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Abstract

We show that for a set F of forbidden set partitions and an integer k
there is a finite collection D of partitions of ordinals, such that any finite
partition with at most k blocks avoids all the elements of F if and only if
it is contained in at least one element of D. Using this result, we reprove
rationality of the generating function enumerating a hereditary class of
set partitions with a bounded number of blocks. We show that this result
does not extend to partitions with an unbounded number of blocks.

We also consider hereditary classes of relational structures. We give
a characterization of those classes that can be expressed as classes of
finite substructures of a finite collection of (possibly infinite) relational
structures.

1 Introduction

In this paper, we investigate the concept of dualities among relational structures.
For a family F of finite ‘forbidden’ structures, we say that a family D of (possibly
infinite) structures is dual to F , if for every finite structure s it holds that
s does not contain any structure f ∈ F as substructure if and only if s is
a substructure of some d ∈ D. The pair (F,D) is then known as a duality
pair. This terminology is motivated by an analogous concept of homomorphism
dualities. For an overview of the topic of homomorphism dualities see, e.g., Hell
and Nešetřil [13].

With a duality pair (F,D) we may naturally associate a hereditary class C
of structures, where C is the set of all the finite structures that do not contain
any forbidden substructure f ∈ F , or equivalently, C is the set of all finite
substructures of elements of D. Conversely, it is easy to see any hereditary class
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C arises in this way from a (not necessarily unique) duality pair (F,D). It is
natural to ask whether a given class C has a ‘nice’ description in terms of F or
D, e.g., whether there is a description in which F or D is a finite set.

In this paper, our main goal is to study hereditary classes C of relational
structures that can be described by a duality pair (F,D) in which D is a finite
set of (possibly infinite) relational structures. In such situation, we call the set
D a finite dual of C.

This paper has two main parts. In the first part, we consider set partitions
whose ground set is an ordinal number. We show that in this setting, every
hereditary class of set partitions with a bounded number of blocks can be char-
acterized by a finite dual. The proof of this result is based on the Myhill–Nerode
characterization of regular languages. Our technique also allows us to re-derive
a known enumerative result on the growth of hereditary classes of set partitions.
We also prove a negative result, by presenting a class of partitions defined by a
single forbidden pattern that has no finite dual.

In the second part of this paper, we turn to general relational structures. The
main result of this part is a general criterion characterizing hereditary classes
of relational structures admitting finite duals.

Let us now introduce necessary definitions and notation in order to state our
results precisely. The proofs are relegated to the remaining two sections.

By a partition we mean a set partition, i.e., a set π of nonempty and disjoint
sets, called blocks, whose union is the ground set X =

⋃
π of the partition

π; we say that π is a partition of X. A normalized partition has ground set
[n] = {1, 2, . . . , n} for some n ≥ 0 (we define [0] = ∅). The size of a partition
is the size of its ground set. In particular, a finite partition is a partition of a
finite set. We will consider both finite and infinite partitions.

We say that a partition π of [m] is contained in a partition σ of [n] if there
is an increasing injection f : [m] → [n] with the property that i and j are in
the same block of π if and only if f(i) and f(j) are in the same block of σ.
This relation will be denoted by π ⊆ σ; it is a partial ordering on the set of
all normalized partitions. If π 6⊆ σ, we say that σ avoids π. The notion of
containment can be naturally extended to partitions of an arbitrary linearly
ordered ground set, including infinite partitions.

A hereditary class of partitions is a (typically infinite) set P of finite nor-
malized partitions such that for any normalized partition σ of [n] in P , every
partition π of [m] contained in σ lies in P as well. Hereditary classes of parti-
tions have been previously studied, e.g., by Klazar [18] or by Balogh, Bollobás
and Morris [4]. Several authors have also proposed different ways to define the
containment relation of partitions, and obtained enumerative results in these
settings, see for instance de Mier [8], Goyt [12], Jeĺınek and Mansour [16], or
Sagan [22].

For a hereditary class P of partitions, we define the basis of P to be the set
F = FP of minimal forbidden structures of P ; formally,

FP = {π | π 6∈ P, π is normalized, and every proper subpartition of π is in P}.
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If FP is finite, then P is called finitely based, if FP is a singleton set, then P is
called principal.

The growth function (or speed) of a hereditary class P is the function n 7→
|Pn| where Pn is the set of partitions of [n] in P and |X| denotes the cardinality
of a set X. An important goal in the study of hereditary classes of partitions, as
well as hereditary classes of other structures, is the characterization of possible
growth functions of these classes. Recently, several authors have obtained strong
results related to growth functions of classes of graphs [5, 6], ordered graphs [4],
or permutations [1, 17, 24, 25]. For more details, we refer the reader to the
survey of Bollobás [7].

