Justify every claim formally!

1. Let F, f be two continuous functions $[a, b] \rightarrow \mathbb{R}$ satisfying $F^{\prime}(x)=f(x)$ for every $x \in(a, b)$. Prove that F is primitive to f on $[a, b]$.
You can use the following theorem: Let $\delta>0$ and $g:[a, a+\delta) \rightarrow \mathbb{R}$ be a continuous function such that $f^{\prime}(x)$ exists and is finite for every $x \in(a, a+\delta)$. Then $f_{+}^{\prime}(a)=\lim _{x \rightarrow a^{+}} f^{\prime}(x)$, if the limit is defined.
2. Find a primitive function to the function $\frac{x}{x^{2}+7+\sqrt{x^{2}+7}}$ with a maximal domain.
3. Find a primitive function to the function $\frac{(\tan x+\cot x)^{2}}{\sin ^{2} x-\cos ^{2} x}$ with a maximal domain.
