the automorphisms are used. If
automorphisms are not used in this step there are 422 games created from that
7 3-ply games:

1. For every 3-ply game the second player chooses one of the 61 free points,
which give 427 starting games.

2. There are 5 games which were created twice.

And there are 3.812.256 games with depth 4 if automorphisms are not used at all
and assumption about first player plies is not made:

1. There are 635.376 (=
(
64
4

)
) possibilities how to put 4 tokens into the 64

points.

2. There are 6 possibilities how to put 2 crosses and 2 rings into the 4 given
points.

3.5.2 Distributed calculation

The solving algorithm can be easily distributed to more computers. Each com-
puter would get some starting games to solve and after solving it would send
results to the server, where the results would be processed. The problem is how
to implement the global transposition table. There are two basic ways:

1. Each computer has its own global table and the tables are not synchro-
nized. This is the easier solution for programming and there would not be
any synchronization overhead. Nonetheless, maybe many nodes would be
solved more than once and this way would be slower than the way with
synchronization.
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2. The global table is common for all computers. The synchronization of the
global table has to be implemented and it would not be very easy.

Verification, which way is faster, would be done by experiments. We did not
distribute the calculation, because Qubic is solved under a minute, so distributing
the calculation is unnecessary. Other games discussed in next section are quite
hard problems and it cannot be solved, even with distributed calculation.

3.5.3 Other games

After success with Qubic we tried the fastest algorithm (Weak Pn-search with
Db-search) to solve another two games, which are open problems:

1. 5× 5× 5: It has the same rules as Qubic, but it is played in a cube with
edge length 5 (the length of a winning line is also 5).

2. 3D connect four: It is played in the same cube as Qubic, but players only
choose a column (two coordinates) and the third one is computed as lowest
point in the column. In reality it is played with 16 strings (or sticks) in a
square and tokens are put on them (a maximum of 4 tokens can be on each
string). The winning lines are the same as in Qubic.

Unfortunately, our program failed at both games. Db-search is not as efficient
as in Qubic, because creating the threats is more difficult in these games. In
5 × 5 × 5 the player needs three of his tokens in one line to create threads. In
3D connect four the player needs only two of his tokens in one line, but the other
two points in that line must be the lowest free points in their columns. In Qubic,
Db-search succeeds at almost half of nodes, which are evaluated by Db-search.
But in 5× 5× 5 and 3D connect four it is only one tenth. It can not solve some
deep 5× 5× 5 nodes with 25 crosses and 25 rings under 1 hour. Hence solving
whole 5× 5× 5 with this algorithm and present computers is impossible. We
think that 3D connect four can be solved, because it has a smaller state space
than 5× 5× 5 (even then Qubic). However, it needs more edits in algorithm, so
that Db-search would be more efficient.
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4. Automorphisms of the game nd

4.1 Introduction

Automorphisms are often used in game solving, because it is not necessary to
solve every position in the game, but only the non-automorphic. It is quite useful
to know how many automorphisms the game has and how to generate them. In
this chapter we find all automorphisms of multidimensional tic-tac-toe. The d-
dimensional tic-tac-toe is played in a d-dimensional combinatorial cube with edge
of length n and it is often called game nd. This chapter is motivated by the game
tic-tac-toe, but the automorphisms can be used for any other problem with a
combinatorial cube with the same set of lines. This result generalized Silver [7],
where all automorphisms were characterized for the game 43.

4.2 More formally

Definition 4.1. Combinatorial cube nd is a set of points [n]d, where [n] is the
set {0, . . . , n− 1}.

Informally, the combinatorial cube contains points of d-dimensional hyper-
cube, which have integer coordinates. In this chapter we often omit the word
combinatorial and call it only cube nd.

Definition 4.2. Let s be the the sequence (k1, . . . , kn). The type of sequence s,
type(s) is:

• + if the sequence s is strictly increasing

• − if the sequence s is strictly decreasing

• c if ki = c for every 1 ≤ i ≤ n

• ? otherwise

Definition 4.3. Line ℓ of combinatorial cube nd is every set of points {p1, p2, . . . , pn},
such that it can be ordered into the sequence (q1, q2, . . . , qn), such that for each
0 ≤ j ≤ d, the sequence sj = (q1j , q

2
j , . . . q

n
j ) has type(s) ̸= ?. Type of line ℓ,

type(ℓ) is (type(s1), . . . , type(sd)) and (type(ℓ))i is the i-th element of type(ℓ), i.e.
type(si). We denote the set of lines of combinatorial cube nd by L(nd).

Note that for every line ℓ ∈ L(nd) there exists at least one 1 ≤ j ≤ d, such
that type(ℓ)j is + or −. If every coordinate sequences of line would be constant,
the line would be only one point. However, line ℓ ∈ L(nd) is defined as a set with
n elements. For example points sequences of the game 43:

1.
{
[0, 0, 3], [0, 1, 2], [0, 2, 1], [0, 3, 0]

}
∈ L(43).

2.
{
[0, 0, 2], [0, 1, 2], [0, 2, 2], [0, 3, 1]

}
̸∈ L(43), because the set can not be or-

dered, such that the sequence of the third coordinates would be increasing,
decreasing or constant.
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Note that each line ℓ ∈ L(nd) has actually 2 types. For example: type(ℓ1) =
(+,−, 0, . . . , 0) and type(ℓ2) = (−,+, 0, . . . , 0) are types of the same line ℓ ={
[i, n− i− 1, 0, . . . , 0]|i ∈ [n]

}
.

Definition 4.4. Dimension of the line ℓ ∈ L(nd) is

dim(ℓ) =
∣∣{i ∈ {1, . . . , d}|type(ℓ)i ∈ {+,−}

}∣∣
Degree of the point p ∈ nd is

deg(p) =
∣∣{ℓ ∈ L(nd)|p ∈ ℓ}

∣∣
Definition 4.5. Two points p1, p2 are collinear, if there exists line ℓ ∈ L(nd),
such that p1 ∈ ℓ and p2 ∈ ℓ.

Definition 4.6. Point p ∈ nd is called corner, if p has coordinates only 0 and
n− 1. Line ℓ ∈ L(nd) is edge with dim(ℓ) = 1 connecting two corners. 2 corners
are neighbours if they are connected by arbitrary edge. Line ℓ ∈ L(nd) with
dim(ℓ) = n is called main diagonal. We denote the set of all main diagonals by
Lm(n

d).

Definition 4.7. Point p = [p1, . . . , pd] ∈ nd is called outer point if there exists
at least on i ∈ {1, . . . , d}, such that pi ∈ {0, n − 1}. If point p ∈ nd is not outer
point, then p is inner point.

Definition 4.8. Permutation P : nd → nd is automorphism if and only if:
{v1, . . . , vn} ∈ L(nd) ⇒ {P (v1), . . . , P (vn)} ∈ L(nd).

Informally, the automorphism of the game nd is a permutation of the cube points,
which preserves the lines.

Definition 4.9. The point p ∈ nd is fixed by automorphism a, if a(p) = p. The
set of points {p1, . . . , pk} is fixed, if {p1, . . . , pk} = {a(p1), . . . , a(pk)}.

Note that if some set S is fixed, it does not mean every point of S is fixed.

We denote the set of all automorphism by T d
n . Note that all automorphism

with composition form a group Td
n = (T d

n , ◦, Id). In this chapter we find the
generator of the group Td

n and then the order of the group. First we count the
order of the group Td

2, whose structure is different from other automorphism
groups. Then for better understanding we find the generator for T3

2k and then
the generator and order of the general group Td

n.

4.2.1 Order of Td
2

The game 2d is different from other games, because every two points are collinear.
So we have following proposition:

Proposition 4.1. Order of the group Td
2 is (2d)!.

Proof. Every permutation on the points of the cube 2d is an automorphism, be-
cause every point is collinear with all others. Td

2 is subset of S2d (symmetry group
on 2d elements), so |Td

2| can not be bigger than (2d)!.

From now we will suppose, that n > 2.
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4.3 Automorphisms of (2k)3

In this section we find the generator of the group T3
2k. After that we prove it for

general cubes. In this section we suppose that n = 2k.

4.3.1 Line and point classes

Definition 4.10. We divide lines into 4 sets:

1. Main diagonals Lm

(
(2k)3

)
2. Face diagonals Lf

(
(2k)3

)
= {ℓ ∈ L

(
(2k)3

)
| dim(ℓ) = 2}

3. Rich lines

Lr

(
(2k)3

)
=
{
ℓ ∈ L

(
(2k)3

)∣∣(dim(ℓ) = 1) ∧ (∃m ∈ Lm

(
(2k)3

)
: m ∩ ℓ ̸= ∅)

}
4. Poor lines

Lp

(
(2k)3

)
=
{
ℓ ∈ L

(
(2k)3

)∣∣(dim(ℓ) = 1) ∧ (∀m ∈ Lm

(
(2k)3

)
: m ∩ ℓ = ∅)

}
Observation 4.1. 1. Each point p ∈ nd is incident with at least 3 lines ℓ ∈

L
(
(2k)3

)
.

2. If line ℓ ∈ L
(
(2k)3

)
with dim(ℓ) = 1 intersects with face diagonal f ∈

Lf

(
(2k)3

)
, then there exists another face diagonal g ∈ Lf

(
(2k)3

)
, g ̸= f ,

such that ℓ ∩ g ̸= ∅.

3. If line ℓ ∈ L
(
(2k)3

)
with dim(ℓ) = 1 intersects with main diagonal m ∈

Lm

(
(2k)3

)
, then there exists another main diagonal k ∈ Lm

(
(2k)3

)
, k ̸= m,

such that ℓ ∩ k ̸= ∅.

Definition 4.11. We define 3 sets of points:

1. Point p ∈ (2k)3 is called rich point, if deg(p) = 7.

2. Point p ∈ (2k)3 is called common point, if deg(p) = 4.

3. Point p ∈ (2k)3 is called poor point, if deg(p) = 3.

Lemma 4.1. 1. Main diagonal contains n rich points.

2. Face diagonal contains 2 rich points and n− 2 common points.

3. Rich line contains 2 rich points and n− 2 common points.

4. Poor line contains 4 common points and n− 4 poor points.

Proof. 1. Without loss of generality type of main diagonal m ∈ Lm

(
(2k)3

)
is

type(m) = (+,+,−). Each point pi = [i, i, n− i− 1] ∈ m is contained:

• In 3 rich lines ri1, r
i
2, r

i
3 ∈ Lr

(
(2k)3

)
:

– type(ri1) = (+, i, n− i− 1)
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– type(ri2) = (i,+, n− i− 1)

– type(ri3) = (i, i,−)

• In 3 face diagonal f i
1, f

i
2, f

i
3 ∈ Lf

(
(2k)3

)
:

– type(f i
1) = (+,+, n− i− 1)

– type(f i
2) = (i,+,−)

– type(f i
3) = (+, i,−)

• In the main diagonal m itself.