To characterize the growth function, we need a handle on ⊆. The description
of a hereditary class P in terms of its basis F does not seem to offer enough
insight into the growth rate of the class. A different approach is to characterize
a hereditary class in terms of the ‘dual’ object, i.e., to describe a class P as the
class of finite subpartitions of a small number of (typically infinite) partitions
from a set D. This is similar to the approach of Atkinson, Murphy and Ruškuc
[3] and Huczynska and Ruškuc [15] to permutation classes (which they represent
by bijections between infinite linearly ordered sets) and is also motivated by the
theory of homomorphism dualities (Hell and Nešetřil [13]). In the first part of
our paper, we focus on the situation when the elements of the dual set D are
partitions of ordinal numbers. We say that a class P of partitions has finite
ordinal dual if there is a finite set D of partitions of ordinals such that the
elements of P are exactly the finite partitions contained in at least one member
of D. The set D is not necessarily unique.

As a simple example of a class with a finite ordinal dual, consider the class
P consisting of the (normalized) partitions with at most one block. Then the
basis contains a single partition π = {{1}, {2}} and the dual also contains a
single (infinite) partition σ = {ω}, where ω = {0, 1, 2, . . . } denotes the smallest
infinite ordinal, i.e., the set of nonnegative integers.

Another example is for FP = {π} where π = {{1, 3}, {2}}. Then P consists
of (normalized) partitions whose blocks are intervals and a dual partition is
σ = {{0}, {1, 2}, {3, 4, 5}, . . . } with ground set ω (or any other interval partition
of ω with unbounded lengths of intervals); we denote this partition as σI . In
general, even for a principal class P , one needs more than one dual partition,
as well as ordinals larger than ω for ground sets. As an example, consider the
hereditary class P with FP = {π} where π = {{1, 3}, {2}, {4}}. We leave for
the interested reader to verify that P admits as a dual a pair of partitions, the
partition of 2ω

σ1 = σI ∪ {{ω, ω + 2, ω + 4, . . . }, {ω + 1, ω + 3, ω + 5, . . . }}

and the partition of 4ω

σ2 = σI ∪ {{ω, ω + 1, ω + 2, . . . ; 3ω, 3ω + 1, 3ω + 2, . . . }} ∪ (2ω + σI).

Unfortunately, there are principal hereditary classes P which have no finite
ordinal dual (see Theorem 1.3). Nevertheless, finite ordinal duals do exist for
many hereditary classes, as shown by our first main result:
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Theorem 1.1. Let P be a hereditary class of partitions such that the number
of blocks in π ∈ P is bounded. Then the basis FP is finite and P has a finite
ordinal dual D. In fact, the elements of D may be chosen as partitions of
ordinals smaller than mω for some integer m > 0.

From Theorem 1.1, or more precisely from its proof, we obtain the following
corollary, which was proved by Klazar [18, Theorem 3.1] in a different way.
The inductive proof in [18] and the present proof both represent partitions by
words. The present proof is more conceptual, as it derives the corollary from
the Myhill–Nerode theorem on regular languages.

Corollary 1.2. Let P be a hereditary class of partitions such that the number
of blocks in π ∈ P is bounded. Then the generating series of the growth function
is rational, in fact

fP (x) =
∑
n≥0

|Pn|xn =
p(x)∏k

i=1(1− ix)ai

where k is the maximum number of blocks in some π ∈ P , p(x) is an integral
polynomial and ai > 0 are integers.

As we already mentioned, there are hereditary (even principal) classes of par-
titions admitting no finite ordinal dual. Specifically, we will prove the following
result.

Theorem 1.3. Let π0 = {{1, 3}, {2, 4}, {5}}. For every finite family D of
partitions of ordinals avoiding π0 there is a finite normalized partition avoiding
π0 that is not contained in any member of D. Thus, the hereditary class of
partitions P with the basis F = {π0} has no finite ordinal dual.

The two previous theorems and corollary will be proved in Section 2.
In the second part of our paper, we consider more general duals, in which

instead of partitions of ordinals, we allow infinite partitions of an arbitrary
linearly ordered ground set. To handle this setting, it is convenient to represent
partitions as relational structures, and to express partition containment as a
special case of (induced) containment of relational structures. In fact, our results
from the second part of the paper generalize to hereditary classes of relational
structures of fixed (finite) signature.

Let us introduce the relevant definitions. A relational structure with signa-
ture δ = (δ1, δ2, . . . , δk) on the ground set V is a (k+1)-tuple (V,R1, R2, . . . , Rk),
where Ri is a relation of arity δi on the ground set V , i.e., Ri is a set of ordered
δi-tuples of (not necessarily distinct) elements of V . For example, relational
structures of signature (2) correspond precisely to directed graphs, with loops,
in which multiple edges are only allowed if they have opposite orientations. As
with set partitions, the size of a relational structure is the size of its ground set.

If ρ = (V,R1, . . . , Rk) and σ = (W,S1, . . . , Sk) are two relational structures
of the same signature δ, we say that σ contains ρ (or ρ is a substructure of σ,
or ρ ⊆ σ), if there is an injective function f : V → W with the property that
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for any i and j and for any j-tuple (v1, . . . , vj) of elements of V , this j-tuple
belongs to Ri if and only if the j-tuple (f(v1), . . . , f(vj)) belongs to Si. This
notion of containment is a natural extension of the familiar notion of induced
containment of graphs.

We call a relational structure normalized if its ground set is the set [n]
for some n ≥ 0. Let us stress that the elements of [n] here merely play a
role of labels, and their standard linear order is not relevant for the notion of
containment of relational structures. A hereditary class of relational structures
is a set C of finite normalized relational structures, all of them sharing the same
signature, with the property that for every structure π ∈ C, all the normalized
substructures of π belong to C.

