Mathematical analysis II - tutorial 8 12.4.2018

Problem 1: Let S be the region determined below. Let $f \in \mathcal{R}(S)$. Rewrite the multiple integral $(R) \int_{G} f$ using iterated integrals of f:

a) S is a rectangle in \mathbb{R}^2 with vertices (0,0), (2,0), (2,1), (0,1).

b) S is a triangle with vertices (0,0), (1,0), (1,1).

c) S is a trapezoid (trapezium) (0,0), (2,0), (1,1), (0,1).

d) S is a parallelogram with vertices (1, 2), (2, 4), (2, 7), (1, 5).

e) S is a circular sector with center at (0,0) and arc endpoints at (1,1), (-1,1).

f) S is an annulus determined by two circles with radii 1 and 2 both centered at (0,0).

g) S is the region bounded by the line passing through (0,2) and (2,0) and the arc of a circle of radius 1 centered at (0,1) with endpoints (0,2) and (1,1).

h) S is a cylinder (in \mathbb{R}^3) bounded by the surfaces $x^2 + y^2 = R^2$, z = 0 and z = A, where R, A > 0 are parameters.

i) S is a volume in \mathbb{R}^3 bounded by the surfaces $z = 1 - x^2 - y^2$ and z = 0.

j) S is the volume of the ellipsoid determined by the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Problem 2: Calculate the following multiple integrals:

a) $\iint_S \frac{1}{\sqrt{a^2 - x^2 - y^2}} \, \mathrm{d}x \, \mathrm{d}y$, where S is the part of a circle of radius a centered at (0,0) lying in the first quadrant.

b) $\iint_S \sqrt{xy - y^2} \, dx \, dy$, where S is a triangle with vertices (0, 0), (10, 1), (1, 1).

c) $\iint_{S} e^{\frac{x}{y}} dx dy$, where S is a curvilinear triangle bounded by the parabola $y^{2} = x$ and the straight lines x = 0, y = 1.

d) $\iint_S xy \, dx \, dy$, where S is the region bounded by the x-axis and the upper semi-circle $(x-2)^2 + y^2 = 1$.

e) $\iiint_V x^2 \, dx \, dy \, dz$, where V is the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. f) $\iiint_V (x + y + z)^2 \, dx \, dy \, dz$, where V is the common part of the paraboloid $2az \ge x^2 + y^2$ and the ball $x^2 + y^2 + z^2 \le 3a^2$.

Problem 3: Determine the volume of V:

a) V is a solid bounded by the xy-plane, the cylinder $x^2 + y^2 = ax$ and the sphere $x^2 + y^2 + z^2 = a^2$ (interior to the cylinder), where a > 0 is a parameter.