2. Without loss of generality the type of face diagonal f ∈ Lf

(
(2k)3

)
is

type(f) = (+,−, c), where c ∈ [n]. f intersects two main diagonalsm1,m2 ∈
Lm

(
(2k)3

)
:

• type(m1) = (+,−,+) and q1 = m1 ∩ f =
{
[c, n− c− 1, c]

}
• type(m2) = (+,−,−) and q2 = m2 ∩ f =

{
[n− c− 1, c, c]

}
Hence f contains two rich points q1, q2. Every point pi = [i, n− i− 1, c] ∈ f
is contained in 3 rich lines ri1, r

i
2, r

i
3 ∈ Lr

(
(2k)3

)
:

• type(ri1) = (+, n− i− 1, c)

• type(ri2) = (i,+, c)

• type(ri3) = (i, n− i− 1,+)

Therefore the remaining points pi ∈ f , such that pi ̸= q1, q2 are common
points (they are on the face diagonal f and 3 rich lines ri1, r

i
2, r

i
3).

3. Without loss of generality the type of rich line r ∈ Lr

(
(2k)3

)
is type(r) =

(+, 0, 0). r intersects 2 main diagonals m1,m2 ∈ Lm

(
(2k)3

)
:

• type(m1) = (+,+,+) and q1 = m1 ∩ r =
{
[0, 0, 0]

}
• type(m2) = (−,+,+) and q2 = m2 ∩ r =

{
[n− 1, 0, 0]

}
Hence r contains 2 rich points q1 and q2. Rich line r intersects face diag-
onal fi ∈ Lf

(
(2k)3

)
in every point pi = [i, 0, 0] ∈ r: type(fi) = (i,+,+).

Therefore the remaining points pi ∈ r, such that pi ̸= q1, q2, are common
points.

4. Without loss of generality the type of poor line ℓ ∈ Lp(n
d) is type(ℓ) =

(+, 1, 2). Line ℓ intersects 4 face diagonal f1, f2, f3, f4 ∈ Lf ((2k
3)):

• type(f1) = (+,+, 2) and q1 = f1 ∩ ℓ =
{
[1, 1, 2]

}
• type(f2) = (+,−, 2) and q2 = f2 ∩ ℓ =

{
[n− 2, 1, 2]

}
• type(f3) = (+, 1,+) and q3 = f3 ∩ ℓ =

{
[2, 1, 2]

}
• type(f4) = (+, 1,−) and q4 = f4 ∩ ℓ =

{
[n− 3, 1, 2]

}
Points q1, q2, q3 and q4 are common points. Remaining points p ∈ ℓ, p ̸∈
{q1, q2, q3, q4} are poor points and there are incident with only 3 poor lines.
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Main diagonals Face diagonals Rich lines Poor lines
Rich point 1 3 3 0

Common point 0 1 3 0
Poor point 0 0 0 3

Table 4.1: Count of lines, which are incident with points

Rich points Common points Poor point
Main diagonal n 0 0
Face diagonal 2 n− 2 0

Rich line 2 n− 2 0
Poor line 0 4 n− 4

Table 4.2: Count of points, which are incident with lines

Counts of incidences of points and lines of the cube (2k)3 are in Table 4.1 and
Table 4.2.

Definition 4.12. Star ℓ∗ of the line ℓ ∈ L(nd) is set:

ℓ∗ = {p ∈ nd|p ̸∈ ℓ ∧ ∃q ∈ ℓ : p and q are collinear}

Lemma 4.2. Let f ∈ Lf

(
(2k)3

)
and r ∈ Lr

(
(2k)3

)
. Then:

• |f ∗| = 2n(n+ 1)− 6,

• |r∗| = 3n(n− 1).

Proof. Without loss of generality, type(f) = (+,+, 0). Star f ∗ for the cube 43 is
depicted in Figure 4.1. Points in f ∗ are from:

• Face F =
{
[x, y, 0]|x, y ∈ [n]

}
, which contributes n(n− 1) points.

• Rich lines R =
{
r ∈ Lr

(
(2k)3

)
|r ∩ f ̸= ∅, r ̸⊂ F

}
. Rich lines from R are

orthogonal to f . |R| = n. Hence lines from R add n(n − 1) points to the
star f ∗.

• Face diagonals D =
{
d ∈ Lf

(
(2k)3

)
|d ∩ f ̸= ∅

}
. There are 4 face diagonals

in D:

– type(f1) = (+, 0,+), f1 ∩ f =
{
[0, 0, 0]

}
– type(f2) = (n− 1,+,−), f2 ∩ f =

{
[n− 1, n− 1, 0]

}
– type(f3) = (0,+,+), f3 ∩ f =

{
[0, 0, 0]

}
– type(f4) = (+, n− 1,−), f4 ∩ f =

{
[n− 1, n− 1, 0]

}
f1 ∩ f2 =

{
[n − 1, 0, n − 1]

}
and f3 ∩ f4 =

{
[0, n − 1, n − 1]

}
, so D adds

4(n− 1)− 2 to the star f ∗.

Note that points from main diagonals m1,m2 ∈ Lm

(
(2k)3

)
, which intersect d, are

in R. When we add the numbers of points from sets F,R,D we get the size of
the star |f ∗| = n(n− 1) + n(n− 1) + 4(n− 1)− 2 = 2n2 + 2n− 6.

Without loss of generality, type of r is type(r) = (+, 0, 0). Star r∗ the cube
43 is depicted in Figure 4.2. Points in r∗ are from:
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Figure 4.1: Star f ∗ of the face diagonal f ∈ Lf (4
3)

• Faces F1 =
{
[x, y, 0]|x, y ∈ [n]

}
and F2 =

{
[x, 0, z]|x, z ∈ [n]

}
. Faces F1 and

F2 add 2n(n− 1) points to the star r∗.

• Face diagonals D =
{
d ∈ Lf

(
(2k)3

)
|d ∩ r ̸= ∅, d ̸⊂ F1, F2

}
. |F | = n, so D

adds n(n− 1) points to the star r∗.

Note that points from main diagonals m1,m2 ∈ Lm

(
(2k)3

)
, which intersect r, are

in D. After adding the numbers we get |r∗| = 3n(n− 1).

r r r r

F1 F1 F1 F1

F1F1F1F1

F1 F1 F1 F1

F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2

D D D D

D D D D

D D D D

Figure 4.2: Star r∗ of rich line r ∈ Lr(4
3)

Note that |f ∗| = |r∗| if and only if n = 2 or n = 3.

Definition 4.13. Set of lines S in invariant if for every automorphism a ∈ Td
n :

ℓ ∈ S ⇒ a(ℓ) ∈ S.

Theorem 4.1. Sets Lm

(
(2k)3

)
,Lf

(
(2k)3

)
,Lr

(
(2k)3

)
,Lp

(
(2k)3

)
are invariant.

Proof. Every automorphism has to preserve a degree of points, therefore the main
diagonals have to be mapped onto the main diagonals, the poor lines have to be
mapped onto the poor lines (by Lemma 4.1). Every automorphism has to preserve
the size of the star for each line, therefore the face diagonals have to be mapped
onto the face diagonals and the rich lines have to be mapped onto the rich lines
(by Lemma 4.2).

4.3.2 Generator of T3
2k

In this section we find the generator of the group T3
2k. We use 2 types of auto-

morphism:

1. Group of rotations R of 3-dimensional cube. The generator of R are rota-
tions:

• Rx

(
[x, y, z]

)
= [x, n− z − 1, y]

• Ry

(
[x, y, z]

)
= [n− z − 1, y, x]

• Rz

(
[x, y, z]

)
= [n− y − 1, x, z]
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2. Group of permutation automorphisms Fn (called flexible group in Silver’s
proof [7]). This group contains the mappings:

Fπ

(
[c1, . . . , cd]

)
= [π(c1), . . . , π(cd)]

where π ∈ Sn, such that it has symmetry property: if π(p) = q then
π(n− p− 1) = n− q − 1.

In proofs we use some easy observations:

Observation 4.2. If automorphism a ∈ Td
n fixes two collinear points p, q ∈ nd,

it also fixes the line ℓ ∈ L(nd), such that p, q ∈ ℓ.

Observation 4.3. If two lines ℓ1, ℓ2 ∈ L(nd) are fixed by a ∈ Td
n, their intersec-

tion, point p = ℓ1 ∩ ℓ2, is fixed.

Definition 4.14. The group of automorphism A3
2k is generated by elements from

R ∪ F2k.

We prove that A3
2k = T3

2k. The idea of the proof, that resembles similar proof
of Silver [7], is composed of 2 steps:

1. For any automorphism t ∈ T3
2k we find automorphism a ∈ A3

2k, such that
t ◦ a fixes every point from certain set S.

2. If an automorphism a′ ∈ T3
2k fixes every point from S, then a′ is identity.

Hence for every t ∈ T3
2k we find an inverse element t′, such that t′ is composed

only by elements from R ∪ F2k, therefore t ∈ A3
2k. Before the main proof, we

prove a technical lemma, which we formulate and prove for arbitrary size and
dimension of the cube.

Lemma 4.3. Let F be the front 2-dimensional face of combinatorial cube nd,
i.e. F =

{
[x, y, 0, . . . , 0]|x, y ∈ [n]

}
and automorphism α ∈ Td

n fix all 4 corners of
F, i.e. points [0, . . . , 0], [n− 1, 0, . . . , 0], [0, n− 1, 0, . . . , 0], [n− 1, n− 1, 0, . . . , 0].
Then if α fixes point [i, 0, . . . , 0], i ∈ [n] it also fixes point [n− i− 1, 0, . . . , 0].

Proof. α fixes all 4 corners, therefore it fixes both diagonals d1, d2 ⊂ F (by
Observation 4.2). Type of d1 and d2 are type(d1) = (+,+, 0, . . . , 0) and type(d2) =
(−,+, 0, . . . , 0).

Suppose that α fixes point p = [i, 0, . . . , 0], where i ∈ {1, . . . , n− 2} (corners
are already fixed). We show that the point p5 = [n− i− 1, 0, . . . , 0] is fixed in 3
steps (note that if i = n− i− 1 the case is trivial). Fixed points in face 7× 7 are
depicted in Figure 4.3.

1. We show that p1 = [i, i, 0, . . . , 0] is fixed by α. α(p1) must be on d1 and
it must be collinear with p. There are 2 collinear points with p on d1:
[i, i, 0, . . . 0] and [0, . . . , 0], but the second one is already fixed as a corner,
so p1 is fixed. The point p2 = [i, n− i− 1, 0, . . . , 0] ∈ d2 is fixed by a similar
argument.