A set partition π of a linearly ordered set (V, /) may be represented as
a relational structure (V,R1, R2) of signature (2, 2), as follows: for a pair of
vertices i, j ∈ V , we define (i, j) ∈ R1 if i / j, and we define (i, j) ∈ R2 if i and j
are in the same block of π. With this representation, the containment relation
of set partitions corresponds precisely to the containment relation of relational
structures.

Notice that any substructure of a relational structure representing a set par-
tition is itself a representation of a set partition. Thus, a hereditary class P of
partitions is naturally represented by a hereditary class CP of relational struc-
tures of signature (2, 2), where CP is the class of all the normalized relational
structures representing elements of P . Note, however, that a single set parti-
tion in P is typically represented by several (isomorphic) normalized relational
structures in CP . Thus, the growth rate of the class P is not the same function
as the growth rate of CP . This minor technical issue does not worry us, since
we deal with structural results, rather than explicit enumerations.

Let us now focus on general hereditary classes of relational structures, with-
out restricting ourselves to classes arising from set partitions. To introduce
dualities in this setting, it is useful to start with the following fact, due to
Fräıssé [10, 11].

Fact 1.4. Let C be a hereditary class of relational structures of a finite signa-
ture δ. The following three conditions are equivalent:

• There is a (possibly infinite) relational structure Π of signature δ such that
C is the set of all the finite normalized substructures of Π.

• C cannot be expressed as a union of two of its proper hereditary subclasses.

• For any two structures π, σ ∈ C, there is a structure τ ∈ C that contains
both π and σ. (This condition is known as the joint embedding property.)

A hereditary class satisfying the conditions of Fact 1.4 is called atomic.
Recently, the concept of atomicity received attention in the study of hereditary
permutation classes (see, e.g., Atkinson, Murphy and Ruškuc [2, 3], Murphy [20],
or Vatter [24]). Besides that, a considerable amount of work has been devoted
to the study of growth rates of atomic classes of general relational structures (a
survey of this field has been presented by Pouzet [21]).
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Let us stress that all relational structures considered in our paper have finite
signature. Fact 1.4 does not directly generalize to classes of structures with
infinite signature (see [9]).

We are mostly interested in the hereditary classes of relational structures
that can be expressed as a union of finitely many atomic classes. We will call
such classes molecular. In view of Fact 1.4, molecular classes are precisely those
classes that can be described by a duality pair (F,D), where D contains finitely
many (possibly infinite) relational structures.

As the second main result of this paper, we provide a characterization of
molecular classes of relational structures in terms of a joint embeddability of
their elements. The result may in fact be stated in the (more general) language
of partially ordered sets. For this, we need a few definitions. Let (A,≤) be a
(typically infinite) poset. We say that two elements x, y ∈ A are compatible in
(A,≤), if they have a common upper bound z ∈ A (i.e., if there is an element
z ∈ A satisfying x ≤ z and y ≤ z). A set I ⊆ A is an ideal if I is a down-set
(i.e., x ∈ I and y ≤ x implies y ∈ I), and I is up-directed (i.e., for every x, y ∈ I,
the set I contains a common upper bound for x and y). We say that a poset
(A,≤) is covered by ideals I1, . . . , Ik if A = I1 ∪ · · · ∪ Ik.

Theorem 1.5. Let (A,≤) be a (possibly infinite) poset and k > 0 be an integer.
The poset (A,≤) can be covered by k ideals if and only if A does not contain
k+1 pairwise incompatible elements. Moreover, if A cannot be covered by finitely
many ideals, then it contains an infinite set of pairwise incompatible elements.

The theorem can be easily applied to the containment order of (the isomorphism
types of) relational structures in a given hereditary class. Let C be a hereditary
class of relational structures. We say that two relational structures π and σ are
compatible in C (or C-compatible), if there is a structure τ ∈ C that contains
both π and σ; otherwise, π and σ are C-incompatible. A set of structures is
pairwise C-incompatible if each two of its elements are C-incompatible. We
now state the promised characterization of molecular classes.

Theorem 1.6. Let C be a hereditary class of relational structures and let k > 0
be an integer. The class C can be expressed as a union of at most k atomic
classes if and only if C does not have a pairwise C-incompatible subset of size
k + 1. Furthermore, C is molecular if and only if it has no infinite pairwise
C-incompatible subset.

Observe that the theorem implies that a class containing arbitrarily large
finite pairwise incompatible subsets must also contain an infinite pairwise in-
compatible subset.

In Section 3, we prove Theorems 1.5 and 1.6. We then also point out that
Theorem 1.6 implies, as a corollary, a result essentially due to Atkinson, Mur-
phy and Ruškuc [2, Theorem 2.2] (see also [20, Proposition 188]), which states
that every hereditary class that is partially well-quasi-ordered by inclusion is
molecular.

