Mathematical analysis II - tutorial 10

Problem 1: Calculate the following limits or prove that they do not exist.
a) $\lim _{(x, y) \rightarrow(0,2)} \frac{\sin x y}{x}$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$
c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
d) $\lim _{(x, y) \rightarrow(0,0)} \frac{\ln (1+x y)}{|x|+|y|}$

Problem 2: Determine the domain of the following functions. Is it an open or a closed set? Is it bounded? Are the functions continuous? Are the functions bounded?
a) $\frac{2 x y}{x^{2}+y^{2}}$
b) $\cos \left(\frac{1}{x y}\right)$
c) $\frac{1}{1-x^{2}-y^{2}}$
d) $\ln \sqrt{x^{2}+y^{2}}$
e) $\frac{1}{(x-y)^{2}}$
f) $\frac{\sin x y}{|x|+|y|}$

Problem 3: Determine the domain of the following functions. Is it an open or a closed set? Determine whether the given function is continuous and/or bounded.
a) $f(x, y, z)=\sqrt{\frac{z^{2}}{x^{2}+y^{2}}-1}$
b) $f(x, y)=\arcsin (x y)$
c) $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ for $(x, y \neq(0,0))$; moreover, we set $f(0,0)=0$.
d) $f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}$ for $(x, y \neq(0,0))$; moreover, we set $f(0,0)=0$.

