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Preface
In autumn 2011 I was a third-year undergraduate student of computer science
looking for an advisor and a topic for bachelor thesis. I had no idea what I would
like to work on. I just knew that during my studies I generally enjoyed mathe-
matical or theoretical subjects more than those concerned with programming or
various kinds of software and hardware, my favourite being Mathematical anal-
ysis. With these feelings, I addressed Jǐŕı Matoušek, who then suggested, as a
possible topic for my thesis, a question asked by Uriel Feige. The question con-
cerns finite sets of points in the plane with integer co-ordinates which one is then
asked to map bijectively onto a regular square grid of points in such a way that
the pairwise distances between the points are stretched as little as possible. Seen
more abstractly, the question is about embedding finite metric spaces coming
from discrete sets in the plane into discrete metric spaces of a very special form
with as low distortion as possible. Feige asked the question in 2002 during a
workshop held in Haifa that was aimed at this type of problems, which was also
attended by Matoušek.

When presenting the problem to me, Matoušek said that the problem was
hard in his opinion. So my initial goal was not to solve the problem, but to get
acquainted with it, to study related literature, and possibly, to try to solve some
of its special cases. Matoušek pointed me to work on equivalence of separated nets
and prescribed Jacobian equation by Dmitri Burago, Bruce Kleiner and Curtis
McMullen and said that maybe similar methods could be employed to attack
Feige’s question.

Since then, the question has become my faithful companion backing me also
through my master thesis to the beginning of my doctoral studies, all done under
the supervision of Matoušek.

However, around the autumn 2014, when I became a first-year graduate stu-
dent, Matoušek’s health started to deteriorate. Nevertheless, he contacted Eva
Kopecká from Universität Innsbruck, who works mainly in Lipschitz analysis and
who then invited me to come to Innsbruck. Later, she hosted me in Innsbruck
for a number of longer and shorter stays, and also, became my co-advisor.

This way I teamed up with Eva Kopecká and Michael Dymond, a post-doc in
Innsbruck. We worked together on Feige’s question for more than a year until we
finally managed to resolve it. Our findings constitute the core of the presented
thesis.

Sadly, Matoušek passed away at the beginning of March 2015. I grouped
with Kopecká and Dymond only several months after that. To answer Feige’s
question, we really used tools heavily inspired by the work of Burago, Kleiner
and McMullen, as was suggested to me by Matoušek at the beginning of the
story. Thus, at the highest level, this idea should be attributed to him. However,
I would like to note that in my work towards answering Feige’s question under
Matoušek’s supervision I did not really move beyond understanding the related
work of Burago, Kleiner and McMullen. All the new results that led to the
resolution of Feige’s question arose in collaboration with Dymond and Kopecká
only later.

After Matoušek’s passing, I had to find a new supervisor. Martin Tancer
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was willing to take the role. His main interests lie in topological and geometric
combinatorics and computational topology, which naturally led to extension of
my own interest towards these areas.

Martin Tancer has allowed me to connect with several of his foreign collab-
orators. He regularly invited me to join when he was hosting visitors for short
research stays and also often enabled me to accompany him when he was vis-
iting one or more of his colleagues abroad. One of the problems that I started
to work on during the visits, together with Éric Colin de Verdière, Pavel Paták,
Zuzana Patáková, Martin Tancer and, at the beginning, with Alfredo Hubard,
was a possible extension of the strong Hanani–Tutte theorem to surfaces other
than the plane. We have not quite succeeded in that, however, we were at least
able to provide a constructive proof of the strong Hanani–Tutte theorem for the
projective plane. This proof forms the second part of the present thesis.

The content of Chapter 1, which discusses Feige’s question, is based on the
article [Paper I] written in collaboration with Dymond and Kopecká, which is
accepted for publication in Geometric and Functional Analysis.

The content of Chapter 2, which is about the strong Hanani–Tutte theorem for
the projective plane, is based on the article [Paper II] written in collaboration with
Colin de Verdière, Paták, Patáková and Tancer, which is published in Journal of
Graph Algorithms and Applications.

At the end, I would like to explain the way I use pronouns in the thesis.
I follow widespread habit of using ‘we’ in the sense ‘the author’ together with
‘the kind reader’. However, since the work presented in the thesis was done in
collaboration, I wanted to make clear to the reader that I am not the only author
of the results. Therefore, at several places I refer to myself and my co-authors
using ‘they’. This is not to dispose myself of responsibility, it is solely intended
to give a proper credit to all people involved. Whenever I express my personal
views, I refer to myself as ‘the author’.

List of author’s publications used in the thesis
[Paper I] Michael Dymond, Vojtěch Kaluža and Eva Kopecká

2018. Mapping n grid points onto a square forces an arbitrarily large Lipschitz
constant. Geometric and Functional Analysis.
http://dx.doi.org/10.1007/s00039-018-0445-z

[Paper II] Éric Colin de Verdière, Vojtěch Kaluža, Pavel Paták, Zuzana Patáková
and Martin Tancer
2017. A Direct Proof of the Strong Hanani–Tutte Theorem on the Projective
Plane. Journal of Graph Algorithms and Applications, 21(5):939–981.
http://dx.doi.org/10.7155/jgaa.00445
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Introduction

History and motivation

The motivation for the work presented in this chapter stems out of the so-called
Graph Bandwidth problem, which is defined in the following way.

Consider a graph G = (V,E) with n vertices. Assume we are given a bijection
f : V → {1, . . . , n}. Let us call the quantity |f(u) − f(v)| a stretch of an edge
(u, v) under f . The minimum taken over all bijections f as above of maximal
stretch of an edge under f is called the bandwidth of a graph. The goal in the
Graph Bandwidth problem is to find an f realising the bandwidth of G.

The Graph Bandwidth problem can be stated using matrices: we say that
an n × n matrix A has a bandwidth k if all its non-zero entries are concentrated
in a band of width k along the main diagonal. Then the Matrix Bandwidth
problem is a question of finding an n×n permutation matrix Π such that ΠAΠT

has the smallest possible bandwidth.
It is easy to see that the Graph bandwidth problem and the Matrix band-

width problem for symmetric matrices are equivalent—the correspondence being
given by the edges (i, j) and the non-zero entries Ai,j. Matrices of low bandwidth
are easier to store and to manipulate with. Therefore, both bandwidth prob-
lems have been studied since the development of computers: according to Chinn,
Chvátalová, Dewdney, and Gibbs [9], the Matrix Bandwidth problem has been
considered at least since 1950s. The Graph Bandwidth problem originated, prob-
ably independently, in 1962 in jet Propulsion Laboratory in Pasadena [9]. Since
then there has been an instantly growing literature on the two problems. As of
March 2018, Google Scholar lists more than 400 articles containing the phrase
‘Graph Bandwidth’ and more than 2100 articles containing the phrase ‘Matrix
Bandwidth’. More recent surveys than [9] were written by Dı́az, Petit, and Serna
[17] and Mafteiu-Scai [36]. The latter focuses only on the practical point of view.

In 1976 Papadimitriou [44] showed that the decision version of the Graph
Bandwidth problem is NP-hard. Much later, in 1998 Blache, Karpinski, and
Wirtgen [4] showed that the Graph Bandwidth is NP-hard to approximate with
a factor better than 3

2 on general graphs and 4
3 on trees. Unger [46] announced

that it is NP-hard to approximate the Graph Bandwidth by any constant factor,
even for caterpillar trees. However, the full proofs appeared only much later in
the work of Dubey, Feige, and Unger [18].

On the positive side, Feige [23] designed a randomised algorithm that produces
a linear layout of an n-vertex graph, i.e., a bijection between the set of its vertices
and the set {1, . . . , n}, with a stretch of an edge at most O(log3.5 n

√
log log n)-

times the optimal bandwidth. Feige’s algorithm falls into a class of approximate
metric embeddings algorithms; nowadays a rich area of research initiated arguably
by a work of Bourgain [6]. Feige’s algorithm was inspired by a famous work of
Linial, London, and Rabinovich [35], who, in turn, built upon the previous work of
Bourgain [6] and presented an algorithm constructing a low-distortion embedding
of a weighted graph into a Euclidean space (together with numerous applications).

Feige’s algorithm can be described, in very rough terms, in two steps. First,
construct a random injection of the set of vertices of an n-vertex graph into
a Euclidean space of dimension O (polylog (n)) that preserves the shortest-path
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metric1 on the graph up to a factor of O (polylog (n)). Second, take a random
line in the space and project the points representing the vertices of the graph
orthogonally onto that line. The linear arrangement of vertices along the line
then provides, with high probability, the desired approximate solution to the
Graph Bandwidth problem.

Besides looking for a linear layout of the vertices of a graph, we can ask
what is the best arrangement of the vertices of an n2-vertex graph onto a grid
{1, . . . , n} × {1, . . . , n} (or, analogously, for higher-dimensional grids). This is
a natural generalisation of the Graph Bandwidth problem. Feige [private com-
munication] realised that his algorithm would work just fine even for the gen-
eralised problem, except possibly the last step: instead of taking a linear ar-
rangement along a line, one is dealing with an embedding into a plane (or a
higher-dimensional subspace) that is then rounded to the grid points. How-
ever, it is not clear at all how to map the resulting set of points injectively onto
{1, . . . , n} × {1, . . . , n} without increasing the stretch of the edges too much, be-
cause one ends up with a placement of the vertices in a larger grid that contains
‘holes’. Motivated by this, Feige asked the following question:

Question 1.1 (Feige’s question). Is there a universal constant L > 1 such that
for every n ∈ N and every set S ⊂ Z2 of n2 points there is an L-Lipschitz bijection
between S and the square grid {1, . . . , n} × {1, . . . , n}?

It seems that the question has first received wider attention at the workshop
‘Discrete Metric Spaces and their Algorithmic Applications’ held in Haifa in 2002;
see [40]. It also appeared in a list of open problems maintained by Matoušek and
Naor [39] as Question 2.12.

We resolve Question 1.1 to the negative. The results presented in this chapter
are contained in the work by Dymond, the author, and Kopecká [21].

To the best of author’s knowledge, there has been almost no progress towards
answering Question 1.1 before the presented work; the only prior published works
considering the question being author’s Master’s [33] and Bachelor’s theses [32],
which, however, contain only a few minor results for very special cases.

At the highest level, the presented solution works as follows. On the one
hand, we translate Question 1.1, which is a discrete problem, into a question in
a continuous world, following the lines of a similar reduction in [8]. More specif-
ically, we show that if the answer to Question 1.1 is positive, then every density
of measure can be realised (a notion to be defined precisely later) as a volume
form transformation induced by a special Lipschitz mapping (called Lipschitz
regular). On the other hand, we show that not all densities can be realised in
such a way. Two key steps in this part are an inspection and a strengthening of
the construction of bilipschitz non-realisable functions by Burago and Kleiner [8]
and a bilipschitz decomposition result for Lipschitz regular mappings following
from a result by Bonk and Kleiner [5].

1In fact, it is not sufficient to take care of distances of pairs of vertices, i.e., to have a low-
distortion embedding, but to control the behaviour of larger subsets of vertices. For this, Feige
devised a so-called volume respecting embedding.
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Interplay of discrete and continuous worlds
Burago and Kleiner [8] and, independently, McMullen [42] considered the follow-
ing question, at that time open, that was first mentioned by Furstenberg in the
1960s and appears in the book [27] by Gromov.

Question 1.2. Is there for every separated net2 S in R2 a bilipschitz bijection
f : S → Z2. In other words, are every two separated nets in R2 bilipschitz equiv-
alent?

The approach of Burago and Kleiner [8] and McMullen [42] to answer Ques-
tion 1.2 is based on its relation to another question, at that time open as well,
which is suited in the continuous world:

Question 1.3. Is every measurable function ρ : [0, 1]2 → (0,∞) such that 0 <
inf ρ ≤ sup ρ < ∞ realisable as a Jacobian of a bilipschitz mapping? That is, is
there always a bilipschitz mapping f : [0, 1]2 → R2 such that the equation

Jac(f) = ρ (1.1)

holds almost everywhere?

Question 1.3 falls into the area of prescribed Jacobian of a homeomorphisms;
for related work see Dacorogna and Moser [11] or Rivière and Ye [45], for example.

Burago and Kleiner [8] proved that a positive answer to Question 1.2 yields a
positive answer to Question 1.3 (McMullen [42] established the opposite implica-
tion as well; consequently, the problems in Questions 1.2 and 1.3 are equivalent).
Their proof presents a procedure that takes any function ρ as in the statement
of Question 1.3 and encodes it into a separated net S in R2. Then Burago and
Kleiner show that a bilipschitz bijection S → Z2 can be used to obtain a bilips-
chitz homeomorphism f : [0, 1]2 → R2 such that Jac(f) = ρ almost everywhere.
As a next step, they construct a function ρ that cannot be realised as a Jacobian
of a bilipschitz homeomorphism in the sense of equation (1.1), and thus, provide
negative answers to both Questions 1.2 and 1.3. The work in [8] is stated in
dimension d = 2 just for simplicity; it works without any significant change in
any dimension d ≥ 2.

The approach of Dymond, the author, and Kopecká [21] to Question 1.1 pre-
sented in this thesis follows the same pattern and works in any dimension d ≥ 2
as well3. Consequently, a negative answer to the continuous analogue of Feige’s
question is provided in any dimension d ≥ 2.

Question 1.4 (Feige’s question for general dimension). Let d ∈ N be at least 2.
Is there a universal constant L := L(d) such that for every n ∈ N and every set
S ⊂ Zd of nd points there is an L-Lipschitz bijection from S to the cubical grid
{1, . . . , n}d?

We present a continuous question that is related to Feige’s question. Before
we state it, we note that in many of the statements below we use a few notions

2The set S is separated if no two distinct points of S are at distance less than some R > 0.
It is a net of the ambient space if every point in the space is at distance at most r > 0 from S.

3In dimension d = 1 the answer to Feige’s question is trivially positive.
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and symbols that the reader may not be familiar with. All of them will be
defined precisely in ‘Background and notation’. In this section we provide only
rough explanation of their intended meaning. To begin with, we write L for the
Lebesgue measure.

Question 1.5 (A continuous analogue of Feige’s question). Is there for every
measurable function ρ : [0, 1]d → (0,∞) such that 0 < inf ρ ≤ sup ρ < ∞ a
Lipschitz regular4 mapping f : [0, 1]d → Rd verifying the equation∫

f−1(A)
ρ dL = L(A) for every A ⊆ f

(
[0, 1]d

)
? (1.2)

We prove that a positive answer to Question 1.4 provides a positive answer to
the continuous question. It should be emphasized that we provide only one-sided
relation between the two questions stated above, in contrast to the relation be-
tween Questions 1.2 and 1.3 established by Burago and Kleiner [8] and McMullen
[42].

Theorem 1.6. A positive answer to Question 1.4 yields a positive answer to
Question 1.5.

The proof of the theorem above is a modification of the discretisation argu-
ment of Burago and Kleiner [8] and is contained in Section 1.1.

As the second step towards answering Question 1.4, we show that there are
many functions for which the answer to the continuous analogue of Feige’s ques-
tion is false. In fact, it is sufficient to look for such examples inside the space of
continuous functions. Namely, we prove:

Theorem 1.46. The set

E :=
{
ρ ∈ C([0, 1]d) : ρ admits a Lipschitz regular solution to equation (1.2)

}
forms a σ-porous5 subset of the space of continuous functions C([0, 1]d) with the
supremum norm.

We note that equation (1.2) is a generalisation of equation (1.1) from Ques-
tion 1.3, and thus, Theorem 1.46 provides a twofold generalisation of the results
of Burago and Kleiner [8] and McMullen [42]; first, a stronger notion of real-
isability taking into account Lipschitz regular mappings instead of bilipschitz
is considered, and second, it is proven that there are many such non-realisable
continuous functions instead of constructing just one example.

The proof of Theorem 1.46 and of necessary preliminary lemmas spans most
of Sections 1.2, 1.3 and 1.4.

In Section 1.2 we will prove the following decomposition theorem, which says
that any Lipschitz regular mapping decomposes into a finite number of bilipschitz
mappings on some open subset of its image:

4Lipschitz regular mapping is a special kind of Lipschitz mapping that is in a sense non-
degenerate: it cannot map a set of positive measure to a set of measure zero.

5It means that a typical continuous function is not in E .
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Theorem 1.35. Let U ⊆ Rd be non-empty and open and f : U → Rd be a
Lipschitz regular mapping. Then there exist a non-empty open set T ⊆ f(U),
N ∈ {1, . . . ,Reg(f)} and pairwise disjoint open sets W1, . . . ,WN ⊆ U such that
f−1(T ) = ⋃N

i=1 Wi and f |Wi
: Wi → T is a bilipschitz homeomorphism for each i

with the lower bilipschitz constant b = b(Reg(f)).

We note that, in the statement above, Reg(f) is a natural number that quan-
tifies how ‘regular’ the Lipschitz regular mapping f is.

Theorem 1.35 is really crucial to overcome the gap between Lipschitz regular
and bilipschitz mappings. It can be deduced quite easily from the following result
of Bonk and Kleiner [5]. We present only a special case that we shall need:

Theorem 1.30 (Bonk and Kleiner [5]). Let U ⊆ Rd be open and f : U → Rd be
Lipschitz regular. Then there are disjoint open sets (An)n∈N such that ⋃n∈NAn

is dense in U and such that f |An is bilipschitz with the lower bilipschitz constant
b = b(Reg(f)).

When working on the first version of the presented results, Dymond, the
author, and Kopecká [20] were not aware of the work by Bonk and Kleiner [5],
and thus, devised and independent proof of Theorem 1.30. They were informed
about [5] only later by Guy C. David. We will present a proof of Theorem 1.30
that is easier and shorter, though less general than that of Bonk and Kleiner in
Section 1.2.

Then, in Section 1.3 we extract from the construction of Burago and Kleiner
[8] a certain geometric property of Jacobians of bilipschitz mappings that is a key
part of the construction of bilipschitz non-realisable functions. Adding several
strengthenings not present in [8], we deduce the following statement:

Lemma 1.40. Let d, k ∈ N with d ≥ 2, L ≥ 1 and η, ζ ∈ (0, 1). Then there
exists r = r(d, k, L, η, ζ) ∈ N such that for every non-empty open set U ⊆ Rd

there exist finite tiled families S1,S2, . . . ,Sr of cubes contained in U with the
following properties:

1. For each 1 ≤ i < r and each cube S ∈ Si

L

⎛⎝S ∩
r⋃

j=i+1

⋃
Sj

⎞⎠≤ ηL(S).

2. For any k-tuple (h1, . . . , hk) of L-bilipschitz mappings hj : U → Rd there
exist i ∈ {1, . . . , r} and e1-adjacent cubes S, S ′ ∈ Si such that⏐⏐⏐⏐⏐ 1

L (S)

∫
S

|Jac(hj)| dL − 1
L (S ′)

∫
S′

|Jac(hj)| dL
⏐⏐⏐⏐⏐ ≤ ζ

for all j ∈ {1, . . . , k}.

For a precise definition of the terms ‘tiled’ family of cubes and ‘e1-adjacent’
cubes we refer the reader to Section 1.3. However, the rough meaning is that a
‘tiled’ family of cubes is formed by congruent cubes arranged into a tiling and
two such cubes are ‘e1-adjacent’ if they share the facet defined by fixing the first
co-ordinate.

14



Finally, in Section 1.4 we show how to prove Theorem 1.46 using Lemma 1.40
and Theorem 1.35. We also show that a version of Theorem 1.46 for the space
L∞([0, 1]d) instead of C([0, 1]d) holds as well, though providing only a weaker
conclusion speaking about bilipschitz realisability only instead of the more general
Lipschitz regular realisability.
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Background and notation
In this Section we fix the notation used throughout the chapter and present the
basic results that we shall use. Although many concepts that we use make sense
in the setting of metric spaces, we stick here to the Euclidean spaces wherever
possible since we will not work in any more general space.

We often write := to emphasize that the equality in question is to be inter-
preted as a definition. We write [n] for the set {1, . . . , n}, where n ∈ N. The unit
interval [0, 1] is denoted by I.

Balls, norms, sets and nets
We denote an open Euclidean ball centred at x ∈ Rd with radius r > 0 by B(x, r).
In case the ambient space is not the Euclidean space, but a metric space (which
will be the case only for spaces of functions), we mean by B(x, r) an open metric
ball of radius r centred at x. For a closed ball we write B(x, r). We also extend
the notation to denote neighbourhoods of sets. Namely, B(A, r) denotes the set
of points at distance less than r to the set A (including the set A), and similarly,
we define B(A, r).

For a general set A ⊆ Rn we denote by A, intA, ∂A its topological closure,
interior and boundary, respectively. For an introduction to topology, we refer the
reader to classical monographs by Munkres [43] and Hatcher [28].

We write ∥·∥2 for the Euclidean norm. For a set A and a point x we denote by
dist(x,A) the Euclidean distance of x to A. Thus, dist(x,A) := infy∈A ∥x− y∥2.
The diameter of a set A is defined as diam(A) := supx,y∈A ∥x− y∥2.

Sometimes we will also use the supremum norm, denoted by ∥·∥∞. The oper-
ator norm is denoted by ∥·∥op.

A set S ⊆ Rd is said to be s-separated if any two of its distinct points x, y ∈ S
are at distance ∥x− y∥2 ≥ s. For S ⊆ A, we call S an r-net of A if any point
of A is at distance at most r from S. We say that S is an (s, r)-separated net of
A if it is an r-net of A which is s-separated. If we say that S is just a separated
net, we mean that there exist s, r > 0 such that S is an (s, r)-net.

Measures
As a general reference for measure theory and the theory of the Lebesgue integral
we suggest the books by Mattila [41] and Federer [22].

We adopt the convention of Mattila [41] and do not distinguish between mea-
sures and outer measures. We will encounter only Borel measures—measures for
which every Borel set is measurable. Recall that a set is Borel if it can be gen-
erated from open sets using any combination of countable unions and countable
intersections. For a Borel measure ν on Rd there is the unique smallest closed set
F such that ν(Rd \ F ) = 0. The set F is called the support of ν.

We denote the d-dimensional Lebesgue measure by Ld. If the dimension of the
ambient space is understood, we usually write just L instead of Ld.

Let ν be a measure on a set A. For B ⊆ A we denote by ν|B the restriction
of the measure ν to a set B, i.e., the measure defined as ν|B(C) := ν(B ∩ C).
To a ν-measurable mapping f : A ⊆ Rd → Rn we associate a measure f♯ν on
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f(A) via the formula f♯ν(D) := ν(f−1(D)) for every D ⊆ f(A). We call f♯ν the
f -pushforward of ν, or just the pushforward of ν.

We say that a function ρ : A → [0,∞) is a density of measure ν if it is a
density of ν with respect to the Lebesgue measure, that is,∫

B
ρ dL = ν(B)

for every B ⊆ A. For the measure with density ρ we write ρL.
Given A ⊆ Rd such that 0 < L(A) < ∞, by the average value of a function

ρ : A → R we mean the quantity

−
∫

A
ρ := 1

L(A)

∫
A
ρ dL.

We write that a property or a formula P (x) holds ν-a.e. (meaning almost
everywhere with respect to a measure ν) in A if the set {x ∈ A : ¬P (x)} has ν
measure zero. Whenever we do not specify the measure ν and use just ‘a.e.’, we
mean L-a.e.

By the weak convergence of finite Borel measures νi to a finite Borel mea-
sure ν, denoted by νi ⇀ ν, we mean the convergence of

∫
φ dνi to

∫
φ dν for every

continuous function φ with compact support. Every sequence of measures has at
most one weak limit.

Mappings, functions and derivatives
Let f : A ⊆ Rd → Rn be an arbitrary mapping. By f−1 we denote its in-
verse whenever it exists. For a set B ⊆ Rn, even in the case that f−1 does
not exist, we write f−1(B) for the preimage of B under f , that is, for the set
{x ∈ A : f(x) ∈ B}. For a set C we denote by f |C the restriction of a mapping
f to a set C.

A mapping f is Borel if f−1(A) is Borel set for every open set A in the
image of f . In particular, every continuous mapping is Borel. Moreover, every
Borel mapping is Lebesgue measurable. We recall the general form of change of
variables for Borel mappings, which can be found in Mattila [41, Thm. 1.19], for
example:

Theorem 1.7 (Change of variables). Let f : A ⊆ Rd → Rn and g : f(A) → [0,∞)
be Borel mappings. If ν is a Borel measure on A, then∫

A
g ◦ f dν =

∫
f(A)

g df♯ν.

We cannot introduce here all concepts and theorems from topology that we
are going to use. At the moment, we state only one topological tool, which we
are going to use very often—the so-called ‘Invariance of Domain’ was proven by
Brouwer [7] and says the following:

Theorem 1.8 (Invariance of Domain [7]). Let U ⊆ Rd be open and f : U → Rd

be continuous and injective. Then f(U) is open and f is a homeomorphism onto
its image.
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When the dimension of the domain and the range of f agree, we write Df(x)
for the Fréchet derivative of f at x and Jac(f)(x) := det(Df(x)), called the
Jacobian of f at x, for its determinant. Geometrically, |Jac(f)(x)| describes the
factor by which the volume around x is locally changed by f and the sign of
Jac(f) determines the change of orientation at x.

For a set A ⊆ Rd we write C(A) for the space of continuous functions A → R
endowed with the supremum norm. Briefly, we will work with spaces of con-
tinuous mappings A → Rn with the supremum norm, which we will denote by
C(A;Rn), and the space of continuously differentiable mappings A → Rn denoted
by C1(A;Rn).

At one place in Section 1.4, we will also use the space L∞(A) of all essentially
bounded measurable functions with respect to the Lebesgue measure endowed
with the L∞-norm ∥·∥L∞ , where

∥ρ∥∞ := inf {C > 0: |ρ(x)| ≤ C for a.e. x ∈ A} .

Lipschitz and bilipschitz mappings
Let L > 0. We say that f : A ⊆ Rd → Rn is L-Lipschitz if

∥f(x) − f(y)∥2 ≤ L ∥x− y∥2

for every x, y ∈ A. Let 0 < b ≤ L. We say that f is (b, L)-bilipschitz if

b ∥x− y∥2 ≤ ∥f(x) − f(y)∥2 ≤ L ∥x− y∥2

for x, y ∈ A. Often we say that f is L-bilipschitz, which means that it is
(

1
L
, L
)
-

bilipschitz. In other words, f is L-bilipschitz if both f and f−1 are L-Lipschitz.
We say that f is Lipschitz or bilipschitz, if there is L > 0 for which it is L-
Lipschitz or L-bilipschitz, respectively. The smallest such L is called the Lipschitz
or bilipschitz constant of f .

An immediate consequence of the definition of the Lebesgue measure is that
an L-Lipschitz mapping f : Rd → Rd cannot increase the Lebesgue measure6 of a
set by a factor larger than Ld. In other words, for any A ⊆ Rd we have that

L(f(A)) ≤ LdL(A). (1.3)

We state here two well-known and classical results on Lipschitz mappings,
which will be needed later. The first is an extension theorem of Kirszbraun
(see [34], or [22, Thm. 2.10.43], for example):

Theorem 1.9 (Kirszbraun). Let f : A ⊆ Rd → Rn be an L-Lipschitz mapping.
There there is an L-Lipschitz mapping F : Rd → Rn such that F |A = f .

The second one is a differentiability7 theorem by Rademacher (see, e.g. [41,
Thm. 7.3]).

6In fact, for any s it cannot increase the Hausdorff s-dimensional measure of any set by more
than Ls; see Mattila [41, Thm. 7.5].

7By differentiability we always mean the strong (also called Fréchet) differentiability.
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Theorem 1.10 (Rademacher). Let f : Rd → Rn be Lipschitz. Then f is differ-
entiable a.e. in Rd.

Consequently, Jac(f) is defined a.e., and thus, expressions like
∫

A
Jac(f) dL

are well-defined whenever f is Lipschitz and A is measurable.
It is worth noting that the change of variables formula takes a special form in

case of bilipschitz mappings (see, e.g., Fremlin [25, Cor. 263F])

Theorem 1.11 (Change of variables for bilipschitz mappings). Let A ⊂ Rd be
measurable and f : A → Rd be bilipschitz. Then the set f(A) is measurable.
Moreover, given ρ : f(A) → R, we have∫

A
|Jac(f)| · (ρ ◦ f) dL =

∫
f(A)

ρ dL

if at least one of the two integrals is defined.

In case that ρ(x) = 1 for a.e. x ∈ f(A) in the theorem above, one obtains the
area formula for bilipschitz mappings:

L(f(A)) =
∫

A
|Jac(f)| dL.

Another easy, but important consequence of Theorem 1.11 is the inverse func-
tion theorem for the Jacobians of bilipschitz mappings: given f : A ⊆ Rd → Rd

bilipschitz, we have

(
Jac

(
f−1

)
◦ f
)

(x) = 1
Jac(f)(x) for a.e. x ∈ A.

We will use a special class of Lipschitz mappings that lie strictly between
bilipschitz and general Lipschitz mappings. It was introduced by David [13] and
we call them Lipschitz regular8. The whole Section 1.2 is devoted to the study of
such mappings.

Definition 1.12 (Lipschitz regular mapping). We say that a Lipschitz mapping
f : A ⊆ Rd → Rn is Lipschitz regular if there is C > 0 such that for every y ∈ Rn

and every r > 0 the set f−1(B(y, r)) can be covered by at most C open balls of
radius Cr. The smallest such C is referred to as the regularity constant of f
and denoted by Reg(f). We use the term (C,L)-regular mapping to denote a
Lipschitz regular mapping f with Lipschitz constant at most L and Reg(f) ≤ C.

We have already mentioned in (1.3) that an L-Lipschitz mapping f : Rd → Rd

cannot increase the Lebesgue measure of any set more than by a factor of Ld.
Considering the dimension fixed, it is just a constant blow-up. The virtue of the
Lipschitz regular mappings is, in contrast to the general Lipschitz mappings, that
they also cannot compress the measure too much. In fact, they are characterised
by this property:

8They are called just regular mappings in the literature, but since the word ‘regular’ is
heavily overused in mathematics, we choose to expand the name to make it less ambiguous.
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Lemma 1.21 (David and Semmes [14]). Let f : A ⊆ Rd → Rd be Lipschitz. Then
f is Lipschitz regular if and only if there is C > 0 such that

L(f−1(B(y, r))) ≤ Crd

for every y ∈ Rd and every r > 0.

Let ρ : Id → [0,∞) be measurable. We say that ρ is bilipschitz realisable, if
there is a bilipschitz mapping f : Id → Rd satisfying

f♯ρL = L|f(Id), (1.4)

otherwise we call ρ bilipschitz non-realisable. Similarly, we say that ρ is Lip-
schitz regular realisable, if there is a Lipschitz regular solution f : Id → Rd to
equation (1.4). Otherwise, we call ρ Lipschitz regular non-realisable.

Note that for a bilipschitz mapping f : A → Rd we can rewrite equation (1.4)
using the change of variables formula from Theorem 1.11. Given ρ : Id → [0,∞),
we infer that

f♯ρL(B) =
∫

f−1(B)
ρ dL =

∫
B

(
ρ ◦ f−1

)
·
⏐⏐⏐Jac(f−1)

⏐⏐⏐ dL

for any B ⊆ f(A) measurable. If we use now the inverse function theorem for
the Jacobians of bilipschitz mappings, which was stated above, we infer that

f♯ρL(B) =
∫

B

ρ

|Jac(f)| ◦ f−1 dL.

It follows that f♯ρL = L|f(Id) if and only if ρ(x) = |Jac(f)(x)| for a.e. x ∈
A. This explains that equation (1.4) for Lipschitz regular mappings is indeed a
generalisation of the prescribed Jacobian equation for bilipschitz mappings stated
in equation (1.1).

The Baire category theorem and porosity
Let (X, d) be a metric space. A subset A ⊆ X is called nowhere dense in X if
intA = ∅. In other words, for every x ∈ X and every r > 0 there are x′ ∈ B(x, r)
and r′ > 0 such that B(x′, r′) ⊂ B(x, r) \ A. A subset A ⊆ X is called meagre9

if it can be expressed as a countable union of nowhere dense sets.
Nowhere dense and meagre subsets provide a notion of negligible sets in several

classes of metric spaces. The class important to the present work consists of all
complete metric spaces. Their property expressed in the following theorem was
proven by Baire [1]:

Theorem 1.13 (The Baire Category Theorem (only a part)). Let (X, d) be a
complete metric space. Let A ⊂ X be meagre in X. Then X \ A is dense in X.

In particular, the theorem asserts that a complete metric space cannot be ex-
pressed as a countable union of nowhere dense sets. The Baire Category Theorem
is an important tool in functional analysis, but it has found applications in other

9Historically, meagre sets were called ‘sets of first category’.
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fields of mathematics; a concise treatment of the history of the theorem and its
many applications can be found, e.g., in Jones [31].

We add definitions of porosity and σ-porosity in accordance with Zaj́ıček [49,
Def. 2.1], where they are referred to as ‘lower porosity’ and ‘lower σ-porosity’,
respectively.

Definition 1.14. Let (X, d) be a metric space.

1. A set P ⊆ X is called porous at a point x ∈ X if there exist ε0 > 0 and
α ∈ (0, 1) such that for every ε ∈ (0, ε0) there exists y ∈ X satisfying

d(y, x) ≤ ε and B(y, αε) ⊂ B(x, ε) \ P.

2. A set P ⊆ X is called porous if P is porous at every point x ∈ P .

3. A set E ⊆ X is called σ-porous if it may be expressed as a countable union
of porous subsets of X.

Every porous set is nowhere dense, but the opposite implication does not hold.
Similarly, in Euclidean spaces every porous set has Lebesgue measure zero, but
not vice versa. In fact, Zaj́ıček [48] has shown that there is a set in Rd that is
not σ-porous, but is meagre and of Lebesgue measure zero at the same time. For
a survey on porous and σ-porous sets we refer the reader to Zaj́ıček [49].

Due to its relevance in Section 1.4, we point out that porosity of a set P ⊆ X
is a weaker condition than requiring P to be porous at all points x ∈ X (not
just at points x ∈ P ). For example, the set

{
1
n

: n ∈ Z \ {0}
}

is porous in R, but
is not porous at the point 0. However, the corresponding notions of σ-porosity
coincide for both versions of porosity discussed here (see Zaj́ıček [49, Prop. 2.5]).
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1.1 A discrete and a continuous question
The aim in the present section is to prove Theorem 1.6, which provides a connec-
tion between Question 1.4 and its continuous analogue stated in Question 1.5.

We start by providing a reformulation of Question 1.4 that fits better our
tools.

Question 1.15. Is there for every r > 0 a constant L = L(r) > 0 such that for
every n ∈ N and every r-separated set S ⊂ Rd such that |S| = nd there is an
L-Lipschitz bijection f : S → {1, . . . , n}d?

Proof of equivalence of Questions 1.4 and 1.15. It is immediate that a negative
answer to Question 1.4 provides a negative answer to Question 1.15. Thus, we
focus on the opposite direction.

Let r > 0 be such that there is no L(r) > 0 as in Question 1.15 in dimension
d ∈ N, d ≥ 2. Let n ∈ N and S ⊂ Rd be an r-separated set of cardinality nd.
We consider a linear mapping h : Rd → Rd defined as h(x) := d

r
x. Let us write

S ′ := h(S) for a copy of S scaled by the factor d
r
. The set S ′ is d-separated.

Next, we define a mapping z : S ′ → Zd by choosing z(x) to be the point
x′ ∈ Zd that minimises ∥x− x′∥2. If there is more than one such point, we choose
one of them arbitrarily. Since S ′ is d-separated, for every x, y ∈ S ′ the points
z(x) and z(y) are distinct whenever x ̸= y. We form a set S ′′ := z(S ′) ⊂ Zd.

Now we assume, for contradiction, that there is L > 0 as in Question 1.4.
Therefore, there is an L-Lipschitz bijection f : S ′′ → [n]d. The mapping f ◦ z is
clearly a bijection. We verify that it is also Lipschitz:

∥f ◦ z(x) − f ◦ z(y)∥2 ≤ L · ∥z(x) − z(y)∥2

≤ L · (∥x− y∥2 +
√
d) ≤ L

(
1 +

√
d
)

∥x− y∥2

whenever x, y ∈ S ′ are two distinct points. Consequently, the mapping f ◦ z ◦ h
defines an Ld(1+

√
d)

r
-Lipschitz bijection S → [n]d. Since the last Lipschitz constant

does not depend on the original choice of r-separated set S, we get a contradiction.