2. We show that α fixes point p3 = [n− i− 1, i, 0, . . . , 0]. α(p3) must be on d2
and it must be collinear with p1. There are two points on d2 collinear with
p1: p2 and p3, but p2 is fixed from step 1. The point p4 = [n− i− 1, n− i−
1, 0, . . . , 0] is fixed by a similar argument.

35



3. Now line ℓ1 =
{
[n− i− 1, j, 0, . . . , 0]|j ∈ [n]

}
is fixed (by Observation 4.2).

Line ℓ2 =
{
[j, 0, . . . , 0]|j ∈ [n]

}
is also fixed, therefore point p5 is fixed (by

Observation 4.3).

p

p1

p2

p3

p4

p5

ℓ1

ℓ2

d1

d2

Figure 4.3: How to fix points by diagonals in front 2-dimensional face

Theorem 4.2. For all t ∈ T3
2k exists a ∈ A3

2k, such that t ◦ a fixes all corners
and every points of line ℓ =

{
[i, 0, 0]|i ∈ [n]

}
.

Proof. First we find automorphism a′ ∈ A3
2k, such that a′ fixes all corners.

1. We start with point p0 = [0, 0, 0]. t(p0) has to be on main diagonal (by
Theorem 4.1). Without loss of generality t(p0) = [i, i, n − i − 1], where
i ∈ [n]. So we take fπ ∈ Fn, such that:

• π(i) = 0, π(0) = i

• π(n− i− 1) = n− 1, π(n− 1) = n− i− 1

• π(k) = k otherwise

Therefore t◦f(p0) is corner. Then we take r1 ∈ R, such that automorphism
a1 = t ◦ f ◦ r1 fixes p0.

2. Line a1(ℓ) must be mapped onto rich line r ∈ Lr

(
(2k)3

)
, such that p0 ∈ r.

If corner p1 = [n − 1, 0, 0] is fixed by a1 we take a2 = a1. Otherwise
it can be mapped onto [0, n − 1, 0] (or [0, 0, n − 1]). We take rotation
r2
(
[x, y, z]

)
= [y, x, z] (or [z, y, x]). So a2 = a1 ◦ r2 fixes corners p1 and p0,

note that r2
(
[0, 0, 0]

)
= [0, 0, 0].

3. If corner p2 = [0, n − 1, 0] is fixed by a2 we take a3 = a2. Otherwise
it can be mapped only onto [0, 0, n − 1]. We take rotation r3

(
[x, y, z]

)
=

[n− x− 1, n− z − 1, n− y − 1] and permutation automorphism fσ, where
σ(i) = n− i− 1. Hence a3 = a2 ◦ r3 ◦ fσ fixes points:

• p0 : a2 ◦ r3 ◦ fσ
(
[0, 0, 0]

)
= r3 ◦ fσ

(
[0, 0, 0]

)
= fσ

(
[n− 1, n− 1, n− 1]

)
=

[0, 0, 0]
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• p1 : a2◦r3◦fσ
(
[n−1, 0, 0]

)
= r3◦fσ

(
[n−1, 0, 0]

)
= fσ

(
[0, n−1, n−1]

)
=

[n− 1, 0, 0]

• p2 : a2◦r3◦fσ
(
[0, n−1, 0]

)
= r3◦fσ

(
[0, 0, n−1]

)
= fσ

(
[n−1, 0, n−1]

)
=

[0, n− 1, 0]

4. Corner p3 = [0, 0, n − 1] is fixed automatically, because it is connected by
rich line to p0 and other corners connected to p0 by rich line (p1 and p2) are
already fixed.

5. Now we show that corner p4 = [n− 1, n− 1, n− 1] is fixed by a3. There are
3 face diagonals incident with p1:

(a) d1 =
{
[n− i− 1, i, 0]|i ∈ [n]

}
. d1 is fixed, because p1, p2 ∈ d1.

(b) d2 =
{
[n− i− 1, 0, i]|i ∈ [n]

}
. d2 is fixed, because p1, p3 ∈ d2.

(c) d3 =
{
[n−1, i, i]|i ∈ [n]

}
. d3 is fixed because it cannot be mapped onto

any other face diagonal incident with p1.

Therefore p4 ∈ d3 is fixed by a3.

6. Corners [n − 1, n − 1, 0], [n − 1, 0, n − 1] and [0, n − 1, n − 1] are fixed by
a similar argument as in previous step. Note that each corner is incident
with 3 edges. So edges can be used as face diagonals were used in previous
step.

Automorphism a′ = a3 fixes all corners of the cube (2k)3. Now we find the
automorphism a, which fixes all corners and the points on line ℓ. Line ℓ is fixed,
because points p0 and p1 are fixed by a′ (by Observation 4.2). Let qi = [i, 0, 0]
and q′i = [n − i − 1, 0, 0]. We construct the automorphism a by induction by
i ∈ {0, . . . , k}:

1. i = 0. Let automorphism y0 = a′. It fixes all corners (points qi and q′i are
also corners).

2. i > 0. We have automorphism yi−1 by induction hypothesis, which fixes
all corners and every point of set Qi−1 = {qj, q′j|j ∈ {0, . . . , i − 1}}. Note
that Q0 contains only corners [0, 0, 0] and [n− 1, 0, 0]. If yi−1(qi) = qi, then
yi = yi−1. Otherwise yi−1(qi) = qj, where i < j < n− i− 1, because points
from Qi−1 are already fixed. Let us consider f i

π ∈ F2k, where:

• π(j) = i, π(i) = j

• π(n− j − 1) = n− i− 1, π(n− i− 1) = n− j − 1

• π(k) = k, where k ̸∈ {j, n− j − 1, i, n− i− 1}

Automorphisms yi = yi−1 ◦ f i
π fixes:

(a) All corners, because automorphism yi−1 fixes all corners by induction
hypothesis and π(0) = 0 and π(n− 1) = n− 1.

(b) Set Qi−1, because automorphism yi−1 fixes the set Qi−1 by induction
hypothesis and for all k < i and k > n− i− 1 : π(k) = k.

(c) Point qi: yi−1 ◦ f i
π

(
[i, 0, 0]

)
= f i

π

(
[j, 0, 0]

)
= [i, 0, 0].
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(d) Point q′i by Lemma 4.3.

So automorphism a = yk fixes all points of line ℓ and all corners of the cube.

Theorem 4.3. If automorphism α ∈ T3
2k fixes all corners of the cube and line

ℓ =
{
[i, 0, 0]|i ∈ [n]

}
, then α is identity.

Proof. Face diagonals d1 and d2 of front face F =
{
[x, y, 0]|x, y ∈ [n]

}
are fixed,

because all corners are fixed (by Observation 4.2). Let p ∈ d1 ∪ d2, such that p
is not corner. Then p is collinear with the only one point q ∈ ℓ, such that q is
not corner. Therefore p is fixed. Every line of front face F has two fixed points,
because every line of F crosses d1 and d2. Therefore every line of front face F
is fixed (by Observation 4.2). Every point of front face F is fixed, because every
point is the intersection of at least two fixed lines (by Observation 4.3). Points of
other faces can be fixed by similar arguments. Every line m ∈ L

(
(2k)3

)
is fixed,

because every outer point is fixed, and every line has at least two outer points.
Every inner point is fixed, because it is intersection of at least 3 lines.

4.4 Automorphisms of nd

4.4.1 Corners, main diagonals and edges

In this section we show lemmas how every automorphism a ∈ Td
n maps main

diagonals, edges and corners.

Lemma 4.4. Every automorphism a ∈ Td
n maps main diagonal m ∈ Lm(n

d) onto
main diagonal m′ ∈ Lm(n

d).

Proof. For n even, the proof is trivial. Every point p ∈ m has a maximal degree,
which is 2n − 1. Every automorphism a ∈ Td

n has to preserve the point degree.
So the point p has to be mapped onto the point p′ ∈ m′.

Now we prove the proposition for n odd. Let α = n−1
2
. The center of

the cube c = [α, α, . . . , α] is always mapped onto c (it is the only point with

degree 3d−1
2

). Therefore the main diagonal m ∈ Lm(n
d) has to be mapped

onto line ℓ ∈ L(nd), such that c ∈ ℓ. Without loss of generality type(ℓ) =
(+, . . . ,+,−, . . . ,−, α, . . . , α). Let p ∈ ℓ, such that p ̸= c, p = [i, . . . , i, n − i −
1, . . . , n − i − 1, α, . . . , α] = [p1, p2, . . . , pd], where i ∈ [n], i ̸= α. Let us split the
coordinates of p into 2 blocks: i-block (coordinates i and n− i− 1) and α-block.
Let k be the size of the i-block. Now we count the degree of p. There are 2 types
of the lines incident with p:

1. The lines, which have non-constant coordinate sequences in i-block. Let I
be the coordinate indices of i-block, I = {1, . . . , k}. Every J ⊆ I, J ̸= ∅
defines line mJ , such that p ∈ mJ and type(mJ)j, j ∈ {1, . . . , d} is:

• type(mJ)j = pj, if j ̸∈ J

• type(mJ)j = +, if j ∈ J ∧ pj = i

• type(mJ)j = −, if j ∈ J ∧ pj = n− i− 1
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For example, J = {a, b}

type(mJ) = (i, . . . ,+
a
, . . . , i, n− i− 1, . . . ,−

b
, . . . , n− i− 1, α, . . . , α)

Therefore the number of these lines is equal to the number of non-empty
subset of I, which is 2k − 1.

2. The line, which has non-constant coordinate sequences in α-block. Let I
be the set of coordinate indices of α-block, I = {k + 1, . . . , d}. Every J ⊆
I, J ̸= ∅ defines line mJ , such that p ∈ mJ and type(mJ)j, j ∈ {1, . . . , d} is:

• type(mJ)j = pj, if j ̸∈ J

• type(mJ)j = +, if j ∈ J

However, everyK ⊆ J defines linem′
JK , such that p ∈ m′

JK and type(m′
JK)j, j ∈

{1, . . . , d} is:

• type(m′
JK)j = type(mJ)j, if j ̸∈ K

• type(m′
JK)j = −, if j ∈ K

For example:

type(m′
JK) = (i, . . . , i, n− i− 1, . . . , n− i− 1, α, . . . , α,

J︷ ︸︸ ︷
+, . . . ,+,−, . . . ,−︸ ︷︷ ︸

K

)

We have
d−k∑
i=1

(
d−k
i

)
choices for set J . For every J of size i, we have

i∑
j=0

(
i
j

)
choices for K ⊆ J . Every line is created twice by this way, therefore the

number of these lines is: 1
2

d−k∑
i=1

(
d−k
i

) i∑
j=0

(
i
j

)
= 3d−k−1

2
.