Lastly, we provide an example of a finitely based class that is not molecular.
Let us now present the proofs of our results.
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2 Finite ordinal duals

A partition σ of [n] may be conveniently represented by a word w = w1w2 · · ·wn

with the property that wi = wj if and only if i and j belong to the same block
of σ. We say that two words w,w′ are isomorphic (denoted by w ∼ w′) if
they represent the same partition. Thus, the word AABAC is isomorphic to
XXYXA, with both words representing the partition of [5] into the three blocks
{1, 2, 4}, {3} and {5}.

For two words w and w′, we say that w is a subword of w′ (denoted by
w ⊆ w′) if w is obtained from w′ by erasing some of its letters. We say that w
is a factor of w′ (denoted by w ≤ w′) if w is a contiguous subword of w′ (i.e. w′

can be written as a concatenation of the form w′ = xwy for some words x, y).
Let π and σ be two normalized partitions, let p and s be two words repre-

senting π and σ, respectively. We have π ⊆ σ if and only if there is a word p′

isomorphic to p such that p′ ⊆ s.
Let A be an alphabet. A ∗ denotes the set of all finite words over A . We

say that a language L ⊆ A ∗ is hereditary, if it is closed under taking subwords,
we say that L is isomorphism-closed (with respect to the alphabet A ) if for every
two isomorphic words w,w′ ∈ A ∗ we have w ∈ L ⇐⇒ w′ ∈ L.

We will also deal with infinite words over a given alphabet A . The length
of such a word is a countable ordinal α, and the word itself may be formally
represented as a mapping from α to A . The notions defined above extend to
infinite words in the obvious way. We let ω denote the smallest infinite ordinal.

For a (typically infinite) word w, let F (w) denote the language of all the finite
factors of w; similarly, S(w) denotes the language of all the finite subwords of w.

We say that a word u is a universal word for the alphabet A if F (u) =
S(u) = A ∗. The empty word is the only universal word of the empty alphabet.
It is not hard to see that for any nonempty at most countable alphabet A there
is a universal word of length ω.

Our proof of Theorem 1.1 is based on the following result.

Theorem 2.1. Let A be a k-element alphabet and L be a hereditary language
over A . Then there is a finite set F of words such that

L = {w ∈ A ∗ | no subword of w belongs to F}

and there are integers m,n > 0 and words w1, . . . , wn, each of them of length at
most mω, such that

L =
n⋃

i=1

S(wi).

The (typically infinite) words wi have form

wi = u0X1u1X2 · · ·Xquq,

where each uj is a universal word for a possibly empty alphabet Aj ⊆ A and
X1, . . . , Xq are symbols of A . The values of Aj, Xj and q depend on i.
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We first show how this theorem implies Theorem 1.1.

Proof of Theorem 1.1. Let P be a hereditary class of partitions such that every
partition in P has at most k blocks. Consider the language L over a k-element
alphabet, where L contains all the words that represent the partitions in P .
Clearly, L is isomorphism closed and hereditary. By Theorem 2.1, L can be
characterized by a finite list F of forbidden subwords. Let G be the set of
normalized partitions represented by the words in F . It is easy to see that G is
the basis of P .

The second claim of follows equally easily from Theorem 2.1. We know that
L can be characterized as the language of all the finite subwords of a finite
collection of words w1, . . . , wn. Each such word wi represents a partition σi of
an ordinal not exceeding mω for some integer m > 0. Let us check that the
normalized partitions contained in σi are precisely the partitions in P . If ρ ∈ P
then L contains a word w representing ρ, thus w is a subword of one of the
words wi and hence ρ ⊆ σi. Conversely, if a normalized partition ρ is contained
in σi then the corresponding subword w of wi represents ρ, thus w ∈ L which
implies ρ ∈ P .

2.1 Proof of Theorem 2.1

A particular case of Higman’s theorem from the wqo theory (see, e.g., Kruskal
[19]) says that in an infinite set of words over a finite alphabet, two words must
be comparable by subword relation. Hence each hereditary language L over
a finite alphabet A is characterized by a finite set F of forbidden subwords,
namely the subword-minimal words over A not in L. This proves the first part
of Theorem 2.1.

To construct the “dual” words wi and thus to prove the second part we use
the theory of regular languages. We introduce the necessary concepts and state
certain classical results without proof.

A language L over a k-element alphabet A is called regular if it is accepted
by a finite automaton. Such an automaton G is a finite directed (multi-)graph
with one initial vertex and a set of accepting vertices; it has the property that
each vertex has exactly k outgoing edges, each of them labeled by a distinct
symbol of A . Every word w ∈ A ∗ corresponds to the walk in G which starts in
the initial vertex and in its i-th step follows the edge labeled by the i-th letter
of w. The word w is accepted, if and only if the corresponding walk in G ends in
an accepting vertex. The vertices of an automaton are commonly called states.

For every language L ⊆ A ∗, we may define the equivalence relation RL on
the set of words A ∗ as follows: (x, y) ∈ RL if for every word w ∈ A ∗ we have
the equivalence xw ∈ L ⇐⇒ yw ∈ L. For the following classical result see, for
example, Hopcroft and Ullman [14].

Theorem 2.2 (Myhill–Nerode). A language L is regular if and only if RL

has finitely many equivalence classes. Furthermore, a regular language L has a
unique (up to isomorphism) accepting automaton G with the smallest number
of states, and this automaton has the property that its number of states is equal
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to the number of equivalence classes of RL, and two words belong to the same
equivalence class of RL if and only if the two computations of G over these two
words end in the same state.