The core of the argument proving Theorem 1.6, which is a variant of a discreti-
sation procedure of Burago and Kleiner [8], is contained in the following theorem.
It also provides more details on the relation between Questions 1.4 and 1.5.

Theorem 1.16. Assume that the answer to Question 1.15 is positive. Then for
every measurable function ρ : Id → [0,∞) such that sup ρ < ∞ and ρ(x) > 0 a.e.

there is a surjective Lipschitz mapping f : Id →
[
0, d

√
−
∫
ρ

]d

verifying the equation

f#ρL = L|f(Id). (1.5)

Recall that equation (1.5) is equivalent to equation (1.2) from Question 1.5,
as follows from the definition of pushforward measure. Theorem 1.6 is an easy
consequence of Theorem 1.16, as is shown in the next corollary:

Corollary 1.17. Let ρ : Id → (0,∞) be a measurable function such that 0 <
inf ρ ≤ sup ρ < ∞. Then any Lipschitz solution f : Id → Rd to equation (1.5) is
also Lipschitz regular.
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Proof. Since we assume that f♯ρL = L|f(Id), we get for every measurable set
A ⊆ f(Id) that

L(A) = f♯ρL(A) =
∫

f−1(A)
ρ dL ≥ L(f−1(A)) inf ρ.

This implies that L(f−1(A)) ≤ L(A)
inf ρ

. Applying Lemma 1.21 we conclude that f
is Lipschitz regular.

Before we prove Theorem 1.16, let us add a convenient observation, which
asserts that it is sufficient to prove Theorem 1.16 only for functions ρ having
average value one. Note that the assumptions of Theorem 1.16 imply that the
functions ρ considered there have a positive average value.

Observation 1.18. Let ρ : Id → [0,∞) be a measurable function. Then the
equation f♯(ξL) = L|f(Id) admits a Lipschitz solution f : Id → Rd for ξ = ρ if and
only if it admits Lipschitz solutions for ξ = αρ for every α > 0. Moreover, this
equivalence preserves Lipschitz regularity.

Proof. We write f : Id → Rd for a Lipschitz mapping satisfying f♯(ρL) = L|f(Id).
Let us consider a mapping ϕα(x) := d

√
α · x and observe that ϕα ◦ f is the sought

after solution:

(ϕα ◦ f)♯(αρL)(A) = α
∫

f−1◦ϕ−1
α (A)

ρ dL = αf♯(ρL)
(
ϕ−1

α (A)
)

= αL|f(Id)

(
ϕ−1

α (A)
)

= α
∫

A

⏐⏐⏐Jacϕ−1
α

⏐⏐⏐ dL|ϕα◦f(Id) = L|ϕα◦f(Id)(A)

for any measurable set A ⊆ (ϕα ◦ f)(Id). The penultimate equality holds by the
change of variables (see Theorem 1.11).

Since ϕα ◦f is only a rescaled version of f , it is clear that f is Lipschitz regular
if and only if ϕα ◦ f is.

The modified Burago–Kleiner discretisation
As we already mentioned, we use a modification of the discretisation procedure
of Burago and Kleiner [8] in the presented proof of Theorem 1.16, which they
used to encode a bilipschitz non-realisable density ρ into a separated net S in
Rd that cannot be bijectively mapped onto Zd in a bilipschitz way. We will use
their procedure, with a small technical modification, to encode a given bounded,
measurable function ρ : Id → [0,∞) into a sequence of separated sets Si in Rd

such that each Si has cardinality nd
i for some ni ∈ N.

Burago and Kleiner [8] showed that a bilipschitz bijection S → Zd would yield
a bilipschitz solution to equation (1.5). We will show that if there are L-Lipschitz
bijections fi : Si → [ni]d for some L > 0 and every i ∈ N, then there is also a
Lipschitz solution to the same equation (1.5). This part of the proof is different
than that of Burago and Kleiner, although it follows their overall idea10.

10In fact, in their article Burago and Kleiner [8, Section 2] do not provide the full details for
that part of their argument. However, the author was able to verify their result. The arguments
presented here are not sufficient in their setting, since in the case we are dealing with the image
fi(Si) is much nicer.
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Let us first describe the main ideas of the modified construction informally.
Each set Si in the sequence of sets ‘discretising’ a given bounded, measurable
function ρ : Id → [0,∞) represents ‘a picture’ of ρ taken with a resolution in-
creasing with i. More precisely, to define Si we first blow up the domain of ρ by
some factor li and then subdivide it into md

i cubes of the same size. Let T be
one of these cubes. The set Si ∩T will be then formed by regularly spaced points
inside T of number proportional to the average value of the blow up of ρ by the
factor li over T . If we choose li and mi so that li

mi
goes to infinity with i, the set

Si will capture more and more precisely variations of ρ on small scales. This idea
is illustrated in Figure 1.1.

Id

density ρ
smallest value

largest value

S1

S2

Si

l1

l2

li

l1
m1

l2
m2

li
mi

ϕ1
ϕ2 ϕi

T2,k

Ti,k

Id

ϕ−1
i

ϕ−1
i (Si)

Figure 1.1: An illustration of the construction that encodes a given density ρ into
a sequence of separated sets (Si)∞

i=1. After rescaling by φ−1
i , the position and the

number of points inside Si approximate ρ, with a precision increasing with i.

Since we want to use the sets Si in Question 1.15, we need to make sure
that the total number of points forming each Si is a d-th power of some natural
number. That’s the technical difference in comparison to the original construction
of Burago and Kleiner [8]. Now, we will write everything formally.

We assume that we are given a bounded measurable function ρ : Id → [0,∞)
with positive average value. We choose two sequences (li)i∈N ⊂ R+ and (mi)i∈N ⊂
N. We put several conditions on them, which we describe a bit later. First, let
us introduce some notation.

We write φi(x) := li · x for a blow up by factor li. It is clear that φi(Id) =
[0, li]d. Each cube [0, li]d naturally decomposes into md

i cubes of side li
mi

; we
denote them by (Ti,k)md

i
k=1. We choose

ni,k ∈
{⌊∫

Ti,k

ρ ◦ φ−1
i dL

⌋
,

⌊∫
Ti,k

ρ ◦ φ−1
i dL

⌋
+ 1

}
.

This number will stand for |Si ∩ Ti,k|. The possibility to choose ni,k among two
different values will allow us to ensure that |Si| = nd

i for some ni ∈ N.
The change of variables formula (see Theorem 1.11) implies∫

Ti,k

ρ ◦ φ−1
i dL =

∫
φ−1

i (Ti,k)
ρ |Jac(φi)| dL = ldi

∫
φ−1

i (Ti,k)
ρ dL. (1.6)
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Using the upper bound on ρ we infer that

ni,k ≤ 1 +
⌊

sup ρ · ldi
md

i

⌋
(1.7)

Now we can state the required conditions on li,mi and ni,k:
1. li → ∞, mi → ∞ and li

mi
→ ∞ as i → ∞.

2. for every i ∈ N we choose each ni,k from the two possibilities so that there
is ni ∈ N such that nd

i = ∑md
i

k=1 ni,k.
We show that these conditions can be satisfied at once. We set li := m1+p

i

for a suitable p > 0 and choose (mi)∞
i=1 ⊂ N as an increasing sequence. This will

satisfy the first condition.
In order to satisfy the second condition, it is sufficient to make sure that the

interval ⎡⎣md
i∑

k=1

⌊∫
Ti,k

ρ ◦ φ−1
i dL

⌋
,md

i +
md

i∑
k=1

⌊∫
Ti,k

ρ ◦ φ−1
i dL

⌋⎤⎦
contains a d-th power of a natural number. If we denote by ai the largest in-

teger such that ad
i <

md
i∑

k=1

⌊∫
Ti,k

ρ ◦ φ−1
i dL

⌋
, we need that (ai + 1)d ≤ md

i +

md
i∑

k=1

⌊∫
Ti,k

ρ ◦ φ−1
i dL

⌋
. Since (ai + 1)d − ad

i ≤ C(d)ad−1
i , where C(d) is a con-

stant depending only on the dimension d, it is sufficient to choose mi so that
md

i > C(d)ad−1
i . From equation (1.6) we get that

ad
i < sup ρ · ldi = sup ρ ·m(1+p)d

i ;

thus we see that mi satisfies md
i > C(d)ad−1

i provided we choose p < 1
d−1 and m1

sufficiently large11.
After setting up the parameters li and mi properly, we can construct the

separated sets Si. We first form sets Si,k by placing ni,k distinct points inside each
Ti,k and then set Si := ⋃md

i
k=1 Si,k. But instead of providing an explicit formula

for Si,k, it will be enough to consider any sufficiently separated set of ni,k points
inside Ti,k and argue that the separation constant can be chosen independently
of i and k.

Since each Ti,k has a side of length li
mi

, given r > 0 satisfying

li
mi⌈ d

√
ni,k⌉

≥ r, (1.8)

we may define Si,k as any r-separated set of ni,k points inside Ti,k that, in addition,
satisfies dist(Si,k, ∂Ti,k) ≥ r/2; an example is depicted in Figure 1.2. The last
condition ensures that the set Si is r-separated as well. Note that in equation (1.8)
we assumed that ni,k is at least one. If it is zero, we simply place zero points
inside Ti,k.

11We note that it is necessary to put an additional mild assumption on the value of m1 in
order for the numbers ai to be well defined already starting with i = 1; namely, we assume that

m1 is big enough for
md

1∑
k=1

⌊∫
T1,k

ρ ◦ φ−1
1 dL

⌋
to be larger than one.
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Ti,k with the set Si,k

li
2mid d

√
ni,ke

li
mid d

√
ni,ke

li
mi

Figure 1.2: The construction of Si,k inside Ti,k.

It remains to verify the existence of the separation constant r > 0 satisfying
the inequality (1.8) for all i, k. Using the inequality (1.7) and standard estimates
we obtain that

⌈ d
√
ni,k⌉d ≤ 2dni,k ≤ 2d

(
sup ρ · ldi
md

i

+ 1
)

for ni,k ≥ 1 (clearly, cubes Ti,k containing zero points do not decrease the sepa-
ration of the set Si). With an additional mild assumption on m1, namely that
sup ρ·ld1

md
1

≥ 1, we infer that

2d

(
sup ρ · ldi
md

i

+ 1
)

≤ 22d sup ρ · ldi
md

i

.

This in turn provides us with the bound ⌈ d
√
ni,k⌉ ≤ 4 d

√sup ρ·li
mi

. Substituting this
bound into the inequality (1.8), we see that we may take r := 1

4 d
√sup ρ

. This
finishes the description of the construction of the separated sets Si.

The proof of Theorem 1.16
We are now going to employ the construction presented in the previous part to
prove Theorem 1.16. However, we need to present two auxiliary lemmas on weak
convergence of measures first, which are probably a part of a common knowledge
in measure theory, but the author was unable to find a proper reference.

Lemma 1.19. Let ν and (νn)∞
n=1 be finite Borel measures with support in a

compact set K ⊂ Rd. Moreover, assume that there is, for each n ∈ N, a finite
collection Qn of Borel subsets of K that satisfy the following:

1. ν
(
K \

⋃
Qn

)
= 0 and νn

(
K \

⋃
Qn

)
= 0.

2.
∑

Q∈Qn

ν(Q) = ν(K) and
∑

Q∈Qn

νn(Q) = νn(K).

3. lim
n→∞

max
Q∈Qn

diam(Q) = 0 and max
Q∈Qn

|νn(Q) − ν(Q)| ∈ o

(
1

|Qn|

)
.

Then νn converges weakly to ν.
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Proof. Fix any ψ ∈ C(K) and ε > 0. For every Q ∈ Qn we choose zQ ∈ Q
arbitrarily. By the uniform continuity of ψ, there is N ∈ N such that for every
n ≥ N , every Q ∈ Qn and every x ∈ Q we have |ψ(zQ) − ψ(x)| ≤ ε. Moreover,
we require that for every n ≥ N it holds that

max
Q∈Qn

|νn(Q) − ν(Q)| ≤ ε

|Qn|
.

We write∫
Q
ψ dνn ≤

∫
Q
ψ(zQ) + ε dνn = (ψ(zQ) + ε)νn(Q) ≤ (ψ(zQ) + ε)

(
ν(Q) + ε

|Qn|

)

=
∫

Q
(ψ(zQ) + ε) dν + (ψ(zQ) + ε) ε

|Qn|

≤
∫

Q
(ψ + 2ε) dν + (ψ(zQ) + ε) ε

|Qn|

≤
∫

Q
ψ dν + 2εν(Q) + (ψ(zQ) + ε) ε

|Qn|
.

Symmetrically, we derive the lower bound∫
Q
ψ dνn ≥

∫
Q
ψ dν − 2εν(Q) − (ψ(zQ) − ε) ε

|Qn|
.

Summing over all elements of Qn and using assumptions 1 and 2, ensuring
that elements of Qn are almost disjoint and cover almost all of K with respect to
both measures ν and νn, we deduce⏐⏐⏐⏐∫

K
ψ dνn −

∫
K
ψ dν

⏐⏐⏐⏐ ≤ 2εν(K) + ε(max |ψ| + ε).

Since ψ is continuous on a compact K, it is also bounded and the right hand side
of the last inequality tends to zero with ε.

Lemma 1.20. Let K be a compact set in Rd and (νn)n∈N be a sequence of finite
Borel measures on K converging weakly to a finite Borel measure ν. Let (hn)n∈N,
hn : K → Rm, be a sequence of continuous mappings converging uniformly to a
mapping h. Then (hn)♯(νn) converges weakly to h♯(ν).

Proof. We take any ψ ∈ C(Rm) with compact support. Using the abstract version
of change of variables (see Theorem 1.7), we can bound⏐⏐⏐⏐⏐

∫
hn(K)

ψ d(hn)♯(νn) −
∫

h(K)
ψ dh♯(ν)

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐∫

K
ψ ◦ hn dνn −

∫
K
ψ ◦ h dν

⏐⏐⏐⏐
≤
∫

K
|ψ ◦ hn − ψ ◦ h| dνn +

⏐⏐⏐⏐∫
K
ψ ◦ h dνn −

∫
K
ψ ◦ h dν

⏐⏐⏐⏐ .
As n → ∞ the first term in the final sum goes to zero since ψ ◦ hn converges
uniformly to ψ ◦ h. Moreover, the second term converges to zero as well, because
νn converges weakly to ν.

We are ready to prove Theorem 1.16.
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Proof of Theorem 1.16. We assume that we are given a bounded measurable func-
tion ρ : Id → [0,∞) that is positive a.e. As noted before, it implies that its average
value is positive as well. Using Observation 1.18, we may assume that −

∫
Id
ρ = 1.

We use the construction described in the previous part on ρ and get sequences of
r-separated sets Si and Si,k together with the parameters li,mi, ni, ni,k, mappings
φi and cubes Ti,k.

Assuming the positive answer to Question 1.15, we get L > 0 and a sequence of
L-Lipschitz bijections fi : Si → [ni]d. We pull each fi back to Id in the following
way. We write Xi for the set φ−1

i (Si) and define a mapping gi : Xi → Rd as
gi(x) := 1

ni
· fi ◦ φi(x). It is not hard to see that the mappings gi are uniformly

Lipschitz:

∥gi(x) − gi(y)∥2 ≤ 1
ni

∥fi ◦ φi(x) − fi ◦ φi(y)∥2

≤ L

ni

∥φi(x) − φi(y)∥2 = L
li
ni

∥x− y∥2 ,

for every x, y ∈ Xi. Thus, we need to examine the behaviour of the sequence(
li
ni

)∞

i=1
.

From the definition of ni,k we have the following bounds on nd
i = ∑md

i
k=1 ni,k:∫

φi(Id)
ρ ◦ φ−1

i dL +md
i ≥ nd

i ≥
∫

φi(Id)
ρ ◦ φ−1

i dL −md
i .

Using the identity −
∫

Id
ρ = 1 and the fact that Jac(φi) = ldi we obtain that

ldi +md
i ≥ nd

i ≥ ldi −md
i .

Since mi

li
→ 0, the sequence

(
ni

li

)
i∈N

is bounded and converges to 1, and hence,
li
ni

→ 1 as well. Consequently, for any L′ > L we can find i0 ∈ N such that
for every i ≥ i0 the mappings gi are L′-Lipschitz. By trimming off the initial
segment of the sequence (gi)i∈N up to i0, we can assume that all mappings gi are
L′-Lipschitz for any chosen L′ > L.

We extend each gi by Kirszbraun’s extension theorem (see Theorem 1.9 and
the references therein) to a mapping ḡi : Id → Rd such that Lip(ḡi) = Lip(gi). By
the Arzelà–Ascoli theorem (see, e.g., Dunford and Schwartz [19, Thm. IV.6.7])
we know that the sequence (ḡi)∞

i=1 subconverges to a limit f , which is also L′-
Lipschitz. In fact, it is L-Lipschitz, as follows from the previous discussion. By
passing to a convergent subsequence, we may assume that ḡi ⇒ f .

For i ≥ 1 we define a measure µi on Id by

µi(A) = 1
nd

i

|A ∩Xi| , A ⊆ Id.

In order to show that f♯(ρL) = L|Id we first prove that µi converges weakly to
ρL on Id. Moreover, this will be shown to imply that (ḡi)♯(µi) converges weakly
to f♯(ρL). Finally, we prove that (ḡi)♯(µi) also converges weakly to L|Id , and
hence, f♯(ρL) and L|Id must be the same by the uniqueness of weak limits.
Claim 1.16.1. The sequence of measures (µi)i∈N converges weakly to ρL.
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Proof. We just need to verify that the measures µi and ρL satisfy the assumptions
of Lemma 1.19. The only non-trivial assumption in this case is the existence of
the collection Qi. We take Qi :=

{
φ−1

i (Ti,k) : k ∈ [md
i ]
}
. By construction, the

sets φ−1
i (Ti,k) form a decomposition of Id into md

i cubes of side 1/mi. Since mi

goes to infinity with i, the diameter of φ−1
i (Ti,k) goes to zero.

Clearly, the overlap of any two of these cubes has measure zero, and thus,
ρL-measure zero as well. Moreover, since the sets Si were constructed to have
nonzero distance to all sets of the form ∂Ti,k, the µi-measure of the overlap of
any two cubes from Qi must be zero, too.

It remains to check that maxQ∈Qi
|µi(Q) − ρL(Q)| ∈ o

(
1

md
i

)
. To see this,

recall that µi is supported on φ−1
i (Ti,k) by the set φ−1

i (Ti,k) ∩Xi consisting of ni,k

points. For any i ∈ N, k ∈ [md
i ] we can write

µi

(
φ−1

i (Ti,k)
)

=ni,k

nd
i

≤ 1
nd

i

(⌊∫
Ti,k

ρ ◦ φ−1
i dL

⌋
+ 1

)

≤ ldi
nd

i

∫
φ−1

i (Ti,k)
ρ dL + 1

nd
i

≤ ldi
nd

i

ρL
(
φ−1

i (Ti,k)
)

+ 1
nd

i

,

and similarly,

µi

(
φ−1

i (Ti,k)
)

≥ 1
nd

i

(∫
Ti,k

ρ ◦ φ−1
i dL − 1

)
≥ ldi
nd

i

ρL
(
φ−1

i (Ti,k)
)

− 1
nd

i

,

Therefore, we can bound
⏐⏐⏐µi

(
φ−1

i (Ti,k)
)

− ρL
(
φ−1

i (Ti,k)
)⏐⏐⏐ above as

1
nd

i

+
⏐⏐⏐⏐⏐ ldind

i

ρL
(
φ−1

i (Ti,k

)
− ρL

(
φ−1

i (Ti,k)
)⏐⏐⏐⏐⏐ = 1

nd
i

+ ρL
(
φ−1

i (Ti,k)
) ⏐⏐⏐⏐⏐ ldind

i

− 1
⏐⏐⏐⏐⏐ .

Recalling that ρL
(
φ−1

i (Ti,k)
)

≤ sup ρ
md

i
, li

mi
→ ∞ and li

ni
→ 1 as i → ∞, this proves

that ⏐⏐⏐µi

(
φ−1

i (Ti,k)
)

− ρL
(
φ−1

i (Ti,k)
)⏐⏐⏐ ∈ o

(
1
md

i

)
.

Hence, µi and ρL satisfy the assumptions of Lemma 1.19.

Claim 1.16.2. The sequence of measures ((ḡi)♯(µi))i∈N converges weakly to the
measure f♯(ρL).

Proof. We know that ḡi ⇒ f and that µi converge weakly to ρL by Claim 1.16.1.
Thus, it is sufficient to directly apply Lemma 1.20.

Claim 1.16.3. The sequence of measures ((ḡi)♯(µi))i∈N converges weakly to L|Id.

Proof. Note that for every i ∈ N the set fi(Si) is exactly the set [ni]d. Therefore,
the set gi(Xi), which is the support of the measure (ḡi)♯(µi), is precisely the set{

1
ni
, 2

ni
, . . . , ni

ni

}d
, that is, a regular grid with nd

i points inside Id. The situation is
depicted in Figure 1.3.

Since the weight assigned to each point of Xi by µi is exactly 1
nd

i
, it is intu-

itively clear that (ḡi)♯(µi) converges weakly to L|Id . For a formal justification,

29



the conditions of Lemma 1.19 are easily verified for νn := (ḡn)♯(µn), ν := L|Id

and

Qn :=

⎧⎨⎩
d∏

j=1

(
bj − 1
ni

,
bj

ni

]
: (b1, . . . , bd) ∈ [ni]d

⎫⎬⎭ .

Si Xi inside Id

giϕ−1
i

{
1
ni
, . . . , ni

ni

}d

the support of µi the support of (ḡi)](µi)

Qi

Figure 1.3: Weak convergence of (ḡi)♯(µi) to L|Id .

Combining Claim 1.16.2 and the last observation we infer that f♯(ρL) = L|Id

by the uniqueness of weak limits.

It remains to observe that f(Id) = Id. The equation f♯(ρL) = L|Id and
ρ > 0 a.e. imply that for any open set A ⊆ Id, the preimage f−1(A) has a positive
L|Id-measure, and thus, is not empty. Since f(Id) is closed, it follows that Id is
contained in f(Id).

Similarly, for any set A ⊆ Id of positive measure, the image f(A) has positive
L|Id-measure. Consequently, f(A)∩Id is not empty. Since Id is closed, we deduce
that f(Id) is contained in Id as well.
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1.2 Lipschitz regular mappings
The main purpose of the present section is to prove Theorem 1.35, which we
need to resolve Feige’s question. As we noted in the introduction to the present
chapter, Theorem 1.35 can be deduced quite quickly from the work of Bonk and
Kleiner [5]. However, Dymond, the author, and Kopecká [21] have developed
a completely independent proof, which is simpler and shorter than the proof
by Bonk and Kleiner [5], though less general; we present it in this section as
well. Beyond that, we present a few complementary results on Lipschitz regular
mappings which are not related to Feige’s question.

We restate the definition of Lipschitz regular mappings:

Definition 1.12 (Lipschitz regular mapping). We say that a Lipschitz mapping
f : A ⊆ Rd → Rn is Lipschitz regular if there is C > 0 such that for every y ∈ Rn

and every r > 0 the set f−1(B(y, r)) can be covered by at most C open balls of
radius Cr. The smallest such C is referred to as the regularity constant of f
and denoted by Reg(f). We use the term (C,L)-regular mapping to denote a
Lipschitz regular mapping f with Lipschitz constant at most L and Reg(f) ≤ C.

Because the definition of Lipschitz regular mappings uses open balls, we set
up a convention that every ball is assumed to be open if not stated otherwise.

Lipschitz regular mappings constitute an intermediate class between Lipschitz
and bilipschitz mappings. While bilipschitz mappings are sometimes too rigid,
Lipschitz mappings can be very degenerate; they can map many points onto a
single one or map sets of positive measure onto sets of measure zero. Various
classes of mappings lying somewhere in between Lipschitz and bilipschitz have
been studied; for instance, in works of Bates et al. [2], Johnson et al. [29], Maleva
[38], or of Benyamini and Lindenstrauss [3, Ch. 11]. Lipschitz regular mappings
were introduced, for the first time, by David [13]; see the book by David and
Semmes [14, Ch. 2] for a further reference.

The definition and many properties of Lipschitz regular mappings can be
stated for metric spaces without any additional difficulties in the proofs. How-
ever, in the present work we are interested only in the case of Euclidean spaces.
Therefore, we have chosen to restrict all definitions and statements to that setting.

All bilipschitz mappings are Lipschitz regular. A classic example of a non-
bilipschitz (in fact non-injective) Lipschitz regular mapping is given by a folding
mapping of the plane R2, i.e., take the plane and fold it along the y-axis. This
defines a mapping R2 → R2 which is Lipschitz regular with regularity constant 2.

David and Semmes studied Lipschitz regular mappings in the context of gen-
eral metric spaces and Euclidean spaces. In the Euclidean space setting, David
proved that Lipschitz regular mappings behave somewhat like bilipschitz map-
pings. More precisely, that inside any ball B in the domain of a Lipschitz regular
mapping f : Rd → Rm with m ≥ d, one can find a set E of large measure so that
the restriction of f to the set E is bilipschitz; see David [13, Prop. 1, p.95] or
David and Semmes [15, Thm 4.1, p.380]. Although the set E is large in measure,
we point out that it may have empty interior. There are two natural questions
arising from this result:

Question. Can one find a non-empty, open ball inside B on which f is bilipschitz
and, if yes, can one additionally demand that the set E above is open?
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We provide answers to these questions in the case that the dimension of the
domain is equal to the dimension of the co-domain. The main result proven in the
present section (Theorem 1.30), which is the answer to the first part of the above
question, can be derived quickly from a result of Bonk and Kleiner [5, Thm 3.4
and Lem. 4.2], as we already noted before.

The material at the end of the present section appearing under the heading
‘Optimality of Theorem 1.30’ can be seen as a complement of Theorem 1.30 and
theorem 1.35 and is independent of Feige’s question (Question 1.4) and of the
work of Bonk and Kleiner [5].

Preliminaries
Before we start the exposition of the results we list general properties of Lipschitz
regular mappings that will be needed later. For reader’s convenience, we repeat
here the equivalent characterisation of Lipschitz regular mappings stated in the
‘Background and notation’ at the beginning:

Lemma 1.21 (David and Semmes [14]). Let f : A ⊆ Rd → Rd be Lipschitz. Then
f is Lipschitz regular if and only if there is C > 0 such that

L(f−1(B(y, r))) ≤ Crd

for every y ∈ Rd and every r > 0.

A particularly useful special case of Lemma 1.21 asserts that Lipschitz reg-
ular mappings possess Luzin’s properties (N) and (N−1), as stated in the next
Corollary:

Corollary 1.22. Let f : A ⊆ Rd → Rd be Lipschitz regular. Then

(N) for every E ⊂ A such that L(E) = 0 we have L(f(E)) = 0; and

(N−1) for every F ⊂ Rd such that L(F ) = 0 we have L(f−1(F )) = 0.

We also add an easy observation, which, however, will prove useful later.

Observation 1.23. Let f : A ⊆ Rd → Rd be Lipschitz regular and y ∈ Rd. Then
we have ⏐⏐⏐f−1({y})

⏐⏐⏐ ≤ Reg(f).

Proof. To the contrary, we assume there are pairwise distinct points x1, . . . , xk ∈
f−1({y}) for some k > Reg(f). Let us denote by r the minimum distance between
xi and xj for 1 ≤ i < j ≤ k. Then no ball in Rd of radius r

2 can contain more
than one of the points x1, . . . , xk. Therefore, f−1(B(y, r

2 Reg(f))) cannot be covered
with at most Reg(f) balls of radius r

2 , a contradiction.

The proofs in this section rely on two main tools. The first one is differentia-
bility of Lipschitz regular mappings.

Definition 1.24 (Non-critical points). Let U ⊆ Rd be open and f : U → Rd be
Lipschitz regular. We define the set of ‘non-critical’ points of f as

N(f) := U \ f−1({f(x) : Df(x) does not exist or does not have full rank})
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For a mapping f as in the definition above, by a variant of Sard’s theorem for
Lipschitz mappings, which can be found, e.g., in Mattila [41, Thm. 7.6], we know
that the set of ‘critical values’

{f(x) : Df(x) does not exist or does not have full rank}

has zero Lebesgue measure. Therefore, by Corollary 1.22, the set of ‘non-critical
points’ N(f) occupies almost all of U . Notice that for every x ∈ N(f) we have
that Df(x) exists and is invertible12, and moreover, that f−1({f(x)}) ⊆ N(f).

Occasionally, we will be given an open set U and a Lipschitz regular mapping
f defined on U , the closure of U . Then by N(f) we mean the set N(f |U) ⊆ U .
Note that it is then still true that f(N(f)) has full measure in f(U)—we will use
this fact several times.

Another important tool that is used the present section, besides differentia-
bility, is the notion of topological degree. We briefly introduce it here; for its
detailed treatment we refer to Deimling [16, Chaps. 1-2] or Fonseca and Gangbo
[24].

The degree function

deg :
{

(f, U, y) : U ⊆ Rd open and bounded,
f ∈ C(U ;Rd), y ∈ Rd \ f(∂U)

}
−→ Z

is uniquely determined by the following three properties [16, Thm. 1.1]:

(d1) deg(id, U, y) = 1 for all y ∈ U .

(d2) (additivity) deg(f, U, y) = deg(f, U1, y) + deg(f, U2, y) whenever U1, U2 are
disjoint open subsets of U such that y /∈ f

(
U \ (U1 ∪ U2)

)
.

(d3) (homotopy invariance) deg(H(t), U, y(t)) = deg(H(0), U, y(0)) whenever the
mappings

H : [0, 1] → C(U,Rd) y : [0, 1] → Rd

are continuous and y(t) /∈ H(t)(∂U) for all t ∈ [0, 1].

The degree function is defined explicitly in [16, Chap. 2]. We just point out that
in the special case where g ∈ C1(U,Rd) and for every point x ∈ g−1({y}) the
derivative Dg(x) is invertible, then the degree function is given by the expression

deg(g, U, y) =
∑

x∈g−1({y})
sign(Jac(g)(x)), (1.9)

(see [16, Def. 2.1]). In particular, we have that deg(g, U, y) = 0 whenever y ∈
Rd \ g(U).

We will require some further properties of the degree which follow easily from
the properties (d1), (d2) and (d3). All of the statements of the next Proposition
are contained in [16, Thm. 3.1].

12In fact, for a Lipschitz regular mapping f as above, it is easy to prove that Df(x) is always
invertible whenever it exists; if not, then there would be a point x and a direction v such that
the distances between x and points of the form x+tv for t > 0 small enough would be contracted
by f by an arbitrarily large factor, which would eventually contradict the Lipschitz regularity
of f .
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Proposition 1.25. Let U ⊆ Rd be an open, bounded set, f ∈ C(U,Rd) and
y ∈ Rd \ f(∂U).

(i) If y and y′ belong to the same connected component of Rd \ f(∂U) then
deg(f, U, y) = deg(f, U, y′).

(ii) If y ∈ Rd \ f(U) then deg(f, U, y) = 0.

(iii) Let g ∈ C(U,Rd) be a mapping such that ∥f − g∥∞ < dist(y, f(∂U)). Then
deg(f, U, y) = deg(g, U, y).

In the next Proposition, we extend formula (1.9) to Lipschitz mappings. The
author was not able to find it in the literature, although it is probably known to
experts in the field.

Proposition 1.26. Let U ⊆ Rd be an open, bounded set, f : U → Rd be a
Lipschitz mapping and y ∈ Rd \ f(∂U) be such that for every x ∈ f−1({y}) the
derivative Df(x) exists and is invertible. Then

deg(f, U, y) =
∑

x∈f−1({y})
sign(Jac(f)(x)).

Proof. If f−1({y}) = ∅ then deg(f, U, y) = 0, by Proposition 1.25, part (ii), and
the formula holds. Thus, we assume that f−1({y}) ̸= ∅. Note that f−1({y}) is
finite. Otherwise we may find an accumulation point x of f−1({y}). Then f(x) =
y and there is a sequence (xn)∞

n=1 in f−1({y}) \ {x} such that xn → x as n → ∞.
Since f(xn) − f(x) = 0, by differentiability at x we have ∥Df(x)(xn − x)∥2 ∈
o(∥xn − x∥2). It follows that infy∈Sd−1 ∥Df(x)(y)∥2 = 0, and thus, Df(x) is not
invertible.

Let us write f−1({y}) = {x1, x2, . . . , xn} where n ∈ N. Fix i ∈ [n]. Given
ε > 0, we may choose δi > 0 sufficiently small so that

∥f(x) − f(xi) −Df(xi)(x− xi)∥2 ≤ ε ∥x− xi∥2

for all x ∈ B(xi, δi) ⊆ U . If we define an affine mapping g : U → Rd by g(x) =
f(xi) +Df(xi)(x− xi), the inequality above yields ∥f(x) − g(x)∥2 ≤ ε ∥x− xi∥2
for every x ∈ B(xi, δi). On the other hand, using differentiability of f at xi and
the above inequality, we can also deduce thatDf(xi)−1 (f(x) − f(xi))


2

≥ ∥x− xi∥2 − ε
Df(xi)−1


op

∥x− xi∥2 ,

which, in turn, yields that

∥f(x) − f(xi)∥2 ≥
1 − ε ∥Df(xi)−1∥op

∥Df(xi)−1∥op
∥x− xi∥2 > ε ∥x− xi∥2

for all x ∈ B(xi, δi), where the final inequality is obtained by choosing ε suffi-
ciently small. Therefore, for all δ ∈ (0, δi], we have that

f |B(xi,δ) − g|B(xi,δ)


∞

≤
εδ < dist(f(xi), f(∂B(xi, δ))). Applying Proposition 1.25, part (iii) we infer that

deg(f,B(xi, δ), y) = deg(g,B(xi, δ), y) = sign(Jac(g)(xi)) = sign(Jac(f)(xi))
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for every δ ∈ (0, δi]. In the above we used formula (1.9) for the degree of mappings
in C1(U,Rd). Next, we choose δ < min {δ1, . . . , δn} sufficiently small so that
the sets (B(xi, δ))n

i=1 are pairwise disjoint subsets of U . In the case n = 1 we
choose a (possibly empty) open set U2 ⊆ U \ B(x1, δ) and use y ∈ Rd \ f(U2),
Proposition 1.25, part (ii) and property (d2) with U1 = B(x1, δ) to obtain the
desired result. When n > 1, we iteratively apply property (d2) to get

deg(f, U, y) =
n∑

i=1
deg(f,B(xi, δ), y) =

n∑
i=1

sign(Jac(f)(xi))

=
∑

x∈f−1({y})
sign(Jac(f(x))).

We present an additional auxiliary lemma. It says that whenever a continuous
mapping in Rd has derivative of full rank at a point, it preserves neighbourhoods
of this point. The author believes that such a statement may be a folklore;
however, he did not find any reference.

Lemma 1.27. Let a ∈ Rd, r > 0 and f : B(a, r) → Rd be a continuous mapping
differentiable at the point a with rank(Df(a)) = d. Then there is δ0 > 0 such
that for every δ ∈ (0, δ0] we have

B

(
f(a), δ

2 ∥Df(a)−1∥op

)
⊆ f(B(a, δ)).

Up to an affine transformation, the lemma above can be restated in the fol-
lowing way, as we shall see a bit later:

Lemma 1.28. Let α ∈ (0, 1/3) and f : B(0, 1) ⊂ Rd → Rd be a continuous
mapping such that ∥f − id∥∞ ≤ α. Then B(f(0), (1 − 2α)) ⊆ f(B(0, 1)).

Proof. The assumptions imply that B(f(0), (1−2α)) is disjoint from f(∂B(0, 1)).
Therefore, by Proposition 1.25, part (i), the degree deg(f,B(0, 1), ·) is constant
on the ball B(f(0), (1 − 2α)). By Proposition 1.25, part (iii), we infer that

deg(f,B(0, 1), f(0)) = deg(id, B(0, 1), f(0)) = 1,

since dist(f(0), f(∂B(0, 1))) ≥ 1−2α > α ≥ ∥f − id∥∞. The lemma follows from
Proposition 1.25, part (ii), which implies that every point of B(f(0), (1 − 2α))
has to be included in f(B(0, 1)).

