Problem 1: Fill in the table:

f(x)	$\int f(x) \mathrm{d}x$	domain
x^a , where $a \in \mathbb{R} \setminus \{-1\}$		
x^a , where $a \in \mathbb{Z}, a < -1$		
x^a , where $a \in \mathbb{Z}, a > -1$		
$\frac{1}{x}$		
e^x		
a^x , where $a > 0$		
$\sin x$		
$\cos x$		
$\frac{1}{\cos^2 x}$		
$\frac{1}{1+x^2}$		
$\frac{1}{\sqrt{1-x^2}}$		
l		

 $Problem\ 2:$ Calculate the following indefinite integrals and determine the interval(s) on which your result holds true:

a)
$$\int x^3 + 2x^2 + \frac{x}{17} \, dx$$

b)
$$\int 18e^x + 16e^{8x} + \frac{1}{x} - 3\cos x \, dx$$

c)
$$\int \sqrt{x^6} \, \mathrm{d}x$$

d)
$$\int \frac{(1-x)^3}{x\sqrt[3]{x}} \, \mathrm{d}x$$

e)
$$\int \tan^2 x \, dx$$

 $Problem \ 3:$ Using integration by parts calculate the following:

a)
$$\int x \sin x \, dx$$

b)
$$\int x^a \ln x \, dx$$
, where $a > 0$

c)
$$\int \frac{x^2}{e^x} dx$$

$$d) \int e^x \sin x \, dx$$

e)
$$\int \ln x \, dx$$

f)
$$\int \arcsin x \, dx$$

g)
$$\int \operatorname{arctg} x \, \mathrm{d}x$$

h)
$$\int \sqrt{1-x^2} \, \mathrm{d}x$$

Problem 4: Find recurrent formulas for the following expressions. Do not forget to determine the domain on which is your formula valid.

- a) $\int \sin^n x \, dx$
- b) $\int \cos^n x \, \mathrm{d}x$
- c) $\int e^x x^n dx$

Problem 5: Assuming that $\int \frac{1}{\ln x} dx$ is not expressible in a closed form on any interval, prove that $\int \ln \ln x dx$ is not expressible in a closed form on any interval.