Therefore the degree of non-central points p ̸= c, such that p ∈ ℓ, c ∈ ℓ is
deg(p) = 2k − 1 + 3d−k−1

2
, where k =

∣∣{i ∈ {1, . . . , d}|pi ̸= α
}∣∣. The degree of the

non-central point q ̸= c on main diagonal m ∈ Lm(n
d) is deg(q) = 2d − 1. We

show, that if k ̸= d then 2k−1+ 3d−k−1
2

̸= 2d−1. For contradiction let us suppose

that 2d − 2k = 3d−k−1
2

and rewrite the formula into binary numbers:

2d 1

d︷ ︸︸ ︷
0 . . . . . . . . . 0

−2k −1

k︷ ︸︸ ︷
0 . . . 0

Thus 3d−k−1
2

d︷ ︸︸ ︷
1 . . . 1 0 . . . 0︸ ︷︷ ︸

k

= β

It is trivial to prove by induction, that 4 divides 3d−k − 1 if and only if d− k
is even. β must be even so d− k must be also even. We use the divisibility by 3
test in the binary system1 for γ = 2β + 1 (it should equal to 3d−k). The binary

1The divisibility test is well known problem of Algebra.
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number is divisible by 3 if and only if sum E of even order digits and sum O of
odd order digits are equal (mod 3). Note that,

γ =

d−k︷ ︸︸ ︷
1 . . . 1

k︷ ︸︸ ︷
0 . . . 0 1,

d−k is even so digits sums of the orders 1 to d are equal, but |E−O| = 1 (because
the 1 at order 0). Therefore γ is not divisible by 3, which is a contradiction.

Lemma 4.5. Let α ∈ Td
n, e be the edge and c be the corner, such that c ∈ e. If

corner c is fixed by α, then α(e) = e′ is edge, such that c ∈ e′.

Proof. First we prove the lemma for n odd. Let α ∈ Td
n be the automorphism,

such that corner c is fixed by α. Let e be the edge, such that c ∈ e and line
ℓ = α(e). Without loss of generality, type(e) = (+, 0, . . . , 0) and

type(ℓ) = (

k︷ ︸︸ ︷
+, . . . ,+, 0, . . . , 0).

Let p = [1, 0, . . . , 0] ∈ e and

q = α(p) = [

k︷ ︸︸ ︷
i, . . . , i, 0, . . . , 0],where i ∈ [n], i ̸∈ {0, n− 1

2
, n− 1}

Degree of point q can be deduced by similar way as in the proof of Lemma 4.4.
Each non-empty subset the set of coordinate indices i-block and 0-block defines
a line, hence deg(q) = 2k − 1 + 2d−k − 1. Degree of p is deg(p) = 2d−1. Note that
deg(p) = deg(q) if and only if k = 1 or k = d − 1. Therefore dimension of the
line ℓ is 1 or d− 1. If d = 2 the proof is finished.

Let us suppose d > 2 and dim(ell) = d−1. The second corner c1 ∈ e, c1 ̸= c has
to be mapped on some corner. The center point c′ of e (the point, which have some
coordinates equal to n−1

2
) has to be mapped on the center of ℓ, because it must be

collinear with the cube center and there are only 3 points on e collinear with the
cube center: 2 corners c and c1 and the line center c′. We know the degree of line
center: d(k) = 2d−k − 1 + 3k−1

2
, where k is the dimension of the line. Therefore

deg(α(c′)) = 1 + 3d−1−1
2

. However, deg(c′) = 2d−1 and deg(α(c′)) > deg(c′), if
d > 2, which is a contradiction and line ℓ must have dimension 1.

Now we complete the proof for n even. Without loss of generality fixed corner
c has coordinates [0, . . . , 0]. Let L =

{
ℓ ∈ L(nd)|c ∈ ℓ

}
. Lines from L has to be

mapped on lines from L. We compute the size of star ℓ∗ for each line ℓ ∈ L. We
take a point p ∈ ℓ ∈ L. Without loss of generality, it has coordinates:

p = [p1, . . . , pd] = [

k︷ ︸︸ ︷
i, . . . , i, 0, . . . , 0],where i ∈ [n]

There are two blocks of coordinates: 0-block and i-block. Let I be the set of
coordinate indices of i-block, I = {1, . . . , k}, and K be the set of coordinate
indices of 0-block, K = {k+1, . . . , d}. There are 3 types of lines incident with p:

1. Lines with increasing coordinate sequences in i-block. Every J ⊂ I, J ̸= ∅
defines line ℓJ with type:
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• type(ℓJ)j = pj, if j ̸∈ J

• type(ℓJ) = +, if j ∈ J

For example:

type(ℓJ) = (

I︷ ︸︸ ︷
+, . . . ,+︸ ︷︷ ︸

J

, i, . . . , i, 0, . . . , 0)

There are
k−1∑
j=1

(
k
j

)
= 2k − 2 choices for J ⊂ I. We cannot choose whole I as

J , because we would get the original line ℓ. Every line adds n − 1 points
into the star and there are n choices for i. However, every point is counted
twice in the following way. Let q be the point:

q = [

I︷ ︸︸ ︷
c, . . . , c, d, . . . d, 0, . . . 0]

Let C be the set of c-coordinate indices and D be the set of d-coordinate
indices. Point q is added for the first time, when C = J ⊂ I and q is added
for the second time, when D = J ⊂ I. If J ̸= C,D point p cannot be added
because p ̸∈ ℓJ . So these lines add n(n− 1)(2k−1 − 1) points to the star ℓ∗.

2. Lines with increasing sequences in 0-block. Every J ⊆ K, J ̸= ∅ defines line
ℓJ with type:

• type(ℓJ)j = pj, if j ̸∈ J

• type(ℓJ)j = +, if j ∈ J

Let ℓ1J ∈ L(nd), such that

type(ℓ1J) = (
I︷ ︸︸ ︷

c, . . . c,

J︷ ︸︸ ︷
+, · · ·+, 0, . . . , 0)

Let ℓ2J ∈ L(nd), such that

type(ℓ2J) = (

I︷ ︸︸ ︷
d, . . . d,

J︷ ︸︸ ︷
+, . . . ,+, 0, . . . , 0)

Note that, lines ℓ1J and ℓ2J have an empty intersection when c ̸= d. Therefore
lines of this type add

n(n− 1)
d−k∑
j=1

(
d− k

j

)
= n(n− 1)(2d−k − 1)

points to star ℓ∗.

3. There are some remaining lines incident with corners q = [0, . . . , 0] and

r = [

I︷ ︸︸ ︷
n− 1, . . . , n− 1, 0, . . . , 0]

These lines are analogous to face diagonals from the set D in proof of the
first part of Lemma 4.2. Let J1 ⊂ I, J1 ̸= ∅ and J2 ⊆ K, J2 ̸= ∅. Each pair
of J1 and J2 defines lines ℓ1J1J2 , ℓ

2
J1J2

∈ L(nd) with type:
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• type(ℓ1J1J2)j = +, type(ℓ2J1J2)j = n− 1, if j ∈ J1

• type(ℓ1J1J2)j = +, type(ℓ2J1J2)j = −, if j ∈ J2

• type(ℓ1J1J2)j = 0, type(ℓ2J1J2)j = +, if j ∈ I and j ̸∈ J1

• type(ℓ1J1J2)j = 0, type(ℓ2J1J2)j = 0, if j ∈ K and j ̸∈ J2

Note that q ∈ ℓ1J1J2 and r ∈ ℓ2J1J2 . And ℓ1J1J2 ∩ ℓ2J1J2 = [x1, . . . xd]:

• xj = 0, if j ̸∈ J1 ∪ J2

• xj = n− 1, if j ∈ J1 ∪ J2.

For example:

I︷ ︸︸ ︷ K︷ ︸︸ ︷
type(ℓ1J1J2) = (0, . . . +, . . . 0, . . . +, . . . )
type(ℓ2J1J2) = (+, . . . n− 1, . . . 0, . . . −, . . . )
ℓ1J1J2 ∩ ℓ2J1J2 = [0, . . . n− 1, . . .︸ ︷︷ ︸

J1

0, . . . n− 1, . . .︸ ︷︷ ︸
J2

]

We cannot choose J1 as whole I nor empty. If J1 = ∅, I, we will get lines
from step 2. We cannot choose J2 empty. If J2 = ∅ we will get lines from step

1. We have
k−1∑
j=1

(
k
j

)
= 2k−2 choices how to select J1 and

d−k∑
j=1

(
d−k
j

)
= 2d−k−1

how to select J2. Each pair of J1 and J2 adds 2n− 3 points to the star ℓ∗.

Two lines of different types can have an intersection only on line ℓ. Therefore
to get |ℓ∗|, we can simply add numbers of points from all steps and we get function
s, which determines the size of star ℓ∗ by dimension of the line ℓ ∈ L:

s(k) = n(n− 1)(2d−k + 2k−1 − 2) + (2n− 3)(2d − 2d−k+1 − 2k + 2)

We count the second derivative of the function s:

s′′(k) = log2(2)(2d−kn(n− 1) + 2k−1n(n− 1)− 2k(2n− 3)− 2d−k+1(2n− 3))
= log2(2)((2d−k + 2k−1)(n− 2)(n− 3))

Hence s′′(k) > 0 when n > 3. Function s is convex and s(k) = s(d − k + 1),
therefore s(1) ̸= s(k), when k ̸∈ {1, d}. Every automorphism a ∈ Td

n has to
preserve the size of the star of every line. Therefore the edge e incident with
the fixed corner c has to be mapped on ℓ, such that ℓ is edge or main diagonal.
However by Lemma 4.4, line ℓ can not be the main diagonal, therefore ℓ must be
the edge.

4.5 Generator of the group Td
n

In this section we find the generator of the group Td
n. We use 3 types of auto-

morphism:
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1. Group of rotations of d-dimensional hypercube Rd. Generators of this group
are rotations:

Rij

(
[c1, . . . , ci, . . . , cj, . . . , cd]

)
= [c1, . . . , n− cj − 1, . . . , ci, . . . , cd]

for every i, j ∈ {1, . . . , d}.

2. Group of permutation automorphisms Fn (same as in Section 4.3.2).

3. Group of axial symmetry X. In this group there are two automorphisms:
Id and X

(
[c1, . . . , cd−1, cd]

)
= [c1, . . . , cd, cd−1].

Definition 4.15. Group Ad
n is generated by elements from Rd ∪ Fn ∪ S.

We prove that Ad
n = Td

n by the same two steps as we proved A3
2k = T3

2k:

1. For any automorphism t ∈ Td
n we find automorphism a ∈ Ad

n, that t◦a fixes
every point from certain set S.

2. If an automorphism a′ ∈ Td
n fixes every point from S, then a′ is identity.

Theorem 4.4. For all t ∈ Td
n exists a ∈ Ad

n such that t ◦ a fixes every corner of
the cube nd and every point on line ℓ =

{
[i, 0, . . . , 0]|i ∈ [n]

}
.