Now we present the proof of Lemma 1.27 using Lemma 1.28:

Proof of Lemma 1.27. Without loss of generality, we assume that a = 0 and
that f(0) = 0. We write z(y) := f(y) − Df(0)(y). For every y ∈ Rd we have
∥z(y)∥2 ∈ o(∥y∥2). We pick β > 0 small, whose precise value will be set later,
and choose δ0 small enough so that ∥z(y)∥2 ≤ β ∥y∥2 for every y ∈ B(0, δ0).

Since the linear mapping Df(0) has full rank, its inverse Df(0)−1 is well
defined and has a finite norm. We see that (Df(0)−1 ◦ f)(y)−y = Df(0)−1(z(y)).
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We fix δ ∈ (0, δ0] and write gδ(y) := 1
δ
(Df(0)−1 ◦ f)(δy). The mapping gδ is

defined on the ball B(0, 1) and continuous. We also get that

∥gδ − id∥∞ ≤
βδ ∥Df(0)−1∥op

δ
= β

Df(0)−1


op
.

We set β := 1
4∥Df(0)−1∥op

. From Lemma 1.28 (with α = 1/4) it follows that
gδ(B(0, 1)) ⊇ B

(
0, 1

2

)
; hence, we infer that (Df(0)−1 ◦ f)(B(0, δ)) ⊇ B

(
0, δ

2

)
. It

is not hard to observe that infx∈Sd−1 ∥Df(0)(x)∥2 = 1
∥Df(0)−1∥op

. Consequently,

f(B(0, δ)) ⊇ B
(

0, δ
2∥Df(0)−1∥op

)
.

At one place we will need a special case of the multiplication theorem for
the degree of a composition of two continuous mappings (see, e.g., Fonseca and
Gangbo [24, Thm. 2.10]):

Theorem 1.29 (A special case of the Multiplication Theorem). Let U ⊆ Rd

be open. Moreover, let f : U → Rd and g : f(U) → Rd be continuous, injective
mappings. Then for every y ∈ g ◦ f(U) it holds that

deg(g ◦ f, U, y) = deg(g, f(U), y) · deg(f, U, g−1(y)).

Bilipschitz decomposition of Lipschitz regular mappings
Our main goal in this section is to show that Lipschitz regular mappings in
Euclidean spaces decompose into bilipschitz mappings in a nice way. For reader’s
convenience, we restate the main theorem we are going to prove here:

Theorem 1.30 (Bonk and Kleiner [5]). Let U ⊆ Rd be open and f : U → Rd be
Lipschitz regular. Then there are disjoint open sets (An)n∈N such that ⋃n∈NAn

is dense in U and such that f |An is bilipschitz with the lower bilipschitz constant
b = b(Reg(f)).

As we said before, the theorem above can be easily deduced combining The-
orem 3.4 and Lemma 4.2 of Bonk and Kleiner [5]. We will present an easier and
shorter (but less general) proof than that of Bonk and Kleiner [5].

Before we prove Theorem 1.30, let us put it briefly into context. For a general
Lipschitz mapping h : Rd → Rd it is known that one can obtain a different bilips-
chitz decomposition using Sard’s theorem; see, e.g., Federer [22, Lem. 3.2.2]. One
can start with sets{

x ∈ Rd : Dh(x)−1 exists,
Dh(x)−1


op

≤ k and ∀y ∈ B
(
x,

1
k

)

∥h(y) − h(x) −Dh(x)(y − x)∥2 ≤ ∥x− y∥2
2k

}

defined for every k ∈ N and then cut these sets into pieces of diameter less
than 1/k forming a decomposition (An)∞

n=1. Then Sard’s theorem implies that
L
(
h
(
Rd \ ⋃n∈NAn

))
= 0. When compared to the decomposition established in

Theorem 1.30, the difference is that the sets An are not necessarily open, the
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lower bilipschitz constant of each h|An may depend on n and ⋃∞
n=1 An need not

be a large subset of the domain in any sense.
If the decomposition that was just described is applied to a Lipschitz regular

mapping, the resulting sets An occupy almost all of the domain, since the set
N(f) has a full measure in the domain. But the sets An still need not be open.
The fact that for Lipschitz regular mappings it is possible to ensure the openness
of bilipschitz pieces An will be of crucial importance to us.

The first quantitative version of the decomposition using Sard’s theorem was
provided by David [12, Prop. 1] for general Lipschitz mappings f : Rd → Rm,
where m ≥ d. David shows that for any ball B ⊂ Rd, if L(f(B)) is large in
measure, then B contains a set E large in measure such that f |E is bilipschitz.
When applied to a Lipschitz regular mapping f , using the measure-preserving
property expressed in Lemma 1.21, the condition that L(f(B)) is large in measure
is satisfied automatically; for this version of David’s result, see David and Semmes
[15, Thm. 4.1].

A well-known result of Jones [30] provides another quantitative version of the
decomposition for Lipschitz mappings Id → Rm. In the decomposition of Jones
as well as that of David the bilipschitz pieces may have empty interior.

The presented proof of Theorem 1.30 can be divided into three parts. The first
one is to find, for any given open set in the domain, an open subset on which the
given mapping is almost injective (this notion is formalised below). The second
part is to show that a Lipschitz regular, almost injective map on an open set is
injective and the third part is to prove that a Lipschitz regular, injective map on
an open set with a convex image is bilipschitz. In each of these steps the proof
relies on the Lipschitz regularity of the mapping in question.

Definition 1.31. We say that a mapping h : A ⊆ Rd → Rd is almost injective if
there is a set B ⊆ A such that L(A \B) = 0 and h|B is injective.

As advertised above, we begin by showing that a Lipschitz regular mapping
is almost injective on some open set:

Lemma 1.32. Let U ⊆ Rd be non-empty and open and f : U → Rd be Lipschitz
regular. Then there is a non-empty open set V ⊆ U such that f |V is almost
injective and f(V ) is an open ball.

Proof. The proof relies heavily on the special properties of the set N(f) (see
Definition 1.24 and the discussion beneath). Thanks to Observation 1.23 we know
that |f−1({y})| is finite for every y ∈ f(U). Pick y ∈ f(N(f)) with |f−1({y})|
maximal and set {x1, . . . , xk} = f−1 ({y}) ⊆ N(f). We choose pairwise disjoint,
open balls C1, . . . , Ck in U centred at x1, . . . , xk, respectively. By Lemma 1.27,
there is a non-empty, open ball G ⊆ ⋂k

i=1 f(Ci) centred at y. Hence, by the choice
of y, the mapping f is injective on each set of the form Ci ∩ f−1(G) ∩N(f), for
i ∈ [k]. Since N(f) ∩ Ci occupies almost all of Ci, any f |Ci∩f−1(G) is almost
injective.

As the next step, we use topological degree to show that whenever a Lipschitz
regular mapping is almost injective on an open set U , it is injective on U .

Lemma 1.33. Let U ⊆ Rd be an open set, f : U → Rd be a Lipschitz regular,
almost injective mapping. Then f |U is injective.
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Proof. Suppose not. This means we can find two points x1 ̸= x2 in U such that
y := f(x1) = f(x2) ∈ f(U). We pick two disjoint balls B1, B2 in U centred at
x1, x2, respectively, whose boundaries do not intersect the set f−1({y}), which is
finite by Observation 1.23. We may then choose δ > 0 sufficiently small so that
B(y, δ) ⊆ Rd \ (f(∂B1) ∪ f(∂B2)).

By Proposition 1.25, part (i) the degree degi := deg(f,Bi, ·) is constant on
B(y, δ) for i = 1, 2. If for both i = 1, 2 we have degi |B(y,δ) ̸≡ 0, then by Proposi-
tion 1.25, part (ii) every point in B(y, δ) has a preimage in both B1 and B2, which
is impossible. Hence, say, deg1 |B(y,δ) ≡ 0. Since N(f) is dense in B1, there are
points of f(N(f)) in f(B1) ∩B(y, δ). Any such point has at least two preimages
in B1 by Proposition 1.26; again, this is a contradiction.

The third step towards the proof of Theorem 1.30 is to show that a Lipschitz
regular, injective mapping with a convex image is bilipschitz.

Lemma 1.34. Let U ⊆ Rd be an open set and f : U → Rd be an injective,
Lipschitz regular mapping such that f(U) is convex. Then f is bilipschitz with
lower bilipschitz constant at least 1

2 Reg(f)2 .

We note that a very similar statement with the same proof also appears
in Bonk and Kleiner [5, Lemma 4.2]. For reader’s convenience, we include its
short proof here as well.

Proof. By Invariance of Domain (see Theorem 1.8) the mapping f is a homeo-
morphism onto its image.

For every two distinct points x, y ∈ U we consider the line segment f(x)f(y) ⊂
f(U) connecting their images. Its preimage under f , we denote it by γ(x, y) :=
f−1

(
f(x)f(y)

)
, is a curve with endpoints x and y. By Lipschitz regularity (see

Definition 1.12), the curve γ(x, y) can be covered by at most Reg(f) balls of radius
Reg(f) ∥f(y) − f(x)∥2. Consequently, the distance between x and y cannot be
larger than 2 Reg(f)2 ∥f(y) − f(x)∥2.

Finally, we have gathered all the ingredients needed for the proof of Theo-
rem 1.30.

Proof of Theorem 1.30. We start with a countable basis (Un)n∈N for the subspace
topology on U . By a consecutive application of Lemmas 1.32, 1.33 and 1.34 we
get a collection of open sets (Vn)n∈N such that for every n ∈ N we have Vn ⊆ Un

and that f |Vn is bilipschitz with lower bilipschitz constant b = 1/(2 Reg(f)2).
Now we set A1 := V1 and inductively define An := Vn \⋃n−1

j=1 Aj. By construc-
tion, the set ⋃∞

n=1 An is dense in U , and hence, also in U .

Remark. The first two steps described above, which comprise of Lemmas 1.32
and 1.33, may be replaced by an application of [5, Theorem 3.4]. Bonk and
Kleiner [5] work with much more general mappings; instead of assuming that
f : U ⊆ Rd → Rd is Lipschitz regular, they only require that f is continuous and
that there is some constant C > 0 such that |f−1({y})| ≤ C for all y ∈ Rd. The
latter condition is referred to as ‘bounded multiplicity’. Moreover, the domain
U may be replaced by any compact metric space X with the property that every
non-empty open subset of X has topological dimension d.
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The argument we presented is different to that of Bonk and Kleiner [5]. How-
ever, a key aspect of both proofs appears to be finding points x in the domain such
that f(x) is an interior point of the image f(O) for every neighbourhood O of
x. The most difficult part of Bonk and Kleiner’s argument is to show that such
points exist. However, for Lipschitz regular mappings we can easily find many
such points using almost everywhere differentiability of Lipschitz mappings, the
regularity condition and Lemma 1.27. Indeed, note that all points in the set N(f)
have this property. Therefore, the author believes that the argument presented here
may be a more accessible approach to Theorem 1.30 for the special case where the
mappings considered are Lipschitz regular.

Using Theorem 1.30 we prove Theorem 1.35, which we later use to resolve
Feige’s question (Question 1.4). That is, we deduce that a Lipschitz regular
mapping on an open set can be expressed, on some open subset of the image, as a
sum of bilipschitz homeomorphisms. Again, we restate the theorem we are going
to prove here:

Theorem 1.35. Let U ⊆ Rd be non-empty and open and f : U → Rd be a
Lipschitz regular mapping. Then there exist a non-empty open set T ⊆ f(U), N ∈
[Reg(f)] and pairwise disjoint open sets W1, . . . ,WN ⊆ U such that f−1(T ) =⋃N

i=1 Wi and f |Wi
: Wi → T is a bilipschitz homeomorphism for each i with the

lower bilipschitz constant b = b(Reg(f)).

Proof. Let (An)∞
n=1 be the open sets from the conclusion of Theorem 1.30 applied

to the mapping f . Let y ∈ f(U) be such that the number

N = Ny :=
⏐⏐⏐{n ∈ N : f−1({y}) ∩ An ̸= ∅

}⏐⏐⏐
is maximal. Note that N ∈ [Reg(f)] by Observation 1.23. Choose β ∈ NN such
that

y ∈ f(An) ⇔ n ∈ {β1, β2, . . . , βN} .

Set T = ⋂N
i=1 f(Aβi

) and note that T is an open set containing y. We claim that
f−1(T ) ⊆ ⋃N

i=1 Aβi
. Assuming that this claim is valid we may define the desired

sets (Wi)N
i=1 by Wi := f−1(T ) ∩ Aβi

for each i ∈ [N ].
Thus the proof can be completed by verifying the earlier claim, that is, by

proving that f−1(T ) ⊆ ⋃N
i=1 Aβi

. Let z ∈ f−1(T ). Using that the union ⋃∞
n=1 An

is dense in U , we may find sequences (αk)∞
k=1 ⊆ N and (zk)∞

k=1 ⊆ U with zk ∈ Aαk

such that zk → z. But then f(zk) → f(z) ∈ T and so we may choose K ≥ 1
sufficiently large so that f(zk) ∈ T whenever k ≥ K. By the choice of y we have
that

f(An) ∩ T ̸= ∅ ⇔ n ∈ {β1, . . . , βN} .

Thus we conclude that αk ∈ {β1, . . . , βN} for all k ≥ K and z = limk→∞ zk ∈⋃N
i=1 Aβi

.
If z ∈ ∂Aβi

for some i ∈ [N ], then we may choose x ∈ Aβi
such that f(x) =

f(z). However, this contradicts the fact that f is bilipschitz on Aβi
, and therefore

also bilipschitz on Aβi
. We conclude that z ∈ ⋃N

i=1 Aβi
.
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Optimality of Theorem 1.30
The remainder of the current section is devoted to discussion of limits and op-
timality of Theorem 1.30. The content here is independent of Feige’s question
(Question 1.4).

A natural question that could have come to reader’s mind after reading about
various bilipschitz decomposition theorems for Lipschitz regular mappings may
have been the following:

Question. Can we hope for any control of the measure of the bilipschitz pieces
in a bilipschitz decomposition of Lipschitz regular mappings if one requires the
pieces being open? For example, can we hope for any control of the measure of
the set ⋃∞

n=1 An given by the conclusion of Theorem 1.30?

The answer to the previous question is no: the decomposition from The-
orem 1.30 cannot be strengthened in this way for a general Lipschitz regular
mapping; below we will show that this is unavoidable. However, in a special
case that a Lipschitz regular mapping f satisfies Reg(f) ≤ 2, we can provide a
stronger bilipschitz decomposition; namely, the bilipschitz pieces An, in addition
to the conclusions of Theorem 1.30, can cover almost all of the domain.

Lemma 1.36. Let U ⊆ Rd be a bounded, open set with L(∂U) = 0 and f : U →
Rd be a Lipschitz regular mapping with Reg(f) ≤ 2. Then there exist pairwise dis-
joint, open sets (An)∞

n=1 in U such that L(U \⋃∞
n=1 An) = 0 and f |An is bilipschitz

with lower bilipschitz constant b = b(Reg(f)).

Proof. From Observation 1.23 we know that every point y ∈ f(U) has either one
or two preimages. Since L(∂U) = 0, the set f(N(f)) \ f(∂U) has full measure
in f(U) by Corollary 1.22 (Luzin’s property (N)). Let y ∈ f(N(f)) \ f(∂U).
Using Lemma 1.27, we may choose r > 0 sufficiently small so that B(y, r) ⊆
f(U) \ f(∂U).

If deg(f, U, y) ≡ 1 (mod 2), then Proposition 1.26 implies that y has exactly
one preimage. Using Proposition 1.25, part (i), we deduce that the same is true of
all points y′ ∈ f(N(f)) ∩ B(y, r). Thus the mapping f : f−1(B(y, r)) → B(y, r)
is almost injective. We may now apply Lemma 1.33 and then Lemma 1.34 to
conclude that f |f−1(B(y,r)) is bilipschitz with lower bilipschitz constant 1

2 Reg(f)2 .
On the other hand, if deg(f, U, y) ≡ 0 (mod 2), then y must have two distinct

preimages x1, x2 ∈ N(f). Let B1, B2 be disjoint balls with x1 ∈ B1 and x2 ∈ B2.
From Lemma 1.27 we deduce that f(B1) ∩ f(B2) contains a non-empty open
ball G containing the point y. Then every point in G has exactly one preimage
in each of the balls B1 and B2. Hence f |f−1(G)∩Bi

is injective for i = 1, 2 and,
applying Lemma 1.34, we conclude that these mappings are also bilipschitz with
lower bilipschitz constant 1

2 Reg(f)2 .
In the above we established that for every point y ∈ f(N(f)) \ f(∂U) there is

an open ball B containing y such that f−1(B) decomposes precisely as the union of
at most two sets on which f is bilipschitz with lower bilipschitz constant 1

2 Reg(f)2 .
The collection of all such balls forms a Vitali cover of f(N(f)) \ f(∂U), so we
can apply the Vitali covering theorem (see, e.g., Mattila [41, Thm. 2.2, p. 26]) to
extract a countable, pairwise disjoint subcollection (Bn)∞

n=1 which covers almost
all of the set f(N(f)) \ f(∂U), and so almost all of f(U). The desired sets
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An, verifying the statement of the lemma, can now be defined as the connected
components of the sets f−1(Bn).

On the other hand, for every ε > 0 we provide an example of a regular mapping
f : Id → Rd with Reg(f) = 3 and the following property: the set of points x such
that there is an open neighbourhood of x on which f is injective has measure
at most ε. Consequently, for Lipschitz regular mappings f with Reg(f) ≥ 3 we
cannot hope for any control of the measure of the bilipschitz pieces An if we insist
on An being open (since any bilipschitz mapping is necessarily injective).

Example 1.37. For any ε > 0 there is a (3,
√
d)-regular mapping f : Id →

√
dId

and a set X ⊂ Id with the following properties:

(i)
f −

√
d id


∞

≤ ε.

(ii) L(X) ≥ 1 − ε.

(iii) For every x ∈ X and every δ > 0 the mapping f is not injective on the
ball B(x, δ). Moreover, there are disjoint, non-empty, open balls U1, U2 ⊆
B(x, δ) such that 1√

d
f |Ui

is an isometry for i = 1, 2 and f(U1) = f(U2).

Proof. We give a proof for the case d = 1. The example for d ≥ 1 can easily be
constructed from this: if f : I → R is the example for the case d = 1 with an
appropriate choice of ε, then the function h : Id →

√
dId defined by

h(x1, x2, . . . , xd) = (
√
df(x1),

√
dx2, . . . ,

√
dxd), for (x1, x2, . . . , xd) ∈ Id

verifies Example 1.37 for general d ≥ 1.
Given a point a ∈ (0, 1) and c > 0, we will denote by Fa,c the interval

[a, a+ 3c]. Next, we define a 1-Lipschitz function g(a, c) : I → I that makes
two folds on Fa,c in a sense; see Figure 1.4.

More precisely, we let

g(a, c)(x) :=

⎧⎪⎪⎨⎪⎪⎩
x if x ≤ a+ c

2a+ 2c− x if x ∈ [a+ c, a+ 2c]
x− 2c if x ≥ a+ 2c.

We will now summarise various properties of the function g(a, c) which will
be needed in the following construction. It is clear that g(a, c) is 1-Lipschitz
and ∥g(a, c) − id∥∞ ≤ 2c. Moreover, g isometrically maps each of the three
subintervals [a+(i−1)c, a+ ic] of Fa,c, for i ∈ [3], onto the same interval [a, a+c].
Denoting by J1, J2 the two components of the set I \ Fa,c we further point out
that the sets g(a, c)(J1), g(a, c)(J2) and g(a, c)(Fa,c) are pairwise disjoint subsets
of I, and that g restricted to each Ji is a translation. Therefore, for any interval
U ⊆ g(a, c)(I), the preimage g(a, c)−1(U) is an isometric copy of U whenever U
does not intersect g(a, c)(Fa,c), and g(a, c)−1(U) may be covered by 3 intervals of
length L(U) whenever U intersects g(a, c)(Fa,c).

Let X ⊆ I be a fat Cantor set13 with L(X) ≥ 1 − ε and (An)∞
n=1 be an

enumeration of the components of I \ X. In what follows we will use the fact
13See, e.g., Mattila [41].
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0 1a
a+ c

g(a, c)(x)

a+ 2c

a+ c

a

g(a, c)(I) = [0, 1− 2c]

a+ 3c

Fa,c

g(a, c)(Fa,c) = [a, a+ c]

J1 J2

g(J1)
g(J2)

Figure 1.4: The function g(a, c) and the interval Fa,c together with their images.

that every neighbourhood of a given point x ∈ X contains some of the intervals
(An)∞

n=1. The idea of the construction is to ‘pleat’ inside each of the intervals An

using mappings of the form g(a, c) defined above; see Figure 1.5.
Now we describe the construction more formally. We start with f0 := id. Let

an be a midpoint of the interval An. For n ∈ N we write gn := g(fn−1(an), cn)
and fn := gn ◦fn−1, where cn > 0 are chosen small enough with respect to several
constraints, which will be described during the course of the construction. Then
we define f as the limit of fn.

The first requirement on cn is that Fan,cn ⊂ An. Second, in order for f to be
well-defined, we want to choose cn so that the sequence (fn)∞

n=1 is Cauchy. We
have already observed that ∥gn − id∥∞ ≤ 2cn. Thus, choosing cn ≤ ε

2n+1 , we get
that ∥fn − fn−1∥∞ ≤ 2cn ≤ ε

2n and that f is well-defined. Moreover, f clearly
satisfies condition (i).

0 1a1 a1 + c1

f1

a2 a2 + c2

f2

f1(a2) f1(a2) + c2

a3a3 + c3

f2(a3) f2(a3) + c3

a4
a4 + c4

f3

f4

a5

f4(a5)

f3(a4) f3(a4) + c4

Fa4,c4 Fa3,c3 Fa2,c2 Fa1,c1 id

Figure 1.5: The first four steps in the construction of the functions (fn)∞
n=1.

To see that f is (3, 1)-regular, note that f is 1-Lipschitz because f is the
uniform limit of a sequence of 1-Lipschitz functions. However, obtaining the
regularity estimate is a bit more tricky.
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Given any open interval U ⊆ f(I), we have

f−1(U) ⊆ f−1
n (B(U, ∥fn − f∥∞), for n ∈ N.

Imagine, for the time being, that the latter set can be covered by 3 intervals of
length D(L(U) + 2 ∥fn − f∥∞) for some D < 3. Then letting n → ∞ we deduce
that f−1(U) can be covered by 3 closed intervals of length DL(U), which in turn
can be covered by 3 open intervals of length 3L(U).

Therefore, we fix a strictly increasing sequence of numbers Dn ∈ [1, 3) such
that D := supDn < 3 and show that cn can be chosen so that the following
holds true: for every n ∈ N and every open interval U ⊂ I the set f−1

n (U) can be
covered by 3 intervals of length DnL(U).

For n = 0 the condition is clearly satisfied by any D0 ≥ 1. For a general
n ∈ N we will distinguish three cases. If U is disjoint from fn (Fan,cn), then
f−1

n (U) = f−1
n−1(g−1

n (U)) is the preimage under fn−1 of a translation of U , which
can be covered by 3 intervals of length Dn−1L(U) by induction, which is less than
DnL(U).

If U intersects the interval fn (Fan,cn), but is disjoint from ⋃n−1
i=1 fn (Fai,ci

), then
f−1

n (U) is a translation of g−1
n (U), which can be covered by 3 intervals of length

L(U), as was already noted in the discussion of the properties of g(a, c) above.
We are left with the option that U intersects fn (Fan,cn) and also the set⋃n−1

i=1 fn (Fai,ci
). However, since the intervals in (An)∞

n=1 are pairwise disjoint, this
means that L(U) must be quite large; namely, L(U) ≥ L(An)

2 −3cn, since an is the
midpoint of An. On the other hand, the inequality ∥fn − fn−1∥∞ ≤ 2cn implies
that

f−1
n (U) ⊆ f−1

n−1(B(U, 2cn)).
By induction, the latter set can be covered by 3 intervals of length Dn−1(L(U) +
4cn). The last quantity can be made smaller than DnL(U) using the lower bound
on L(U) and choosing cn small enough. This finishes the proof that the function
f is (3, 1)-regular.

By construction, the function f is not injective on any of the intervals Fan,cn ⊂
An, but it maps each of the three subintervals [an +(j−1)cn, an +jcn], for j ∈ [3],
isometrically onto the same interval. Since every neighbourhood of any point of
X contains some of the intervals (An)∞

n=1, this verifies condition (iii).

There is another question that can come to reader’s mind. Where can we
put Lipschitz regular mappings on the imaginary scale between bilipschitz and
Lipschitz mappings? Are they closer to general Lipschitz mappings or rather to
bilipschitz ones?

We can show that a typical 1-Lipschitz mapping, in the sense of the Baire
Category Theorem (see, e.g., Munkres [43, Thm. 48.2]), is not injective on any
open subset of the domain, and hence, in the light of Theorem 1.30, a typical 1-
Lipschitz mapping is not Lipschitz regular. Before we state and proof the result,
we present an auxiliary lemma.

Lemma 1.38. Let U1, U2 ⊆ Rd be disjoint, non-empty open balls and f : U1 ∪
U2 → Rd be a continuous mapping such that f |Ui

is a homeomorphism for i = 1, 2
and f(U1) = f(U2). Then there exists s > 0 such that for any continuous mapping
h : U1 ∪ U2 → Rd with ∥h− f∥∞ < s we have h(U1) ∩ h(U2) ̸= ∅.
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Proof. Fix y ∈ f(U1) = f(U2). Property (d1) of the degree together with The-
orem 1.29 applied to (f |Ui

)−1 ◦ f |Ui
= id implies that deg(f, Ui, y) ∈ {−1, 1} for

i = 1, 2.
Let s > 0 be small enough so that B(y, s) ⊆ f(U1) = f(U2) and h : U1 ∪

U2 → Rd be a continuous mapping with ∥h− f∥∞ < s ≤ dist(y, f(∂Ui)) for
i = 1, 2. Then we may apply Proposition 1.25, part (iii) to obtain deg(h, Ui, y) =
deg(f, Ui, y) ∈ {−1, 1} for i = 1, 2. Finally, we use Proposition 1.25, part (ii) to
deduce that y ∈ h(U1) ∩ h(U2) ̸= ∅.

Proposition 1.39. Let V denote the complete metric space of 1-Lipschitz map-
pings Id → Rd equipped with the metric induced by the supremum norm. Then
the set of all 1-Lipschitz mappings which are injective on some non-empty, open
subset of Id is a meagre subset of V.

Proof. Let us write B for a countable base of the topology on Id consisting of open
balls. Moreover, for every D ∈ B we denote by I(D) the subset of V consisting
of mappings that are injective on D. It is sufficient to show that the set I(D)
forms a nowhere dense subset of V for every D ∈ B.

Let D = B(u, r) ∈ B, g ∈ I(D) and η > 0. To verify that I(D) is nowhere
dense we will find g′ ∈ V and s > 0 such that ∥g′ − g∥∞ < η and B(g′, s) ∩ I(D)
is empty.

Choose ε < min {L (B(u, r/2)) , r/2, η} and let f : Id →
√
dId and X ⊆ Id be

given by Example 1.37. Then g ◦ 1√
d
f ∈ V and using part (i) of Example 1.37

we infer
g ◦ 1√

d
f − g


∞

≤
 1√

d
f − id


∞

≤ ε < η. By the choice of ε, there
exists x ∈ B(u, r/2) ∩ X. By Example 1.37, part (iii) there are disjoint, non-
empty, open balls U1, U2 ⊂ B(u, r/2) such that 1√

d
f |Ui

is an isometry for i = 1, 2
and 1√

d
f(U1) = 1√

d
f(U2) =: G. Note that

 1√
d
f − id


∞

≤ ε < r/2 implies that
G ⊆ B(u, r) = D. Thus, g|G is injective and, by Invariance of Domain (see
Theorem 1.8), a homeomorphism. We have now established that g ◦ 1√

d
f maps

each of the two disjoint, non-empty, open balls U1, U2 ⊆ Id homeomorphically
onto the same open set g(G). It follows from Lemma 1.38 that we can choose
s > 0 sufficiently small so that whenever h : Id → Rd is a continuous mapping
with

h− g ◦ 1√
d
f


∞
< s the sets h(U1) and h(U2) have non-empty intersection,

implying that h is not injective. For s chosen as above, we have B
(
g ◦ 1√

d
f, s

)
∩

I(D) = ∅.

Yet another question that a curious reader may ask is whether Lipschitz regu-
lar mappings can be characterised as Lipschitz mappings admitting a bilipschitz
decomposition as in Theorem 1.30.

However, this turns out not to be the case. It is easy to construct an example
with infinitely many overlapping images of bilipschitz pieces. But even more
is true: it is possible to construct an injective 1-Lipschitz function on the unit
interval that has a decomposition as in Theorem 1.30, but, at the same time, is
not Lipschitz regular. An example f is given by the formula

f(x) =
∫ x

0
g(t)dt, x ∈ I,
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where g : I → I is any positive, bounded, measurable function which is constant
and equal to one on a dense collection of open subintervals of I and not a.e.
bounded away from zero.
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1.3 Geometric properties of bilipschitz
mappings

Bilipschitz mappings of a Euclidean space Rd transform volume according to the
formula L(f(A)) =

∫
A

|Jac(f)| dL (see Theorem 1.11). In this section we estab-
lish that bilipschitz mappings cannot transform volume too wildly. In some sense
we show that sufficiently fine grids of cubes must witness ‘continuity’ of the vol-
ume transform. This in turn places rather restrictive conditions on the Jacobian
of a bilipschitz mapping, which we will exploit in Section 1.4 in order to find
non-realisable densities. The work presented in this section is an interpretation
of the construction of Burago and Kleiner [8], which is modified in various ways,
leading to some extensions of the results in [8]. Critically for the present solution
of Feige’s question, Burago and Kleiner’s construction is adapted so that it treats
multiple bilipschitz mappings simultaneously. In the light of Theorem 1.30 and
Theorem 1.35 established for Lipschitz regular mappings in the previous section,
this will make Burago and Kleiner’s techniques applicable to Lipschitz regular
mappings.

Notation. In this section we will often use numbers and vectors together. To
help the reader distinguish between vectors and numbers, we typeset vectors in
bold.

We write e1, . . . , ed for the standard basis of Rd and 0 for the origin in Rd.
For λ > 0 we let Qd

λ denote the standard tiling of Rd by cubes of sidelength λ and
vertices in the set λZd. We call a family of cubes tiled if it is a subfamily of Qd

λ

for some λ > 0. We say that two cubes S, S ′ ∈ Qd
λ are e1-adjacent if S ′ = S+λe1.

For mappings h : Rd → Rk we denote by h(1), . . . , h(k) the co-ordinate functions
of h.

The main result of the present section is the following lemma:

Lemma 1.40. Let d, k ∈ N with d ≥ 2, L ≥ 1 and η, ζ ∈ (0, 1). Then there
exists r = r(d, k, L, η, ζ) ∈ N such that for every non-empty open set U ⊆ Rd

there exist finite tiled families S1,S2, . . . ,Sr of cubes contained in U with the
following properties:

1. For each 1 ≤ i < r and each cube S ∈ Si

L

⎛⎝S ∩
r⋃

j=i+1

⋃
Sj

⎞⎠≤ ηL(S).

2. For any k-tuple (h1, . . . , hk) of L-bilipschitz mappings hj : U → Rd there
exist i ∈ [r] and e1-adjacent cubes S, S ′ ∈ Si such that⏐⏐⏐⏐−∫

S
|Jac(hj)| − −

∫
S′

|Jac(hj)|
⏐⏐⏐⏐ ≤ ζ

for all j ∈ [k].
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Statement 1 expresses that each collection of cubes Si+1 is much finer than
the previous collection Si. The inequality of statement 2 can be interpreted
geometrically as stating that the volume of the image of the cube S under hj is
very close to the volume of the image of its neighbour S ′. Put differently, we may
rewrite the inequality of statement 2 in the following form:

|L(hj(S)) − L(hj(S ′))| ≤ ζL(S).

It is possible to assemble Lemma 1.40 using predominantly arguments con-
tained in the article of Burago and Kleiner [8]. However, Burago and Kleiner do
not state any version of Lemma 1.40 explicitly and to prove Lemma 1.40 it is
not sufficient to just take some continuous part of their argument. One needs to
inspect their whole proof in detail and work considerably to put together all of
the pieces correctly. Therefore, we present a complete proof of Lemma 1.40 in
which we introduce some new elements. The proof of Lemma 1.40 requires some
preparation and will be given later in this section.
Remark. Variants of the Burago–Kleiner [8] construction with additional details
have been employed in a pure discrete setting in the works of Garber [26], Maga-
zinov [37] and Cortez and Navas [10].

Auxiliary lemmas
Lying behind all of the results of the present section is a simple property of Lips-
chitz mappings of an interval: If [0, c] ⊆ R is an interval and a Lipschitz mapping
h : [0, c] → Rn stretches the endpoints 0, c almost as much as its Lipschitz con-
stant allows, then it is intuitively clear that the mapping h is close to affine. The
next dichotomy can be thought of as a ‘discretised’ version of this statement:

Lemma 1.41. Let L ≥ 1 and ε > 0. Then there exist parameters

M = M(L, ε) ∈ N, φ = φ(L, ε) > 0

such that for all c > 0, n ∈ N, N ∈ N, N ≥ 2 and all L-Lipschitz mappings
h : [0, c] → Rn at least one of the following statements holds:

1. There exists a set Ω ⊂ [N − 1] with |Ω| ≥ (1 − ε)(N − 1) such that for all
i ∈ Ω and for all x ∈

[
(i−1)c

N
, ic

N

]
h(x+ c

N

)
− h(x) − 1

N
(h(c) − h(0))


2

≤ cε

N
.

2. There exists z ∈ c
NM

Z ∩
[
0, c− c

NM

]
such thath (z + c

NM

)
− h(z)


2

c
NM

> (1 + φ)∥h(c) − h(0)∥2
c

.

In the lemma above, statement 1 expresses in a discrete way that h is close
to affine: after partitioning the interval [0, c] into N subintervals of equal length
this statement asserts that h looks like an affine mapping on nearly all pairs of
adjacent subintervals. Statement 2 is a discrete formulation of the condition that
the Lipschitz constant of h is not almost realised by the endpoints 0, c.
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Remark. The statement of Lemma 1.41 involves plethora of parameters and the
oncoming Lemma, which is its multi-dimensional version for bilipschitz mappings,
is even more complicated. To help the reader make any sense of it, the meaning
of all the parameters involved is always the same in all subsequent lemmas in this
section. The author would like to explain here informally the intended meaning
of all the parameters used.

The parameters L, d, c, ε and N are chosen by the user of the lemma. The
meaning of L and d is obvious: they stand for the Lipschitz/bilipschitz constant
of h and the dimension of the ambient space, respectively. The role of the parametr
c is to set the scale. Another approach would be to simply fix c = 1, say, and then
argue that the results presented in this section are invariant under a proportional
scaling. The number ε quantifies what it means for h to be ‘close’ to affine. The
parameter N determines the desired ‘resolution’; the user of the lemma cuts the
domain into even pieces on which the mapping h is desired to be ‘close to affine’
in some sense. In the subsequent lemmas, the value of N will be restricted from
below, but never from above.

The remaining parameters are determined by the lemma(s) and not to be cho-
sen by the user. In the case of Lemma 1.41 we are left with the parameters M
and φ. The former describes how many (regularly placed) points inside each piece
have to be checked for the failure of statement 2 in order to deduce the validity
of statement 1 given the desired precision ε. The latter quantifies how far from
realising Lipschitz constant on the endpoints of the interval [0, c] the mapping h
has to be in case of failure of statement 1.

Note that it is crucial that M and φ do not depend on N and the mapping h;
they depend only the Lipschitz/bilipschitz constant of h and ε.