A language L described by finitely many forbidden subwords is regular,
because a language avoiding a single fixed subword is easily seen to be regular
and regular languages are closed under finite intersections. The structure of
the minimal automaton accepting a hereditary language is described by the
following lemma.

Lemma 2.3. Let A be the minimal automaton accepting a hereditary lan-
guage L. The following holds:

• A has at most one non-accepting state. All the outgoing edges of this state
are loops.

• Apart from possible loops, A has no other directed cycles.

Proof. Both claims follow from the Myhill–Nerode theorem. For the first claim,
assume that x and y are two words not belonging to L. Clearly, for any word
w, neither xw nor yw can belong to L, which shows that (x, y) ∈ RL, i.e.,
the computations over x and y both lead to the same non-accepting state. By
the hereditary property, there can be no edge from a non-accepting state to an
accepting state, implying that all the outgoing edges of the non-accepting state
are loops.

Next, we will show that A has no cycles, apart from loops. By the previous
claim, we know that any non-trivial cycle can only contain accepting states.
Assume that A has a directed cycle C containing two distinct states a and b.
Let w be a word corresponding to a path from the initial state to the state
a, let x be the word corresponding to the path from a to b along the cycle
C, let y be the word corresponding to the path from b to a along C. The
computations of A over the word w and over the word wxy both end in the
state a, while the computation over wx ends in b. We will now show that w
and wx are RL-equivalent. Let z ∈ A ∗ be any word. We need to show the
equivalence wz ∈ L ⇐⇒ wxz ∈ L. Clearly, if wxz ∈ L then wz ∈ L since
L is hereditary. On the other hand, if wz ∈ L, then wxyz ∈ L, since w and
wxy are RL-equivalent (their computations end in state a), and so wxz ∈ L by
hereditarity. Thus w and wx are RL-equivalent, which is a contradiction, since
their computations end in different states a and b.

We are now ready to proceed with the proof of Theorem 2.1. Let A = (V,E)
be the minimal automaton accepting a hereditary language L. If A has no non-
accepting state, then L = A ∗ and L can be expressed as the set of subwords of
a universal word for the alphabet A . Thus we have n = 1 and w1 = u0 with
A0 = A .

Assume now, that L 6= A ∗, and let f be the unique non-accepting state of A.
Let A′ = (V ′, E′) denote the directed graph obtained from A by the removal
of the vertex f and all the edges incident to it. If f is the initial vertex of A,
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then L is the empty language, which can be expressed as the set of subwords
of an empty collection of infinite words, satisfying Theorem 2.1 trivially. Let us
assume that L is nonempty, and let a0 denote the initial vertex of A. Lemma 2.3
implies that a0 6= f , i.e., a0 ∈ A′.

We know that the words w ∈ L correspond bijectively to finite directed walks
in A′ starting in a0. Since A′ has no nontrivial cycles, the non-loop edges of any
walk t in A′ form a path; we will call this path the backbone of t. Since A′ is
finite, it has only finitely many maximal paths p1, p2, . . . , pk starting in a0. For
each such path pi, we now construct an infinite word wi of the form described in
Theorem 2.1, with the property that for any walk t in A′ whose backbone is an
initial segment of the path pi, the word wi contains a subword w corresponding
to the walk t. The word wi is defined as follows. Let a0, a1, . . . , am be the
sequence of vertices of pi, let ej be the edge of pi between aj−1 and aj . Let
Aj be the set of symbols that appear as labels of the loops at the vertex aj ,
let uj be a universal word of the alphabet Aj (with the empty word being
universal for the empty alphabet), let Xj be the label of the edge ej . Now
we put wi = u0X1u1X2 · · ·Xmum. It is easy to check that any walk whose
backbone is an initial segment of pi corresponds to a subword of wi (however,
note that the converse is not necessarily true). This shows that any word of L

is a subword of at least one of the words wi, for i = 1, . . . , k.
To complete the proof of Theorem 2.1, we need to establish the following

claim.

Lemma 2.4. Any finite subword of any of the words wi belongs to L.

Proof. Fix a word wi, constructed from a path pi as above. Let w be a finite
subword of wi. We will show that w is a subword of a finite word w′ such that w′

corresponds to a walk in A′ with backbone pi. This will imply that w′ belongs
to L, and by the hereditarity of L, we will know that w belongs to L as well.

Since w ⊆ wi = u0X1u1X2 · · ·Xmum, we may decompose w into a con-
catenation of the form w = y0X

?
1y1X

?
2 · · ·X?

mym, where each yj is a subword
of uj , and X?

j is either the empty string or the symbol Xj . We now define
w′ = y0X1y1X2 · · ·Xmym and easily observe that w′ has the required prop-
erty.

This completes the proof of Theorem 2.1.

2.2 Proof of Corollary 1.2

For the proof of Corollary 1.2, we use the results of the previous subsection.
Let P be a hereditary class of partitions with at most k blocks and A be the
alphabet [k] = {1, 2, . . . , k}. Let L be the language of all the words over A
representing a partition in P .