Proof. First we create automorphism a′ ∈ An
d , such that t ◦ a fixes all corners.

We start with point p0 = [0, . . . , 0]. t(p0) has to be on the main diagonal (by
Lemma 4.4). We choose f ∈ Fn, such that t ◦ f(p0) is corner. Then we choose
r ∈ Rd, such that t◦f ◦r(p0) = p0. Now we choose rotations xi ∈ Rd to fix points
pi = [0, . . . n− 1

i
, . . . 0] by induction by i.

1. i = 0, point p0 is fixed by x0 = t ◦ f ◦ r.

2. For i > 0, by induction hypothesis we have automorphism xi−1 ∈ Ad
n, such

that xi−1 fixes all points from set Pi−1 = {pk|0 ≤ k ≤ i − 1}. Corner pi =
[0, . . . , n− 1

i
, . . . , 0] is mapped onto pj = [0, . . . , n− 1

j
, . . . , 0], because edges

incident with p0 is mapped onto edges incident with p0 (by Lemma 4.5) and
i ≤ j, because points from Pi−1 are already fixed. If xi−1(pi) = pi we choose
xi = xi−1. Otherwise we choose 2 rotations and compose them with xi−1:

(a) Rji

(
[c1, . . . , ci, . . . , cj, . . . , cd]

)
= [c1, . . . , cj, . . . , n− ci − 1, . . . , cd] :

Rji(pj) = Rji

(
[0, . . . , 0,

i
. . . , n− 1

j
, . . . , 0]

)
= [0, . . . , n− 1

i
, . . . , n− 1

j
, . . . , 0]

(b) Rdj

(
[c1, , . . . cj, . . . , cd]

)
= [c1, . . . , cd, . . . , n− cj − 1] :

Rjd

(
[0, . . . , n− 1

i
, . . . , n− 1

j
, . . . 0]

)
= [0, . . . , n− 1

i
, . . . , 0]

Hence xi ◦ Rji ◦ Rdj fixes pi and all points of Pi because rotations Rji and
Rdj do not effect first i− 1 coordinates. Note that it also fixes p0.
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In this way we can fix all corners pi for i ∈ {0, . . . , d− 2}. If xd−2 fixes pd−1,
then xd−1 = xd−2. Otherwise pd−1 is mapped onto pd and then xd−1 = xd−2 ◦X,
where X ∈ X and X ̸= Id. So xd−1 fixes all points of Pd−1 and corner pd is
fixed automatically because there is no other possibility, where corner pd can be
mapped.

We prove that a′ = xd−1 fixes all corners c = [c1, . . . , cd] by induction by
k(c) =

∣∣{i ∈ [n], ci = n− 1}
∣∣:

1. Corners c, such that k(c) ∈ {0, 1} are already fixed by a′.

2. Corners c, such that k(c) > 1, has coordinates without loss of generality:

c = [

k(c)︷ ︸︸ ︷
n− 1, . . . , n− 1, 0, . . . , 0]

We take neighbours n1, n2 of corner c:

(a) n1 = [

k(c)−1︷ ︸︸ ︷
n− 1, . . . , n− 1, 0, . . . , 0]

(b) n2 = [0,

k(c)−1︷ ︸︸ ︷
n− 1, . . . , n− 1, 0, . . . , 0]

Corners n1 and n2 have two common neighbours: c and

n3 = [0,

k(c)−2︷ ︸︸ ︷
n− 1, . . . , n− 1, 0, . . . 0]

Corners n1, n2 and n3 are fixed by induction hypothesis. Therefore corner c is
also fixed, because it must be the neighbour of n1 and n2. The automorphism to
fix points on line ℓ is constructed in the same way as in proof of Theorem 4.2.
We find the automorphism a, which fixes all corners and the points on line ℓ by
induction. We start with automorphism a′. In step i of induction we compose
automorphism from step i − 1 and automorphism fi ∈ Fn, which fixes points
[i, 0, . . . , 0] and [n− i− 1, 0, . . . , 0].

Theorem 4.5. If automorphism α ∈ Td
n fixes all corners of the cube nd and all

points of edge e, then α is identity.

Proof. We prove it by induction by dimension d of the cube nd:

1. d = 2. Main diagonals are fixed, because all corners are fixed (by Obser-
vation 4.2). Let point p ∈ m ∈ Lm(n

2), such that p is not a corner. p is
collinear with only one point q ∈ e, such that q is not corner. Hence p is
fixed. Therefore every line ℓ ∈ L(n2) is fixed, because every line intersects
both main diagonals (by Observation 4.2). So every point p ∈ n2 is fixed
because every point is an intersection of at least two lines (by Observa-
tion 4.3).

2. d > 2 and suppose the theorem holds for all dimensions smaller then d.
Without loss of generality, e =

{
[i, 0, . . . , 0]|i ∈ [n]

}
We take face

F =
{
[x1, . . . , xd−1, 0]|x1, . . . , xd−1 ∈ [n]

}
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Face F has dimension d − 1, so all points of F are fixed by induction
hypothesis. Then we take all facesG of dimension d−1, such that F∩G ̸= ∅.
Corners c ∈ G are fixed. At least one edge f exists, such that f ⊆ F ∩ G.
Therefore points of f are also fixed and points p ∈ G are fixed by induction
hypothesis. By this argument we show that every outer point is fixed. Every
line ℓ ∈ L(nd) is fixed, because every line contains at least 2 outer points
(by Observation 4.2). Therefore every point q ∈ nd is fixed, because every
point is an intersection of at least 2 lines (by Observation 4.3).

4.6 Order of the group Td
n

In the previous section we found the generator of the group Td
n. Now we compute

the order of the group.

Lemma 4.6. Orders of the basic groups are:

1. |Rd| = 2d|Rd−1| = 2d−1d!, |R2| = 4

2. |Fn| =
⌊n
2
⌋−1∏

i=0

(n− 2i)

3. |X| = 2

Proof. 1. Size of hypercube rotation group Rd is well known. The first equality
can be deduced as follows:

(a) Hypercube nd has 2d faces of dimension d − 1 and each (d − 1)-
dimensional face can be rotated to the front.

(b) Every (d− 1)-dimensional face of the cube nd has |Rd−1| rotations.

The second equality can easily be proved by induction.

2. Size of the group Fn is the count of permutation π ∈ Sn with symmetry
property. For image of the first element we have n possibilities how to
choose, for the second element we have n− 2 possibilities and so on.

3. Size of X is clearly 2.

Lemma 4.7. Groups Rd and Fn commute and groups X and Fn commute.

Proof. Let Rij ∈ Rd and Fπ ∈ Fn, then:

1. Rij ◦ Fπ

(
[c1, . . . , ci, . . . , cj, . . . , cd]

)
= Fπ

(
[c1, . . . , n− cj − 1, . . . , ci, . . . , cd]

)
= [π(c1), . . . , π(n− cj − 1), . . . , π(ci), . . . , π(cd)]
= [π(c1), . . . , n− π(cj)− 1, . . . , π(ci), . . . , π(cd)]

2. Fπ ◦Rij

(
[c1, . . . , ci, . . . , cj, . . . , cd]

)
= Rij

(
[π(c1), . . . , π(ci), . . . , π(cj), . . . , π(cd)]

)
= [π(c1), . . . n− π(cj)− 1, . . . , π(ci), . . . , π(cd)]

45



Proof that X and Fn commute is analogous.

Lemma 4.8. If d is odd then Rd ∩ Fn = { Id }. If d is even then Rd ∩ Fn = { Id
, Fσ}, where Fσ ∈ Fn, such that σ(i) = n− i− 1.

Proof. Every rotation preserve the order of points on line ℓ =
{
[i, . . . , i]|i ∈ [n]

}
.

There are two permutation automorphisms, which preserve the order on the line
ℓ: identity and Fσ. Let flip(i) = n − i − 1, where i ∈ [n], then each rotation R
can be written by operations flip and permutation πR ∈ Sd. For example rotation
R12([c1, c2, . . . , cd]) = [n−c2−1, c1, . . . , cd] can be written as R12([c1, c2, . . . , cd]) =
[flip(cπ(1)), cπ(2), . . . , cπ(d)], where π = (12).

• If d is odd, Fσ ̸∈ Rd. For contradiction let us suppose that Fσ ∈ Rd.
For every rotation Rij is permutation πRij

∈ Sd a transposition and πFσ is
identity. Therefore Fσ must be composed of even number of Rij. Every Rij

does exactly one flip operation. Hence Fσ has to do even number of flip
operations, which is a contradiction, because d is odd and Fσ must do an
odd number of flip operations.

• If d is even, Fσ ∈ Rd. We composed Fσ as follows: for each pair {i, j},
such that i ∈ {1, . . . , d} is odd and j = i + 1 we use rotation Rij ◦ Rij =
R2

ij([c1, . . . , ci, cj, . . . cd]) = [c1, . . . n − ci − 1, n − cj − 1 . . . cd]. When we
compose all these rotations we get automorphism Fσ. We know that there
are not any other automorphism in Rd ∩ Fn.

Lemma 4.9. Group X can be generated by elements from groups Rd and Fn if
and only if d is odd.

Proof. LetX ∈ X. The caseX = Id is trivial. Further suppose thatX
(
[c1, . . . , cd−1, cd]

)
=

[c1, . . . , cd, cd−1].

• If d is odd we use rotations:

1. Rd−1,d

(
[c1, . . . cd−1, cd]

)
= [c1, . . . , n− cd − 1, cd−1]

2. Let S = (1, 2, . . . , d− 2, d) and Si be the i-th element of S. Note that
sequence S has even length d − 1. We make pair {Si, Sj}, such that
i ∈ {1, . . . , d− 1} is odd and j = i + 1. For each pair {Si, Sj} we use
rotation R2

SiSj
(like in proof of Lemma 4.8).

After the composing of these rotations we get:

R
(
[c1, . . . , cd−1, cd]

)
= [n− c1 − 1, . . . , n− cd − 1, n− cd−1 − 1]

We use Fσ (same as in Lemma 4.8) and get automorphisms X = R ◦ Fσ.

• If d is even, we use a similar argument as in proof of Lemma 4.8. Every
automorphism generated by elements from Rd and Fn can be written as
R◦F , where R ∈ Rd, F ∈ Fn, because Rd and Fn commute (by Lemma 4.7).
For contradiction let us suppose X = R ◦ F . We can use only identity and
Fσ (like in Lemma 4.8) as F , because no coordination change its value (only
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two coordinations switch their positions) and rotations can revert only flip
operation (like in proof of Lemma 4.8). πX ∈ Sd is the transposition on
coordinates, therefore it must be composed of odd number of Rij rotations.
Therefore R must do an odd number of flip operation. After using identity
or Fσ as F , there still is an odd number of flipped coordinates, which is a
contradiction.