We now formulate a multi-dimensional version of Lemma 1.41; see Figure 1.6.
We consider thin cuboids in Rd of the form [0, c] × [0, c/N ]d−1 and prove that
when such a cuboid is sufficiently thin, that is, when N is sufficiently large,
then the one-dimensional statement for L-Lipschitz mappings f : [0, c] → Rn

given in Lemma 1.41 can, in a sense, be extended to L-bilipschitz mappings
f : [0, c] × [0, c/N ]d−1 → Rn.
Lemma 1.42. Let d ∈ N, L ≥ 1 and ε > 0. Then there exist parameters

M = M(d, L, ε) ∈ N, φ = φ(d, L, ε) ∈ (0, 1), N0 = N0(d, L, ε) ∈ N

such that for all c > 0, N ∈ N, N ≥ N0 and all L-bilipschitz mappings
h : [0, c] × [0, c/N ]d−1 → Rn

at least one of the following statements holds:
1. There exists a set Ω ⊂ [N − 1] with |Ω| ≥ (1 − ε)(N − 1) such that for all

i ∈ Ω and for all x ∈
[

(i−1)c
N

, ic
N

]
×
[
0, c

N

]d−1

h(x + c

N
e1

)
− h(x) − 1

N
(h(ce1) − h(0))


2

≤ cε

N
. (1.10)

2. There exists z ∈ c
NM

Zd ∩ (
[
0, c− c

NM

]
×
[
0, c

N
− c

NM

]d−1
) such thath (z + c

NM
e1
)

− h(z)


2
c

NM

> (1 + φ)∥h(ce1) − h(0)∥2
c

.
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(i−1)c
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N

]
×
[
0, c

N

]d−1

h h

+ 1
N (h(ce1)− h(0))

x x+ c
N

h(x)
h
(
x+ c

N

)

c
N

c
NM

M ×M grid

z+ c
NM e1z

≤ cε
N h

(
x+ c

N

)

h(x) + 1
N (h(ce1)− h(0))

Figure 1.6: An illustration of statement 1 (left) and statement 2 (right) of
Lemma 1.42. The left-hand side illustrates that h maps two neighbouring cubes
to ‘similar’ images; after a translation by 1

N
(h(ce1) − h(0)), the image of the left

cube is pointwise at least cε
N

-close to the image of its neighbouring cube.

The proof of the one-dimensional statement Lemma 1.41 presented in this
section follows Burago and Kleiner [8] closely, but a new induction argument
to deduce Lemma 1.42 from Lemma 1.41 is used. This is to expose clearly
that the property of bilipschitz mappings established in Lemma 1.42 is of a one-
dimensional nature.

Since the proofs of Lemmas 1.41 and 1.42 are technical, we postpone their
proofs until the end of this section and present first how Lemma 1.42 is going to
be used.

To begin with, we show that whenever statement 1 of Lemma 1.42 holds for a
bilipschitz mapping h into Rd, there are adjacent cubes Si and Si+1 whose images
under h have almost the same measure. Eventually this will lead to conclusion 2
of Lemma 1.40.

Lemma 1.43. Let L ≥ 1, ε ∈ (0, 1/2L), d ∈ N and N0 = N0(d, L, ε) be given by
the conclusion of Lemma 1.42. Let N ≥ N0, c > 0, h : [0, c] × [0, c/N ]d−1 → Rd

be an L-bilipschitz mapping, i ∈ [N − 1] and suppose that h satisfies inequality
(1.10) on Si :=

[
(i−1)c

N
, ic

N

]
×
[
0, c

N

]d−1
. Then

|L(h(Si)) − L(h(Si+1))| ≤ 2Ld+1dεL(Si).

Proof. To simplify the notation, let us denote the cube Si only by S in this proof.
Define a translation ϕ : Rd → Rd by

ϕ(y) = y + 1
N

(h(ce1) − h(0)).

Let the mappings f1 : S → Rd, f2 : S → Rd be defined by f1 := ϕ ◦ h and
f2(x) = h

(
x + c

N
e1
)
. Then f1, f2 are both L-bilipschitz mappings of the cube
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S ∈ Qd
c/N which satisfy

∥f1 − f2∥∞ ≤ cε

N
, (1.11)

due to (1.10). These conditions imply the bound on the difference in volume of
the images f1(S) and f2(S) asserted above.

To show this, we first set up an additional notation: for a set A ⊆ Rd and
t > 0 we introduce the set

[A]t := {x ∈ A : dist(x, ∂A) ≥ t}

of all points in the interior of A whose distance to the boundary of A is at least t.
For all t > 0, using (1.11) we deduce that

f1([S]t) ⊆ B
(
f2([S]t),

cε

N

)
.

Moreover, by Invariance of Domain (see Theorem 1.8), f2 preserves boundaries.
In combination with the lower bilipschitz bound we see that f2([S]t) ⊆ [f2(S)]t/L.
Specifically, we get that

B
(
f2([S]t),

cε

N

)
⊆ B

(
[f2(S)]t/L,

cε

N

)
holds for all t > 0 as well. Combining the two inclusions above and setting
t := Lcε

N
, it follows that

f1
(
[S]Lcε

N

)
⊆ f2(S).

Therefore,
L(f1(S)) − L(f2(S)) ≤ L

(
f1
(
S \ [S]Lcε

N

))
≤ LdL

(
S \ [S]Lcε

N

)
,

where the last inequality follows from the upper Lipschitz bound on f1 (see equa-
tion (1.3) in ‘Background and notation’).

The Lebesgue measure of the set S \ [S]Lcε
N

can be easily computed using the
fact that [S]Lcε

N
is a cube of sidelength c

N
(1 − 2Lε) inside the cube S:

L
(
S \ [S]Lcε

N

)
= L(S) − L

(
[S]Lcε

N

)
=
(
c

N

)d (
1 − (1 − 2Lε)d

)
≤
(
c

N

)d

2dLε = 2dLεL(S).

For the inequality we use 2Lε ∈ (0, 1) and apply Bernoulli’s inequality. We
conclude that

L(f1(S)) − L(f2(S)) ≤ 2dLd+1εL(S).
Since the above argument is completely symmetric with respect to f1 and f2, we
also have

L(f2(S)) − L(f1(S)) ≤ 2dLd+1εL(S).

Given a bilipschitz mapping g : [0, c] × [0, c/N ]d−1 → Rn, we now seek to
repetitively apply Lemma 1.42 on smaller and smaller scales in order to, in some
sense, eliminate statement 2 of the dichotomy of Lemma 1.42. Consequently, we
find cubes on which g satisfies inequality (1.10) of statement 1 of Lemma 1.42
(scaled and translated copies of the sets

[
(i−1)c

N
, ic

N

]
×
[
0, c

N

]d−1
). This will allow

us to apply Lemma 1.43.
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Strategy to eliminate statement 2 from Lemma 1.42
Let all parameters d, L, ε, M , φ, N0, c, n and N be given by the statement of
Lemma 1.42. We consider an L-bilipschitz mapping g : [0, c] × [0, c/N ]d−1 → Rn.
If statement 2 holds for g, there is a pair of points a1 := z,b1 := z + c

NM
e1 which

the mapping g stretches by a factor (1+φ) more than it stretches the pair a0 := 0
and b0 := ce1. We may now consider the restriction of g to a rescaled copy of
the original cuboid [0, c] × [0, c/N ]d−1 with vertices a1 and b1 corresponding to
0 and ce1, respectively. If, again, it is the case that statement 2 is valid for this
mapping, then we find points a2,b2 inside the new cuboid which g stretches by a
factor (1 +φ) more than it stretches the pair a1 and b1, and so a factor (1 +φ)2-
times more than it stretches a0 and b0. The process is illustrated in Figure 1.7.
We iterate this procedure as long as possible to obtain sequences (ai) and (bi)
satisfying

∥g(bi) − g(ai)∥
∥bi − ai∥

≥ (1 + φ)i ∥g(b0) − g(a0)∥
∥b0 − a0∥

≥ (1 + φ)i

L
,

where the final bound is given by the lower bilipschitz inequality for g. It is clear
now that the procedure described above cannot continue forever: otherwise, for i
sufficiently large, the inequality above contradicts the L-Lipschitz condition on g.
Thus, Lemma 1.42 tells us that after at most r iterations of the procedure, where
r ∈ N is a number determined by d, L and ε, we must have that statement 1 is
valid for an appropriate restriction of the mapping g.

0 ce1

c
N

b1 = z+ c
NM e1a1 = z

c
N2M

a1 b1

zoom

a2 b2

Figure 1.7: An illustration of the strategy to eliminate statement 2 from
Lemma 1.42. The stretch factor of g on the points a1 and b1 is at least (1 + φ)-
times larger then the stretch factor of g on the points 0 and ce1. If statement 2
applies in the next iteration, we find two points stretched by g with factor at
least (1 + φ)2-times the stretch factor on 0 and ce1.

Let us now present the strategy described in the sketch above formally.

Lemma 1.44. Let d ∈ N, L ≥ 1, ε > 0, the parameters M = M(d, L, ε), and
N0 = N0(d, L, ε) be given by Lemma 1.42, c > 0, N ≥ N0. Moreover, let

g : [0, c] × [0, c/N ]d−1 → Rn

be an L-bilipschitz mapping and ci := c
(NM)i−1 for i ∈ N. Then there exist a

parameter r = r(d, L, ε) ∈ N and

z1 = 0, zi+1 ∈ ci+1Zd ∩ [0, ci − ci+1] ×
[
0, ci

N
− ci+1

]d−1
for i ∈ [r − 1]
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such that statement 1 of Lemma 1.42 is valid for at least one of the mappings

gi : [0, ci] × [0, ci/N ]d−1 → Rn, i ∈ [r],

defined by

gi(x) := g

⎛⎝x +
i∑

j=1
zj

⎞⎠ . (1.12)

Proof. The appropriate condition on the parameter r = r(d, L, ε) ∈ N will be
determined later in the proof. Let φ = φ(d, L, ε) be the parameter given by the
conclusion of Lemma 1.42. We follow the procedure described below:
Procedure 1.44.1. Set i = 1, z1 = 0 and g1 = g.

1. If statement 1 of Lemma 1.42 holds for h = gi and c = ci, then stop. If not,
proceed to step 2.

2. Choose zi+1 ∈ ci+1Zd ∩ [0, ci − ci+1] ×
[
0, ci

N
− ci+1

]d−1
such that

∥gi(zi+1 + ci+1e1) − gi(zi+1)∥2
ci+1

> (1 + φ)∥gi(cie1) − gi(0)∥2
ci

(1.13)

and define gi+1 : [0, ci+1] × [0, ci+1/N ]d−1 → Rn by

gi+1(x) := gi(x + zi+1) = g

⎛⎝x +
i+1∑
j=1

zj

⎞⎠
3. Set i = i+ 1 and return to step 1.

At each iteration i ≥ 1 of Procedure 1.44.1, the conditions of Lemma 1.42 are
satisfied for d, L, ε, M , φ, N0, c = ci, N and h = gi : [0, ci] × [0, ci/N ]d−1 → Rn.
Therefore, whenever the algorithm does not terminate in step 1, we have that
such a point zi+1 required by step 2 exists by Lemma 1.42.

To complete the proof, it suffices to verify that Procedure 1.44.1 terminates
after at most r iterations. This is clear after rewriting (1.13) in the form

∥gi+1(ci+1e1) − gi+1(0)∥2
ci+1

> (1 + φ)∥gi(cie1) − gi(0)∥2
ci

> (1 + φ)i 1
L
,

where the latter inequality follows by induction and the lower bilipschitz inequal-
ity for g = g1. Since each gi is L-Lipschitz, Procedure 1.44.1 cannot complete
more than r :=

⌊
log(1+φ) L

2
⌋

iterations.

Proof of Lemma 1.40
We are finally ready to give a proof of the main result of the present section.

Proof of Lemma 1.40. Let ε = ε(ζ, d, L, k) ∈ (0, ζ) be a parameter to be de-
termined later in the proof, M = M(d, L

√
k, ε), φ = φ(d, L

√
k, ε) and N0 =

N0(d, L
√
k, ε) be given by the statement of Lemma 1.42. Moreover, let N ≥ N0

and r = r(d, L
√
k, ε) ∈ N be given by the conclusion of Lemma 1.44. We impose

additional conditions on ε and N in the course of the proof.
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Let U ⊆ Rd be a non-empty open set. Since the conclusion of Lemma 1.40 is
invariant under translation of the set U ⊆ Rd, we may assume that 0 ∈ U and
choose c > 0 such that

[0, c] × [0, c/N ]d−1 ⊆ U.

We can now define the families of cubes S1, . . . ,Sr, making use of the sequence
ci = c

(NM)i−1 defined in Lemma 1.44; see also Figure 1.8.

Definition 1.45. For each i ∈ [r] we define the family Si ⊆ Qci/N as the collec-
tion of all cubes of the form

i∑
j=1

zj +
[

(l − 1)ci

N
,
lci

N

]
×
[
0, ci

N

]d−1

where z1 = 0, zj+1 ∈ cj+1Zd ∩ [0, cj − cj+1] ×
[
0, cj

N
− cj+1

]d−1
for each j ≥ 1 and

l ∈ [N ].

a part of Si a part of Si+1

ci
N

ci
NM

ci+1

N

zi+1 +
∑i

j=1 zj

Figure 1.8: Left: two cubes from the family Si with points of the form ∑i+1
j=1 zj,

where zj are fixed for j = 1, . . . , i. Right: the resulting part of the family Si+1.

Let us now verify that the above defined families S1, . . . ,Sr satisfy condition 1
in the statement of Lemma 1.40. It is immediate from Definition 1.45 that⋃

Sr ⊆
⋃

Sr−1 ⊆ . . . ⊆
⋃

S1.

Thus, given 1 ≤ i < r and S ∈ Si, we have that

S ∩
r⋃

j=i+1

⋃
Sj ⊆ S ∩

⋃
Si+1.

Note that any cube in the collection Si+1 has the form

w +
[

(l − 1)ci+1

N
,
lci+1

N

]
×
[
0, ci+1

N

]d−1

for some w ∈ ci+1Zd and l ∈ [N ]. Since S ∈ Qci/N and ci/N = Mci+1, such a
cube can only intersect S in a set of positive Lebesgue measure when w ∈ S.
Therefore, the number of cubes in Si+1 that can intersect S ∈ Qci/N in a set of
positive Lebesgue measure is bounded above by

N
⏐⏐⏐ci+1Zd ∩ S

⏐⏐⏐ ≤ N

(
ci/N

ci+1
+ 1

)d

= N(M + 1)d.
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It follows that

L

⎛⎝S ∩
r⋃

j=i+1

⋃
Sj

⎞⎠ ≤ N(M + 1)d
(
ci+1

N

)d

= (M + 1)d

MdNd−1

(
ci

N

)d

≤ ηL(S).

where, in the above, we use ci+1 = ci/NM and L(S) = (ci/N)d and prescribe
that N is sufficiently large so that the inequality holds. Thus, statement 1 is
satisfied.

Turning now to statement 2, we consider a k-tuple (h1, . . . , hk) of L-bilipschitz
mappings hi : U → Rd and define a mapping g : U → Rkd co-ordinate-wise by

g((i−1)d+j)(x) := h
(j)
i (x)

for i ∈ [k] and j ∈ [d]. It is straightforward to verify that g is L
√
k-bilipschitz.

The conditions of Lemma 1.44 are now satisfied for d, L
√
k in place of L, ε, M ,

N0, c, n = kd and g : [0, c] × [0, c/N ]d−1 → Rkd.
Let p ∈ [r] be such that statement 1 of Lemma 1.42 holds for the map-

ping gp : [0, cp] × [0, cp/N ]d−1 → Rkd, which was defined by equation (1.12) (exis-
tence of such mapping is ensured by the conclusion of Lemma 1.44). Moreover,
Lemma 1.44 provides us with points z1, . . . , zp ∈ Rd.

Let Ω be given by the assertion of Lemma 1.42, statement 1 for gp. Recall
that the co-ordinate functions of the mapping gp : [0, cp] × [0, cp/N ]d−1 → Rkd are
defined by

g((t−1)d+s)
p (x) = g((t−1)d+s)

⎛⎝x +
p∑

j=1
zj

⎞⎠ = h
(s)
t

⎛⎝x +
p∑

j=1
zj

⎞⎠
for t ∈ [k], s ∈ [d]. Therefore, each ht,p : [0, cp] × [0, cp/N ]d−1 → Rd defined by
ht,p(x) := ht

(
x +∑p

j=1 zj

)
for t ∈ [k] satisfies inequality 1.10 (with h = ht,p) on

Si, for each i ∈ Ω.
We fix i ∈ Ω and impose the condition ε < 1

2L
on ε. Then, for each t ∈ [k], the

conditions of Lemma 1.43 are satisfied with L
√
k in place of L, ε, d, N , c = cp,

h = ht,p and i. Hence,

|L(ht,p(Si)) − L(ht,p(Si+1))| ≤ 2(L
√
k)d+1dεL(Si) ≤ ζL(Si),

when we prescribe that ε ≤ ζ

2(L
√

k)d+1d
. Set S = ∑p

j=1 zj + Si and S ′ = ∑p
j=1 zj +

Si+1. It is clear upon reference to Definition 1.45 that S and S ′ are e1-adjacent
cubes belonging to the family Sp. Moreover, we have ht(S) = ht,p(Si) and ht(S ′) =
ht,p(Si+1) for all t ∈ [k]. Therefore S and S ′ verify statement 2 of Lemma 1.40
for the k-tuple (h1, . . . , hk). This completes the proof of Lemma 1.40.

Proofs of auxiliary Lemmas 1.41 and 1.42
To complete the section, it remains to prove Lemmas 1.41 and 1.42. Since
Lemma 1.41 serves as the base case for induction in the prove of Lemma 1.42, we
present the proof of Lemma 1.41 first:
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Proof of Lemma 1.41. Let M ∈ N and φ ∈ (0, 1) be parameters to be determined
later in the proof. Let c > 0, n ∈ N, N ∈ N and h : [0, c] → Rn be an L-Lipschitz
mapping. The assertion of the Lemma holds for h if and only if the assertion
holds for ρ ◦ h, where ρ : Rn → Rn is any distance preserving transformation.
Therefore, we may assume that h(0) = (0, 0, . . . , 0) and h(c) = (A, 0, . . . , 0)
where A := ∥h(c) − h(0)∥2. Since h is L-Lipschitz, we see that A ≤ Lc.

Assume that statement (2) does not hold for h. In other words, we have thath (x+ c
NM

)
− h(x)


2

c
NM

≤ (1 + φ)A
c

(1.14)

for all x ∈ c
NM

Z ∩
[
0, c− c

NM

]
. We complete the proof by verifying that state-

ment (1) holds for h.
Since h is only Lipschitz and not necessarily bilipschitz, it may happen that

A = 0. We need to treat this case separately. Thus, at first, we assume that
h(0) = h(c). Using (1.14), we get that h(z) = h(0) for every z ∈ c

NM
Z∩ [0, c]. For

any x ∈
[
0, c− c

N

]
we can find z ∈ c

NM
Z ∩ [0, c], z ≤ x, such that |x− z| ≤ c

NM
.

This, however, implies thath(x+ c

N

)
− h(x) − 1

N
(h(c) − h(0))


2

=
h(x+ c

N

)
− h

(
z + c

N

)
+ h

(
z + c

N

)
− h(z) + h(z) − h(x)


2

≤ 2Lc
NM

.

The last quantity is at most cε
N

provided M ≥ 2L
ε

, which verifies statement (1)
with Ω := [N − 1].

From now on, we assume that A > 0. For later use, we point out that (1.14)
implies

∥h(b) − h(a)∥2 ≤ (1 + φ)A
c

∥b− a∥2 (1.15)

whenever a, b ∈ c
NM

Z ∩ [0, c]. Let Si =
[

(i−1)c
N

, ic
N

]
, for i ∈ [N ]. We introduce an

additional parameter t = t(L, ε) ∈ (φ, 1) whose value will be determined later in
the proof. Moreover, let us define

P :=
{
x ∈ c

NM
Z ∩

[
0, c− c

N

]
: h(1)

(
x+ c

N

)
− h(1)(x) > (1 − t)A

N

}
.

For x ∈ P we have ⏐⏐⏐⏐h(1)
(
x+ c

N

)
− h(1)(x) − A

N

⏐⏐⏐⏐ ≤ tA

N
.

This inequality follows from the definition of P , the inequality (1.15) and t > φ.
For the remaining co-ordinate functions we have

n∑
i=2

⏐⏐⏐⏐h(i)
(
x+ c

N

)
− h(i)(x)

⏐⏐⏐⏐2 ≤ (1 + φ)2A2

N2 − (1 − t)2A2

N2 ≤ 4tA2

N2 .

Combining the two inequalities above and using t < 1 we deduce thath(x+ c

N

)
− h(x) − 1

N
(h(c) − h(0))


2

≤
√
t2 + 4tA
N

≤
√

5tA
N

≤
√

5tLc
N

(1.16)
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for every x ∈ P .
Let Γ ⊂ [0, 1] be a maximal c/N -separated subset of c

NM
Z ∩

[
0, c− c

N

]
\ P

and let x1, . . . , x|Γ| be the elements of Γ. Then the intervals
([
xi, xi + c

N

])|Γ|

i=1
can

only intersect in the endpoints. Therefore the set [0, c]\
|Γ|⋃
i=1

[
xi, xi + c

N

]
is a finite

union of intervals with endpoints in c
NM

Z ∩ [0, c] and with total length c − |Γ|c
N

.
Using Γ ∩ P = ∅ and (1.15) we deduce that

A = h(1)(c) − h(1)(0) ≤ |Γ| (1 − t)A
N

+ (1 + φ)A
c

(
c− |Γ| c

N

)
.

Since A > 0, we can rearrange this inequality to obtain

|Γ| ≤ φ

φ+ t
N ≤ 2φ

φ+ t
(N − 1),

where, for the last inequality, we apply N ≥ 2. Since the intervals Si can share
only the endpoints, it follows that the set c

NM
Z ∩

[
0, c− c

N

]
\ P can intersect at

most 4φ
φ+t

(N − 1) intervals Si. Letting

Ω :=
{
i ∈ [N − 1] : c

NM
Z ∩ Si ⊆ P

}

we deduce that |Ω| ≥
(
1 − 4φ

φ+t

)
(N − 1). Moreover, for any i ∈ Ω and x ∈ Si we

can find x′ ∈ P with |x′ − x| ≤ c
NM

. This allows us to apply (1.16) to get
h(x+ c

N

)
− h(x) − 1

N
(h(c) − h(0))


2

≤
h(x′ + c

N

)
− h (x′) − 1

N
(h(c) − h(0))


2

+ 2Lc
NM

≤
Lc
(√

5t+ 2
M

)
N

.

We are now ready to specify the parameters t, M and φ so that the inequalities
obtained above verify statement 1. First, we prescribe that t ∈ (0, 1) is sufficiently
small and M ∈ N is sufficiently large so that L

(√
5t+ 2

M

)
< ε. Finally we

demand that φ ∈ (0, t) is small enough so that 4φ
φ+t

< ε.

Proof of Lemma 1.42. In this proof we will sometimes add the superscript d or
d − 1 to objects such as the Lebesgue measure L or vectors ei, 0 in order to
emphasize the dimension of the Euclidean space to which they correspond. For
d ≥ 2, we will express points in Rd in the form x = (x1, x2, . . . , xd). Given
x = (x1, . . . , xd) ∈ Rd and s ∈ R, we let

x ∧ s = (x1, . . . , xd, s)

denote the point in Rd+1 formed by concatenation of x and s.
The case d = 1 is dealt with by Lemma 1.41. Let d ≥ 2 and suppose that the

statement of the lemma holds when d is replaced with d−1. Given L ≥ 1 and ε >
0, we let M := M(d, L, ε) ∈ N, φ := φ(d, L, ε) ∈ (0, 1) and N0 := N0(d, L, ε) ∈ N
be parameters on which we impose various conditions in the course of the proof.
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For now, we just prescribe that N0 ≥ N0(d− 1, L, θ), 0 < φ < 1
2φ(d− 1, L, θ) and

M ∈ Md−1N for Md−1 := M(d − 1, L, θ), where θ := θ(d, L, ε) is an additional
parameter to be determined later in the proof. Note that it is important to choose
M as a multiple of Md−1 so that c

NMd−1
Z ⊆ c

NM
Z whenever N ∈ N.

Let c > 0, N ≥ N0 and h : [0, c] × [0, c/N ]d−1 → Rn be an L-bilipschitz
mapping. Note that for topological reasons we must have n ≥ d; otherwise there
would be no bilipschitz mapping Rd → Rn.

For each s ∈ [0, c/N ] we apply the induction hypothesis to the mapping
h∧s : [0, c] × [0, c/N ]d−2 → Rn defined by

h∧s(x) := h(x ∧ s) = h(x1, x2, . . . , xd−1, s).

Thus, we get that for each s ∈ [0, c/N ] at least one of the following statements
holds:

(1s) There exists a set Ωs ⊂ [N − 1] with |Ωs| ≥ (1 − θ)(N − 1) such that for all
i ∈ Ωs

h∧s
(

x + c

N
ed−1

1

)
− h∧s(x) − 1

N

(
h∧s

(
ced−1

1

)
− h∧s

(
0d−1

))
2

≤ cθ

N

for all x ∈
[

(i−1)c
N

, ic
N

]
×
[
0, c

N

]d−2
.

(2s) There exists zs ∈ c
NMd−1

Zd−1 ∩
([

0, c− c
NMd−1

]
×
[
0, c

N
− c

NMd−1

]d−2
)

such
that

h∧s
(
zs + c

NMd−1
ed−1

1

)
− h∧s(zs)


2

c
NMd−1

> (1 + 2φ)

h∧s
(
ced−1

1

)
− h∧s

(
0d−1

)
2

c
.

Suppose first that statement (2s) holds for some s ∈ [0, c/N ]. Then we choose a
number s′ ∈ c

NM
Z ∩

[
0, c

N
− c

NM

]
with s′ ≤ s and |s′ − s| ≤ c

NM
. Setting w =

zs ∧ s′ we note that w is an element of c
NM

Zd ∩
[
0, c− c

NMd−1

]
×
[
0, c

N
− c

NM

]d−1

satisfying ∥w − zs ∧ s∥2 ≤ c
NM

. Moreover, we see that

h∧s
(
ced−1

1

)
− h∧s

(
0d−1

)
2

≥
h(ced

1) − h(0d)


2
− 2Lc

N
.
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We use these inequalities and the inequality of (2s) to deriveh
(

w + c

NMd−1
ed

1

)
− h(w)


2

≥
h∧s

(
zs + c

NMd−1
ed−1

1

)
− h∧s(zs)


2

− 2Lc
NM

> (1 + 2φ)
⎛⎝
h∧s

(
ced−1

1

)
− h∧s(0d−1)


2

NMd−1

⎞⎠− 2Lc
NM

≥ (1 + 2φ)
⎛⎝
h (ced

1

)
− h

(
0d
)

2
NMd−1

− 2Lc
N2Md−1

⎞⎠− 2Lc
NM

≥

⎛⎝1 + 2φ− 2(1 + 2φ)Lc
N
h(ced

1) − h(0d)


2

− 2LcMd−1

M
h(ced

1) − h(0d)


2

⎞⎠
h(ced

1) − h(0d)


2
NMd−1

≥
(

1 + 2φ− 2(1 + 2φ)L2

N
− 2L2Md−1

M

) h (ced
1

)
− h

(
0d
)

2
NMd−1

> (1 + φ)

h (ced
1

)
− h

(
0d
)

2
NMd−1

.

To deduce the penultimate inequality in the sequence above we use the lower
bilipschitz bound on h. In fact, this is the only place in the proof of Lemma 1.42
where we use that the mapping h is bilipschitz and not just Lipschitz. The final
inequality is ensured by taking N0 and M sufficiently large (after fixing φ). From
the final lower bound obtained for the quantity

h(w + c
NMd−1

e1) − h(w)


2
it

follows that there exists i ∈
[

M
Md−1

]
such that the point z := w + (i−1)c

NM
e1 verifies

statement 2 for h.
We may now assume that the first statement (1s) holds for all s ∈ [0, c/N ].

We complete the proof by verifying statement 1 for h. Whenever s ∈ [0, c/N ]
and x ∈ [0, c] × [0, c/N ]d−2 satisfy the inequality of (1s) we have that
h((x ∧ s) + c

N
ed

1

)
− h(x ∧ s) − 1

N

(
h
(
ced

1

)
− h

(
0d
))

2
≤ cθ

N
+ 2Lc
N2 . (1.17)

From this point onwards, let R denote the cuboid
[
0, c− c

N

]
×
[
0, c

N

]d−1
and

A =
{

x ∈ R : x satisfies (1.10) with ε = θ + 2L
N

}
.

Using (1.17) and the fact that statement (1s) holds for every s ∈ [0, c/N ] we
deduce

Ld−1(A ∩ {x : xd = s}) ≥ (1 − θ)Ld−1(R ∩ {x : xd = s}) for all s ∈ [0, c/N ].

Therefore, by Fubini’s theorem (see, e.g., [41, Thm. 1.14]),

Ld(A) ≥ (1 − θ)Ld(R).
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For each i ∈ [N − 1] we let Si :=
[

(i−1)c
N

, ic
N

]
×
[
0, c

N

]d−1
. Define

Ω =
{
i ∈ [N − 1] : Ld(A ∩ Si) ≥

(
1 −

√
θ
)

Ld(Si)
}

and observe that

Ld(A) ≤ |Ω| Ld(R)
N − 1 + (N − 1 − |Ω|)

(
1 −

√
θ
) Ld(R)
N − 1 .

Combining the two inequalities derived above for Ld(A), we deduce

|Ω|
N − 1 ≥

(
1 −

√
θ
)
.

Moreover, for any i ∈ Ω and any cube Q ⊆ Si with side length14 d
√

2
√
θLd(Si) we

have A∩Q ̸= ∅. Therefore, for any i ∈ Ω and any x ∈ Si we can find x′ ∈ A∩Si

with
∥x′ − x∥2 ≤

√
d

d
√

2
√
θLd(Si) ≤ 2

√
d

2d
√
θ
c

N
.

Using this approximation, we obtainh(x + c

N
e1

)
− h(x) − 1

N
(h(ce1) − h(0))


2

≤
h(x + c

N
e1

)
− h

(
x′ + c

N
e1

)
2

+
h(x′ + c

N
e1

)
− h(x′) − 1

N
(h(ce1) − h(0))


2

+ ∥h(x′) − h(x)∥2

≤ 2L ∥x′ − x∥2 +
c(θ + 2L

N
)

N
≤
c(4L

√
d 2d

√
θ + θ + 2L

N
)

N
.

Thus, statement 1 is verified when we prescribe that θ > 0 is sufficiently small
and N0 is sufficiently large so that

(
1 −

√
θ
)

≥ 1 − ε and 4L
√
d

2d
√
θ + θ + 2L

N0
< ε.

14We remind that the superscript d in expressions like Ld(A) does not mean a d-th power
of the measure of A, but merely emphasises that we are using the d-dimensional Lebesgue
measure.
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1.4 Realisability in spaces of functions
The main objective of the present section is to prove that in some sense almost
all continuous functions ρ ∈ C(Id) are not Lipschitz regular realisable, that is, do
not admit a Lipschitz regular mapping f : Id → Rd such that

f♯ρL = L|f(Id). (1.18)

More precisely, we prove Theorem 1.46, which we restate for reader’s convenience:

Theorem 1.46. The set

E :=
{
ρ ∈ C(Id) : ρ admits a Lipschitz regular solution to equation (1.18)

}
forms a σ-porous15 subset of the space of continuous functions C(Id) with the
supremum norm.

To recall the meaning of σ-porosity, see Definition 1.14.
Remark. To be able to work with functions ρ ∈ C(Id) attaining negative values
as well, we extend the definition of the pushforward measure to such functions:

f♯ρL := f♯ρ
+L − f♯ρ

−L,

where by ρ+, ρ− we mean the positive and the negative part of ρ. Technically
speaking, the pushforward measure is no longer a measure, but a difference of two
measures16. However, we will use it only in the form of (1.18), that is, when the
result is again a measure.

This is only a technical tool that helps us treat functions attaining negative
values properly, but it does not bring in any additional difficulty. An alternative
option would be to say that, by definition, no function with negative values satisfies
(1.18), but the statement of Theorem 1.46 would be then seemingly weaker.

In addition to Theorem 1.46, we also provide a related results for the space
L∞. Namely, in Theorem 1.50 later in this section it will be proven that bilipschitz
realisable functions form a σ-porous subset of the space L∞(Id). That bilipschitz
non-realisable functions contain a dense Gδ subset17 in both the set of positive
continuous functions and the set of positive, L∞-bounded, measurable functions
on the unit square [0, 1]2, was recently proved by Viera [47], but [47] is completely
independent from the present work.
Remark. We point out that there are positive, bilipschitz non-realisable densities
in C(Id) which fail to be Lipschitz regular non-realisable, i.e., positive functions
ρ ∈ C(Id) for which equation (1.18) admits Lipschitz regular but not bilipschitz
solutions f : Id → Rd. An example may be constructed as follows.

We split the unit cube Id in half, distinguishing two pieces D1 := [0, 1
2 ] × Id−1

and D2 := [1
2 , 1] × Id−1 and write f : Id → D1 for the mapping which ‘folds D2

onto D1’. More precisely, the mapping f is defined as the identity mapping on
15It means that a typical continuous function is not in E .
16Sometimes this is called a signed measure or a charge in the literature.
17That is, a countable intersection of open sets.
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D1 and as the reflection in the hyperplane
{

1
2

}
× Rd−1 on D2. Let ψ ∈ C(D1) be

a positive, bilipschitz non-realisable density with values in (0, 1). We impose an
additional mild condition that ψ is constant with value 1

2 inside the hyperplane
1
2 ×Rd−1. The existence of such a density ψ follows easily from the d-dimensional
analog of [8, Theorem 1.2] by Burago and Kleiner.

Set ρ := ψ on D1. The bilipschitz non-realisability of ρ is now already assured,
no matter how we define ρ on D2. To make ρ Lipschitz regular realisable, we
define ρ on D2 by

ρ(x) := 1 − ψ(f(x)).
The function ρ : Id → R is continuous and positive, whilst the mapping f : Id →
Rd is Lipschitz regular and satisfies f(Id) = D1. Moreover, for any measurable
set S ⊆ D1 we have

f♯ρL(S) =
∫

f−1(S)∩D1
ρ dL +

∫
f−1(S)∩D2

ρ dL

=
∫

S
ψ dL +

∫
f−1(S)∩D2

(1 − ψ(f(x))) dL

=
∫

S
ψ dL +

∫
S
(1 − ψ) dL = L(S),

where, for the penultimate equation, we use the change of variables formula (see
Theorem 1.11) in conjunction with the fact that f restricted to the set D2 is an
affine isometry. This verifies the Lipschitz regular realisability of ρ.

To prove Theorem 1.46, we describe the partition of the set E from Theo-
rem 1.46 into a countable family of porous sets (EC,L,n). We will need the lower
bilipschitz constant b(·) given by the conclusion of Theorem 1.35. Recall that
Theorem 1.35 provides an open set T in the image of a given Lipschitz regular
mapping f , on which we can express f exactly as a sum of N bilipschitz home-
omorphisms. This allows for a countable decomposition of the class of Lipschitz
regular mappings: we split it into classes consisting of (C,L)-Lipschitz regular
mappings for which an open set On of a countable basis for topology is contained
inside the set T whose existence is assured by Theorem 1.35. The idea behind
the decomposition (EC,L,n) of E presented below is to translate the countable de-
composition of Lipschitz regular mappings described above to the set E via the
change of variables formula.

Now we describe everything formally. From now on, we fix (On)∞
n=1 a countable

basis for topology of Id. For C,L, n ∈ N we let EC,L,n denote the set of all
functions ρ ∈ C(Id) which admit N ∈ [C], pairwise disjoint, non-empty, open sets
Y1, . . . , YN ⊆ Id with Y1 := On, an open set V ⊆ Rd and (b(C), L)-bilipschitz
homeomorphisms fi : Yi → V such that

ρ(y) = |Jac(f1)(y)| −
N∑

i=2
ρ
(
f−1

i ◦ f1(y)
) ⏐⏐⏐Jac(f−1

i ◦ f1)(y)
⏐⏐⏐ for a.e. y ∈ On.

(1.19)
Note that the basis set On ‘generates’ the diagram of bilipschitz homeomorphisms
fi : Yi → V in the sense that we have Yi = f−1

i ◦f1(On) for i ∈ [N ] and V = f1(On);
see Figure 1.9. However, the critical role of On in the definition above is to
prescribe the portion of the domain Id on which all functions ρ ∈ EC,L,n have the
special form given by (1.19).
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On = Y1

Id

V = fi(Yi)

Y2

YN

f1

f2

fN

f−1
N ◦ f1

f−1
2 ◦ f1

Figure 1.9: The diagram of a bilipschtz decomposition for a density ρ ∈ EC,L,n.

