Mathematical analysis II - tutorial 13 17.5.2018

Problem 1: (This problem is copied from the previous session) Find all local and global extrema of the following functions on the given set:

a)
$$f(x,y) = xy^2$$
 on the set $M = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$
b) $f(x,y) = \sqrt{3}x - y + 2$ on the set $M = \{(x,y) \in \mathbb{R}^2 : x^2 + 2x + y^2 \le 0\}$
c) $f(x,y) = x + 2y + \frac{3}{4}x^2 + xy + 2y^2$ on the set $M = \{(x,y) \in \mathbb{R}^2 : y^2 - 2 \le x \le -y^2 + 2\}$

Problem 2: Find all local and global extrema of the following functions on the given set:

a)
$$f(x, y) = y$$
 on the set $M = \{(x, y) \in \mathbb{R}^2 : x^3 + y^3 - 3xy = 0\}$
b) $f(x, y) = y^2 - 2x + x^2$ on the set $M = \{(x, y) \in \mathbb{R}^2 : x = y^2\}$
c) $f(x, y) = x^2 + y^2 - 6x - 4y + 11$ on the set $M = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 - 4x \le 5\}$
d) $f(x, y) = x^2 - y^2$ on the set $M = \{(x, y) \in \mathbb{R}^2 : y + e^{-x^2} = 1\}$
e) $f(x, y) = x^2 - 4xy + y^2 + 4y$ on the set $M = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 1\}$
f) $f(x, y, z) = xyz$ on the set $M = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 5, xy + yz + zx = 8\}$

Problem 3: Let the function y = y(x) be determined implicitly by the equation F(x, y) = 0. Calculate the derivative of y at the given point. Calculate also its second-order derivatives:

a)
$$F(x,y) = x^2 + y^2 - 4x - 10y + 4$$
 at $(x_0, y_0) = (6, 2)$.

b)
$$F(x, y) = x \sin y - \cos y + \cos 2y$$
 at $(x_0, y_0) = (1, 0)$.

c) $F(x,y) = x^2 - xy + 2y^2 + x - y - 1$ at $(x_0, y_0) = (0, 1)$.

Problem 4: Let the function z = z(x, y) be determined implicitly by the equation F(x, y, z) = 0. Calculate the derivative of z at the given point (you can also calculate its second-order derivatives if you want):

a)
$$F(x, y, z) = \cos^2 x + \cos^2 y + \cos^2 z - 1$$
 at $(x_0, y_0, z_0) = (\frac{\pi}{3}, \frac{\pi}{2}, \frac{\pi}{6}).$
b) $F(x, y, z) = e^z + x^2 y + z + 5$ at $(x_0, y_0, z_0) = (1, -6, 0).$

Problem 5: Express the given set M locally on a neighbourhood of the given point as a graph of a function and determine the tangent line to that function at the given point.

a)
$$M = \{(x, y) \in \mathbb{R}^2 : (x^2 + y^2)^2 - 2(x^2 - y^2) = 0\}$$
 around the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
b) $M = \{(x, y) \in \mathbb{R}^2 : \ln\left(\sqrt{x^2 + y^2}\right) = \arctan\frac{y}{x}\}$ around the point $(1, 0)$

Problem 6: Let the function z = z(x, y) be represented implicitly as

$$x^{2} + y^{2} + z^{2} - 2x + 4y - 6z = 11.$$

Find all extrema of the function z.