Lemma 4.10. Let X ∈ X, such that X ̸= Id. Then for all R1 ∈ Rd exists
R2 ∈ Rd, such that R1 ◦X = X ◦R2.

Proof. It is sufficient to prove it for rotation Rij.

• If {i, j} ∩ {d− 1, d} = ∅, then the proof is obvious and Rij ◦X = X ◦Rij.

• Let us suppose
∣∣{i, j} ∩ {d− 1, d}

∣∣ = 1 and i = d− 1 (proofs of other cases
are similar):
Rd−1,j ◦X

(
[c1, . . . , cj, . . . , cd−1, cd]

)
= [c1, . . . , cd−1, . . . , cd, n− cj − 1]

= X ◦Rdj

(
[c1, . . . , cj, . . . , cd−1, cd]

)
• Let us suppose the last possibility i = d− 1 and j = d:
Rd−1,d ◦X

(
[c1, . . . , cd−1, cd]

)
= [c1, . . . cd−1, n− cd − 1]

= X ◦Rd−1,d

(
[c1, . . . , cd−1, cd]

)

Theorem 4.6. If d is odd, then |Tn
d | = |Rd||Fn|.

Proof. Every automorphism generated by elements from Rd and Fn can be written
as R ◦ F , where R ∈ Rd, F ∈ Fn (by Lemma 4.7). Furthermore Rd ∩ Fn = { Id }
(by Lemma 4.8), therefore these automorphisms form the direct product Rd×Fn.
The group X is a subset of Rd × Fn (by Lemma 4.9). Therefore the group Tn

d =
Rd × Fn = {r ◦ f |r ∈ Rd, f ∈ Fn} and |Tn

d | = |Rd||Fn|.

Theorem 4.7. If d is even, then |Tn
d | = 2(|Rd| − 1)(|Fn| − 1).

Proof. Let Ad
n =

{
(R,F )|R ∈ Rd, F ∈ Fn

}
. If we create automorphism a for

every pair (R,F ) ∈ Ad
n, such that a = R ◦ F , we generate some automorphisms

twice, because Fσ ∈ Rd∩Fn (by Lemma 4.8). We remove the pairs, which contain
Fσ. Let B

d
n = Ad

n\
{
(R,F ) ∈ Ad

n|R = Fσ∨F = Fσ

}
. We have to add Fσ to the B

d
n,

so all pairs form group Pd
n and |Pd

n| = |Rd||Fn|−|Rd|−|Fn|+1 = (|Rd|−1)(|Fn|−1).
However, non-identity automorphism X ∈ X is not in this group (by Lemma 4.9).
Every automorphism generated by elements from Rd ∪ Fn ∪ X, can be written
as R ◦ F ◦X, where R ∈ Rd, F ∈ Fn, X ∈ X (by Lemma 4.7 and Lemma 4.10).
Therefore Td

n = {p ◦ s|p ∈ Pd
n, s ∈ S} and |Td

n| = 2(|Rd| − 1)(|Fn| − 1).

Corollary 4.1. 1. If d is odd, then:

|Tn
d | = 2d−1d!

⌊n
2
⌋−1∏

i=0

(n− 2i)
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2. If d is even, then:

|Tn
d | = 2(2d−1d!− 1)(

⌊n
2
⌋−1∏

i=0

(n− 2i)− 1)

3. The groups Td
2k and Td

2k+1 are isomorphic.
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Conclusion

We implemented some algorithms for Qubic solving and compared them. As the
main algorithm we used Pn-search and we confirmed, that Weak Pn-search is
faster on DAG than the original Pn-search. We used Db-search and λ-search as
the evaluation method for new Pn-search node. Db-search is very efficient for
Qubic. It is a very good algorithm for searching the threat winning sequences,
which are very important in Qubic. However λ-search is not suitable for this
problem. In comparison with Db-search, λ-search is extremely inefficient.

We parallelized Pn-search and found that it is not very difficult to implement
it, when there are more than one starting positions. Only a few edits suffices in
single-thread Pn-search. Transposition table has to be changed to handle multi-
thread access. It is needed to implement how starting positions are distributed
to each threads, where they are solved by Pn-search. There a lot of things to
research in parallelization. We think that it would be interesting to use GPU for
parallel Pn-search and other searching algorithms.

We tried to solve the game 53 and 3D connect four, which are open problems.
However, our program did not solve these games. It is harder to create threats in
these games so Db-search is not as efficient as it is for Qubic. Nonetheless, we only
changed our program for Qubic. We think that 3D connect four can be solved
by present computers, but it would need an algorithm which more resembles the
rules of 3D connect four.

In Chapter 4 we characterized all automorphisms of combinatorial cube nd

with set of the line, which is used for multidimensional tic-tac-toe. This is a
generalization of Silver [7]. As corollary we know:

• the number of automorphism of every cube nd

• the groups of automorphisms of cubes with even and odd dimension have
different structure

• the groups of automorphisms of cubes with the size 2k and 2k + 1 are
isomorphic

Hence automorphisms are known for every cube nd with finite n and d. It would be
interesting to find the automorphisms of the cube with infinite dimension. Would
the automorphisms be same even for uncountable dimension? Lines of the cube
nd cannot be generalized to infinite n, because of decreasing coordinate sequences.
We think that similar proof can be used to characterize the automorphisms of
the toroidal grid, which is a combinatorial cube nd with lines defined as follows:

Definition 4.16. Line of toroidal grid ℓ is every set of points of a combinatorial
cube nd, ℓ = {p1, . . . , pn}, such that for every 1 ≤ j ≤ d set Sj = {p1j , . . . , pnj } can
be ordered into a sequence Tj = (t1j , . . . , t

n
j ), such that type(Tj) ̸= ?.

Note that every line ℓ ∈ L(nd) is also the line of the toroidal grid and every
automorphism t ∈ Td

n is an automorphism of the toroidal grid as well.
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A. Solving program
documentation

A.1 Introduction

Programs Qubic and ParallelQubic are solvers for 3-dimensional version of tic-
tac-toe played in cube with size 4, known as Qubic. Both programs are written
in language C and they are console applications. Qubic compares some solving
algorithm, mainly the time needed for solving. It is easy to choose algorithm by
macros. For ParallelQubic the fastest algorithm is chosen and parallelized.

A.2 Algorithms

A.2.1 Pn-search

Proof number search is the main solving algorithm in Qubic. All Pn-search
methods are in PnSearch.c. The starting method is ProofNumberSearch with
parameters:

• qubic1 and qubic2 are the tokens of the players

• player denotes which player will play (1 for first player, 0 for the second
one)

It returns the result of the game:

1. 1 for the first player win

2. −1 for the second player win or a draw

Method ProofNumberSearch is called for every starting game in Program.c. It
creates the root of the AND/OR graph and tries to solve it. It repeats 4 steps,
until the root is proved:

1. Select the most proving node (MPN): method selectMostProoving

2. Develop MPN: method developNode

3. Set proof and disproof numbers to MPN: method setProofAndDisproofNum-
bers

4. Update all ancestors of MPN: method updateAncestors

Selecting the most proving node

Selecting is standard by proof and disproof numbers. It selects the first of node
children with the same proof/disproof number (depends on the type of node).
The selecting repeats, until the node does note have any children and this node
is returned as the most proving one.
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Developing the node

Developing the node means to create all its valid children. Creating children is in
generateAllChildren. It makes next ply to game represented by node N (passed as
parameter), searches if the new game is in the transposition table and according
to the result, it inserts the node into the graph. There are 3 types of results of
the searching transposition table:

• The game was solved before. If the value of the new game proves or dis-
proves the node N , it is evaluated with true/false value and the child is not
inserted into the graph. Otherwise the new child with value true or false is
added to N .

• The game was not solved, but node M represented same game as node N
was created before. Node N is added as a parent to the node M and node
M is added as a child to the N (node M has more parents now). This
option is possible only when DAG is created as Pn-search graph.

• The game was not found in the transposition table. New node K is created
and added as a child to the node N . K is inserted into the transposition
table as unsolved.

Creation of the node (allocating the structure and filling it with data) is in the
createChild. After the children generating, each child is evaluated and then proof
and disproof number is set to the child. Evaluation of the node is in method
evaluate. There are several types of evaluation depending on the macro settings
in Settings.h:

• Db-search

• λ-search

• Combined Db-search and λ-search: Db-search is started first. If it fails
(node has value unknown), λ-search is started.

• No algorithm for evaluation: node gets value true/false if and only if the
first/second player wins. It is in the method evalGame in PnSearch.c.

Set proof and disproof numbers

Setting numbers depends on type, value and state of the node:

1. The node has known value. If it is true, proof number is set to 0 and
disproof number to INT MAX (used as ∞). If it is false, proof number is
set to INT MAX and disproof to 0.

2. If the node is expanded (its children were generated), numbers are count-
ed from its children. There are two formulas how to count the numbers:
standard and weak. What is used depends on macro settings in Settings.h
(macro WEAK PN).

3. If the node has unknown value, heuristic numbers are set in setHeuristic-
Numbers.

60



Update ancestors

The method is simple. Method setProofAndDisproofNumbers is called to all an-
cestors of the node.

A.2.2 Db-search

Dependency-based search is used as the evaluation algorithm for Pn-search node.
It tries to find winning path containing only threatening ply. That means the
sequence of attacker plies, such that defender has only one possibility how to play
and the last attacker ply is the winning ply. If this path exists, the Pn-search
node is evaluated with true/false value, otherwise with unknown value. All Db-
search methods are in DbSearch.c. The entry Db-search method is DbSearch. It
takes one parameter root, where the starting game is saved, for which is searched
the winning path. It returns 1 if winning path exists, 0 otherwise. First the root
of the Db-search is created and it is controlled if a player wins. If a player does
not win, it repeats 2 steps, until the path is found or any node is not inserted
into the tree:

1. Add dependency stage: method addDependencyStage—returns 1 if winning
path is found, 0 otherwise

2. Add combination stage: method addCombinationStage—returns 1 if win-
ning path is found, 0 otherwise

Each run of the cycle is one level.

Add dependency stage

It recursively traverses the whole Db-search graph and looks for a combination
node (or root) from the last level. For each founded node method addDependen-
cyChildren is called. What method addDependencyChildren does, depends on the
type of node (passed as parameter to the method):

1. The node is combination node. It makes new dependency node from com-
bination node. If the node is winning node, it returns 1.

2. The node is dependency node. It looks for all possible attacker threats and
makes a new dependency node with that threat and answer: attacker ply
and only one defender ply.