To explain the origins of equation (1.19), consider a Lipschitz regular mapping
f : Id → Rd and the non-empty open set T ⊆ f(Id) given by the conclusion of
Theorem 1.35. Because the preimage f−1(T ) decomposes precisely as a union
of N sets on which f defines a bilipschitz homeomorphism to T , a pushforward
(signed) measure of the form f♯ρL with ρ ∈ C(Id) can be expressed on T as
a sum of integrals involving ρ and Jacobians of N bilipschitz homeomorphisms
f1, . . . , fN . Thus, whenever f♯ρL = L|f(Id) we obtain some equation relating ρ
to finitely many bilipschitz homeomorphisms and their Jacobians. We will see in
the proof of lemma below that this equation has precisely the form of (1.19).

For C,L ∈ N, let EC,L denote the subset of C(Id) consisting of all functions
ρ for which there exists a (C,L)-regular mapping f : Id → Rd solving equa-
tion (1.18). Clearly, we have E = ⋃

C,L∈N EC,L. In the next lemma we prove that
EC,L is covered by the sets (EC,L,n)n∈N.

Lemma 1.47. Let C,L ∈ N. Then EC,L ⊆ ⋃
n∈N EC,L,n.

Proof. Let ρ ∈ EC,L and choose a (C,L)-regular mapping f : Id → Rd such that
f♯ρL = L|f(Id). Let the integer N ∈ [C] and the open sets T ⊆ f(Id) and
W1, . . . ,WN ⊆ Id be given by the conclusion of Theorem 1.35. Recall that (On)∞

n=1
is a countable basis for topology on Id used to define EC,L,n. We choose n ∈ N
such that On ⊆ W1 and define Yi = f−1(f(On)) ∩ Wi, V = f(On) and fi :=
f |Yi

: Yi → V for each i ∈ [N ].
To see that these choices witness that ρ ∈ EC,L,n, it only remains to verify

equation (1.19). Note that f−1(V ) = ⋃N
i=1 Yi. Therefore, using change of variables

for bilipschitz mappings (see Theorem 1.11), for every measurable set S ⊆ V we
infer that

L(S) = f♯ρL(S) =
∫

f−1(S)
ρ dL =

N∑
i=1

∫
f−1(S)∩Yi

ρ dL =
N∑

i=1

∫
f−1

i (S)
ρ dL

=
N∑

i=1

∫
S

(
ρ ◦ f−1

i

) ⏐⏐⏐Jac
(
f−1

i

)⏐⏐⏐ dL =
∫

S

N∑
i=1

ρ

|Jac(fi)|
◦ f−1

i dL.

Since the constant function with the value one is the density of the Lebesgue
measure, we conclude that

N∑
i=1

ρ

|Jac(fi)|
◦ f−1

i (x) = 1 for a.e. x ∈ V .

62



Recall that the sets Yi and V are all bilipschitz homeomorphic via the mappings
fi : Yi → V . Therefore, we may make the substitution x = f1(y) in the above
equation after which a simple rearrangement yields

ρ(y) = |Jac(f1)(y)| −
N∑

i=2

(
ρ

|Jac(fi)|
◦ f−1

i ◦ f1(y)
)

|Jac(f1)(y)| for a.e. y ∈ On.

An application of the ‘chain rule identity’ for Jacobians yields (1.19).

If, for the time being, we treat the terms ρ(f−1
i ◦ f1(y)) in (1.19) as constants,

then, on the open set On, functions ρ ∈ EC,L,n are linear combinations of at most
C Jacobians of L/b(C)-bilipschitz mappings. The purpose of the next lemma is
to provide, for given constants k and L, a function ψ ∈ C(Id) which is small in
supremum norm, but far away from being a linear combination of k L-bilipschitz
Jacobians.

Lemma 1.48. Let ε, ζ ∈ (0, 1), L ≥ 1, k ∈ N and U ⊆ Id be an open set. Then
there exists a function ψ ∈ C(Id) such that ∥ψ∥∞ ≤ ε, supp(ψ) ⊆ U and for
every k-tuple (h1, h2, . . . , hk) of L-bilipschitz mappings hi : U → Rd there exist
e1-adjacent cubes S, S ′ ⊆ U such that⏐⏐⏐⏐−∫

S
|Jac(hi)| − −

∫
S′

|Jac(hi)|
⏐⏐⏐⏐ ≤ ζ (1.20)

for all i ∈ [k] and ⏐⏐⏐⏐−∫
S
ψ − −

∫
S′
ψ
⏐⏐⏐⏐ ≥ ε. (1.21)

Informally, to prove Lemma 1.48 it suffices to consider the families of tiled
cubes S1, . . . ,Sr given by the conclusion of Lemma 1.40 applied to d, k, U , L,
ζ and some very small η ∈ (0, 1), and to define ψ as a ‘chessboard function’
whose average value on e1-adjacent cubes makes jumps of size at least ε. From
conclusion 1 of Lemma 1.40 we may essentially regard the cubes from two different
families Si, Sj as pairwise disjoint; choosing η sufficiently small ensures that the
values of ψ on ⋃Sj have negligible impact on the average values of ψ on cubes in
Si for i < j. Below we present a formal argument.

Proof of Lemma 1.48. Let r ∈ N and the finite, tiled families S1,S2, . . . ,Sr of
cubes in U be given by the conclusion of Lemma 1.40 applied to d, k, L, ζ and
η ∈ (0, 1), where η is a parameter to be determined later in the proof. We will
now define a sequence ψ0, ψ1, ψ2, . . . , ψr of continuous functions on U . The sought
after function ψ will then be defined on U by ψ|U := ψr.

We begin by setting ψ0 = 0. If i ≥ 0 and ψi is already constructed, we define
ψi+1 as any continuous function on U with the following properties:

(i) ψi = ψi−1 outside of ⋃Si.

(ii) −ε ≤ ψi ≤ ε.

(iii) For every cube S ∈ Si, −
∫

S
ψi ∈ {−8ε/9, 8ε/9}.

(iv) For every pair of e1-adjacent cubes S, S ′ ∈ Si, −
∫

S
ψi ̸= −

∫
S′
ψi.
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a part of S1

ψi = ε

ψi = −ε
the space to make ψi continuous

ψ1 ψ2

a part of S1
with the corresponding part of S2

Figure 1.10: An example of the construction of the sequence of functions
ψ1, . . . , ψr.

It is clear that such a continuous function exists; see Figure 1.10 for an example.
Note that conditions (iii) and (iv) just prescribe that the average values of ψi on
the cubes in Si follow a ‘chessboard’ pattern.

The final function ψr clearly satisfies −ε ≤ ψr ≤ ε and ψr = 0 outside of⋃r
i=1

⋃Si. Moreover, for any i ∈ [r] and e1-adjacent cubes S, S ′ ∈ Si we will
prove that ⏐⏐⏐⏐−∫

S
ψr − −

∫
S′
ψr

⏐⏐⏐⏐ ≥ ε. (1.22)

Fix i ∈ [r], e1-adjacent cubes S, S ′ ∈ Si and combine (iii) and (iv) to obtain⏐⏐⏐⏐−∫
S
ψi − −

∫
S′
ψi

⏐⏐⏐⏐ = 16ε
9 . Letting T := S ∩ ⋃r

j=i+1
⋃Sj and T ′ := S ′ ∩ ⋃r

j=i+1
⋃Sj,

we have from conclusion 1 of Lemma 1.40 that max {L(T ),L(T ′)} ≤ ηL(S).
Moreover, condition (i) in the construction above guarantees that ψr = ψi on
(S \ T ) ∪ (S ′ \ T ′). We conclude that

⏐⏐⏐⏐−∫
S
ψr − −

∫
S′
ψr

⏐⏐⏐⏐ ≥
⏐⏐⏐⏐−∫

S
ψi − −

∫
S′
ψi

⏐⏐⏐⏐−
⏐⏐⏐⏐⏐ 1
L(S)

∫
T
(ψi − ψr) − 1

L(S)

∫
T ′

(ψi − ψr)
⏐⏐⏐⏐⏐

≥ 16ε
9 − 2 ∥ψi − ψr∥∞ max {L(T ),L(T ′)}

L(S) ≥ 16ε
9 − 4εη.

Thus, setting η = 1/9, we verify (1.22). To complete the proof, it now only
remains to extend the function ψ to the whole of Id by setting ψ := 0 outside of
U so that supp(ψ) ⊆ U .

Now we proceed to the key proof of the present section, namely the verification
of porosity of the sets (EC,L,n). We actually prove that the sets (EC,L,n) possess a
stronger property:

Lemma 1.49. For every C,L, n ∈ N, EC,L,n is a porous subset of C(Id). In fact,
the set EC,L,n is porous at every point ϕ ∈ C(Id).

Before we begin the proof, we will outline the strategy. For given C,L, n ∈ N,
ϕ ∈ C(Id) and ε ∈ (0, 1), our task is to find a function ϕ̃ ∈ C(Id) so thatϕ̃− ϕ


∞

≤ ε and B
(
ϕ̃, αε

)
∩ EC,L,n = ∅ for some α = α(C,L, n, ϕ).

We will exploit the uniform continuity of ϕ: by prescribing at the start a
sufficiently small open set U ⊆ On we may treat ϕ as constant (relative to ε)
on U and indeed on any L/b(C)-bilipschitz image of U (recall that b(C) stands
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for the lower bilipschitz constant from the conclusion of Theorem 1.35). Thus,
when using the condition (1.19) for functions ρ ∈ EC,L,n we will always be able
to treat the terms ρ

(
f−1

i ◦ f1(y)
)

as constant. In other words, on U we will
have that all functions in EC,L,n are linear combinations of at most C L/b(C)-
bilipschitz Jacobians. We set ϕ̃ := ϕ + ψ where ψ is given by the conclusion
of Lemma 1.48 for ζ = αε, L′ = L/b(C) and an appropriate choice of k. If
B
(
ϕ̃, αε

)
∩ EC,L,n is non-empty, then, up until addition by the ‘constant’ ϕ, the

function ψ is approximately a linear combination of at most C L/b(C)-bilipschitz
Jacobians on U . This will be incompatible with the conclusion of Lemma 1.48.

Proof of Lemma 1.49. Let C,L, n ∈ N, ϕ ∈ C(Id) and ε ∈ (0, 1). We will con-
struct ϕ̃ ∈ C(Id) with

ϕ̃− ϕ


∞
≤ ε and B

(
ϕ̃, ζ

)
∩ EC,L,n = ∅ for a parameter

ζ ∈ (0, ε) to be determined later in the proof.
Using that ϕ is uniformly continuous, we may choose δ > 0 sufficiently small

so that

|ϕ(y) − ϕ(x)| ≤ ζ whenever y, x ∈ Id and ∥y − x∥2 ≤ δ. (1.23)

Next, we choose an open subset U ⊆ On with diam(U) ≤ δb(C)/L.
Let ψ ∈ C(Id) be given by the conclusion of Lemma 1.48 applied to ε, ζ,

L′ = L/b(C), k = C and U . We define the function ϕ̃ ∈ C(Id) by

ϕ̃ := ϕ+ ψ.

From the conclusion of Lemma 1.48 we have that
ϕ̃− ϕ


∞

≤ ε and ϕ̃ = ϕ outside
of the set U ⊆ On. Let us now verify that B

(
ϕ̃, ζ

)
∩ EC,L,n = ∅.

Let ρ ∈ B
(
ϕ̃, ζ

)
and suppose for a contradiction that ρ ∈ EC,L,n. Choose

N ∈ [C], pairwise-disjoint, non-empty, open sets Y1, . . . , YN ⊆ Id, V ⊆ Rd and
(b(C), L)-bilipschitz homeomorphisms fi : Yi → V witnessing that ρ ∈ EC,L,n. By
the choice of ψ and Lemma 1.48 there exist e1-adjacent cubes S, S ′ ⊆ U ⊆ On

such that (1.20) holds for each of the mappings

hi :=

⎧⎨⎩f1 if i = 1,
f−1

i ◦ f1 if 2 ≤ i ≤ N,

and (1.21) holds for ψ. Using (1.19), we may now write

ψ(y) = ϕ̃(y) − ϕ(y) =
(
ϕ̃(y) − ρ(y)

)
+ ρ(y) − ϕ(y)

=
(
ϕ̃(y) − ρ(y)

)
+ |Jac(h1(y))| −

N∑
i=2

ρ(hi(y)) |Jac(hi)(y)| − ϕ(y) (1.24)

for a.e. y ∈ On = Y1. To complete the proof we will show that the average value
of the final expression over the cube S is too close to its average value over S ′,
that is, closer than the condition (1.21) on ψ allows.

Let i ∈ {2, 3, . . . , N}. Then we have that

∥hi(z) − hi(y)∥2 ≤ L

b(C) ∥z − y∥2 ≤ L

b(C) diam(U) ≤ δ
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whenever y, z ∈ S ∪ S ′ ⊆ U . Therefore, in the light of (1.23) and the fact that
|ρ(x) − ϕ(x)| =

⏐⏐⏐ρ(x) − ϕ̃(x)
⏐⏐⏐ ≤ ζ for all points x in the image of hi, we may fix

y0 ∈ S such that

|ρ(hi(y)) − ρ(hi(y0))| ≤ |ϕ(hi(y)) − ϕ(hi(y0))| + 2ζ ≤ 3ζ (1.25)

for all y ∈ S ∪ S ′. Thus, we have⏐⏐⏐⏐−∫
S
ρ(hi(y)) |Jac(hi)(y)| − −

∫
S′
ρ(hi(y)) |Jac(hi)(y)|

⏐⏐⏐⏐
≤ |ρ(hi(y0))|

⏐⏐⏐⏐−∫
S

|Jac(hi)(y)| − −
∫

S′
|Jac(hi)(y)|

⏐⏐⏐⏐
+ −
∫

S

(
|ρ(hi(y)) − ρ(hi(y0))| |Jac(hi)(y)|

)
+ −
∫

S′

(
|ρ(hi(y)) − ρ(hi(y0))| |Jac(hi)(y)|

)
≤ ζ ∥ρ ◦ hi∥∞ + 2 · 3ζ

(
L

b(C)

)d

.

(1.26)

To derive the final inequality, we bounded the preceding sum term by term using
(1.20) for hi, inequality (1.25) and |Jac(hi)| ≤

(
L

b(C)

)d
. The upper bound on the

absolute value of the Jacobian of a bilipschitz mappings follows directly from the
change of variables for bilipschitz mappings (see Theorem 1.11) and the upper
bound on the measure of image of a Lipschitz mapping expressed in equation (1.3)
(see ‘Background and notation’).

For i ∈ {2, . . . , N}, since supp(ψ) ⊆ U and U is disjoint from hi(U), we see
that ∥ρ ◦ hi − ϕ ◦ hi∥∞ ≤ ζ < 1 , and thus, ∥ρ ◦ hi∥∞ ≤ 1 + ∥ϕ∥∞. Coming back
to equation (1.24) we can combine the last inequality with (1.26) and the fact
that ρ ∈ B

(
ϕ̃, ζ

)
to bound the difference of the average values of ψ over S and

S ′ above as⏐⏐⏐⏐−∫
S
ψ − −

∫
S′
ψ
⏐⏐⏐⏐ ≤ 2ζ +

⏐⏐⏐⏐−∫
S

|Jac(h1)| − −
∫

S′
|Jac(h1)|

⏐⏐⏐⏐
+ (N − 1)ζ

⎛⎝∥ϕ∥∞ + 1 + 6
(

L

b(C)

)d
⎞⎠+

⏐⏐⏐⏐−∫
S
ϕ− −

∫
S′
ϕ
⏐⏐⏐⏐ .

Note that diam(S∪S ′) ≤ diam(U) ≤ δb(C)/L. Since b(C) < 1 (see Theorem 1.35
and Lemma 1.34), we see that diam(S ∪ S ′) < δ. Using (1.20) for h1, the fact
that N ≤ C and the uniform continuity of ϕ in the form of (1.23) we deduce⏐⏐⏐⏐−∫

S
ψ − −

∫
S′
ψ

⏐⏐⏐⏐ ≤ 2ζ + ζ + Cζ

⎛⎝∥ϕ∥∞ + 1 + 6
(

L

b(C)

)d
⎞⎠+ ζ. (1.27)

However, setting

ζ := 1
2 · ε

4 + C
(

∥ϕ∥∞ + 1 + 6
(

L
b(C)

)d
)

the right hand side of (1.27) becomes strictly less than ε, contrary to (1.21). Note
that ζ is a constant multiple of ε. Thus, we conclude that

B
(
ϕ̃, ζ

)
⊂ B(ϕ, 2ε) \ EC,L,n,

which demonstrates the porosity of EC,L,n at ϕ.
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It is now a simple task to combine the previous Lemmas for a proof of Theo-
rem 1.46.

Proof of Theorem 1.46. From Lemma 1.47 we have

E =
⋃

C,L∈N
EC,L ⊆

⋃
C,L,n∈N

EC,L,n,

whilst Lemma 1.49 asserts that each of the sets in the union on the right hand
side is porous.

Realisability in L∞ spaces
In the rest of the present section we prove a result similar to Theorem 1.46 about
the space L∞(Id), though in a weaker version.

Until now we have only studied realisability in spaces of continuous functions.
However, functions ρ admitting a bilipschitz or Lipschitz regular solution f : Id →
Rd of equation (1.18) need not be continuous. Therefore, it is natural to study the
set of realisable functions in the less restrictive setting of L∞(Id), the space of all
Lebesgue measurable, real-valued functions ρ defined on Id, which are essentially
bounded. We will prove that the set of all bilipschitz realisable functions in
L∞(Id) is a σ-porous set. For bilipschitz mappings f , (1.18) is equivalent to the
equation

|Jac(f)| = ρ a.e. (1.28)

The question of whether Lipschitz regular realisable densities are also σ-porous,
or in some sense negligible, in L∞ spaces remains open.

Theorem 1.50. Let

G :=
{
ρ ∈ L∞(Id) : (1.28) admits a bilipschitz solution f : Id → Rd

}
.

Then G is a σ-porous subset of L∞(Id). In fact, G may be decomposed as a
countable union of sets (GL)∞

L=1 so that each GL is porous at every point ρ ∈
L∞(Id).

Remark. For 1 ≤ p < ∞, the question of whether the set of bilipschitz realisable
densities is small in Lp(Id) is not interesting because Jacobian of a bilipschitz
mapping has to be bounded a.e., as follows from the change of variables for bilip-
schitz mappings (see Theorem 1.11) and equation (1.3), but the set of all a.e.
bounded functions is already σ-porous in the space Lp(Id).

The proof of Theorem 1.50 will require the following lemma, for which we
recall the notation of Section 1.3 (see the statement of Lemma 1.40 and the
paragraph above it). The proof itself is a slightly more delicate version of the
construction used in the proof of Lemma 1.48.

Lemma 1.51. Let λ > 0, S ⊆ Qd
λ be a finite collection of tiled cubes in Id,

ρ ∈ L∞(Id) and ε > 0. Then there exists a function ψ = ψ(S, ρ, ε) ∈ L∞(Id)
such that ∥ψ − ρ∥∞ ≤ ε and

⏐⏐⏐⏐−∫
S
ψ − −

∫
S′
ψ

⏐⏐⏐⏐ ≥ ε whenever S, S ′ ∈ S are e1-adjacent
cubes.
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Proof. We define the function ψ on Id inductively as follows. Pick any S1 ∈ S
such that the first co-ordinate projection map π1 : ⋃S → R attains its minimum
on S1. This ensures that S1 ̸= T +λe1 for any cube T ∈ S. We set ψ := ρ on S1.

If n ≥ 1 and we have already defined ψ on distinct cubes S1, . . . , Sn ∈ S,
we extend ψ as follows: if S \ {S1, . . . , Sn} = ∅, we complete the construction
of ψ by setting ψ := ρ on Id \ ⋃S. Otherwise, we choose, if possible, Sn+1 ∈
S \ {S1, . . . , Sn} such that Sn+1 = Sn + λe1 and define ψ on Sn+1 by

ψ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ if
⏐⏐⏐⏐⏐−
∫

Sn+1
ρ− −

∫
Sn

ψ

⏐⏐⏐⏐⏐ ≥ ε,

ρ+ ε if −
∫

Sn+1
ρ− −

∫
Sn

ψ ∈ (0, ε),

ρ− ε if −
∫

Sn+1
ρ− −

∫
Sn

ψ ∈ (−ε, 0).

If it is not possible to find Sn+1 ∈ S \ {S1, . . . , Sn} such that Sn+1 = Sn + λe1,
we choose Sn+1 ∈ S \ {S1, . . . , Sn} arbitrarily such that the first co-ordinate
projection π1 : ⋃S \ ⋃n

i=1 Si → R attains its minimum on Sn+1 and simply take
ψ := ρ on Sn+1.

It is now readily verified that the function ψ ∈ L∞(Id) produced by this
construction possesses all of the required properties.

Proof of Theorem 1.50. We decompose G as G = ⋃∞
L=1 GL where

GL :=
{
ρ ∈ L∞(Id) : (1.28) admits an L-bilipschitz solution f : Id → Rd

}
.

Fix L ≥ 1, ρ ∈ L∞(Id) and ε > 0. We will find ρ̃ ∈ L∞(Id) with ∥ρ̃− ρ∥∞ ≤ ε
and B (ρ̃, ε/16)∩GL = ∅. This will verify the porosity of the set GL and complete
the proof of the theorem.

Let U ⊆ Id be a non-empty, open set, ζ = ε/2 and let η ∈ (0, 1) be a parameter
to be determined later in the proof. Let r ∈ N and the tiled families S1, . . . ,Sr

of cubes contained in U be given by the conclusion of Lemma 1.40 applied to d,
k = 1, L, η and ζ. We define a sequence of functions (ρ̃i)r

i=1 in L∞(Id) by
ρ̃i = ψ(Si, ρ, ε) for i ∈ [r],

where ψ(Si, ρ, ε) is given by the conclusion of Lemma 1.51. Now let ρ̃ ∈ L∞(Id)
be defined by

ρ̃(x) =

⎧⎨⎩ρ̃i(x) if x ∈ ⋃Si \ ⋃r
j=i+1

⋃Sj, i ∈ [r],
ρ(x) if x ∈ Id \ ⋃r

i=1
⋃Si.

It is clear that ∥ρ̃− ρ∥∞ ≤ ε. Let ϕ ∈ B (ρ̃, ε/16). Then, given i ∈ [r] and
e1-adjacent cubes S, S ′ ∈ Si, we let T := S∩⋃r

j=i+1
⋃Sj and T ′ := S ′∩⋃r

j=i+1
⋃Sj.

From Lemma 1.40, part 1 we have that max {L(T ),L(T ′)} ≤ ηL(S). We deduce⏐⏐⏐⏐−∫
S
ϕ− −

∫
S′
ϕ
⏐⏐⏐⏐ ≥

⏐⏐⏐⏐−∫
S
ρ̃i − −

∫
S′
ρ̃i

⏐⏐⏐⏐− ⏐⏐⏐⏐−∫
S
(ϕ− ρ̃) − −

∫
S′

(ϕ− ρ̃)
⏐⏐⏐⏐

− 1
L(S)

⏐⏐⏐⏐∫
T
(ρ̃− ρ̃i) −

∫
T ′

(ρ̃− ρ̃i)
⏐⏐⏐⏐ ≥ ε− 2ε

16 − 4εη > ε

2 ,

when we set η = 1
16 . Together with Lemma 1.40, part 2 and setting ζ = ε/2, this

implies that equation (1.28) with ρ = ϕ has no L-bilipschitz solutions f : Id → Rd.
Hence ϕ /∈ GL.
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Conclusion

To conclude the chapter, we summarise the most important results obtained so
far, comment on possible further directions for research and present several open
questions.

The main result presented in this chapter is the negative answer to Feige’s
question (Question 1.4) in any dimension d ≥ 2; indeed, a generic positive, con-
tinuous function on Id which is also bounded away from zero provides a counter-
example when used in the modified discretisation procedure of Burago and Kleiner
[8] presented in Section 1.1. However, this procedure is not restricted only to
continuous functions. As was shown in Theorem 1.16, any bounded, measurable
function ρ : Id → [0,∞) that is positive a.e. can be discretised. And if there is
no Lipschitz mapping f : Id → Rd satisfying f♯ρL = L|f(Id), then ρ provides a
counter-example to Feige’s question.

In the spirit of the work of Burago and Kleiner [8] and McMullen [42], in
Question 1.5 we have formulated a continuous analogue of Question 1.4. However,
we were able to establish only a one-sided relation between the two questions.
Namely, in Theorem 1.6 we have shown that a negative answer to the continuous
question implies a negative answer to the discrete question. So it is natural to ask
whether there is a relation in the opposite direction as well. The author would like
to describe informally some of his thoughts related to it. The following discussion
is mathematically a bit vague, but the ideas will hopefully be clear.

All counter-examples produced via Theorem 1.6 are of a rather special form.
Discrete sets S ⊂ Zd of size |S| = nd obtained this way are ‘almost cubical’; that
is, they are contained in a cubical grid of side O(n), where the implicit constant
hidden in O(n) depends only on sup ρ and d. On the one hand, it is a remarkable
fact that it is possible to produce sequences (Sn)n∈N providing a counter-example
to Feige’s question such that Sn fits in a cubical grid of side at most cn for any
c > 1 arbitrarily close to 1. On the other hand, the special property of sets
produced this way suggests that Question 1.5 may not be equivalent to Feige’s
question; Question 1.15 allows for much greater variety of sets than just ‘almost
cubical’ ones.

One could hope for a procedure that takes any sequence of discrete sets Sn ⊂
Zd with |Sn| tending to infinity with n and encodes it into a measurable function
ρ : Id → [0,∞). Then one would like to establish a relation between existence of
Lipschitz solutions f : Id → Rd to the equation f♯ρL = L|f(Id) on the one side and
existence of Lipschitz bijections Sn → [an]d with a bounded Lipschitz constant
on the other side, where ad

n = |Sn|.
The author has tried to come up with such a procedure, but failed. A natural

approach seems to be to take a sequence of sets Sn ⊂ Zd and try to encode
Sn into a measure with support in Id. For instance, one can scale down Sn so
that it fits inside Id and then assign a certain weight to each point, or take a
Voronoi diagram generated by Sn and use its cells to define a measure. Using the
weak compactness of the space of compactly supported probability measures, one
can then extract a subsequence of these measures and look at their weak limit.
However, here comes the trouble: a sequence of sets (Sn)n∈N that is not ‘almost
cubical’ in the sense explained above usually yields a measure that is singular
with respect to the Lebesgue measure. Thus, it does not have any density ρ with
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respect to the Lebesgue measure and one does not end up with a function to work
with.

One possible way to circumvent this trouble could be to try to come up with
a kernelization argument:

Question 1.52 (Open). Is it true that sequences of ‘almost cubical’ sets Sn ⊂ Zd

provide, in some sense, the hardest instances for Feige’s question? For instance,
is there L > 0 such that for every sequence of sets Sn ⊂ Zd, |Sn| = ad

n, an ∈ N such
that an goes to infinity with n and Sn fits only inside cubical grids of side ω(an)
there exists a sequence of L-Lipschitz bijections Sn → [an]d? In other words, is
the answer to Feige’s question positive for sets that are not ‘almost cubical’?

Since we already know that the answer to Feige’s question is negative, it
would be interesting to know what is the worst possible rate of growth of minimal
Lipschitz constants for counter-examples to Feige’s question.

Question 1.53 (Open). Let

Ln := min
{
L > 0 :

(
∀S ⊂ Zd, |S| = nd

) (
∃L-Lipschitz bijection S → [n]d

)}
.

What is the rate of growth of (Ln)∞
n=1?

Feige’s approximation algorithm for the Graph Bandwidth, which was the
original motivation for Question 1.4, provides O (polylog (n)) approximation ra-
tio, where n is the number of vertices. Thus, it would be interesting to know
whether Ln ∈ O (polylog (n)) or not18. Currently, only a trivial bound Ln ∈ O(n)
is known.

Theorem 1.46 asserts that a typical continuous function Id → (0,∞) is not
Lipschitz regular realisable. This is a twofold generalisation of the result of Burago
and Kleiner [8], who proved the existence of continuous bilipschitz non-realisable
function.

However, Theorem 1.46 is only an existence result; it does not provide a
concrete example of Lipschitz regular non-realisable function. Curiously, the
author does not know how to obtain such an example.

It may also be a bit surprising that in the less restrictive setting of L∞(Id) we
were able to prove typicality only for bilipschitz non-realisable functions instead
of Lipschitz regular non-realisable functions.

The main reason lies in the following. Recall that, by Theorem 1.35, a Lip-
schitz regular mapping f : Id → Rd decomposes on some open subset of f(Id)
precisely into a sum of bilipschitz homeomorphisms f1, . . . , fN . Thus, assuming
that On is the domain of f1, the equation f♯ρL = L|f(Id) yields the following
relation between ρ and Jacobians of fi, as was shown in the proof of Lemma 1.47
in Section 1.4:

ρ(y) = |Jac(f1)(y)| −
N∑

i=2
ρ
(
f−1

i ◦ f1(y)
) ⏐⏐⏐Jac(f−1

i ◦ f1)(y)
⏐⏐⏐ for a.e. y ∈ On.

(1.19 revisited)
18We leave aside the question of finding a specific Lipschitz bijection with Lipschitz constant

O(Ln) effectively; it is not clear at all how to do this.
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For a bilipschitz mapping f the whole sum in the equation above simply disap-
pears and we can easily control the remaining term using Lemma 1.40, state-
ment 2. While for a Lipschitz regular mapping f Lemma 1.40 provides some
control over

⏐⏐⏐Jac(f−1
i ◦ f1)

⏐⏐⏐, we need to work with
(
ρ ◦ f−1

i ◦ f1
) ⏐⏐⏐Jac(f−1

i ◦ f1)
⏐⏐⏐

instead. In the case of continuous ρ it can be remedied using the uniform con-
tinuity of ρ; prescribing sufficiently small On at the beginning, we can treat ρ
in equation (1.19) essentially as a constant. However, in the case of ρ ∈ L∞(Id)
we have no local control over the behaviour of ρ, and thus, we are not able to
use equation (1.19) in conjunction with Lemma 1.40 to prove that a typical es-
sentially bounded measurable function on Id is not Lipschitz regular realisable.

Question 1.54 (Open). What is the size of the set of Lipschitz regular non-
realisable functions inside the space L∞(Id)? Is it residual19? Is it σ-porous?

19That is, of second category.
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2. The Hanani–Tutte theorem on
the projective plane
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Introduction
The study of the most diverse ways how to draw a graph has been a classical and
increasingly popular part of mathematics at the intersection of discrete math-
ematics, geometry, topology as well as computational complexity. The present
chapter falls into the area of drawing of graphs on surfaces.

History and motivation
Following the work of Chojnacki [5] from 1934, who later changed his name to
Hanani, Tutte [30] made a remarkable observation in 1970, which became known
as the strong Hanani–Tutte theorem:

Theorem 2.1 (Strong Hanani–Tutte theorem [5, 30]). A graph is planar if and
only if it can be drawn1 in the plane in such a way that every two non-adjacent2

edges cross an even number of times, possibly zero times.

Of course, the ‘only if’ part in the theorem above is trivial. The reason why
the theorem is called ‘strong’ is that there also exists a ‘weak’ version: a graph is
planar if and only if it has a drawing in the plane in which every two edges cross
an even number of times.

It is natural to ask whether the strong Hanani–Tutte theorem can be extended
to drawings of graphs on surfaces different from the plane.

Question 2.2 (Strong Hanani–Tutte for surfaces). Given a closed surface S, is
it true that a graph G is embeddable into S if and only if it has a drawing on S
in which every two non-adjacent edges cross an even number of times?

Although it seems plausible that the question has been known to the graph
drawing community for a few decades, to the best of author’s knowledge, it ap-
peared explicitly only in [28, Conj. 1], where Schaefer and Štefankovič conjectured
that the answer was positive.

Currently, the positive answer to Question 2.2 is only known for the sphere
(plane) and for the projective plane. On the other hand, in 2017 Fulek and Kynčl
[9] have provided a negative answer for all orientable surfaces of genus four and
higher. The remaining cases, which comprise of the torus, the double-torus and
the triple-torus as well as of all non-orientable surfaces of genus two and higher,
are open.

In contrast, for the weak version of the Hanani–Tutte theorem the situation
is quite different. In 2000 Cairns and Nikolayevsky [4] proved that the weak
version holds for all orientable surfaces; later, in 2007, Pelsmajer, Schaefer, and
Štefankovič [23] established the result for all surfaces. It is worth noting that
the weak version of the theorem allows for stronger conclusion than the strong
version:

1We consider only drawings in which distinct vertices are represented by distinct points
and each edge is represented by an arc which does not go through any vertex except at the
endpoints. Moreover, two such arcs are allowed to cross only finitely many times.

2Two edges are called non-adjacent if they do not share a vertex.

74



Theorem 2.3 (Weak Hanani–Tutte theorem on surfaces [4, 23]). If a graph is
drawn on a surface in such a way that every pair of edges crosses an even number
of times, then the graph can be embedded into that surface while preserving the
cyclic order of the edges at all vertices3.

Note that in the strong version we require that only non-adjacent edges cross
even number of times, while in the weak version this condition has to hold for
all pairs of edges. Consequently, the strong version and the weak version of the
theorem are not comparable.

The original proof of Theorem 2.1 by Hanani [5] and Tutte [30] uses Kura-
towski’s theorem [16], that is, a characterisation of planar graphs as those graphs
that do not contain the graphs K5 and K3,3 as minors. The strong Hanani–Tutte
theorem has also a parallel history in algebraic topology in works of van Kampen
[31], Wu [32], Shapiro [29] and Levow [17]. For a complete history and relevant
results we refer to a nice survey by Schaefer [26].

In 2007, Pelsmajer, Schaefer, and Štefankovič [22] provided the first construc-
tive proof of the strong Hanani–Tutte theorem. They presented a procedure that
takes a drawing of a graph in the plane such that non-adjacent edges cross even
number of times and redraws it gradually into an embedding.

In 2009 Pelsmajer, Schaefer, and Stasi [24] proved a version of the strong
Hanani–Tutte theorem for the projective plane:

Theorem 2.4 (Strong Hanani–Tutte for the projective plane [24]). A graph can
be embedded into the projective plane if and only if it can be drawn on the projec-
tive plane in such a way that every two non-adjacent edges cross an even number
of times.

The proof of Theorem 2.4 by Pelsmajer et al. [24] is based on a character-
isation of graphs embeddable into the projective plane via minimal forbidden
minors. This approach is relatively simple for the projective plane; however, it
does not seem applicable to other surfaces. On the one hand, in their famous
work, Robertson and Seymour [25] have proved that for every surface S there is
a finite list F (S) of graphs such that a graph G is embeddable into S if and only
if none of the minors of G is on the list F (S). On the other hand, there is no
reasonable characterisation of forbidden minors for surfaces other than the plane
and the projective plane. The complete list of the minimal forbidden minors for
the projective plane consists of 35 graphs found by Glover, Huneke, and Wang
[13] and Archdeacon [2]. Already for the torus or the Klein bottle the exact lists
are not known, but it is known that the list for the torus contains thousands
of graphs (see the work of Gagarin, Myrvold, and Chambers [12] and the refer-
ences therein). Moreover, by additivity of the genus of a graph established by
Battle, Harary, Kodama, and Youngs [3] and Miller [18], the number of minimal
forbidden minors for a surface is at least exponential in its genus.

The results in the present chapter come from the work of Colin de Verdière,
the author, Paták, Patáková, and Tancer [6]; the main result is a constructive
proof of Theorem 2.4. The need for such a proof is motivated by the unsolved4

3In fact, the embedding preserves the so-called embedding scheme of the given drawing of
the graph on the surface. For the precise definitions, see, e.g., Mohar and Thomassen [20].

4The work of Fulek and Kynčl [9] was published after the first version of the present work
was finished; at that time, the only solved cases were the plane and the projective plane.
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cases of Question 2.2.
For simplicity, we call a drawing of a graph on a surface a Hanani–Tutte

drawing if no two non-adjacent edges cross an odd number of times5.
Given a Hanani–Tutte drawing of a graph on the projective plane, the proof of

Colin de Verdière, the author, Paták, Patáková, and Tancer [6], which we present
here, gives an explicit way to transform the drawing into an embedding. In prin-
ciple, the proof could be transformed into a polynomial-time algorithm. On the
other hand, there already are linear-time algorithms for deciding embeddability
of a graph on the projective plane by Mohar [19] and by Kawarabayashi, Mohar,
and Reed [15] (these algorithms work for any surface, but the hidden constant
depends exponentially on the genus).