A rooted graph is a directed graph with a special root vertex v0 and with all
edges labelled by letters of A . We assume that no two edges leaving the same
vertex have equal labels. A rooted walk in a rooted graph is a directed walk that
starts in v0. Each rooted walk represents a unique word formed by the labels
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of its edges in the order in which they were visited by the walk. Conversely, for
each word, there is at most one rooted walk representing this word.

By the results of the previous subsection, we know that there is a rooted
graph A′ whose rooted walks represent precisely the words of L. The problem
is that a single partition of P is typically represented by several isomorphic
words of L, so we cannot use the enumeration of directed walks of A′ directly.

Let us say that a word w over the alphabet A is canonical if w has the
property that for each two letters i, j ∈ A such that i < j, if w contains
the letter j, then w contains i as well, and furthermore, the first occurrence
of i precedes the first occurrence of j. Note that each isomorphism class of
words over A has exactly one canonical word. Let Lc be the set of all the
canonical words in L. There is a natural length-preserving bijection between P
and Lc. Our aim is to build a rooted graph Ac whose rooted walks represent
the elements of Lc. Furthermore, the graph Ac will contain no directed cycle
except for possible loops. This will imply that its rooted walks are enumerated
by generating function in the stated form.

Since the language Lc is not hereditary, we cannot use Lemma 2.3 directly.
Instead, we apply a standard product construction used in the theory of finite
automata. To describe the construction formally, we first construct a rooted
graph B that generates precisely the canonical words. B has k + 1 vertices
w0, w1, . . . , wk with w0 being the root. For each i ≥ 1, the vertex wi has i loops
labelled 1, . . . , i, and an in-going edge (wi−1, wi) labelled i. There are no other
edges. It is easy to see that the rooted walks in B correspond to the canonical
words over A .

We now define the graph Ac. The vertex set of Ac is the Cartesian product
of the vertex sets of A′ and B. The edge set of Ac is determined by the following
rule: Ac has a directed edge from (v, w) to (v′, w′) labelled i if and only if A′

has a directed edge from v to v′ labelled i and B has a directed edge from w
to w′ labelled i. The root of Ac is the vertex x0 = (v0, w0). It is clear that
Ac has a rooted walk representing a word w if and only if both A′ and B have
rooted walks representing w. Since the walks in A′ represent the words of L

and the walks in B represent the canonical words, we conclude that the walks
in Ac represent precisely the words from Lc.

Furthermore, we may easily check that Ac has no directed cycles except for
loops. Indeed, the vertices of A′ can be topologically ordered in such a way that
all the directed edges are nondecreasing in this ordering, and the same is true
for B. We may then order the vertices of Ac lexicographically using these two
orderings, to obtain an ordering on Ac in which all the edges are nondecreasing.
This shows that Ac has no directed cycles.

It remains to deduce the expression for the generating function from the
structure of Ac. Let t be a rooted walk in Ac. Recall that the non-loop edges
of t form a directed path p which we call the backbone of t. Let x0, x1, . . . , xr

be the vertices of p, and let li be the number of loops adjacent to the vertex xi.
Note that li ≤ k, because the loops at a given vertex are labelled by distinct
symbols. Let tn be the number of walks of length n whose backbone is p, and
let gp(x) =

∑
n≥0 tnx

n be the corresponding generating function. It is easy to

11



obtain the expression

gp(x) =
xr∏r

i=0(1− lix)
.

Summing the functions gp(x) over the finitely many directed paths p of Ac

starting in x0, we obtain the generating function enumerating the rooted walks
of Ac, which is equal to the generating function fP (x) enumerating P .

2.3 Proof of Theorem 1.3

To show that Theorem 1.1 cannot be directly extended to classes of partitions
with an unbounded number of blocks, we now show that the class of partitions
avoiding π0 = {{1, 3}, {2, 4}, {5}} has no finite ordinal dual.

We find it convenient to represent the partition π0 by the word ababc. We
prove that the partition ababc has no finite ordinal dual. In other words, we
will prove that there is no finite collection D of partitions of ordinals with the
property that every normalized partition avoiding ababc is contained in at least
one member of D.

First we introduce some necessary notation and terminology. Let π be a
partition of an ordinal α. We represent π as a word of length α over some
(possibly infinite) alphabet A and make no distinction between the word and
the partition it represents. We let πi denote the i-th symbol of π (where i ∈ α
is an ordinal index). Let X,Y ∈ A be two letters. We say that the letter X
crosses the letter Y in π (or Y is crossed by X in π) if π contains the subword
XYXY . More specifically, we say that X crosses Y at (i, j, k, l), if i < j < k < l
are four ordinal indices such that πi = πk = X and πj = πl = Y .

The following proposition is the key to our proof.

Proposition 2.5. Let π be an ababc-avoiding partition of an ordinal, repre-
sented as a word over A . Then there is a (finite) number M ∈ N such that each
letter Y ∈ A is crossed in π by at most M distinct letters.

The proof of Proposition 2.5 is separated into three lemmas. In these lem-
mas, we assume that π is a fixed ababc-avoiding partition of an ordinal α,
represented by a fixed word over A .