If a new dependency node is created addDependencyChildren calls itself on the
new node. Inserting the new dependency node into the graph is in AddDependen-
cyChild in DbVertex.c. The method allocates new DbVertex, adds it to the node
as its child, fills it with data and return pointer to it. Parameters of the method
are:

1. node: pointer to DbVertex, which will be the parent of the new dependency
node

2. array positions : operator
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3. level and type: properties of the new dependency node

4. player : which player is attacker

5. switchPoint : if 1, it switch third and fourth argument of the operator

6. win: output parameter, if 1, the new dependency node is winning node and
the method return NULL

If a winning dependency node is found the method addDependencyChildren re-
turns 1, and then addDependencyStage returns 1 as well, otherwise they return
0.

Add combination stage

It recursively looks for pairs of nodes in Db-search graph, which can be com-
bined. In addCombinationStage the first node of the pair is determined and in
the findAllCombinationNode the second one is determined. Method findAllCom-
binationNode also traverses the graph recursively. If the nodes from the pair are
not in conflict, it tries to combine the nodes. If nodes were not combined before
and they do not have the same operator, it tries to find a threat, which can be
made by the attacker (depending operator). If such an operator exists, it com-
bines the node. There are 3 problems with combination node, which need to be
solved before inserting the node into the graph:

• Defender four: If the defender has four tokens in line after the combina-
tion, the game is lost for the attacker and the combination node cannot be
inserted into the graph.

• Defender open three: If the defender has three tokens in line and the last
one is free, the defender make a threat and the attacker has to answer it.

• Defender closed three: If the defender has three tokens in line and the
attacker one, the defender could make a threat and if the attacker did not
answer it immediately, the threat sequence from root to the node is not
valid.

If there are not any of these 3 problems, or if they are solved, the combination
node is inserted into the graph. It is in AddCombinationNode in DbVertex.c. The
method parameters are:

1. node and partner : combined nodes

2. array qubic: qubic[0]—second player marks, qubic[1]—first player marks

3. level : level of the new combination node

4. freePos1 and freePos2 : empty points (third and fourth argument of oper-
ator)

5. defendPathLength: length of defend path, which solve defender open threes
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Defender open three

The problem with defender open threes are solved by counterDefenderOpenThrees.
It tries to find a path, which defends the open threes. It returns:

• −1 if the path does not exist and defender win

• 0 if attacker win

• the length of the path (count of the operators), if the attacker counters the
defender open threes

The path (if exists) is saved in global array DefendPath in DbVertex.h. The
method counterDefenderOpenThrees check the path from root to combination
node. If the defender makes open three, method counterDefenderOpenThree is
called. It returns the same value as counterDefenderOpenThrees and it tries to
defend the open three only by threats of the attacker. Its parameters are:

• array qubic: actual game

• array combineQubic: finish game—the plies from defend path must not be
in conflict with this game

• line: line in which is the defender open three

• freePos1 and freePos2 : third and fourth argument of depending operator
of combination node—plies from defend path must not be in conflict with
these spaces either

• defendPathLength: length of the current defend path

Defender closed three

The problem with the defender closed three is solved by solveDefenderClosedThrees.
It returns 0 if closed three is a problem, that means the attacker did not answer
on open three immediately. It returns 1 if closed three is not problem. It creates
a random path to the combination node, which is combined node1 and node2. It
checks the path and if the defender makes open three and the attacker does not
answer it, it returns 0. If path is valid it returns 1. It can refuse a combination
node where a valid path exists, but the random path was invalid. However, it
does not happen very often and solving time is not affected by this randomize.

A.2.3 λ-search

λ-search is also used as an evaluation method. All methods are in Lambda.c. λ-
search is a standard alpha-beta depth first search, but it uses only plies with threat
order λ. The searching depth is limited by macro MAX DEPTH. Entry method
is LambdaSearch. It tries to find a winning path containing only λ-moves. If such
path exists it returns 1, otherwise 0. λ is limited by macro MAX LAMBDA.
Method LambdaSearch calls lambda with increasing λ. Parameters of the method
lambda are:

• n: limit for λ
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• d : limit for searching depth

• lastPly : what ply was made last—it is for iterative evaluating of the game.
If it is the first call of the method, the value of parameter must be −1.

Method lambda calls lambda0 if threat order is 0 and alphabeta if threat order
is bigger. There is standard alpha-beta pruning in alphabeta but only λ moves
are used. λ moves are created in NextLambdaMove. Evaluation of the game (if
a player wind) is in eval and eval2. Both methods return 4 if the attacker wins,
0 if the defender wins, or 2 if nobody wins. Method eval checks all lines, but
eval2 checks only lines going through the point lastPly, which is the parameter
of the method, so method eval2 quicker. The current game is in the array qubic
and it is edited by methods makePly and unmakePly. Parameter plyColor of the
method makePly has value 1 for the first player and −1 for the second player. In
Figure A.1 is the diagram of the calling the λ-search methods.

lambda

lambda0

threat order 0
threat order bigger then 0

alphabeta

– alpha-beta prunning,

used only λ-moves

DFS

NextLambdaMove

– creating λ-moves

testing if move

is λ-move

Figure A.1: Diagram of λ-search methods

A.2.4 Transposition table

Transposition table is a hash table, where Pn-search nodes are saved to avoid
solving some nodes more than once. All transposition table methods are in
Transposition.c. Hash table data is in array transposition, the array has size
about 1GB.

Searching the table

Searching the table is in CheckHashTable1. It makes (if the macro AUTOMOR-
PHISM is defined in Settings.h) all automorphisms image of the game, which is
searched. For each image the method checkHashTable2 is called. After that it
returns the result. There are several options, what is in array transposition:

• Free entry, transposition[x][0] is 0

• Solved game, in transposition[x][0] are the second player tokens and in
transposition[x][1] are the first player tokens. If the first player win the
game, in transposition[x][0] is 1 on the position, where is the first 1 from
left in transposition[x][1]. For example: the left side of the binary code of
first and second player tokens are: 0100 . . . and 0010 . . . and the first player
win the game, so in transposition[x][1] is 0100 . . . and in transposition[x][0]
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is 0110 . . . If the second player win the game, binary codes of the tokens
are not modified when inserting into the table.

• Unsolved game, in transposition[x][1] is 0 and in transposition[x][0] is point-
er to Pn-search node. This option is possible only, when macro DAG is
defined in Settings.h.

• Invalid entry, in transposition[x][0] and transposition[x][1] is INT MAX.
This option is also possible, only if macro DAG is defined.

Method checkHashTable2 counts hash (index to the array transposition) of binary
codes of the players tokens (universal hash function in getHash) and tries to find
the game in the array. It checks 100 array entry (macro HASH TRY) after the
counted index. If it finds:

1. Free entry: stops searching and returns the index of the free entry

2. Invalid entry: keeps searching, but it returns the index of invalid entry as
free entry

3. Unsolved node: if it represents the searching game, stops searching returns
the pointer in node parameter of checkHashTable2. This parameter is not
defined, if macro DAG is not defined.

4. Solved game: if it represents the searching game, stops searching and re-
turns the value of the game. −2 is for first player win, −3 is for the second
player win.

5. Different solved or unsolved game: keeps searching.

The method checkHashTable2 returns −4 if any free or invalid entry is not found.

Inserting into the table

There are three methods for inserting:

• void InsertGame(uint64 t qubic1, uint64 t qubic2, int index): It inserts
game qubic1, qubic2 on position index into the array. It is used, when
starting games for Pn-search is generated.

• void InsertVertexPointer(struct Vertex* vertex, int index): It inserts pointer
on position index into the array. It is used, when DAG is created as Pn-
search graph.

• void InsertVertexValue(struct Vertex* node): If DAG as Pn-search graph
is created it inserts the solved game on position node->TranspositionIndex
into the array (it rewrites the pointer to the node). If a tree is created, it
counts the hash of the game and inserts in into the array.

Methods InsertGame and InsertVertexPointer are called right after CheckHashTable1,
where the hash is counted, so the insert methods have the parameter index to
avoid counting hash more than once.

65



Deleting from the table

When DAG is created as Pn-search graph, pointers are deleted from the table
(DeleteVertexPointer), when the Pn-search root is solved and Pn-search tree
is freed. These entries became invalid, and they do not stop the searching in
checkHashTable2.

Reading from the table

When starting games are created, they are saved in the transposition table. After
generating the starting positions, the method Flush is called. It returns dynamic
array of all non-empty entries and then it clears the table. In the new array, even
indices have entries transposition[n][0] (second player tokens) and odd indices
entries transposition[n][1] (first player tokens) .

A.2.5 Automorphisms

There are 192 automorphisms (including identity) of Qubic. Counting the au-
tomorphism image of the game representation means to do permutation of bit
from 64-bit integer. All automorphism methods are in Automorphism.c and in
AutomorphismConstant.c. There are 3 ways how to count the automorphisms
images.

Permutation array

It is the simplest and slowest method. Counting the images is in Transform. It
has the following parameters:

• qubic1 and qubic2 are game representations

• rotate1 and rotate2 are output parameters and automorphism image of
game representation is saved there automorphism is index of automorphism,
which is used

Array automorphisms is used for counting. For counting the image of automor-
phism a every bit from game representation with position i in the number is
moved to position automorphisms[a][i]. This method is used only for testing
whether other methods return same results.

Shift array

Method TransformShift is quicker. It has the same parameters as Transform. It
uses arrays Automorphisms2 and Shift. For counting the image of automorphism
a it is made & (bit operation) between game representation and numbers from
Automorphisms2. After & it is shifted by number (with the same index as pat-
tern in Automorphisms2 ) from Shift. Positive number in Shift means left shift,
negative number right shift. Hence bits, which are moved by same positions,
are moved at one time. Array Automorphisms2 is ordered by count of patterns.
Therefore images of automorphisms with less patterns are counted earlier. This
method is used in searching the transposition table, when AUTOMORPHISM is
defined and CONSTANT is not defined in Settings.h.
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Constant methods

This way is the quickest. Each automorphism has the method Transform#N in
AutomorphismConstant.h, where #N is the index of automorphism. These meth-
ods work the same as TransformShift, but all code is generated and they work
with constants instead of values from arrays. There is also the method Trans-
formConst in AutomorphismConstant.c, which calls methods Transform#N by
value of parameter automorphism. This method is only used for testing. Methods
Transofrm#N are called one by one in applyAutomorphisms during searching the
transposition table, when when AUTOMORPHISM and CONSTANT are defined
in Settings.h.

Creating automorphisms

Automorphisms are created in CreateAutomorphisms. First 7 basic automor-
phisms are created into the permutation array automorphism. Other automor-
phisms are created by joining the exists automorphisms. Items for arrays Auto-
morphisms2 and Shift are created by values from array automorphisms.