The presented approach reveals a number of difficulties that have to be over-
come in order to obtain a constructive proof. If the answer to Question 2.2 is
affirmative for some surface S, the ideas of Colin de Verdière, the author, Paták,
Patáková, and Tancer [6] may serve as a basis for the proof of this fact. If it is
negative, then an approach based on these ideas may help reveal an appropriate
structure needed to construct a counter-example.

We remark that other variants of the Hanani–Tutte theorem generalising the
notion of embedding in the plane have also been considered. For instance, Schae-
fer [27] established a version of the strong Hanani–Tutte theorem for partially
embedded graphs and versions of both the weak and the strong Hanani–Tutte
theorem were also proven for 2-clustered graphs by Fulek, Kynčl, Malinović, and
Pálvölgyi [11]. For more details and other variants we again refer to the survey
by Schaefer [26].

One of the reasons why the strong Hanani–Tutte theorem is important is that
it turns the question of planarity of a given graph into a system of linear equations.
For general surfaces, the existence of a Hanani–Tutte drawing of G leads to a
system of quadratic equations over Z2 (see Levow [17]). If the strong Hanani–
Tutte theorem is true for the surface, any solution to the system then serves as a
certificate that G is embeddable into that surface. Moreover, if the proof of the
Hanani–Tutte theorem is constructive, it gives a recipe how to turn the solution
into an actual embedding. Unfortunately, solving systems of quadratic equations
over Z2 is NP-complete in general.

Redrawing procedure
Let us call an edge even in a drawing of a graph if it crosses every other edge an
even number of times (including the adjacent edges).

As we noted before, Pelsmajer et al. [22] provided the first constructive proof
of the strong Hanani–Tutte theorem in the plane. They showed a sequence of
moves transforming a Hanani–Tutte drawing into an embedding. A key step in
their proof is the following theorem:

Theorem 2.5 (Pelsmajer et al. [22, Thm. 2.1]). If D is a drawing of a graph G
in the plane and E0 is the set of even edges in D, then G can be drawn in the
plane so that no edge in E0 is involved in an intersection and there are no new
pairs of edges that intersect an odd number of times.

5Such a drawing is also called an independently even drawing in the literature.
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Z

S+

S−

Figure 2.1: Separating the outside (in black) and the inside (in orange) of a cycle
Z (in blue; thick). The symbols S+ and S− denote the two parts of the plane
separated by Z.

Unfortunately, a result analogous to Theorem 2.5 is simply not true on other
surfaces, as was shown by Pelsmajer et al. [23]. In particular, this is an obstacle
for a constructive proof of the strong Hanani–Tutte theorem for the projective
plane (Theorem 2.4).

The key step of the approach presented here is to provide a suitable replace-
ment of Theorem 2.5 ([22, Thm. 2.1]; see also Lemma 3 in [10]).

To explain the basic idea of the suggested replacement, let us first describe
the situation on the sphere. Consider a graph G with a Hanani–Tutte drawing
D on the sphere. Let Z be a cycle in G which is drawn without self-intersections
and such that every edge of Z is even. Theorem 2.5 then implies that G can
be redrawn in such a way that Z becomes free of crossings in the new drawing
without introducing any new pairs of edges crossing oddly.

In fact, a detailed inspection of the redrawing procedure from Theorem 2.5
reveals something slightly stronger in this setting. The drawing of Z splits the
plane (or the sphere) into two parts that we call the inside and the outside. This
in turn splits G into two parts. The inside part consists of vertices that are
inside Z and of the edges that have either at least one endpoint inside Z, or they
have both endpoints on Z and point to the inside of Z from both endpoints. The
outside part is defined analogously. Because we have started with a Hanani–Tutte
drawing, it is easy to check that every vertex and every edge is on Z, inside, or
outside. The proof of Theorem 2.5 in [22] then implies that it is possible to fully
separate the inside and the outside in the drawing; see Figure 2.1. Actually, the
separation can be performed even by a continuous motion of each of the parts,
provided the drawing is considered on the sphere instead of the plane.

The trouble on the projective plane is that it may not be possible to separate
the outside and the inside of a separating cycle by a continuous motion (of each
of the parts separately). This is demonstrated by a projective-planar drawing of
K5 in Figure 2.2, left. The symbol ‘⊗’ stands for the crosscap6 in the picture.

6We can think of a crosscap as a small disk whose interior is removed and the opposite points
on its boundary are identified. The projective plane can be thought of as a sphere with one
crosscap.
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Figure 2.2: A drawing of K5 on the projective plane in which the outside and
the inside cannot be separated by a continuous motion (left). A solution by
duplicating the crosscap (middle) and removing one of them in the next step
(right).

We could easily move the part of the graph to the outside as desired if we were
allowed to duplicate the crosscap as in Figure 2.2, middle. However, the problem
is that the sphere with two crosscaps is not the projective plane, but the Klein
bottle, that is, a different surface. On the other hand, if we give up on a continuous
motion, we may observe that the inside vertices and edges in Figure 2.2, middle,
may actually be redrawn without using a crosscap at all; we can then simply
remove the ‘inside’ crosscap. This step changes the homotopy/homology type of
many cycles in the drawing.

The main technical contribution of the present work is to show that it was not
a coincidence that a simplification as in the drawing in Figure 2.2 was possible.
It will be shown that we can always redraw one of the sides without using the
‘duplicated’ crosscap. The precise statement requires some preparation and will
be given later in Theorem 2.14 in Section 2.2.

The overall idea of the proof of the strong Hanani–Tutte theorem in the plane
of Pelsmajer et al. [22] is to find a suitable order on some of the cycles of the
graph and then use Theorem 2.5 repeatedly on these cycles, which eventually
results in an embedding in the plane. A detailed proof of Pelsmajer et al. [22]
uses an induction based on this idea.

Similarly, the presented proof of Theorem 2.4 uses inductively Theorem 2.14
on suitably chosen cycles. However, the details are more complicated compared
to the setting of [22], because on the projective plane it is necessary to deal with
two types of cycles in the graph based on their homology. It is also more delicate
to set up the induction in a way suitable for Theorem 2.14, since the setting of
Theorem 2.14 is slightly more restrictive than the setting of Theorem 2.5.

Organisation of the chapter
To present the approach of Colin de Verdière, the author, Paták, Patáková, and
Tancer [6] we need to develop an appropriate toolbox for manipulation with
Hanani–Tutte drawings on the projective plane. Actually, many of the tools
are applicable to a general surface. In order to motivate the introduction of all
the auxiliary definitions and lemmas, the main proofs are presented as soon as
possible, which is reflected in the structure of the chapter.

Therefore, in Section 2.1 only basic definitions and facts are presented, which
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include tools to modify drawings and to represent the Hanani–Tutte drawings on
the projective plane as drawings on the sphere.

In Section 2.2 the precise statement of Theorem 2.14, the separation theorem,
is described together with its proof. However, the proofs of many auxiliary results
are postponed to later sections.

Section 2.3 is devoted to the proof of Theorem 2.4, the strong Hanani–Tutte
theorem for the projective plane, using Theorem 2.14 and some of the auxiliary
results from Section 2.2.

Section 2.4 contains a description of additional technical tools needed for the
proofs of the auxiliary results, which are then presented gradually in the remaining
sections.

A general background, facts and notation related to graphs, surfaces, drawings
and basic homology, which will be used throughout the chapter, are presented in
‘Background and notation’ following this one.
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Background and notation
In this section we recall basic terms, notation and facts used in graph theory and
theory of surfaces as well as a few basic facts from homology. The terminology
and notation specific to the present work will be introduced gradually in the
subsequent sections.

For the readers not familiar with the topic, the author would like to remark
that it is often sufficient to rely on an intuitive understanding of the terms used
here (like a surface, a drawing or an embedding of a graph).

Graphs
As a general reference for graph theory we suggest a well-known monograph by
Diestel [7].

Let G be a graph. We denote by V (G) the set of vertices of G and by E(G)
the set of edges of G. We consider only simple, undirected graphs, that is, G can
have no loops nor parallel edges and every edge is an unordered pair of vertices.
To simplify the notation, for an edge e with endpoints u, v we usually write e = uv
instead of e = {u, v}.

We say that two edges are independent if they do not share a vertex. We say
that an edge e is incident to a vertex v if v is one of the endpoints of e.

Given a vertex v ∈ V (G), we denote by G− v the graph obtained from G by
removing v and all edges adjacent to v. Similarly, for e ∈ E(G) we write G−e for
the graph obtained from G by removing the edge e, but preserving its endpoints.
More generally, for W ⊂ V (G) we write G−W for the graph we get by removing
all vertices of W from G. Similarly, we use G − F for the graph G without the
edges in F , where F ⊆ E(G). For W ⊂ V (G) we call a subgraph G′ of G induced
by W if V (G′) = W and e ∈ E(G′) if and only if e ∈ E(G) and both endpoints
of e are in W .

By a walk ω in a graph G we mean a sequence v0, e1, v1, e2, v2, . . . , en, vn such
that vi ∈ V (G) for every i ∈ {0, . . . , n} and such that ei ∈ E(G), ei = {vi−1, vi}
for every i ∈ {1, . . . , n}. The vertices v0 and vn are called the endpoints of ω, and
sometimes, we call ω a v0vn-walk. We say that ω is closed if v0 = vn. The length
of a walk is defined as the number of edges it traverses, i.e., in the case above the
length of ω is n. We also allow for walks of length zero, which consist of a single
vertex.

If a walk ω does not visit any edge nor any vertex more than once, except the
possibility that it starts and ends in the same vertex, then we call it a path in G.
A closed path is called a cycle in G.

A graph G is connected if for every two vertices u, v ∈ V (G) there is a path
in G with endpoints u and v. The inclusion-maximal connected subgraphs of G
are called the connected components of G. Thus, a connected graph has exactly
one connected component. If a connected component consists of a single vertex,
the vertex is called isolated.

A graph G is (vertex) k-connected if |V (G)| > k and G−W is connected for
every W ⊂ V (G) with |W | < k. Dually, by Menger’s theorem (see, e.g., Dies-
tel [7, Cor. 3.3.5]), G is k-connected if every two distinct vertices of G can be
connected by k paths which are disjoint up to their endpoints. In fact, Menger’s
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theorem ensures something stronger: for any two sets A,B ⊆ V (G) the minimum
number of vertices of G that have to be removed to separate A from B is equal
to the maximum number of vertex-disjoint paths between A and B. A set of ver-
tices the removal of which partitions a connected graph into multiple connected
components is called a cut. If a cut consist of a single vertex, the vertex is called
a cut vertex.

A graph is called a forest if it does not contain any cycles. It is called a tree
if it is a connected forest. A subgraph T of a graph G is called a spanning forest
of G or a spanning tree of G, if V (T ) = V (G) and T is an edge-maximal forest
or a tree, respectively.

Surfaces
For a detailed treatment of closed surfaces and drawings of graphs on surfaces we
refer the reader to Mohar and Thomassen [20].

We write S2 for the 2-dimensional sphere. We can attach a crosscap to S2 by
choosing a small disk (i.e., 2-dimensional ball) B in S2, removing its interior and
identifying the opposite points on the boundary of B. The crosscap is then the
curve obtained from the boundary of B after the identification. In figures, we
use the symbol ‘⊗’ for the crosscap coming from the removal of the disk ‘inside’
this symbol. We note that the sphere with a crosscap cannot be embedded in
Euclidean space of dimension less than 4.

We can also attach a handle to S2. This is done by choosing two disjoint
small disks B1 and B2 in S2, removing their interiors and gluing their boundaries
together in a one-to-one way; the direction in which we glue the boundary of B1
to the boundary of B2 is the opposite to the direction chosen on the boundary of
B2. The result should look very much like an ordinary handle attached to a cup.

A usual textbook definition of a closed surface says that it is a connected, com-
pact, Hausdorff, second countable topological space that is locally homeomorphic
to an open disk in R2. Perhaps a more comprehensible equivalent characterisation
of closed surfaces is provided by the classification of surfaces (see, e.g., Mohar
and Thomassen [20])—every closed surface is homeomorphic either to S2 with h
handles, or to S2 with k crosscaps for some values of h, k ∈ {0, 1, . . .}. We will
consider only closed surfaces, and thus, we refer to them simply as surfaces. The
sphere S2 with one crosscap (and zero handles) attached to it is called the (real)
projective plane and denoted by RP 2.

The surfaces created from S2 by attaching handles and no crosscaps are called
orientable, while by attaching at least one crosscap we produce a non-orientable
surface. Thus, the projective plane is non-orientable. On an orientable surface it
is possible to assign an orientation to a neighbourhood of every point in a globally
consistent way, while in the non-orientable case this is impossible.

The number of handles attached to S2 to obtain an orientable surface S is
called the orientable genus of S. Similarly, the number of crosscaps used to
produce a non-orientable surface S is called the non-orientable genus of S. We
define the genus7 of a surface S to be equal to its non-orientable genus if S is
non-orientable, and equal to twice its orientable genus if it is orientable.

7In literature, this is usually called Euler genus.
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v v
e e

Figure 2.3: (Left) The way to eliminate a self-crossing of an edge. (Right) A
vertex-edge switch (v, e).

Drawings of graphs and crossings
Intuitively, a drawing of a graph G on a surface S is a representation of G in
which the vertices of G are represented by distinct points on S and each edge of
G is represented by a curve on S connecting the points representing the endpoints
of the edge. An embedding of G into S is then a drawing of G in which the curves
representing the edges are not allowed to cross nor touch, except at the endpoints.

To provide more formal definitions, we will think of a graph G as of one-
dimensional simplicial complex. Then an embedding of G on a surface S is an
injective continuous map from a geometric realisation of the simplicial complex
representing G to S that is a homeomorphism onto its image.

A drawing of G on S is any continuous map from the simplicial complex
representing G to S that is injective on vertices. However, we will not consider
drawings in such a generality. We put the standard general position assumptions
on the drawings. That is, we consider only drawings of graphs such that no edge
(i.e., the image of the edge in the drawing) contains a vertex in its interior and
every pair of edges meets only in a finite number of points, where they intersect
transversally. We refer to a transversal intersection of two curves as to a crossing
or we simply say that the two curves cross at the point.

Since we study only pairwise interactions of edges, we allow three or more
edges crossing in a single point. Moreover, note that it is possible to get rid of a
self-crossing of an edge without changing the image of the edge except in a small
neighbourhood of the self-crossing; see Figure 2.3, left. Therefore, throughout the
chapter we assume that whenever a self-crossing of an edge appears in a drawing
it is immediately eliminated.

A graph that can be embedded into S2 (or the plane) is called planar. A graph
embeddable into the projective plane is called projective-planar. Let D be an
embedding of a graph G into a surface S. The connected components of S \ D
are called faces of the embedding D.

Given a surface S and a graph G, we recall that a Hanani—Tutte drawing of G
on S is a drawing of G on S such that every pair of independent edges crosses an
even number of times. We will often abbreviate the term Hanani–Tutte drawing
to HT-drawing.

Given an HT-drawing of a graph on RP 2, we can slightly alter it in such a
way that every edge meets the crosscap in a finite number of points and only
transversally, still keeping the property that we have an HT-drawing. Therefore,
we may add to our assumptions that this is the case for all HT-drawings on RP 2
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that we shall consider.
To every path γ in a graph G corresponds a curve in a drawing D of G, which

we denote by D(γ). More generally, for a subgraph H of the graph G we write
D(H) for the part of the drawing D corresponding to the graph H. We can
extend the notation to walks as well: given a walk ω = v0, e1, . . . , en, vn in G, we
denote by D(ω) the closed curve, possibly self-overlapping, that is defined as the
concatenation of D(ei), for i = 1, . . . , n in the directions determined by ω.

We call a path (or a cycle) γ of G simple in D if the curve D(γ) does not
intersect itself (except possibly at the endpoints in the case of a cycle).

Let D be a drawing of a graph G. Given two distinct edges e and f of G,
by crD(e, f) we denote the number of crossings between e and f in D modulo 2.
If the drawing D is clear from a context, we usually drop the subscript D and
write just cr(e, f). We say that an edge e of G is even if cr(e, f) = 0 for every
f ∈ E(G) distinct from e. We emphasize that we treat the crossing number as
an element of Z2 and all computations throughout the chapter involving it are
done in Z2.

Let D be a drawing of a graph G on S2. Let us consider a vertex v ∈ V (G)
and an edge e ∈ E(G) such that v is not incident to e. Imagine we pull a thin
‘finger’ from the interior of e towards v and we let this finger pass over v. See
Figure 2.3, right. Let us write D′ for the new drawing. We say that D′ is obtained
from D by the vertex-edge switch8 (v, e). For any edge f incident to v the crossing
number cr(e, f) changes from 0 to 1, or vice versa. It does not change for the
other pairs of edges, because the ‘finger’ from e intersects the other edges in pairs
of points.

Homology of surfaces

The basics of homology of surfaces are covered by Munkres [21]. A more general
and detailed treatment of the homology theory can be found in Hatcher [14].

We use singular homology with Z2 coefficients unless specified otherwise. Nev-
ertheless, the work presented in this chapter should be understandable even to
those that are not familiar with any homology or homotopy theory. The proper-
ties needed in the present work are summarised bellow. The following discussion
is primarily intended as a rather informal explanation for the readers not familiar
with the homology theory.

We will use homology only as a classification of closed curves on a surface.
The homology on the sphere is trivial, which means that all closed curves on
the sphere have the same type in homology. The homology on the projective
plane distinguishes between two types of closed curves: those that pass over the
crosscap an even number of times and those that pass it an odd number of times.
The former are called trivial, while the latter are called non-trivial. We may
extend the definition to any linear combination of curves by linearity—the type
of the linear combination will be the same combination of the respective types of
curves (we think of the trivial curves having the type 0 and the non-trivial ones
having the type 1 and the calculations are done in Z2).

8Another name for the vertex-edge switch is the finger-move common mainly in topological
context in higher dimensions.
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The crosscap is homologically non-trivial simple, closed curve in RP 2. An im-
portant fact from the homology theory is that the distinction between trivial and
non-trivial curves is independent of the choice of the crosscap used to represent
the projective plane. This, in particular, means that any homologically non-
trivial simple, closed curve may serve as a crosscap up to a self-homeomorphism
of RP 2.

Whenever we speak about the homology type of a cycle in a drawing of a
graph, we mean the type of the curve representing the cycle. We can also speak
about the homology type of a closed walk, since the concatenation of the curves
representing the edges of the walk gives a closed curve on the surface.

We also note that the trivial curves on RP 2 are contractible meaning they
may be continuously shrunk to a point. Trivial, simple curves are also separating,
that is, cutting the surface along such a curve yields two connected components.
The non-trivial curves are non-contractible and simple, non-trivial curves are
non-separating.

The last general fact from the homology theory that we shall need comes from
the so-called intersection form on surfaces. For a precise definition we refer the
reader to Fuchs and Viro [8, Sect. 8.4]. It is sufficient for us to state here only
what it says about the sphere (the plane) and the projective plane.

In the case of the sphere the intersection form is trivial, which means that
any two closed curves on the sphere which intersect only finitely many times and
cross at every intersection have to cross an even number of times9 10.

However, in the case of the projective plane the intersection form is non-trivial
as explained in the following lemma:

Lemma 2.6 (Intersection form on RP 2). Let z1 and z2 be two closed curves on
RP 2 that intersect only finitely many times and cross at every intersection. Then
z1 and z2 cross an odd number of times if and only if they are both homologically
non-trivial.

Many of the considerations present in the subsequent sections rely heavily on
Lemma 2.6.

9We emphasize that we think of closed curves as of continuous mappings from the unit circle
to the surface. Thus, we count their intersections as the number of pairs of points from their
domains that are mapped to the same point on the surface. This means that we count the
common points in their images with multiplicity.

10This is also a consequence of the Jordan curve theorem (see, e.g., Mohar and Thomassen
[20, p. 25]).
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RP 2 RP 2S2

Figure 2.4: A transformation between an HT-drawing on RP 2 and a projective
HT-drawing on S2.

2.1 Hanani–Tutte drawings
The purpose of this section is to set up some of the conventions specific to the
present work and introduce several tools used to manipulate with HT-drawings
on the projective plane.

Let G be a graph and D be an HT-drawing of G on RP 2. Let γ be the
crosscap in the chosen representation of RP 2. We note that the choice of γ is not
unique. Later in this section we show that the choice of γ does not matter.

We consider a map λ : E(G) → Z2. For an edge e, we let λ(e) be the number
of crossings of e and the crosscap γ modulo 2. We emphasize that λ depends on
the choice of the crosscap. Afterwards, it will be useful to alter λ via so-called
vertex-crosscap switches, which we will introduce later in the section.

Given a cycle Z inG, we can distinguish whether Z is drawn as a homologically
non-trivial cycle by checking the value of λ(Z) := ∑

e∈E(Z) λ(e) ∈ Z2. The cycle Z
is homologically non-trivial if and only if λ(Z) = 1. In particular, λ(Z) does not
depend on the choice of the crosscap (see ‘Homology of surfaces’ in ‘Background
and notation’).

Let D be an HT-drawing of a graph G on RP 2. It is not hard to derive a
drawing D′ of the same graph on S2 such that every pair (e, f) of independent
edges satisfies cr(e, f) = λ(e)λ(f). Indeed, it is sufficient to ‘undo’ the crosscap;
that is, we look at the crosscap on S2 used to represent RP 2, undo the gluing,
fill in the interior of the resulting disk B and then let the edges that passed over
the crosscap intersect in B. See the two leftmost pictures in Figure 2.4. This
motivates the following definition.

Definition 2.7 (Projective HT-drawings on S2.). Let D be a drawing of a graph
G on S2 and λ : E(G) → Z2 be a function. Then the pair (D,λ) is a projective
HT-drawing of G on S2 if cr(e, f) = λ(e)λ(f) for any pair of independent edges e
and f of G. If λ is sufficiently clear from a context, we say that D is a projective
HT-drawing of G on S2.

Clearly, an HT-drawing of G on R2 yields a projective HT-drawing of G on
S2. It turns out that it works in the opposite direction as well.

Lemma 2.8. Let (D,λ) be a projective HT-drawing of a graph G on S2. Then
there is an HT-drawing D⊗ of G on RP 2 such that crD⊗(e, f) = crD(e, f) +
λ(e)λ(f) for any pair of distinct edges of G, possibly adjacent. In addition, for
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Figure 2.5: Redrawing the finger-moves around the crosscap.

any two edges e and f such that λ(e) = λ(f) = 0 and that D(e) and D(f) are
disjoint, we have that D⊗(e) and D⊗(f) are disjoint as well.

Proof. It is sufficient to consider a small disk B which does not intersect D(G),
replace it with a crosscap and redraw the edges e with λ(e) = 1 appropriately
as described below (follow the two pictures on the right in Figure 2.4). From
each edge e with λ(e) = 1 we pull a thin ‘finger’11 towards the crosscap which
intersects every other edge in pairs of intersection points. Then we redraw the
edge in a close neighbourhood of the crosscap as indicated in Figure 2.5. After the
redrawing, every edge e such that λ(e) = 1 passes over the crosscap once, while
every edge e with λ(e) = 0 does not pass over the crosscap. This agrees with the
original definition of λ for HT-drawings on RP 2. In addition, we indeed obtain
an HT-drawing on RP 2 with crD⊗(e, f) = crD(e, f) + λ(e)λ(f), because we have
introduced one more crossing among pairs of edges e, f such that λ(e) = λ(f) = 1
in the last step.

In summary, Lemma 2.8 together with the previous discussion provide us with
two viewpoints on the HT-drawings.

Corollary 2.9. A graph G admits a projective HT-drawing on S2 with respect to
a function λ : E(G) → Z2 if and only if it admits an HT-drawing on RP 2.

The main benefit of the projective HT-drawings on S2 lies in the fact that one
can ignore the actual geometric position of the crosscap and work on the sphere
instead, which is simpler. This is especially helpful when one needs to merge two
drawings. On the other hand, it turns out that in the present approach it will be
easier to perform certain parity counts in the language of HT-drawings on RP 2.

In order to distinguish the usual HT-drawings on S2 from the projective HT-
drawings, we will sometimes refer to the former as to the ordinary HT-drawings
on S2.

Non-trivial walks. We now extend the notions of triviality/non-triviality from
RP 2 to the setting of projective HT-drawings on S2.

Let (D,λ) be a projective HT-drawing of a graph G and ω be a walk in G.
We define λ(ω) := ∑

e∈E(ω) λ(e) where E(ω) is the multi-set of edges appearing
in ω. Equivalently, it is sufficient to consider only the edges appearing an odd
number of times in ω, since 2λ(e) = 0 for any edge e. We say that ω is trivial if
λ(ω) = 0 and non-trivial otherwise.

11In the same way as we do it when performing a vertex-edge switch.
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We often use this terminology in special cases when ω is an edge, a path or a
cycle. In particular, a cycle Z is trivial if and only if it is drawn as a homologically
trivial cycle in the corresponding drawing D⊗ of G on RP 2 from Lemma 2.8.

Given two homologically non-trivial cycles on RP 2, they must cross an odd
number of times by Lemma 2.6. Since we have not proved Lemma 2.6 and only
referred to literature, we prove here a weaker version of this statement in the
setting of projective HT-drawings, which we will need soon.

Lemma 2.10. Let (D,λ) be a projective HT-drawing of a graph G on S2. Then
G does not contain two vertex-disjoint non-trivial cycles.

Proof. For contradiction, let Z1 and Z2 be two vertex-disjoint non-trivial cycles
in G. This means that both Z1 and Z2 contain an odd number of non-trivial
edges. Therefore, there is an odd number of pairs (e1, e2) of non-trivial edges
such that e1 ∈ Z1 and e2 ∈ Z2. According to Definition 2.7, Z1 and Z2 must have
an odd number of crossings in D. But this is impossible for two cycles in the
plane that cross at every intersection.

Vertex-crosscap switches. Let (D,λ) be a projective HT-drawing of G on S2.
It is very useful to alter λ at the cost of redrawing G. Given a vertex v, we perform
the vertex-edge switches (v, e) for all edges e not incident to v such that λ(e) = 1
obtaining a drawing D′. We also introduce a new function λ′ : E(G) → Z2 derived
from λ by switching the value of λ on all edges of G incident to v. In this case,
we say that D′ (and λ′) is obtained by the vertex-crosscap switch over v12. The
result is again a projective HT-drawing:

Lemma 2.11. Let (D,λ) be a projective HT-drawing of G on S2. Let D′ and
λ′ be obtained from D and λ by a vertex-crosscap switch. Then (D′, λ′) is a
projective HT-drawing of G on S2.

Proof. We need to check that crD′(e, f) = λ′(e)λ′(f) for any pair of independent
edges e and f . Let v be the vertex inducing the switch. If neither e nor f is
incident to v, then

crD′(e, f) = crD(e, f) = λ(e)λ(f) = λ′(e)λ′(f).

Now consider the case that one of the edges, say e, is incident to v. Note that
λ(e) = 1 − λ′(e) and λ(f) = λ′(f) in this case. If λ(f) = 0, then

crD′(e, f) = crD(e, f) = λ(e)λ(f) = 0 = λ′(e)λ′(f).

Finally, if λ(f) = 1, then

crD′(e, f) = 1 − crD(e, f) = 1 − λ(e)λ(f) = λ(f) − λ(e)λ(f) = λ′(e)λ′(f).

We also remark that a vertex-crosscap switch preserves the triviality/non-
triviality of cycles. To see this, consider a cycle Z. If Z avoids v, then λ(Z) =
λ′(Z) since λ(e) = λ(e′) for every edge e of Z. If Z contains v, then λ(Z) = λ′(Z)
as well since λ(e) ̸= λ′(e) for exactly two edges of Z.

12In the case of drawings on RP 2, a vertex-crosscap switch corresponds to passing the crosscap
over v, which motivated the name.
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Planarization. As before, let (D,λ) be a projective HT-drawing of G on S2.
Now let us consider a subgraph P of G such that every cycle in P is trivial. Then
P essentially behaves as a planar subgraph of G, which we make more precise in
the following lemma.

Lemma 2.12. Let (D,λ) be a projective HT-drawing of G on S2 and let P
be a subgraph of G such that every cycle in P is trivial. Then there is a set
U ⊆ V (P ) with the following property. Let (DU , λU) be obtained from (D,λ) by
the vertex-crosscap switches over all vertices of U (in any order). Then (DU , λU)
is a projective HT-drawing of G on S2 and λU(e) = 0 for every e ∈ E(P ).

Proof. The drawing (DU , λU) is a projective HT-drawing by Lemma 2.11. Let
F be a spanning forest of P , the union of spanning trees of each connected
component of P rooted arbitrarily. We first make λ(e) = 0 for each edge e of F
as follows: we do a breadth-first search13 on each tree in F starting in its root;
whenever an edge e ∈ F with λ(e) = 1 is encountered, we perform a vertex-
crosscap switch on the endpoint of e farther from the root of the tree. Let λU be
the resulting map, which is zero on the edges of F . Each edge e in E(P ) \E(F )
belongs to a cycle Z such that Z − e ⊆ F . Since λU(Z) = λ(Z) = 0, we have
λU(e) = 0 as well.

13See, e.g., the book by Aho, Hopcroft, and Ullman [1].
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2.2 Separation theorem
In this section, we state the separation theorem announced in ‘Introduction’ to-
gether with auxiliary tools needed for its proof. At the end, we also prove the
separation theorem assuming the validity of the auxiliary tools, which will be
proven in the remainder of the chapter.

As it was explained in ‘Introduction’, a simple cycle Z such that every edge
of Z is even (in a drawing in the plane) splits the graph into the outside and the
inside. We first introduce a notation related to this splitting.

Definition 2.13 (The inside and the outside graph). Let G be a graph and D be
a drawing of G on S2. Let us assume that Z is a cycle of G such that every edge
of Z is even and it is drawn as a simple cycle in D. Let S+ and S− be the two
components of S2 \D(Z).

We call a vertex v ∈ V (G) \ V (Z) an inside vertex if it belongs to S+ and an
outside vertex otherwise.

Given an edge e = uv ∈ E(G) \E(Z), we say that e is an inside edge if either
u is an inside vertex, or if u ∈ V (Z) and D(e) points locally to S+ next to D(u).
Analogously we define an outside edge.14

We let V + and E+ be the sets of the inside vertices and the inside edges,
respectively. Analogously, we define V − and E−. We also define the graphs
G+0 := (V + ∪ V (Z), E+ ∪ E(Z)) and G−0 := (V − ∪ V (Z), E− ∪ E(Z)).

Now, we may formulate the main technical tool—the separation theorem for
projective HT-drawings.

Theorem 2.14. Let (D,λ) be a projective HT-drawing of a 2-connected graph G
on S2 and Z be a cycle of G that is simple in D and such that every edge of Z
is even. Moreover, we assume that every edge e of Z is trivial, that is, λ(e) = 0.
Then there is a projective HT-drawing (D′, λ′) of G on S2 satisfying the following
properties.

• The drawings D and D′ coincide on Z.

• The cycle Z is completely free of crossings and all of its edges are trivial in
D′.

• D′(G+0) is contained in S+ ∪D′(Z).

• D′(G−0) is contained in S− ∪D′(Z).

• All edges of G+0 or all edges of G−0 are trivial (according to λ′); that is, at
least one of the drawings D′(G+0) or D′(G−0) is an ordinary HT-drawing
on S2.

The assumption that G is 2-connected is not essential for the proof of Theo-
rem 2.14, but it will slightly simplify some of the steps. For our application, it
will be sufficient to prove the 2-connected case.

In the remainder of this section, we describe the main ingredients of the proof
of Theorem 2.14 and we also derive the theorem using the ingredients. We will

14It turns out that every edge e ∈ E(G) \ E(Z) is either an outside edge or an inside edge,
since every edge of Z is even.
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often encounter the setting when G, (D,λ) and Z satisfy the assumptions of
Theorem 2.14:

Definition 2.15 (Separation assumptions). We say that G, (D,λ) and Z satisfy
the separation assumptions if the following conditions are met at once:

• G is a 2-connected graph.

• (D,λ) is a projective HT-drawing of G.

• Z is a cycle in G drawn as a simple cycle in D.

• every edge of Z is even in D and trivial.

Arrow graph. From now on, let us fixG, (D,λ) and Z satisfying the separation
assumptions. Before we move on, let us recall a definition of a bridge from graph
theory (see, e.g., Mohar and Thomassen [20, p. 7], where the bridges considered
here are called ‘Z-bridges’.)

Definition 2.16 (Bridges). A bridge B of G (with respect to Z) is a subgraph
of G that is either an edge not in Z, but with both endpoints in Z (and its
endpoints also belong to B), or a connected component of G−V (Z) together with
all edges (and their endpoints in Z) with one endpoint in that component and the
other endpoint in Z.

The distinction between the outside and the inside fixed by G, (D,λ) and Z
satisfying the separation assumptions allows us to distinguish between the bridges
inside and outside:

Definition 2.17 (Inside/outside bridges and proper walks). We say that B is an
inside bridge if it is a subgraph of G+0, and similarly, an outside bridge if it is a
subgraph of G−0

A walk ω in G is a proper walk if no vertex in ω belongs to V (Z), except
possibly its endpoints, and no edge of ω belongs to E(Z). In particular, each
proper walk belongs to a single bridge.

As a consequence of the definitions, every bridge is either an inside bridge,
or an outside bridge. Moreover, since we assume that G is 2-connected, every
inside/outside bridge contains at least two vertices of Z. The bridges induce
partitions of E(G) \ E(Z) and of V (G) \ V (Z). See Figure 2.6.

We want to record which pairs of vertices on V (Z) are connected with a non-
trivial and proper walk inside or outside15. In order to do this, we create two
new multi-graphs A+ and A−, possibly with loops, but without multiple edges.
In order to distinguish these graphs from G, we draw their edges with double
arrows and we call them an inside arrow graph and an outside arrow graph,
respectively. The edges of these graphs are called the inside/outside arrows. We
set V (A+) = V (A−) = V (Z).

Now we describe the arrows, that is, E(A+) and E(A−). Let u and v be
two vertices of V (Z), not necessarily distinct. By W+

uv we denote the set of all
proper, non-trivial walks in G+0 with endpoints u and v. We have an inside arrow

15We recall that non-trivial walks are defined in Section 2.1 below Corollary 2.9.
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Z

Figure 2.6: An example of a graph with five inside bridges—marked by different
colours. The vertices that belong to several inside bridges are in black.

Figure 2.7: The inside and the outside arrows (right) corresponding to the pro-
jective HT-drawing of K5 (left) derived from its drawing in Figure 2.2, left.

connecting u and v in E(A+) if and only if W+
uv is non-empty. To distinguish the

edges of G from the arrows, we denote an arrow by uv = vu. An arrow which is a
loop at a vertex v is denoted by vv. This often allows one to work with arrows uv
without distinguishing between the cases u = v or u ̸= v. Analogously, we define
the set W−

uv and the outside arrows. See Figure 2.7 for the arrow graph(s) of the
projective HT-drawing of K5 corresponding to its drawing on RP 2 depicted in
Figure 2.2, left.

It follows from the definition of the inside bridges that any walk ω ∈ W+
uv

stays in one inside bridge. Given an inside bridge B, we let W+
uv,B be the set

of all walks ω ∈ W+
uv which belong to B. In particular, W+

uv decomposes into
the disjoint union of the sets W+

uv,B1 , . . . ,W
+
uv,Bk

where B1, . . . , Bk are all inside
bridges. Given an inside arrow uv and an inside bridge B, we say that B induces
uv if W+

uv,B is non-empty. (Note that an arrow can be induced by more than one
bridge.) An inside bridge B is non-trivial if it induces at least one arrow. Given
two inside arrows uv and xy, we say that uv and xy are induced by different
bridges if there are two different inside bridges B and B′ such that B induces uv
and B′ induces xy. As usual, we define analogous notions for the outside as well.
Note that it may happen that there is an inside bridge inducing both uv and xy
even if uv and xy are induced by different bridges.