Lemma 2.6. Let X,X ′ and Y be three distinct letters of A . Assume that X
crosses Y at (i, j, k, l) and X ′ crosses Y at (i′, j′, k′, l′), where i < i′. Then we
have the following inequalities:

i < i′ < min{j, j′} ≤ max{j, j′} < k′ < k < min{l, l′} ≤ max{l, l′}.

Hence, π contains the subword XX ′Y X ′XY , and X ′ crosses Y at (i′, j, k′, l).

Proof. We will show that any other mutual arrangement of the eight indices
i, j, k, l, i′, j′, k′, l′ creates a pattern ababc. We have i < i′ by assumption, and
i < j < k < l and i′ < j′ < k′ < l′ by definition.

Let us first show that k is greater than k′: if k < j′, then the indices
i < j < k < j′ < k′ induce the subword XYXYX ′, isomorphic to the forbidden
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pattern. Similarly, if j′ < k < k′, then i < i′ < k < k′ < l′ corresponds to
XX ′XX ′Y .

Next, we observe that k < l′, otherwise i′ < j′ < k′ < l′ < k produces
X ′Y X ′Y X.

It remains to show that j is between i′ and k′: if j < i′, then j < i′ <
j′ < k′ < k gives Y X ′Y X ′X, and if k′ < j then i′ < j′ < k′ < j < k gives
X ′Y X ′Y X.

These inequalities imply the lemma.

Let B(Y ) denote the set of all the letters that cross the letter Y in π.

Lemma 2.7. For each Y ∈ A , the set B(Y ) is finite.

Proof. Choose an arbitrary Y ∈ A . We introduce an ordering ≺ on the set
B(Y ) in the following way: for two distinct letters X,X ′ ∈ B(Y ), we write
X ≺ X ′ if the first occurrence of X in π precedes the first occurrence of X ′.
Assume that X1 ≺ X2 ≺ X3 ≺ · · · is the ascending chain of all the elements of
B(Y ). For contradiction, assume that this chain is infinite. We will now find an
infinite descending chain in the ordinal α ordered by ≤, which is a contradiction,
since ordinals do not contain infinite descending chains.

By Lemma 2.6, we know that there are two indices j, l ∈ A , such that
every letter X ∈ B(Y ) crosses Y at (i, j, k, l), for some values of i and k. In
fact, if i(X) denotes the index of the first occurrence of X in π, and if k(X)
is the smallest index greater than j such that πk(X) = X, then X crosses Y
at (i(X), j, k(X), l). If X ≺ X ′ are two letters from B(Y ), we know that
i(X) < i(X ′), and by Lemma 2.6, we also have k(X) > k(X ′). In particular,
k(X1) > k(X2) > · · · is an infinite decreasing sequence of indices, which is a
contradiction, as mentioned above.

Lemma 2.8. There is at most one letter Y ∈ A for which |B(Y )| > 1.

Proof. Assume that there is a letter Y such that |B(Y )| > 1. Choose distinct
letters X,X ′ ∈ B(Y ). We may assume, by Lemma 2.6, that there are two
indices j, l ∈ α such that X crosses Y at (i, j, k, l) for some i, k, and X ′ crosses
Y at (i′, j, k′, l), for some i′, k′. We claim that for each m ≥ l, we have πm = Y .
Indeed, the indices i < j < k < l < m induce the word XYXY πm and the
indices i′ < j < k′ < l < m induce the word X ′Y X ′Y πm. If πm 6= Y , then
at least one of these words is isomorphic to the pattern ababc (while the other
might be isomorphic to ababa).

We conclude that if |B(Y )| > 1, then there is a value l ∈ α such that πm = Y
for each m ≥ l. Clearly, there can be at most one Y with this property.

Proof of Proposition 2.5. By Lemma 2.7, we know that B(Y ) is finite for every
Y , and by lemma 2.8, we see that |B(Y )| ≤ 1 for all Y except one. Thus, we
may define M = max{|B(Y )|;Y ∈ A }, knowing that M is finite.

We complete the proof of Theorem 1.3. Let C be a finite collection of
ordinal partitions avoiding ababc. Let us choose M such that no letter Y ∈ A
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is crossed more than M times in any partition from C. We take the ababc-
avoiding partition ρ = X1X2 · · ·XM+1Y XM+1XM · · ·X1Y . In ρ, the letter Y
is crossed M + 1 times, so ρ is not contained in any member of C.

3 Molecular classes

We now focus on general classes of relational structures. Our first aim is to
prove Theorems 1.5 and 1.6 announced in the introduction.

3.1 Proofs

Let us begin with the proof of Theorem 1.5. Let (A,≤) be a poset. A subset of
A whose elements are pairwise incompatible in A will be called a pie set of A.

It is clear that if A has k+ 1 pairwise incompatible elements, then it cannot
be covered by k ideals. To prove the theorem, it suffices to show that either A
has an infinite pie set, or there is an integer k such that A can be covered by k
ideals and it contains a pie set of size k.

Assume first that there is an integer k ∈ N such that the largest pie set of A
has cardinality k. Let P = {α1, . . . , αk} be a pie set of size k. We define k sets
C1, C2, . . . , Ck, where Ci is the set of all the elements of A that are compatible
with αi. We claim that these k sets are ideals that cover A.

