Mathematical analysis II - tutorial 11

Problem 1: Calculate all (first-order) partial derivatives of the following functions:
a) $x^{2}+4 x y^{3}+y^{5}$
b) $x^{y^{2}}$
c) $(1+x)^{k}(1+y)^{l}(1+z)^{m}$, where k, l, m are parameters.
d) $\ln (1+x) \ln (1+y)$
e) $(1+x)^{(1+y)}$

Problem 2: Calculate the mixed second-order partial derivatives of the following functions and check that they are equal:
a) $f(x, y)=x^{3}+4 x y-y^{2}$
b) $f(x, y)=x^{y^{2}}$
c)

$$
f(x, y)= \begin{cases}x y & \text { for }|x| \geq|y| \\ 0 & \text { otherwise }\end{cases}
$$

at the point $(0,0)$

Problem 3: Show that the following functions are differentiable at the point $(x, y)=(0,0)$ and write down the matrix of the derivative.
a) $(1+x)^{k}(1+y)^{l}$, where $k, l \in \mathbb{N}$ are parameters.
b) $\ln (1+x) \ln (1+y)$
c) $(1+x)^{1+y}$

Problem 4: Calculate the derivative of the following functions wherever it exists. Determine also a tangent hyperplane at the given point.
a) $f(x, y)=-x^{2}-y^{2}+2 x+4 y-4$, tangent hyperplane at $a=(1,1,0)$
b) $f(x, y, z)=\left(\frac{x}{y}\right)^{z}$, tangent hyperplane at $a=\left(\mathrm{e}, 1,2, \mathrm{e}^{2}\right)$
c) $f(x, y)=\arctan \frac{x-y}{x+y}$, tangent hyperplane at $a=(1,1, f(1,1))$

Problem 5: Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=\sqrt{|x||y|}
$$

Calculate the (first-order) partial derivatives of f at the point $(0,0)$. Decide whether the function f is differentiable at $(0,0)$ or not.

Problem 6: Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=\sqrt{x^{2}+4 y^{2}}+1
$$

Calculate the (first-order) partial derivatives of f at the point $(0,0)$. Decide whether the function f is differentiable at $(0,0)$ or not.

Problem 7: Consider the function $f=\frac{x^{3} y}{x^{2}+y^{2}}$. Extend f to a function defined on the whole \mathbb{R}^{2} so that the extension is differentiable everywhere, if possible. Determine the derivative.