Possible configurations of arrows. We plan to utilise the arrow graph in
the following way. On the one hand, we will show that certain configurations of
arrows are not possible; see Figure 2.8. On the other hand, we will show that,
since the arrow graph does not contain any of the forbidden configurations, it
has to contain one of the configurations in Figure 2.9 inside or outside. These
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Figure 2.8: Forbidden configurations of arrows. The cyclic order along the cycle
Z (in blue) in (a) may be arbitrary, whereas it is important in (b) that the arrows
there do not interleave. Different dashing of lines in (b) correspond to arrows
induced by different inside bridges. The arrows of the same colour in (c) are
induced by the same bridge.

configurations are precisely defined in Definition 2.21 below.
We will also show that the configurations in Figure 2.9 are redrawable, that

is, they may be redrawn without using the crosscap. The precise statement for
redrawings is given by Proposition 2.23 below.

Specifically, we prove three lemmas forbidding the configurations of arrows
depicted in Figure 2.8. We emphasize that in all these lemmas we assume that
the notions used there correspond to a fixed G, (D,λ) and Z satisfying the
separation assumptions.

Lemma 2.18. Every inside arrow shares a vertex with every outside arrow.

Every inside arrow shares a vertex with every outside arrow.

Lemma 2.19. Let ab and xy be two arrows induced by different inside bridges
of G+0. If the two arrows do not share an endpoint, their endpoints have to
interleave along Z.

Lemma 2.20. There are no three distinct vertices a, b, c on Z, an inside bridge
B+ and an outside bridge B− such that B+ induces the arrows ab and ac (and
no other arrows) and B− induces the arrows ab and bc (and no other arrows).

We prove the three lemmas above in Section 2.5. By symmetry, Lemmas 2.19,
2.20 and 2.18 are also valid if we swap the inside and the outside.

We are ready to describe the redrawable configurations.

Definition 2.21 (Redrawable configurations of arrows). We say that G forms

(a) an inside fan if there is a vertex common to all inside arrows. The arrows
may come from various inside bridges.

(b) an inside square if it contains four vertices a, b, c and d ordered in this
cyclic order along Z and the inside arrows are precisely ab, bc, cd and ad. In
addition, we require that the inside graph G+0 has only one non-trivial inside
bridge.

92



(a) (b)

a

b

c

d

(c)

a

b

c

x

y1 yk

x

y1 yk

y2 y2

Figure 2.9: Schematic drawings of the redrawable configurations of arrows from
Definition 2.21. Different dashing of lines correspond to different inside bridges.
The loop in the right drawing (a) is an inside loop (drawn outside due to lack of
space). The drawing (c) is only one instance of an inside split triangle.

(c) an inside split triangle if there exist three vertices a, b, and c such that the
inside arrows of G are ab, ac and bc. In addition, we require that every non-
trivial inside bridge induces either the two arrows ab and ac, or just a single
arrow.

See Figure 2.9. We use analogous definitions for an outside fan, outside square
and outside split triangle.

We note that the notions in Definition 2.21 depend on G, (D,λ) and Z satis-
fying the separation assumptions.

A relatively direct case analysis using Lemmas 2.18, 2.19 and 2.20 reveals the
following fact.

Proposition 2.22. Let (D,λ) be a projective HT-drawing on S2 of a graph G
and let Z be a cycle in G satisfying the separation assumptions. Then G forms
an (inside or outside) fan, square, or split triangle.

On the other hand, any configuration from Definition 2.21 can be redrawn
without using the crosscap:

Proposition 2.23. Let (D,λ) be a projective HT-drawing of G+0 on S2 and Z
be a cycle satisfying the separation assumptions. Moreover, let us assume that
D(G+0)∩S− = ∅ (that is, G+0 is fully drawn on S+ ∪D(Z)). Let us also assume
that G+0 forms an inside fan, an inside square or an inside split triangle. Then
there is an ordinary HT-drawing D′ of G+0 on S2 such that D coincides with D′

on Z and D′(G+0) ∩ S− = ∅.

Proposition 2.22 is proven in Section 2.4 assuming there the validity of Lem-
mas 2.18, 2.19 and 2.20. Proposition 2.23 is proven in Section 2.6.

Now we are missing only one tool to finish the proof of Theorem 2.14—the ‘re-
drawing procedure’ of Pelsmajer et al. [22]. More precisely, we need the following
variant of Theorem 2.5.

Theorem 2.24. Let D be a drawing of a graph G on the sphere S2. Let Z be a
cycle in G such that every edge of Z is even and Z is drawn as a simple cycle.
Then there is a drawing D′′ of G such that

• D′′ coincides with D on Z,
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D D′′ D+ D′

Z

Figure 2.10: Redrawing a projective HT-drawing ofK5 analogously to the drawing
in Figure 2.2.

• D′′(G+0) belongs to S+ ∪D(Z) and D′′(G−0) belongs to S− ∪D(Z)

• and whenever (e, f) is a pair of edges such that both e and f are inside
edges or both e and f are outside edges, then crD′′(e, f) = crD(e, f).

It is easy to check that the proof of Theorem 2.5 by Pelsmajer et al. [22] proves
Theorem 2.24 as well. Additionally, we note that an alternative proof of Theo-
rem 2.5 by Fulek et al. [10, Lem. 3] can also be extended to yield Theorem 2.24.
Nevertheless, for completeness, we provide its proof in Section 2.7.

Finally, we prove the separation theorem (Theorem 2.14) assuming the validity
of the aforementioned auxiliary results.

Proof of Theorem 2.14. Let G be the graph, (D,λ) be the drawing and Z be the
cycle from the statement.

We use Theorem 2.24 with G and D to obtain a drawing D′′ keeping in mind
that all edges of Z are even. This is depicted in Figure 2.10, left; the following
steps of the proof are illustrated there as well. We get that Z is drawn on D′′

as a simple cycle free of crossings. We also get that D′′(G+0) is contained in
S+ ∪ D′′(Z) and D′′(G−0) is contained in S− ∪ D′′(Z). However, there may be
no λ′′ for which (D′′, λ′′) would be a projective HT-drawing; we still may need to
modify it to obtain such a drawing.

By Proposition 2.22 applied to (D,λ), G forms one of the redrawable configu-
rations on one of the sides; that is, an inside/outside fan, square or split triangle.
Without loss of generality, it appears inside. It means that D′′ restricted to G+0

satisfies the assumptions of Proposition 2.23. Therefore, there is an ordinary HT-
drawing D+ of G+0 satisfying the conclusions of Proposition 2.23. Finally, we let
D′ be the drawing of G on S2 which coincides with D+ on G+0 and with D′′ on
G−0. Both D′′ and D+ coincide with D on Z; therefore, D′ is well defined. We
set λ′ so that λ′(e) := λ(e) for an edge e ∈ E− and λ′(e) := 0 for any other edge.

Now we verify that (D′, λ′) is the required projective HT-drawing. Let e and
f be independent edges. If both e and f are inside edges, then crD′(e, f) =
crD+(e, f) = 0 = λ′(e)λ′(f), since D+ is an ordinary HT-drawing. If both e
and f are outside edges, then crD′(e, f) = crD′′(e, f) = crD(e, f) = λ(e)λ(f) =
λ′(e)λ′(f). Finally, if one of this edges is an inside edge and the other is an outside
edge, then crD′(e, f) = 0 = λ′(e)λ′(f), because D′(e) and D′(f) are separated by
D′(Z).
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2.3 Proof of the strong Hanani–Tutte theorem
on RP 2

In this section we prove Theorem 2.4 assuming validity of Theorem 2.14 as well
as some of the auxiliary results presented in the previous section, which will be
proven only in the later sections.

Given a graph G that admits an HT-drawing on the projective plane, we need
to show that G is actually projective-planar. By Corollary 2.9, we may assume
that G admits a projective HT-drawing (D,λ) on S2. We aim to use Theo-
rem 2.14. For this, we need that G is 2-connected and contains a suitable trivial
cycle Z that may be redrawn so that it satisfies the assumptions of Theorem 2.14.
Therefore, we start with auxiliary claims that will bring us to this setting. Many
of them are similar to auxiliary steps of Pelsmajer et al. [22]; sometimes they are
almost identical, only adapted to a new setting.

Before we state the next lemma, we recall the well-known fact that any graph
admits a unique decomposition into blocks of 2-connectivity; see, e.g., Diestel
[7, Ch. 3]. Each block in the decomposition is either a vertex, an edge or a 2-
connected graph with at least three vertices. Here, we also allow the case that G
is disconnected. A block is a single vertex if and only if the vertex is isolated. The
intersection of two blocks is either empty, or it contains a single vertex, which is
a cut in the graph. The blocks of the decomposition cover all vertices and edges.
A vertex may occur in several blocks, whereas each edge belongs to a unique
block.

Lemma 2.25. If G admits a projective HT-drawing on S2, then at most one
block of 2-connectivity in G is non-planar. Moreover, if all blocks are planar, G
is planar as well.

We note that Schaefer and Štefankovič [28] proved that a minimal counterex-
ample to the strong Hanani–Tutte theorem on any surface is (vertex) 2-connected.
However, for the projective plane the same result can be obtained by much simpler
means; therefore, we include its proof here.

Proof. First, for contradiction, let us assume that G contains two distinct non-
planar blocks B1 and B2. If B1 and B2 are disjoint, then Lemma 2.10 implies
that at least one of these blocks, say B2, does not contain any non-trivial cycle.
However, it means that B2 admits an ordinary HT-drawing on S2 by Lemma 2.12.
Therefore, B2 is planar by the strong Hanani–Tutte theorem in the plane (The-
orem 2.1). This contradicts our original assumption. It remains to consider the
case when B1 and B2 share a vertex v (it must be a cut vertex). Let us set
H := B1 ∪B2. Let P be a spanning tree of H with just two edges e1, e2 incident
to v and such that e1 ∈ B1 and e2 ∈ B2. Note that such a tree always exists,
because B1 and B2 are connected after removing v. By Lemma 2.12 we may
assume that all the edges of P are trivial, after a possible alteration of λ.

Since P is a maximal subgraph of H not containing a cycle, any non-trivial
edge e from E(H)\E(P ) creates a non-trivial cycle in the corresponding block. If
e is not incident to v, then the cycle avoids v by the choice of P . This means that,
by Lemma 2.10, at least one of the blocks, say B2, satisfies that all its non-trivial
edges are incident with v. It follows that B2 is a planar graph, because D is an
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Figure 2.11: Local changes to make all edges of Z even. The original drawing of
the edge near v is dotted.

HT-drawing of B2 on S2 (there is no pair of non-trivial independent edges in G).
This is again a contradiction.

The last item in the statement of this lemma is a well-known property of planar
graphs—a disjoint union of two planar graphs is a planar graph, and moreover,
if a graph G contains a cut vertex v and all the components after cutting (and
reattaching v) are planar, then G is planar as well.

Observation 2.26. Let (D,λ) be a drawing of a 2-connected graph G. If D does
not contain any trivial cycle, then G is planar.

Proof. As G is 2-connected, it is either a cycle, or it contains three disjoint paths
sharing their endpoints (see, e.g., Diestel [7, Prop. 3.1.2]). A cycle is a planar
graph as we need. In the latter case, two of the paths are both trivial or both non-
trivial. Together, they induce a trivial cycle, therefore this case cannot occur.

Lemma 2.27. Let (D,λ) be a projective HT-drawing on S2 of a graph G and
let Z be a cycle in G. Then G can be redrawn only by local changes next to the
vertices of Z to a projective HT-drawing D′ on S2 in such a way that λ remains
unchanged and crD′(e, f) = λ(e)λ(f) for any pair (e, f) ∈ E(Z)×E(G) of distinct
(not necessarily independent) edges. In particular, if λ(e) = 0 for every edge e of
Z, then every edge of Z becomes even in D′.

Proof. Since we have a projective HT-drawing, crD(e, f) = λ(e)λ(f) for every
pair of independent edges. To prove the claim we need to show that local changes
allow us to change the parity of crD(e, f) whenever e is an edge of Z and e and
f share a vertex.

This can be done in two steps. First, we use local move c) from Figure 2.11
to obtain the desired parity of crD(e, f) for all pairs of consecutive edges (e, f)
on Z. This move may change the parity of crossings between edges on Z and
dependent edges not on Z.

Next, we use local moves a) and b) from Figure 2.11 to obtain the desired
parity of crossings between edges on Z and dependent edges not on Z. If v is
the vertex common to h, e and f , where e and f are edges on Z, move a) is
used to change the parity of crD(e, h) and its symmetric version to change the
parity of crD(f, h). Move b) is used to change the parity for both crD(e, h) and
crD(f, h). Since these moves do not change the parity of crD(e, h′) or crD(f, h′)
for any other edge h′, the claim follows.

Once we know that the edges of a cycle can be made even, we also need to
make such a cycle simple.
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Figure 2.12: Almost contracting an edge.

Lemma 2.28. Let (D,λ) be a projective HT-drawing on S2 of a graph G and let
Z be a cycle in G such that each of its edges is even. Then G can be redrawn so
that Z becomes a simple cycle, its edges remain even and the resulting drawing is
still a projective HT-drawing (with λ unchanged).

Proof. First, we want to get a drawing such that there is only one edge of Z which
may be intersected by other edges. Let us consider three consecutive vertices u,
v and w on Z, with v ̸∈ {u,w}. We almost-contract uv in the following way:
we move the vertex v and the edges incident to v towards u until we remove all
intersections between uv and other edges. Note that the image of the cycle Z is
not changed; we only slide v towards u along the drawing of Z. This way, uv
becomes free of crossings and its former crossings appear on vw instead. See the
two leftmost pictures in Figure 2.12 (the right picture will be used in the proof
of Theorem 2.24).

Since uv as well as vw were even edges in the initial drawing, vw remains even
after the redrawing. Similarly, the parity of the number of crossings between the
edges incident to v and other edges is not affected. If uv and vw intersected, then
this step introduces self-intersections of vw.

After performing such redrawing repeatedly, we get that there is only one edge
of Z which may be intersected by other edges, as required. We remove possible
self-crossings of this edge and the other edges incident with v, as described in
‘Background and notation’.

Apart from lemmas tailored to set up the separation assumptions (see Defi-
nition 2.15), we also need one more lemma that will be useful in the inductive
proof of Theorem 2.4.

Lemma 2.29. Let G, (D,λ) and Z satisfy the separation assumptions (see Def-
inition 2.15). Let B be an inside bridge such that every proper path in B with
both endpoints on V (B) ∩ V (Z) is non-trivial. Then |V (B) ∩ V (Z)| = 2 and B
induces a single arrow and no loop.

Proof. First, we show that there is no non-trivial cycle in B. For contradiction,
there is a non-trivial cycle N in B. By the 2-connectivity of G there exist two
vertex disjoint paths p1 and p2, possibly of length zero, that connect Z to N . We
consider shortest such paths; thus, each of the paths shares only one vertex with
Z and one vertex with N . Let y1 and y2 be the endpoints of p1 and p2 on N ,
respectively. Let p3, p4 be the two arcs of N between y1 and y2. We consider two
paths q1 and q2: q1 is obtained from the concatenation of p1, p3 and p2, while q2
is defined as the concatenation of p1, p4 and p2. Since N is non-trivial, one of
these paths has to be trivial, which provides the required contradiction.

Next, we observe that B does not induce any loop in the inside arrow graph
A+. For contradiction, it induces a loop at a vertex x ∈ V (Z). This means that
there is a closed, proper and non-trivial walk κ in B containing x. We choose
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κ as the shortest such walk. We already know that κ cannot be a cycle, thus it
contains a closed non-empty subwalk κ′. Again, we choose κ′ as the shortest such
subwalk. Therefore, κ′ must be a cycle; by the previous part of this proof, it is
trivial. However, it means that κ can be shortened by leaving out κ′, which is
the required contradiction.

Now we show that |V (B) ∩ V (Z)| = 2. By the 2-connectedness of G, we
have that |V (B) ∩V (Z)| ≥ 2. Thus, for contradiction, let a, b, c be three distinct
vertices of V (B) ∩ V (Z). Let v be one of the inner vertices of B; there must be
such a vertex, since B cannot be a single edge in this case. By the definition of
inside/outside bridges, there exist proper walks pa, pb and pc connecting v to a, b
and c, respectively. By the pigeonhole principle, two of the walks have the same
value of λ; without loss of generality, let λ(pa) = λ(pb). Hence, the proper walk
obtained from the concatenation of pa and pb is trivial. Since B does not contain
any non-trivial cycle, this walk can be shortened to a trivial proper path between
a and b by an argument analogous to the one used in the previous paragraph;
a contradiction.

Finally, we know that there are two vertices in V (B) ∩ V (Z); let us write x
and y for them. Since any path connecting x and y is non-trivial, B induces the
arrow xy in A+. No other arrow in A+ induced by B is possible, since there are
no loops.

Proposition 2.30 below is the main tool for deriving Theorem 2.4 from Theo-
rem 2.14. It is set up in a way suitable for an induction based on Theorem 2.14.

Proposition 2.30. Let (D,λ) be a projective HT-drawing of a 2-connected graph
G on S2 and Z be a cycle in G that is completely free of crossings in D and such
that each of its edges is trivial in D. Assume that (V +, E+) or (V −, E−) is empty
(recall the notation from Definition 2.13). Then G can be embedded into RP 2 so
that Z bounds a face in the resulting embedding homeomorphic to a disk. If, in
addition, D is an ordinary HT-drawing on S2, then G can be embedded into S2

so that Z bounds a face of the resulting embedding16.

We need to consider the case of ordinary HT-drawings in this proposition for
a well-working induction.

Proof. The proof proceeds by induction on the number of edges of G. The base
case is when G is a cycle.

Without loss of generality, we assume that (V −, E−) is empty, i.e., G = G+0.
If (V +, E+) is also empty, G consists only of Z and such a graph can easily be
embedded into the sphere or the projective plane as required. Therefore, we
assume that (V +, E+) is non-empty.

We find a path γ in (V (G+0), E(G+0) \E(Z)) connecting two points x and y
lying on Z. We may choose x, y so that x ̸= y, since G is 2-connected. There are
two cases to consider.

Case 1: There exists a trivial γ. First we solve the case that at least one
such path γ is trivial. We show that all edges of γ can be made even and simple

16This face is again homeomorphic to a disk—there is, in fact, no other option on S2.
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Figure 2.13: Local changes at u. The original drawing of the edge is dotted, Z is
depicted in blue, f (as a part of γ) in red. The changed edge in green.

in the drawing, while keeping Z simple and free of crossings in the drawing and
the whole drawing stays a projective HT-drawing of G+0.

As the first step, we use Lemma 2.12 in order to ensure that λ(e) = 0 for
every edge e ∈ E(Z) ∪ E(γ). Inspecting the proof of Lemma 2.12 we see that
this can be achieved by performing vertex-crosscap switches only over the inner
vertices of γ—it is sufficient to set up the root in the proof of Lemma 2.12 to
be one of the endpoints of γ (the edges of Z are already trivial by assumption).
We can perform the vertex-crosscap switches in S+, which is determined by Z,
without affecting Z.

Now we want to make the edges of γ even, but again without affecting Z.
First, for every pair (e, f) of adjacent edges of γ which intersect oddly, we locally
perform the move c) from Figure 2.11 similarly as in Lemma 2.27. Next, we
consider an edge e /∈ E(γ) adjacent to a vertex u ∈ V (γ) \ V (Z). For such an
edge we can perform one of the moves a) or b) depicted in Figure 2.11, if needed,
so that e then intersects evenly each of the two edges of γ incident with u. Finally,
we consider an edge e /∈ E(γ)∪E(Z) adjacent to u ∈ {x, y}, one of the endpoints
of γ on Z. Let f be the edge of γ incident with u. If e and f intersect oddly, we
perform the move from Figure 2.13. This is possible since Z is free of crossings.
This way we achieve that every edge of γ becomes even.

As the last step in redrawing γ, we want to make γ simple (again without
affecting Z). This can be done in the same way as in the proof of Lemma 2.28.
We almost-contract all but on edge of γ so that there remains only one edge of
γ that may intersect other edges. Then we remove possible self-intersections, as
described in ‘Background and notation’.

The rest of the argument is easier to explain if we switch inside and outside
(this is easily doable by a homeomorphism of S2) and treat drawings on S2 as
drawings in the plane.

We may assume that, after a homeomorphism, Z is drawn in the plane as a
geometric circle with its inner region empty and with x and y antipodal17. The
vertices x and y split Z into two paths; we denote by p1 the ‘upper’ one and by p2
the ‘lower’ one. We may also assume that γ is ‘above’ p1 by adapting the initial
choice of the correspondence between S2 and the plane, if necessary.

Now we continuously deform the plane in such a way that Z becomes flatter
and flatter until it coincides with the line segment connecting x to y, as depicted
in Figure 2.14, part a). We may further require that no inner vertex of p1 was
identified with an inner vertex of p2.

This way, we get a projective HT-drawing (D̄, λ̄) of a new graph Ḡ: all the
vertices of G remain present in Ḡ, that is, V (G) = V (Ḡ). Also the edges of G

17That is, x and y are the opposite points on the circle representing Z.

99



p1

p2

x
y

x

yp

Z̄

γ

a) b) c)

d) e)

G Ḡ
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Figure 2.14: The deformation of the plane that changes G into Ḡ, the redrawing
of Ḡ and the resulting embeddings of Ḡ and G.

which are not on Z are present in Ḡ. Only some of the edges of Z may disappear
and they are replaced with edges forming a path p between x and y. Note that we
have not introduced any parallel edges, because there is no edge in G connecting
an inner vertex of p1 with an inner vertex of p2 (such an edge would have to cross
γ oddly). It also turns out that Ḡ has one edge less than G. Regarding λ̄, we
have λ(e) = λ̄(e) if e ∈ E(G) \ E(Z) and we have λ̄(e) = 0 if e ∈ E(p).

Now consider the cycle Z̄ in Ḡ formed by γ and p. It is trivial and simple. In
particular, it splits the plane into the inside and the outside as in Definition 2.13.
For example, Ḡ+0 corresponds to the part of G in between γ and p1 before the
flattening; see Figure 2.14, parts a) and b).

Next, we apply Theorem 2.14 and get a drawing D′ of Ḡ. Looking at the
two sides of Ḡ separately, we see a projective HT-drawing on one of the sides
and an ordinary HT-drawing on S2 on the other side. If, in addition, D was
already an ordinary HT-drawing, we get an ordinary HT-drawing on both sides
by Theorem 2.24. Without loss of generality, we assume that Ḡ+0 is the part that
may be drawn as a projective HT-drawing.

Note also that since G was 2-connected, both parts of Ḡ are 2-connected
as well. Subsequently, we examine each of these two parts separately and use
the inductive hypothesis; we obtain an embedding of Ḡ+0 into RP 2 such that
Z̄ bounds a face homeomorphic to a disk as well as an embedding of Ḡ−0 into
S2 such that Z̄ bounds a face homeomorphic to a disk. If, in addition, D was
already an ordinary HT-drawing, we get also the required embedding of Ḡ+0 into
S2. We merge the two embeddings along Z̄ and obtain an embedding of Ḡ into
RP 2 (or S2 if D was an ordinary HT-drawing). See Figure 2.14, parts c) and d).

Finally, we need to undo the identification of p1 and p2, which created p.
Whenever we consider a vertex v ∈ V (p) different from x and y, it is uniquely
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determined whether it comes from p1 or p2. In addition, if v comes from p1, then
every edge e ∈ E(G) \ E(Z) incident with v must belong to Ḡ+0. Similarly, if
v comes from p1, then each edge e ∈ E(G) \ E(Z) incident with v must belong
to Ḡ−0. Therefore, it is possible to undo the identification and get the required
embedding of G. See Figure 2.14, part e).

Case 2: All choices of γ are non-trivial. Now we deal with a situation in
which all possible choices of γ are non-trivial. Let us consider the inside arrow
graph A+. Since all choices of γ are non-trivial, Lemma 2.29 shows that every
inside bridge induces a single inside arrow. This will allow us to redraw inside
bridges separately in a way described in the following claim.

Claim 2.30.1. For every inside bridge B there exists a planar drawing of Z ∪B
in which Z is the outer face.

Proof. Since we know that B induces only a single arrow, we get that Z∪B forms
an inside fan according to Definition 2.21. It follows from Proposition 2.23 that
Z ∪ B admits an ordinary HT-drawing such that Z is an outer cycle. However,
the setting of ordinary HT-drawings is already fully resolved in Case 1. That is,
we may already use Proposition 2.30 for this drawing and we get the required
conclusion.

Consider the graph A+0 obtained by adding the edges of Z to A+, where A+

is the inside arrow graph. Note that V (A+) = V (Z) according to the definition
of the arrow graph.

Now our aim will be to find an embedding of A+0 into RP 2 in which Z
bounds a face. Once we achieve this, we can replace an embedding of each arrow
by the embedding of inside bridges inducing this arrow via Claim 2.30.1 in a close
neighbourhood of the arrow. If there are more inside bridges inducing the arrow,
they are embedded in parallel.

Finally, we show that it is possible to embed A+0 in the required way. By
Lemma 2.19, any two disjoint arrows interleave.

Let us consider two concentric closed disks E1 and E2 such that E1 belongs to
the interior of E2. Let us draw Z on the boundary of E1. Let a be the number of
arrows of A+ and let us consider 2a points on the boundary of E1 placed to form
the vertices of a regular 2a-gon. These points will be marked by ordered pairs
(x, y) where xy is an inside arrow. We mark the points in such a way that the
cyclic order of the vertices from the first co-ordinate of the marks on the points
respects the cyclic order of V (Z) along Z. In particular, marks with the same first
co-ordinate are consecutive. However, for a fixed x, the marks (x, y1), . . . (x, yk)
corresponding to all arrows emanating from x are ordered in the reversed order
when compared with the order of y1, . . . , yk along Z. See Figure 2.15.

We show that the points marked (x, y) and (y, x) have to be the opposite
points on E1 for every inside arrow xy. For contradiction, let us assume that
(x, y) and (y, x) are not opposite for some xy. Then there is another arrow uv
such that the marks (x, y) and (y, x) do not interleave with (u, v) and (v, u)—such
an arrow exists, because the arrows induce a pairing of the vertices of E1, and
(x, y) and (y, x) do not split the vertices of E1 equally. However, if xy and uv do
not share an endpoint, we get a contradiction with the fact that disjoint arrows
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Figure 2.15: Redrawing the case in which every inside bridge induces a single
arrow.

interleave; see Lemma 2.19. If xy and uv share an endpoint, we get a contradiction
with the fact that we have reversed the order in the second co-ordinate of marks.

Now we get the required drawing, as depicted in Figure 2.15, in the following
way. For an arrow xy we connect x with the point (x, y), and similarly, y with
(y, x). We can add all such connections simultaneously for all arrows without
introducing any crossings, since we have respected the cyclic order of V (Z) along
Z in the first co-ordinate of marks. We remove the interior of E1 and we identify
the pairs of opposite points on the boundary. This way we introduce a crosscap
(see ‘Background and notation’). Finally, we glue another disk along the bound-
ary of E2 to get a sphere with a crosscap; in other words, we get the required
drawing on RP 2.

Finally, we can prove Theorem 2.4.

Proof of Theorem 2.4. We prove the result by induction in the number of vertices
of G. We can trivially assume that G has at least three vertices. We consider
two cases depending on the connectedness of G.

If G has at least two blocks of 2-connectivity, G can be written as G1 ∪ G2,
where G1 ∩G2 is a minimal cut of G and, therefore, has at most one vertex. By
Lemma 2.25, we may assume that G1 is planar and G2 non-planar. By induction,
there exists an embedding D2 of G2 into RP 2. Consequently, G1 is planar, G2
is embeddable into RP 2 and G1 ∩ G2 has at most one vertex. From these two
embeddings we can easily derive an embedding of G = G1 ∪G2 in RP 2.

We are left with the case that G is 2-connected. By Observation 2.26, we
may assume that there is at least one trivial cycle Z in (D,λ). We can also make
each of its edges trivial by Lemma 2.12 and even by Lemma 2.27. In addition,
we make Z simple using Lemma 2.28. Hence G, Z and the current projective
HT-drawing satisfy the separation assumptions (see Definition 2.15).

Now we use Z to redraw G as follows. First, we apply Theorem 2.14 to
get a projective HT-drawing (D′, λ′) that separates G+0 and G−0. We define
D+ := D′(G+0) and D− := D′(G−0). Without loss of generality, D− is an
ordinary HT-drawing on S2, while D+ is a projective HT-drawing on S2. Next,
we apply Proposition 2.30 established above to D+ and D− separately. Thus, we
get embeddings of G+0 and G−0—one of them in S2, the other one in RP 2. In
addition, Z bounds a face in both of them; hence, we can easily glue them to get
an embedding of the whole graph G into RP 2.
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2.4 Labellings of inside/outside bridges and the
proof of Proposition 2.22

In this section, given an inside (or outside) bridge B, we first describe what are
possible combinations of arrows induced by B. Then we use the obtained findings
to prove Proposition 2.22, assuming validity of Lemmas 2.18, 2.19 and 2.20, which
will be proved in Section 2.5.

Labelling the vertices of the bridges. To describe possible combinations of
arrows induced by a bridge B, we introduce certain labellings of V (B) ∩ V (Z).

Definition 2.31 (Labelling of V (B)∩V (Z)). Let B be a bridge. A valid labelling
L = LB for B is a mapping L : V (B) ∩V (Z) → {{0}, {1}, {0, 1}} obtained in the
following way.

If V (B)\V (Z) ̸= ∅ we pick a reference vertex vB ∈ V (B)\V (Z) for L. Then
we fix a labelling parameter αB ∈ Z2 for L. Finally, for any u ∈ V (B) ∩ V (Z)
and for any proper walk ω with endpoints u and vB, the vertex u receives the label
αB + λ(ω) ∈ Z2. Note that u may receive two labels after considering all such
walks. On the other hand, each vertex of V (B) ∩ V (Z) obtains at least one label,
which follows from the definition of bridges (Definition 2.16).

If V (B) ⊆ V (Z), then B comprises of only one edge e = uv connecting
two vertices of V (Z). In this case, there are two valid labellings for B. We set
L(u) = {αB} and L(v) = {λ(e) + αB} for a chosen labelling parameter αB ∈ Z2.
We do not define a reference vertex in this case.

We often refer to a valid labelling only as to labelling. We use the word valid
when we want to emphasize that we do not consider arbitrary assignment of
zeroes and ones to V (B) ∩ V (Z).

If the bridge B is understood from the context, we may write just v instead
of vB for the reference vertex and α instead of αB for the labelling parameter.
Switching the choice of α in the definition we swap all labels. This means that
there are at least two valid labellings for a given bridge, unless all the labels are
{0, 1}. On the other hand, as will be explained below, a different choice of the
reference vertex either does not influence the resulting labelling, or has the same
effect as swapping the value of the labelling parameter α.

To see this, consider a vertex u ∈ V (B) \ V (Z) different from v = vB. By
Definition 2.16, there is a proper uv-walk γ in B, which has to be disjoint from Z.
Now for any x ∈ V (B) ∩ V (Z) and every proper xv-walk ωxv in B, the concate-
nation of the walks ωxv and γ is a proper xu-walk in B of type λ(ωxv) + λ(γ).
Moreover, for any proper xu-walk ωxu in B, the concatenation of the walks ωxu

and γ is a proper xv-walk in B of type λ(ωxu) + λ(γ). As a result, choosing u as
the reference vertex with α + λ(γ) as the labelling parameter leads to the same
labelling as the choice of v as the reference vertex with the labelling parameter α.
This idea can be used to establish the following simple, but useful observation.

Observation 2.32. Let B be a bridge such that V (B) \V (Z) ̸= ∅. Moreover, let
L be a valid labelling for B and v the reference vertex for L. Let x, y ∈ V (B) and
ω be a proper xy-walk in B. Then there is a proper xy-walk ω′ in B containing
the reference vertex v such that λ(ω) = λ(ω′).
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Proof. If ω contains inside/outside vertices, we choose one of them and denote it
by u.

In the case that ω does not contain any such vertex, then x ∈ V (Z) and
x = y, since B cannot consist of just one edge. That is, ω is the walk of length
zero with the single vertex x. In this case we choose u = x.

Now we find a proper uv-walk γ in B and use it as a detour. More precisely,
ω′ starts at x and follows ω to the first occurrence of u in ω. Then it goes to v
and back along γ. Finally, it continues to y along ω. It is clear that λ(ω) = λ(ω′).
By the choice of u, the walk ω′ is also proper.

The reason to introduce the labellings lies in the following property. Let LB

be a valid labelling of a bridge B. For any u,w ∈ V (B) ∩V (Z), there is an arrow
uw induced by B if and only if the vertices u and w were assigned different labels
by LB—this is proved in the next proposition. As usual, we state and prove the
proposition only for inside bridges, but the same result holds for outside bridges
analogously.

Proposition 2.33. Let B be an inside bridge and L be a valid labelling for B. Let
x, y ∈ V (B) ∩ V (Z) (possibly x = y). Then the inside arrow graph A+ contains
an arrow xy arising from B if and only if L(x) ∪ L(y) = {0, 1}.

Proof. It is straightforward to check the claim if B is just an edge e. Indeed, if
x ̸= y, then e = xy, and it defines the arrow xy arising from B if and only if
λ(e) = 1, which in turn happens if and only if L(x) ∪ L(y) = {0, 1} according to
Definition 2.31. If x = y, then xx is not induced by B and, at the same time,
|L(x) ∪ L(x)| = 1.

If V (B) \ V (Z) ̸= ∅, let v = vB be the reference vertex for L. First, let
us assume that L(x) ∪ L(y) = {0, 1}. Let us consider a proper xv-walk ωxv

and a proper vy-walk ωvy in B such that λ(ωxv) ̸= λ(ωvy). Such walks exist by
Definition 2.31, since L(x) ∪ L(y) = {0, 1}. Then the concatenation of ωxv and
ωvy yields a non-trivial walk, which belongs to W+

xy,B; therefore, xy is induced by
B.

On the other hand, let us assume that there is a non-trivial walk ω in W+
xy,B

defining the arrow xy. We know that ω is not just an edge, because it would mean
that B consisted only of that edge. By Observation 2.32, we may assume that ω
contains the reference vertex v. This vertex splits ω into two proper walks ω1 and
ω2, each containing at least one edge. Since λ(ω) = 1, we have λ(ω1) ̸= λ(ω2).
Consequently, L(x) ∪ L(y) = {0, 1}.

The argument from the last two paragraphs of the proof above can also be
used to establish the following lemma.

Lemma 2.34. Let B be a bridge and L be a valid labelling for B. Moreover, let
x, y ∈ V (B) ∩ V (Z) be two distinct vertices. If |L(x)| = |L(y)| = 1, then for any
two proper xy-walks ω1, ω2 in B we have λ(ω1) = λ(ω2).

Proof. If B contains just the edge xy, the observation is trivially true. Therefore,
we assume that there is the inside/outside reference vertex v ∈ V (B) for L. By
the assumption, every two proper xv-walks in B have the same λ-value. The
same holds also for proper vy-walks in B. By Observation 2.32, we can assume
that both ω1 and ω2 contain v. Then the lemma follows.
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Another useful consequence of Proposition 2.33 is the following description
of inside arrows induced by an inside bridge which does not induce any loop.
Similarly, it holds for the outside.

Lemma 2.35. Let B be an inside bridge which does not induce any loop. Then
the inside arrows induced by B form a complete bipartite graph. (One of the parts
is empty if B does not induce any arrow.)

Proof. Let us consider a valid labelling L for B. By Proposition 2.33, |L(x)| = 1
for any x ∈ V (B) ∩V (Z), since B does not induce any loop. By Proposition 2.33
again, the inside arrows induced by B form a complete bipartite graph, in which
one part corresponds to the vertices labelled 0 and the second part corresponds
to the vertices labelled 1.

We conclude this section a by a proof of Proposition 2.22, which asserts that,
given G, (D,λ) and Z satisfying the separation assumptions, the graph G forms
an (inside or outside) fan, square, or split triangle in the drawing D.

Proof of Proposition 2.22. We need to distinguish a few cases.
First, we consider the case when we have two disjoint inside arrows, but at

least one of them is a loop. In this case, it is easy to see that Lemma 2.18 implies
that G forms the outside fan and we are done; see Figure 2.16, part a).

Second, let us consider the case that we have two disjoint inside arrows ab
and cd which are not loops. Lemma 2.18 implies that the only possible outside
arrows are ac, ad, bc, bd. (In particular, there are no loops outside.) If there are
not two disjoint arrows outside, then G forms an outside fan and we are done.
Therefore, we may assume that there are two disjoint arrows outside, without loss
of generality, ac and bd (otherwise we swap a and b). By swapping outside and
inside in the previous argument, we get that only further possible arrows inside
are ad and bc.