A.2.6 Code generating

Some parts of code are generated, because execution time shorten. If macro
CODE GENERATE is defined, these parts are generated and saved into the files
and Qubic is not solved. If macro CODE GENERATE is defined, CONSTANT
must not be defined and AUTOMORPHISM must be defined. If CONSTANT
is defined automorphisms are not counted, so automorphisms generating would
not work. If AUTOMORPHISM is not defined, automorphism images are not
counted during searching the transposition table. Therefore starting games gen-
erating would generate more games than with AUTOMORPHISM defined. Most
of generating methods are in CreateCode.c:

• createHashFunction: creates getHash function for the transposition table
and saves it into getHash.txt

• createApplyAutomorphisms : creates applyAutomorphisms function for con-
stant counting automorphism images during searching the transposition
table and saves it into applyAutomorphisms.txt

• createAutomorphimMethods : creates 191 (the method for identity is not
generated) methods one for each automorphism with name Transform#N
(where #N is number between 1 and 191) and TransformConst and saves
it into AutomorphismConstant.c.txt and their declarations into Automor-
phismConstant.h.txt

Code is generated also in Game.c. Here is the method CreateWinLines, which
fills array Lines and Positions with data. When code is generated, these arrays
are written into the file lines.txt.

67



Starting games generating

Starting games with depth 3 (2 crosses and 1 ring) are generated by the method
createStartGames in Program.c. It fills array startGames with 7 non-isomorphic
games with depth 3. Starting games with depth 4 are generated in Generator.c.
For each game from startGames is called method GenerateAllGames. Generated
games are stored in the transposition table with automorphisms, so only non-
automorphic games are saved. The games are generated in two steps:

1. It generates all possible combination of D points in the game cube, where
D is parameter depth. This generation is in generateAllGames1.

2. It generates all combination of tokens into each combination of points and
saves it into the transposition table. This generation is in generateAllPlies.

Method GenerateAllGames has the following parameters:

• depth is the depth of generating games.

• defenderPliesCount is the count of defender plies in the generated plies (not
in pattern).

• pattern1 and pattern2 are started games for generating.

In case of generating games with depth 4 from games with depth 3, the param-
eter depth is 4, the parameter defenderPliesCount is 1 (one ring is needed to
generate, count of cross is counted in the method), and the parameters pattern1
and pattern2 are entries from startGames (startGames[x][1] is the for first play-
er, startGames[x][0] for the second player). After generation the method Flush
from Transposition.c is called and all entries are saved in array starts. If code is
generated, the array starts is written into the starts.txt.

A.3 Data Structure

A.3.1 Game representation

The game cube is represented by two 64-bit unsigned integer. In the first are
saved the first player tokens, the second player tokens are saved in the second
one. If some point in the cube has coordinates [x, y, z] it is on 42x + 4y + z
position (from right) in integer. The Qubic game with coordinates can be written
into console by method WriteQubic, which is saved in Game.c. The first player
tokens are usually in variable qubic1, the second player tokens in qubic2. If
they are saved in array, then qubic[0] are second player tokens, qubic[1] are first
player tokens. The first player is represented by 1, the second player by 0. Each
winning line is represented by 64-bit unsigned integer saved in array Lines in
Game.c. Coordinates system is the same as in the game representation. Hence
the result of the line ℓ representation & the tokens representation of some player
is representation of the player tokens in the line ℓ. In array Positions are saved
lines going through each point. For example: lines going through point 23 in
cube are saved in Positions[23][0] and Positions[23][1]. The integers are indexed
from right to left, so only 12 bits from Positions[x][0] are used (there are 76
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lines and first 64 lines are saved in Positions[x][1]). For example: if right end
of Positions[23][0] is ...0100 (in binary code), it means that the line saved in
Lines[66] goes through position 23 in game representation.

A.3.2 Vertex

Vertex structure represents Pn-search node. It is saved in PnVertex.h. Vertex
properties are:

• ProofNumber andDisproofNumber : 32-bit integers, proof and disproof num-
ber of the node.

• Memory : 8-bit unsigned integer. It is used for some small (1-bit and 2-bit)
node properties. Meanings of bits (indexed from right):

– 0: Type of node—0 is AND node, 1 is OR node

– 1: Evaluated—1 is true, 0 is false

– 2: Expanded—1 is true, 0 is false

– 3− 4: Value of node—00 is Unknown, 01 is False, 10 is True

– 5− 6: How the node was evaluated: 01 by evaluation algorithm, 10 by
Pn-search (solving by values of children of the node), 11 by transposi-
tion table (same node was solved earlier)

– 7: Not used

There are methods in PnVertex.c to get and set these properties.

• TranspositionIndex : 32-bit integer. Index, where the node is in the trans-
position table. It is used only when DAG is used as Pn-search graph.

• Ply : 8-bit unsigned integer. Point, where player plies. It is used when
Db-search nor λ-search is not used.

• Qubic1 : 64-bit unsigned integer. First player marks.

• Qubic2 : 64-bit unsigned integer. Second player marks.

• ChildrenCount : 8-bit integer. Count of the node children (count of the
Children array item).

• Children: dynamic array of Vertex structure. Pointers to the node children.

• Parent : parent of the node. Type depends on settings:

– Pointer to Vertex structure, if tree is used as Pn-search graph. In this
case every node has only one parent.

– Pointer to Parent structure, if DAG is used as Pn-search graph. In this
case a node can have more than one parent. So all parents are saved
as linked list. The structure Parent is very simple. It has two fields:
pointer to Vertex structure and pointer to another Parent structure
(next item in list). It is also saved in PnVertex.h.
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A.3.3 DbVertex

DbVertex structure represents Db-search node. It is saved in DbSearch.h. Db-
Vertex properties are:

• Depth: 8-bit unsigned integer. Depth of the node in Db-search graph
(amount of nodes between this node and root).

• Level : 8-bit integer. Absolute value of the field is level of the node. Sign of
the field is type. If it is 0 the node is root, if it is positive it is combination
node, if it is negative it is dependency node.

• Qubic: 2-length array of 64-bit unsigned integer. Qubic[0] represents tokens
of the second player, Qubic[1] represents tokens of the first player.

• Child : pointer to DbVertex structure, the first child of Db-search node.

• LastChild : pointer to DbVertex structure, the Last child of Db-search node.

• Sibling : pointer to DbVertex structure, sibling of the node (nodes have
same depth).

• Parent : pointer to DbVertex structure, the first parent of the node.

• Parent2 : pointer to DbVertex structure, the second parent of Db-search
node. It is used when node is combination node.

• DbOperator : 4-length array of 8-bit integer. It represents Db-operator.

• DefendPath: dynamic array of 8-bit integer. Path to defend open threes
in combined nodes. First item is length of the array. Every four items in
array are one operator.

Db operator is represented by 4-tuple of integers. The first two numbers represent
points, where the attacker must have his tokens. The third number represents
point, where the attacker puts his token and creates threat. The fourth number
represents point, where the defender puts his token to counter the threat.

A.4 Settings

There are several macros in Settings.h for control, what parts of code are com-
piled. Macro settings are only in program Qubic.

• DEBUG: If defined, algorithm soundness is tested. It does not change
the algorithms, but the solving is slower. Error messages are written into
console.

• DB and LAMBDA: If DB is defined, Db-search is used as evaluation method
(same with LAMBDA and λ-search). If both are defined, Db-search is used
first and if it fails, λ-search is used. If DB nor LAMBDA are not defined,
nodes get their value only from their children.
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• CODE GENERATE: If defined, code is generated and game is not solved.
If CODE GENERATE is defined, CONSTANT must not be defined and
AUTOMORPHISM must be defined, otherwise the generated code is not
correct.

• CONSTANT: If defined, pre-generated code is used (i.e. winning line rep-
resentations are integer constants, there are generated method for each
automorphism and so on).

• AUTOMORPHISM: If defined, automorphisms are used in searching the
transposition table.

• DAG: If defined, DAG is used as graph in Pn-search. If not defined regular
tree is used.

• WEAK PN: If defined, Weak Pn-search is used, otherwise standard Pn-
search is used.

• STARTS DEPTH 3: If defined, starting games have depth 3 (2 crosses and
1 ring), otherwise the depth is 4.

A.5 Inputs and Outputs

Both programs (Qubic and Parallel Qubic) do not need any input. After starting
the program Qubic, the macro settings are written into the console. If macro
CODE GENERATE is defined, code is generating into the files. After that the
application is closed. If CODE GENERATE is not defined, Qubic solving starts.
When a starting game is solved, the result is written into the console. The format
is Result #N: #R, where #N is index of the starting game and #R is result,
1 for the first player win, −1 for the second player win or draw. After solving
all starting games, macro setting are displayed again, and some statistics about
solving are displayed:

1. Result : overall result of Qubic: 1 if every starting game had result 1 (the
first player win), 0 if some starting game had result −1

2. Node count : count of created Pn-search nodes

3. Hashed : count of Pn-search nodes saved in the transposition table

4. Not Hashed : count of Pn-search nodes, which were not saved in the trans-
position table, because no free entry was found

5. Hit count : count of successful searching in the transposition table

6. Evaluated : count of Pn-search nodes evaluated with known value (True/False)

7. Evaluation Failed : count of Pn-search nodes, which evaluation algorithm
did not evaluate with known value

8. Evaluation Success : count of Pn-search nodes, which evaluation algorithm
evaluated with known value
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9. Expanded : count of expanded Pn-search nodes (children were created for
those nodes)

10. Time: solving time in format mm:ss

A.5.1 Outputs of parallel program

The program ParallelQubic has not any macro settings described in Section A.4.
There is a macro NUM THREADS, which defines the number of used threads.
When the program is started, the value of the macro NUM THREADS is written
into the console and then it starts solving the games from array starts. When a
thread solves the starting game, the result is written into the console (in the same
format as in single-thread program). After solving all starting games, number of
threads are displayed again, and some statistics are displayed:

1. Result : overall result of Qubic: 1 if every starting game had result 1 (the
first player win), 0 if some starting game had result −1

2. Nodes counted more than once: count of nodes, which were simultaneously
solved in different threads

3. Time: solving time in format mm:ss

A.6 Parallelization

In ParallelQubic, the fastest algorithm from Qubic is parallelized. It is Weak Pn-
search on DAG with Db-search as the evaluation method, without automorphisms
in searching the transposition table and starting depth 4 (i.e. DB, CONSTANT,
DAG and WEAK PN would be defined in Qubic other macros would not). The
changes are not so large. Program.c is changed, here the threads are created.
Starting games are read from array with lock to avoid solving some games more
than once. Most of the global variables from Qubic are global only within the
thread.

A.6.1 Transposition table

Most of the changes are in the transposition table. The table is divided into
two tables. The first is global for the whole application and solved games are
saved there. Data is written into the table with a lock. Reading is without lock.
The second table is local for each thread and unsolved Pn-search nodes are saved
there.
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