Now we distinguish a subcase when there is an inside bridge inducing the
inside arrows ab and cd. In this case, ad and bc have to be inside arrows as well
by Lemma 2.35. By Lemma 2.18, we know that ac and bd are the only outside
arrows; in particular, they are induced by different outside bridges by a variant of
Lemma 2.35 for the outside. By Lemma 2.19 we see that they have to alternate.
That is, up to renaming of the vertices, we get the right cyclic order for an inside
square; see Figure 2.16, part b). In order to check that G indeed forms an inside
square, it remains to verify that G has only one non-trivial inside bridge. The
inside arrows are ab, bc, cd and ad. If any of these arrows, for example ab, is
induced by two bridges, then we get a contradiction with Lemma 2.19, in this
case on arrows ab and cd.

By swapping inside and outside we solve the subcase when there is an outside
bridge inducing the outside arrows ac and bd; we get that G forms an outside
square.

It remains to consider the subcase when ab and cd arise from different inside
bridges and ac and bd arise from different outside bridges. However, Lemma 2.19
applied to the inside and then to the outside reveals that these two events cannot
happen simultaneously.
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Figure 2.16: Schematic drawings of possible configurations of arrows. In a) only
some of the outside arrows may be present. In b) all the arrows in the first figure
must be present. The two crossed-out drawings are not possible.

Consequently, we have proved Proposition 2.22 in the case that there are two
disjoint inside arrows. Analogously, we resolve the case when we have two disjoint
arrows outside.

Finally, we consider the case when every pair of inside arrows shares a vertex
and every pair of outside arrows shares a vertex. If there is a vertex v common
to all the inside arrows, then we get an inside fan and we are done.

It remains to consider the last subcase when there is no vertex common to all
inside arrows while every pair of inside arrows shares a vertex. This leaves the
only option that there are three distinct vertices a, b and c on Z and all three
inside arrows ab, ac and bc are present; see Figure 2.9, part c). Then the only
possible outside arrows are ab, ac and bc as well due to Lemma 2.18. In addition,
we may assume that all three outside arrows ab, ac and bc are present; otherwise
we have an outside fan and we are done.

In the present case, an inside bridge can induce at most two arrows by
Lemma 2.35. Let us consider the three pairs of arrows {ab, ac}, {ab, bc}, and
{ac, bc}. If at most one of these pairs is induced by an inside bridge, then G
forms an inside split triangle and we are done. Analogously, we are done, if at
most one of these pairs is induced by an outside bridge. Therefore, it remains to
consider the case that at least two such pairs are induced by inside bridges and
at least two such pairs are induced by outside bridges. However, this contradicts
Lemma 2.20; see Figure 2.8, part c) as well.
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2.5 Forbidden configurations of arrows
In this section we show that certain combinations of arrows are not possible. That
is, we prove Lemmas 2.18, 2.19 and 2.20. As before, we have a fixed graph G, its
drawing (D,λ) on S2 and a cycle Z in G. Again, we assume that G, (D,λ) and
Z satisfy the separation assumptions.

From the sphere to the projective plane. Although it is overall simpler to
present the proof of Theorem 2.4 in the setting of projective HT-drawings on S2,
it is easier to prove Lemmas 2.18, 2.19 and 2.20 in the setting of HT-drawings
on RP 2. A small drawback is that we need to check that splitting of S2 to the
inside and outside part works for RP 2 analogously.

Lemma 2.36. Let (D,λ) be a projective HT-drawing of a graph G on S2 and let
Z be a cycle satisfying the separation assumptions. Let D⊗ be the HT-drawing of
G on RP 2 coming from the proof of Lemma 2.8. Then D⊗(Z) is a simple cycle
such that each of its edges is even, which separates RP 2 into two parts, (RP 2)+

and (RP 2)−. In addition, every inside edge (with respect to D) which is incident
to a vertex of Z points locally into (RP 2)+ in D⊗ as well as every outside edge
(with respect to D) which is incident to a vertex of Z points locally into (RP 2)−.

Proof. By statement of Lemma 2.8 we already know that D⊗(Z) is a simple
cycle and that each of its edges is even. By the construction of D⊗, the cycle
D⊗(Z) is homologically trivial on RP 2. This implies that it splits RP 2 into two
components; see ‘Background and notation’. For the rest, we need to inspect the
construction of D⊗ in the proof of Lemma 2.8. However, we get all the required
conclusions directly from the construction.

Proofs of the lemmas. We are ready to present the proofs of Lemmas 2.18,
2.19 and 2.20. In all three proofs, D⊗ stands for the HT-drawing on RP 2 from
Lemma 2.36.

First, we consider Lemma 2.19, because its proof is the simplest one. In
fact, we establish slightly stronger statement, which we will use again later.
Lemma 2.19 follows directly from Lemma 2.37 below.

Lemma 2.37. Let a, b, x and y be four distinct vertices of Z such that when we
consider the two arcs of Z between a and b, the vertices x and y lie on the same
arc. Then any two walks ω+

ab ∈ W+
ab and ω+

xy ∈ W+
xy must share a vertex.

Proof. For contradiction, let ω+
ab ∈ W+

ab and ω+
xy ∈ W+

xy do not share a vertex. We
consider a closed walk κ+

ab arising from a concatenation of the walk ω+
ab and the

arc of Z connecting a and b not containing x, y. We also consider a closed walk
κ+

xy defined for x and y analogously to κ+
ab; see Figure 2.17.

The closed curves D⊗(κ+
ab) and D⊗(κ+

xy) are both homologically non-trivial.
Therefore, by Lemma 2.6, D⊗(κ+

ab) and D⊗(κ+
xy) must have an odd number of

crossings. We note that either of the two curves may have self-intersections or
self-touches, but there is a finite number of intersections between D⊗(κ+

ab) and
D⊗(κ+

xy), which are necessarily crossings; see ‘Background and notation’.

107



a

b

x

y

a

b

x

y

κ+ab

κ+xy

A+ G+0
Z Z

Figure 2.17: Walks in Lemma 2.37.

On the other hand, since ω+
ab ∈ W+

ab and ω+
xy ∈ W+

xy do not have a vertex
in common, all pairs of edges in E(κ+

ab) × E(κ+
xy) are independent. It follows

that D⊗(κ+
ab) and D⊗(κ+

xy) have an even number of crossings, because D⊗ is an
HT-drawing by Lemma 2.8; a contradiction.

We proceed to the proofs of Lemmas 2.18 and 2.20, which we restate here for
reader’s convenience.

Lemma 2.18. Every inside arrow shares a vertex with every outside arrow.

Proof. To the contrary, we assume that we have an inside arrow xy and an outside
arrow uv which do not share any endpoint. Note that the arrows can be loops,
that is, we allow x = y or u = v. As before, we consider a closed walk κ+

xy

obtained from the concatenation of a walk from ω+
xy ∈ W+

xy and any of the two
arcs of Z connecting x and y. If x = y, then we do not add the arc from Z.
Analogously, we have a closed walk κ−

uv coming from a walk in W−
uv and an arc of

Z connecting u and v. Both of these walks are non-trivial. We aim to contradict
the intersection form on RP 2 (see Lemma 2.6).

Unlike in the previous proof, this time D⊗(κ+
xy) and D⊗(κ−

uv) may not cross
at every intersection. Namely, κ+

xy and κ−
uv may share a subpath of Z, but apart

from the subpath the intersections are crossings; see Figure 2.18, left. To resolve
the possible overlap, we slightly modify the drawing in the following way. Let
us recall that D⊗(Z) splits RP 2 into two parts (RP 2)+ and (RP 2)− according
to Lemma 2.36. We push the subpath of κ+

xy shared with Z, possibly consisting
of a single vertex, a bit into (RP 2)+. This way, we obtain a drawing D+

⊗ of
κ+

xy. Similarly, we slightly push the subpath of κ−
uv shared with Z into (RP 2)−;

we denote the modified drawing of κ−
uv by D−

⊗. The situation is depicted in
Figure 2.18, right. Now D+

⊗(κ+
xy) and D−

⊗(κ−
uv) cross at every intersection and the

crossings of D+
⊗(κ+

xy) and D−
⊗(κ−

uv) correspond to the crossings of D⊗(κ+
xy) and

D⊗(κ−
uv).

Next, we consider the crossings of D⊗(κ+
xy) and D⊗(κ−

uv). Whenever e and f
are two independent edges such that e ∈ E(κ+

xy) and f ∈ E(κ+
uv), then D⊗(e) and

D⊗(f) have an even number of crossings, because D⊗ is an HT-drawing. More-
over, if e and f are adjacent, they cross evenly as well, since one of them must
belong to Z. Here it is crucial that xy and uv do not share any endpoint. There-
fore, D⊗(κ+

xy) and D⊗(κ−
uv) have an even number of crossings, and consequently,

D+
⊗(κ+

xy) and D−
⊗(κ−

uv) as well. This is a contradiction to Lemma 2.6.
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Figure 2.18: Walks in Lemma 2.18. The subpath of Z shared with both κ+
xy and

κ−
uv is dashed in black and orange.

Lemma 2.20. There are no three distinct vertices a, b, c on Z, an inside bridge
B+ and an outside bridge B− such that B+ induces the arrows ab and ac (and
no other arrows) and B− induces the arrows ab and bc (and no other arrows).

Proof. For contradiction, there is such a configuration. Let e+
a be an edge of

E(B+) incident to a. Analogously, we define edges e−
a , e+

b , e−
b , e+

c and e−
c .

Since B+ cannot be just an edge, we have that V (B+) \ V (Z) ̸= ∅. Thus,
by the definition of the bridges (see Definition 2.16), there is a proper walk in
B+ using the edges e+

a and e+
b ; we denote it by ω+

ab. This walk is non-trivial by
Lemma 2.34. The assumptions of the lemma are satisfied by Proposition 2.33,
since B+ does not induce any inside loops.

Let κ+
ab be the closed walk obtained from the concatenation of ω+

ab and the arc
of Z connecting a and b and avoiding c. Analogously, we define ω+

ac, ω−
ab, ω−

bc and
closed walks κ+

ac, κ−
ab and κ−

bc. When defining the closed walks, we always use the
arc of Z which avoids the third point among a, b and c. All the eight walks must
be non-trivial by Lemma 2.34.

Now we show that e+
a and e−

a cross oddly in the drawing D⊗. For this, we
consider the closed walks κ−

ab and κ+
ac and their drawings D⊗(κ−

ab) and D⊗(κ+
ac).

The walks κ−
ab and κ+

ac share only the point a; therefore, D⊗(κ−
ab) and D⊗(κ+

ac)
cross at every intersection, possibly except at D⊗(a). By Lemma 2.36 we see that
e+

a and e−
a point at a to different sides of Z in D⊗. Hence, D⊗(κ−

ab) and D⊗(κ+
ac)

just touch in D⊗(a), they cannot cross there. The touches can be removed by
a slight perturbation of the drawings of the walks, similarly as in the proof of
Lemma 2.18, without affecting any other intersections of the walks κ−

ab and κ+
ac.

By Lemma 2.6 we therefore get that D⊗(κ−
ab) and D⊗(κ+

ac) have an odd number
of crossings. However, considering any pair of edges (e, f) where e ∈ E(κ−

ab) and
f ∈ E(κ+

ac) different from (e−
a , e

+
a ), we see that e and f cross an even number

of times: indeed, for any such (e, f) ̸= (e−
a , e

+
a ), either e or f belongs to Z, or

they are independent. Consequently, the odd number of crossings of D⊗(κ−
ab) and

D⊗(κ+
ac) has to be realised on e+

a and e−
a .

Analogously, we show that e+
b and e−

b must cross oddly considering the walks
κ+

ab and κ−
bc.

Now let us consider the closed walk κ+
ab and a closed walk µ−

ab obtained from
the concatenation of ω−

ab and the arc of Z connecting a and b which contains c.
By the same reasoning as above, we get that D⊗(κ+

ab) and D⊗(µ−
ab) touch in

D⊗(a) and D⊗(b); if they intersect anywhere else, they cross there. Using a small
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perturbation as before, they must have an odd number of crossings by Lemma 2.6.
On the other hand, the pairs of edges (e+

a , e
−
a ) and (e+

b , e
−
b ) cross oddly, as we

have already observed. Any other pair (e, f) of edges where e ∈ E(κ+
ab) and

f ∈ E(µ−
ab) must cross evenly, since they are either independent, or one of them

belongs to Z. In total, D⊗(κ+
ab) and D⊗(µ−

ab) after the perturbation cross evenly,
which is a contradiction.

Intersection of trivial interleaving walks. We conclude this section with a
proof of a lemma similar in spirit to Lemma 2.37. We will need it in Section 2.6,
but we keep the lemma here due to its similarity to previous statements.

Lemma 2.38. Let a, b, x and y be four distinct vertices of Z such that x and
y are on different arcs of Z when split by a and b. Let ω+

ab and ω+
xy be a proper

ab-walk and a proper xy-walk in G+0, respectively, such that λ(ω+
ab) = λ(ω+

xy) = 0.
Then ω+

ab and ω+
xy must share a vertex.

Proof. We proceed by contradiction. As usual, we consider closed walks κ+
ab and

κ+
xy defined as follows. The walks κ+

ab consists of ω+
ab and an arc of Z connecting

a and b, while the walk κ+
xy is formed by ω+

xy and an arc of Z connecting x and
y. This time, ω+

ab and ω+
xy are trivial.

We push D⊗(κ+
ab) a bit inside and D⊗(κ+

xy) a bit outside of Z, similarly as in
the proof of Lemma 2.18. This time, however, we introduce one more crossing,
because both κ+

ab and κ+
xy are walks in G+0. Lemma 2.6 implies that the drawings

of κ+
ab and κ+

xy after the perturbation have to cross an even number of times. This,
in turn, means that the drawings of ω+

ab and ω+
xy cross an odd number of times.

Since D⊗ is an HT-drawing, it contradicts the assumption that ω+
ab and ω+

xy do
not share a vertex.
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2.6 Redrawing admissible configurations of
arrows

In this section, we will prove Proposition 2.23 separately for each of the three
cases. In other words, we show that if G+0 forms any of the configurations
depicted in Figure 2.9, then G+0 admits an ordinary HT-drawing on S2. Let us
start with an auxiliary redrawing result that will be used in all three cases.

Lemma 2.39. Let (D,λ) be a projective HT-drawing of G+0 on S2 and Z be
a cycle satisfying the separation assumptions. Let us also assume that D(G+0) ∩
S− = ∅. Let B be one of the inside bridges different from an edge and let L
be a valid labelling of B. Let us assume that there is at least one vertex x ∈
V (B)∩V (Z) such that |L(x)| = 1. Then there is a projective HT-drawing (D′, λ′)
of G+0 on S2 satisfying the following four conditions:

(a) D coincides with D′ on Z and D′(G+0) ∩ S− = ∅.

(b) Every edge e ∈ E(G+0) \ E(B) satisfies λ(e) = λ′(e).

(c) Every edge e ∈ E(B) that is not incident to Z satisfies λ′(e) = 0.

(d) For every edge uv = e ∈ E(B) such that u ∈ V (Z), we have λ′(e) ∈ L(u).

Note that the condition (b) allows that the edges in inside bridges other than B
may be redrawn, but only under the condition that their triviality/non-triviality
is not affected.

Proof. Let B+ be the subgraph of B induced by the vertices of V (B) \V (Z). By
the definition of a bridge (see Definition 2.16), the graph B+ is connected. It is
also non-empty, since we assume that B is not an edge.

Every cycle in the graph B+ must be trivial. Indeed, if B+ contained a
non-trivial cycle, it could be used to obtain a proper, non-trivial walk from
x to x. However, using Proposition 2.33, it would contradict the fact that
|L(x)| = 1. That is, B+ satisfies the assumptions of the planarization lemma
(see Lemma 2.12). Let U ⊆ V (B+) be the set of vertices from the conclusion
of Lemma 2.12. Consequently, if we perform the vertex-crosscap switches on U ,
we obtain a projective HT-drawing (DU , λU) such that λU(e) = 0 for every edge
e ∈ E(B+).

Let us recall that every vertex-crosscap switch over a vertex y is obtained by
vertex-edge switches of non-trivial edges over y and then from swapping the value
of λ on all edges incident to y. The vertex-edge switches do not affect the value
of λ. Overall, we get that DU coincides with D on Z. We also require that all
vertex-edge switches are performed in S+; therefore, DU avoids S−. Altogether,
DU and λU satisfy (a), (b) and (c), but we have not verified yet that (d) is satisfied
as well.

In fact, (d) may not be satisfied at the moment and we may need to modify
(DU , λU). Let e0 be any edge incident with x. If L(x) = {λU(e0)}, we set
D′ := DU and λ′ := λU . If L(x) ̸= {λU(e0)}, we perform vertex-crosscap switches
over all vertices in V (B+), which yields D′ and λ′. We have to check that (a)–(d)
hold for D′ and λ′.
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It is sufficient to verify (a), (b) and (c) only in the latter case. Regarding
(a), we have changed the drawing only by vertex-edge switches over edges e with
λU(e) = 1 inside S+. Validity of (b) is obvious from the fact that λU may have
been changed only on edges incident with V (B+). Moreover, note that for every
edge e ∈ E(B+) we have performed the vertex-crosscap switch for both endpoints
of e. Therefore, λ′(e) = λU(e) = 0, which establishes (c). It remains to check (d).

First, we realise that we have set up D′ and λ′ in such a way that L(x) =
{λ′(e0)}—if L(x) ̸= {λU(e0)}, then we have made a vertex-crosscap switch over
exactly one endpoint of e0. In particular, we have just checked (d) for e = e0.

To finish the proof, let e = uv be an edge from the statement of (d) such that
e ̸= e0. We need to check that λ′(e) ⊆ L(u). This is trivially true if L(u) = {0, 1},
and thus, we may assume that |L(u)| = 1. Let ω be any proper xu-walk in B
containing e0 and e. The existence of such a walk is assured by the definition
of a bridge (see Definition 2.16). We have λ(ω) = λ′(ω), because the vertex-
crosscap switches over the inner vertices of ω do not affect the triviality of ω. On
the other hand, we can also write that λ′(ω) = λ′(e0) + λ′(e), because λ′(f) = 0
for every edge f ∈ E(B+). Since L(x) = {λ′(e0)} and |L(u)| = 1, it follows that
L(u) = {λ′(e)} by Proposition 2.33 and Lemma 2.34 applied to x and u.

For reader’s convenience, we restate Proposition 2.23 here:

Proposition 2.23. Let (D,λ) be a projective HT-drawing of G+0 on S2 and Z
be a cycle satisfying the separation assumptions. Moreover, let us assume that
D(G+0)∩S− = ∅ (that is, G+0 is fully drawn on S+ ∪D(Z)). Let us also assume
that G+0 forms an inside fan, an inside square or an inside split triangle. Then
there is an ordinary HT-drawing D′ of G+0 on S2 such that D coincides with D′

on Z and D′(G+0) ∩ S− = ∅.

Inside fan. We are ready to prove Proposition 2.23 for an inside fan, which is
the simplest case. The idea behind the proof is to gradually alter the drawing in
such a way that all non-trivial edges become incident to a single vertex and, at
the same time, the new drawing will still be a projective HT-drawing. Once this
is ensured, the value of λ may be simply set to zero for every edge yielding an
ordinary HT-drawing.

Proof of Proposition 2.23 for an inside fan. We assume that G+0 forms an inside
fan; see Figure 2.9. Let x ∈ V (Z) be the endpoint common to all inside arrows.
Let us consider an inside bridge B, possibly trivial18. Let L = LB be a valid
labelling of B. It follows from Proposition 2.33 that |L(u)| = 1 for every u ∈
V (B) ∩ V (Z) different from x; there is at least one such u, since we assume that
G is 2-connected19. In addition, all u ∈ V (B) ∩ V (Z) different from x must have
the same label, because there are no arrows among them. Since we may switch
all labels in a valid labelling by changing the value of the labelling parameter, we
may assume that L(u) = {0} for every u ̸= x.

Next, we consider all inside bridges B1, . . . , Bℓ and the corresponding la-
bellings LB1 , . . . LBℓ

as above. We apply Lemma 2.39 to each of the bridges
18Recall that a bridge is trivial if it does not induce any arrow.
19This is contained in the separation assumptions; see Definition 2.15.
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which are not an edge, one by one. This way we get a projective HT-drawing
(D1, λ1), which satisfies:

(i) D coincides with D1 on Z and D1(G+0) ∩ S− = ∅.

(ii) Every edge e ∈ E(G+0) which is not incident with Z satisfies λ1(e) = 0.

(iii) Every edge e ∈ E(G+0) such that λ1(e) = 1 is incident with x.

Property (i) is a consequence of the iterative application of property (a) from
Lemma 2.39. Property (ii) follows from the iterative application of properties (b)
and (c) of Lemma 2.39. Finally, property (iii) follows from (ii), from the iterative
application of properties (b) and (d) of Lemma 2.39 and from the fact that every
non-trivial inside bridge which is a single edge must contain x.

Finally, we set D′ := D1. Let λ′ : E(G+0) → {0, 1} be the constant function
that assigns zero to every edge. We observe that from (ii) and (iii) it follows that
λ′(e)λ′(f) = λ1(e)λ1(f) for every pair of independent edges in E(G+0). Therefore
(D′, λ′) is a projective HT-drawing as well. Nevertheless, since λ′ is identically
zero, D′ is also an ordinary HT-drawing on S2.

Inside square. Now we prove Proposition 2.23 for an inside square. Let B be
the inside bridge inducing the inside square and let a, b, c and d be the vertices
of V (B) ∩ V (Z) labelled according to Definition 2.21; see also Figure 2.9. The
main ingredient for the present proof of Proposition 2.23 is the following lemma,
which shows that B must have a suitable cut vertex.

Lemma 2.40. The inside bridge B inducing the inside square contains a vertex
v such that the graph B − v is disconnected and the vertices a, b, c and d belong
to four different components of B − v.

We first show how to establish Proposition 2.23 for the case of an inside square
using Lemma 2.40. The proof is analogous to the proof for an inside fan.

Proof of Proposition 2.23 for an inside square. We assume that B is the unique
inside bridge inducing the inside square and a, b, c and d are vertices of V (B) ∩
V (Z) as above. In addition, let v be the cut vertex from Lemma 2.40.

First, we consider valid labellings of trivial inside bridges. Possibly after
a switch of the value of the labelling parameter, we may ensure that all labels
of a trivial inside bridge are zero. We apply Lemma 2.39 to all trivial inside
bridges which are not an edge. We get a projective HT-drawing (D1, λ1) such
that λ1(e) = 0 for every edge e ∈ E(G+0) \ E(B). Note that we have not
affected the values of λ on E(B), D1 coincides with D on Z and it still holds that
D1(G+0) ∩ S− = ∅.

Second, we consider a valid labelling L of B. By Proposition 2.33, every vertex
in V (B) ∩ V (Z) has just one label. It is easy to check that, up to switching all
labels, we have L(a) = L(c) = {1} and L(b) = L(d) = {0}. We apply Lemma 2.39
to B and the labelling L. We get a projective HT-drawing (D2, λ2) such that the
only edges e ∈ E(G+0) with λ2(e) = 1 are edges of B incident to a or c.

Next, let Ca and Cc be the components of B − v which contain a and c,
respectively. We perform vertex-crosscap switches over all vertices of Ca and Cc

except a, c and v. We perform the switches inside S+, as usual. As a result, we
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get a projective HT-drawing (D3, λ3) such that the only edges e ∈ E(G+0) with
λ3(e) = 1 are the edges of B incident to v.

Finally, we let D′ = D3 and we set λ′(e) = 0 for every edge e of G+0. Analo-
gously to the proof for the inside fans, λ3(e)λ3(f) = λ′(e)λ′(f) for every pair of
independent edges of G+0. Therefore, (D′, λ′) is a projective HT-drawing on S2

and D′ is also an ordinary HT-drawing on S2, as required.

It remains to prove Lemma 2.40 to conclude the case of an inside square. We
present a certain separation lemma for a general graph and then we show that it
implies Lemma 2.40.

Lemma 2.41. Let G′ be an arbitrary connected graph and A = {a1, . . . , a4} ⊆
V (G′) be a set of four distinct vertices. Let us assume that every aiaj-path has a
common point in V (G′)\A with every akaℓ-path whenever {i, j, k, ℓ} = {1, 2, 3, 4}.
Then there is a cut vertex v of G′ such that a1, . . . , a4 are in four distinct com-
ponents of G′ − v.

Proof. Let us consider an auxiliary graph G′′ which is obtained from G′ by adding
two new vertices x, y and attaching x to a1, a2 and y to a3, a4. By the assumptions,
G′′ is connected, and moreover, there are no two vertex-disjoint paths connecting
x and y. By Menger’s theorem (see ‘Background and notation’), there is a cut-
vertex v ∈ V (G′′)\{x, y} = V (G′) disconnecting x and y. Let C1 be the connected
component of G′′ − v containing x and C2 be the component containing y. Let
C ′

i, for i = 1, 2, be the subgraph of G′ induced by v and the vertices of Ci ∩ G′.
Note that, since G′ is connected, both C ′

1 and C ′
2 are connected. We show that v

is the desired cut vertex.
Let p1 be an a1a2-path in C ′

1 and p2 an a3a4-path in C ′
2. Since C ′

1 and C ′
2 are

connected, such paths p1 and p2 exist. Moreover, p1 and p2 may intersect only
in v; however, according to the assumptions, they have to intersect in a vertex
outside A. Therefore, they must intersect in v and v /∈ A. Overall, we have
verified that every aiaj-path passes through v, for 1 ≤ i < j ≤ 4, which shows
that v is the desired cut vertex.

Proof of Lemma 2.40. We apply Lemma 2.41 to B and to A = {a, b, c, d}. Let
us consider a valid labelling L of B. Up to the swap of the labels, we may
assume that L(a) = L(c) = {1} and L(b) = L(d) = {0}. Then Proposition 2.33
together with Lemma 2.34 imply that every proper ab, bc, cd or ad-walk is non-
trivial, whereas every proper ac or bd-walk is trivial. Then, the assumptions of
Lemma 2.41 are satisfied due to Lemmas 2.37 and 2.38.

Inside split triangle. Finally, we prove Proposition 2.23 for an inside split
triangle.

Proof of Proposition 2.23 for an inside split triangle. Let a, b, c be the three ver-
tices of Z from the definition of the inside split triangle; see Definition 2.21 or
Figure 2.9.

First, similarly as in the proof for the inside squares, we take care of trivial
inside bridges via suitable labellings and Lemma 2.39. We obtain a projective HT-
drawing (D1, λ1) that still satisfies the assumptions of Proposition 2.23, which,
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D2 D3 D′

Figure 2.19: An example of redrawing an inside split triangle with one a-bridge
and one bc-bridge. The edges participating in independent pairs crossing oddly
are thick. For simplicity of the picture, the drawings D3 and D′ are simplified.
For example, the vertex-edge switches used to obtain D3 from D2 introduce many
pairs of independent edges crossing evenly and some pairs of adjacent edges cross-
ing oddly. These intersections are removed in the picture as they do not play any
role in the argument. In particular, the drawing D′ is, in fact, typically not an
embedding.

in addition, satisfies λ1(e) = 0 for every edge e ∈ E(G+0) that does not belong
to a non-trivial bridge.

Now, let us consider non-trivial inside bridges. By the assumptions, every such
bridge is either an a-bridge, that is, a non-trivial inside bridge which contains a
(and b or c or both), or a bc-bridge which contains b and c, but not a. We consider
valid labellings of these bridges. By Proposition 2.33, as before, a valid labelling
assigns only one label to every vertex of the bridges lying on Z. As always, we may
swap all labels in a valid labelling whenever needed. This way, it is easy to check
that every a-bridge B admits a valid labelling LB such that LB(a) = {1}, whereas
all other labels are 0. Similarly, each bc-bridge B admits a valid labelling LB such
that LB(b) = {1} and LB(c) = {0}. We apply Lemma 2.39 to get a projective HT-
drawing (D2, λ2) that still satisfies the assumptions of Proposition 2.23, which,
in addition, has the following property: the edges e ∈ E(G+0) with λ2(e) = 1 are
exactly the edges of an a-bridge which are incident to a, or edges of a bc-bridge
incident to b.

If there are no bc-bridges, then all non-trivial edges are incident to a. We then
finish the proof by setting D′ = D2 and letting λ′ be identically equal to zero,
similarly as in the cases of an inside fan and an inside square. However, if there
are bc-bridge(s), we have to be more careful.

Let Ex
a and Ex

bc be the sets of edges incident to a vertex x in an a-bridge and the
set of edges incident to x in a bc-bridge, respectively. Because D2 is a projective
HT-drawing, we have λ2(e)λ2(f) = crD2(e, f) for every pair of independent edges
e and f . In particular, crD2(e, f) = 1 for a pair of independent edges if and only
if one of the edges belongs to Ea

a and the second one to Eb
bc.

Now, for every edge e ∈ Eb
bc, we perform the vertex-edge switch over each

vertex different from a, b, c of every a-bridge. We call the resulting drawing D3.
The switches are performed inside S+. This way, we change the crossing number
of e ∈ Eb

bc with the edges from Ea
a , Eb

a and Ec
a. In particular, after the redrawing,

we get that crD3(e, f) = 1 for a pair of independent edges if and only if one of
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the edges belongs to Ec
a and the second one to Eb

bc. See Figure 2.19.
Finally, for every edge e ∈ Ec

a, we perform the vertex-edge switch over each
vertex different from b and c of every bc-bridge obtaining the final drawing D′.
Again, we perform the switches inside S+. As a result, we change the cross-
ing number of e ∈ Ec

a with edges from Eb
bc and Ec

bc. However, it means that
crD′(e, f) = 0 for every pair of independent edges. That is, D′ is the required
ordinary HT-drawing on S2. See Figure 2.19.
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u0 v0

D(p)

γ

u0 v0

D(p)

h(γ)

Figure 2.20: An illustration of the self-homeomorphism h, which maps B to S+,
applied to the drawing of G+0 − e0 (where e0 = u0v0).

2.7 Redrawing by Pelsmajer et al. [22]
It remains to prove Theorem 2.24. Again, we restate it here for convenience. As
mentioned before, the present proof is almost identical to the proof by Pelsmajer
et al. [22, Thm 2.1]. The only notable difference is that we avoid contractions20.
As noted before, the proof by Fulek et al. [10, Lem. 3] can also be extended to
yield the desired result.

Theorem 2.24. Let D be a drawing of a graph G on the sphere S2. Let Z be a
cycle in G such that every edge of Z is even and Z is drawn as a simple cycle.
Then there is a drawing D′′ of G such that

• D′′ coincides with D on Z,

• D′′(G+0) belongs to S+ ∪D(Z) and D′′(G−0) belongs to S− ∪D(Z)

• and whenever (e, f) is a pair of edges such that both e and f are inside
edges or both e and f are outside edges, then crD′′(e, f) = crD(e, f).

Proof. First, we want to get a drawing such that there is only one edge of Z
which may be intersected by some other edges. A part of the argument here is
almost the same as the analogous argument in the proof of Lemma 2.28.

Let us consider an edge e = uv ∈ E(Z) intersected by some other edges and let
f = vw ∈ E(Z) be an edge adjacent to e. We almost-contract e in the following
way: we move the vertex v towards u until we remove all intersection of e with
the other edges. This way, e becomes free of crossings and its former crossings
appear now on f . Since both e and f were even edges in the initial drawing,
f remains even after the redrawing as well. Also we do not affect parity of the
other intersections and we remove possible self-intersections of the edges incident

20Contractions yield multi-graphs. Thus, we want to avoid contractions, because otherwise
we would have to rework several notions for multi-graphs. Introducing multi-graphs in the
previous sections would be disturbing and it is not convenient to repeat all the definitions in
such a setting here.
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with v similarly as in the proof of Lemma 2.28 (or see Figure 2.3, left). Finally,
since we want to preserve the position of Z in the drawing, we consider a self-
homeomorphism of S2 which sends v back to its original position; see Figure 2.12.

With such redrawings it can be achieved that only one edge e0 = u0v0 of
Z may intersect the other edges while keeping Z fixed and e0 even. Without
loss of generality, we may assume that the original drawing D satisfies these
assumptions.

Let p be the path in Z connecting u0 and v0 avoiding e0. Let us also consider
an arc γ connecting u0 and v0 outside (that is in S−) close to D(p) such that
it does not cross any inside edge. The closed arc obtained from γ and D(p)
bounds two disks (2-dimensional balls). Let B be the open disk which contains
S+. Finally, we consider a self-homeomorphism h of S2 that keeps D(p) fixed
and maps B to S+. Considering the drawing h ◦D on G+0 − e0, it turns out that
G+0 −e0 is now drawn in S+, up to p, which stays fixed. We also keep the original
position of the edge e0, that is, we do not apply h to this edge. See Figure 2.20.

Since the redrawing is done by a self-homeomorphism, we do not change the
number of crossings among pairs of edges in G+0. Analogously, we map G−0 to
S− and we get the required drawing.
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Conclusion

In summary, we have presented an inductive procedure that gradually transforms
a given HT-drawing on the projective plane to an embedding, and thus, provides
a constructive proof of the strong Hanani–Tutte theorem on the projective plane.
However, this is not the only interesting output. The tools that have been de-
veloped, most importantly the arrow graph, the labelling of the vertices of the
bridges and the forbidden configurations of arrows expressed in Lemmas 2.18,
2.19 and 2.20 are of their own interest. To conclude the work, the author would
like to comment on the advantages and disadvantages of these tools.

The arrows here were used to represent proper, non-trivial walks inside and
outside. On other surfaces one would get not only one, but several types of arrows.
The intersection form (see Lemma 2.6) becomes more complicated as well.

For instance, for the Klein bottle, which we can think of as a sphere with two
crosscaps attached to it, we would get three non-trivial types of arrows according
to the parity of crossings with the first crosscap and with the second crosscap.
Lemma 2.18 then would say something like the following: every inside arrow of
type α shares a vertex with every outside arrow of type β provided the intersection
form guarantees an odd number of crossings between two closed curves of types
α and β. Lemmas 2.19 and 2.20 can be generalised analogously.

We have used Lemmas 2.18, 2.19 and 2.20 to describe which configurations
of arrows are admissible; in Proposition 2.22 we have shown that one of the
three configurations from Definition 2.21 must appear either inside or outside.
Similarly, one could use the generalised version of the lemmas to describe which
configurations of arrows are admissible, say, on the Klein bottle. The author to-
gether with Martin Tancer and Pavel Paták have briefly thought in this direction
and it seems that the number of configurations one would get for the Klein bottle
with this approach counts roughly in tens.

On the one hand, the three configurations that were needed to be redrawn on
the projective plane, as expressed in Proposition 2.22, provide a more compact
description than 35 minimal forbidden minors for the projective plane. On the
other hand, it seems that the number of admissible configurations of arrows on
surfaces of higher genus is increasing with the genus, at least when one uses only
the appropriate generalisations of the three forbidden configurations of arrows
from Lemmas 2.18, 2.19 and 2.20. However, it is possible that there are additional
topological restrictions not covered by the tools presented here.

The author would like to remark that the problem with the growing number of
admissible configurations of arrows is not the only obstacle for the generalisation
of the present approach to surfaces of higher genus. The other parts would have to
be generalised as well and it is not clear that a sufficient generalisation is possible,
even for the Klein bottle or the torus. Here, for instance, once we have fixed a
trivial cycle Z which splits the graph and the surface into two parts, we were
always able to redraw one of the sides without using the crosscap, and moreover,
without changing the homological type of the cycle Z. On other surfaces, it may
happen that it will not always be possible to preserve the type of the separating
cycle Z during the redrawing, which would bring in additional difficulties when
setting up the main induction.

On the positive side, in the light of the counter-example for the strong Hanani–
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Tutte theorem on orientable surfaces of genus four and higher by Fulek and Kynčl
[9], we can speculate that the theorem fails also for non-orientable surfaces of genus
at least a certain small number. Then an approach based on ideas presented
here may possibly be used, perhaps with an aid of a computer, to establish the
remaining cases of small genus.
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[9] R. Fulek and J. Kynčl. Counterexample to an extension of the Hanani–Tutte
theorem on the surface of genus 4. ArXiv e-prints, September 2017. URL
https://arxiv.org/abs/1709.00508.

[10] R. Fulek, M. J. Pelsmajer, M. Schaefer, and D. Štefankovič. Adjacent Cross-
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