It is easy to see that see that the sets C1, . . . , Ck cover A. If there were an
element β ∈ A not belonging to any of the sets C1, . . . , Ck, then β would be
incompatible with all the elements of P , yielding a pie set of size k + 1.

We now show that each Ci is an ideal. Choose i ∈ [k] arbitrarily. Clearly
Ci is a down-set. Let β and β′ be two elements of Ci. Our goal is to show that
β and β′ have a common upper bound in Ci. By definition of Ci, the elements
β and β′ are compatible with αi, so A contains a common upper bound γ of αi

and β, and a common upper bound γ′ of αi and β′. Since γ and γ′ are greater
than αi, they both belong to Ci. Note that γ and γ′ are incompatible with all
the elements of P except αi, because if γ or γ′ were compatible with some αj ,
then αi would be compatible with αj as well. We conclude that γ and γ′ must
be compatible in A, otherwise P ∪{γ, γ′} \ {αi} would be a pie set of size k+ 1.
Thus, γ and γ′ have a common upper bound δ, which necessarily belongs to Ci.
Since δ is also a common upper bound of β and β′, we see that Ci is an ideal,
as claimed.

To complete the proof of Theorem 1.5, we need to show that if the poset A
has arbitrarily large finite pie sets, then it has an infinite pie set as well. Assume
for contradiction that A has arbitrarily large finite pie sets, but no infinite pie
set. We will inductively construct a sequence β1, β2, . . . of elements of A and a
sequence A0, A1, A2, . . . of subposets of A, with these properties:

• For each n ∈ N ∪ {0}, the poset An is an up-set of A. In particular, any
two elements that are incompatible in An are also incompatible in A, and
any pie set of An is also a pie set of A.
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• For each n ∈ N ∪ {0}, the poset An contains arbitrarily large pie sets.

• For each n ∈ N, An is a subposet of An−1.

• For each n ∈ N, βn belongs to An−1, and βn is incompatible with all the
elements of An. Note that this implies that {βn; n ∈ N} is a pie set of A.

As the base step of the induction, define A0 = A. For the induction step, let
n be greater than 0, and assume that the poset An−1 has already been defined
and that it satisfies the conditions above. Note that if P1 ⊆ P2 ⊆ P3 ⊆ · · · is
a chain of pie sets of An−1, then the union

⋃
i≥1 Pi is also a pie set of An−1.

By Zorn’s lemma, An−1 has an ⊆-maximal pie set P . Since every pie set of
An−1 is also a pie set of A, the set P is finite. Since An−1 contains arbitrarily
large pie sets, we may assume that P has at least two elements. Let α1, . . . , αk

be the elements of P . Let Ci be the set of all the elements of An−1 that are
compatible with αi, and let Gi be the set of all the elements of An−1 that are
greater than or equal to αi. Obviously, Gi is a subset of Ci, and any element of
Gi is incompatible with any element of Gj whenever i 6= j.

From the maximality of P , we know that the sets C1, . . . , Ck cover An−1. In
particular, at least one of these sets contains arbitrarily large pie sets of An−1.
Assume, without loss of generality, that C1 contains arbitrarily large pie sets. It
follows that G1 contains arbitrarily large pie sets as well, because every element
of C1 has an upper bound in G1, and when we replace an element of a pie set
with its upper bound, we get a new pie set of the same cardinality.

We now define An = G1 and βn = α2. It is clear that An and βn have
all the required properties. In particular, {βn; n ∈ N} is an infinite pie set of
A, contradicting our assumptions. This contradiction completes the proof of
Theorem 1.5.

The proof of Theorem 1.6 is now easy. Assume that C is a hereditary class
of relational structures. The containment relation ⊆ on the class C is a quasi-
order. To be able to apply Theorem 1.5 directly, we choose one representative
from every isomorphism class of structures in C, and we let CI be the set
of these representatives. Then (CI ,⊆) is a poset. It is clear that the poset
(CI ,⊆) can be covered by k ideals if and only if the class C can be expressed
as a union of k atomic classes, and that the poset (CI ,⊆) has a subset SI of
pairwise incompatible elements, if and only if the class C has a set S of pairwise
incompatible elements of the same cardinality. Applying Theorem 1.5 for the
poset (CI ,⊆), we obtain Theorem 1.6.

A direct consequence of Theorem 1.6 is the following corollary, which we
already hinted at in the introduction. A quasi-order relation is called a well-
quasi-order if it has no infinite antichains and no strictly decreasing infinite
chains. In the context of permutation classes, the following result appears in
Murphy’s thesis [20], and a slightly weaker statement is given in Atkinson et
al. [2, Theorem 2.2]. Their proofs generalize immediately to the setting of
relational structures and are only slightly longer than the proof given below.

Corollary 3.1. A hereditary class C of relational structures that is well-quasi-
ordered by containment is molecular.
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Proof. Since C is well-quasi-ordered by inclusion, it has no infinite ⊆-antichain,
hence no infinite pie set. By Theorem 1.6, it is molecular.

The converse of Corollary 3.1 does not hold: it is easy to come up with
examples of molecular (even atomic) classes that are not well-quasi-ordered by
inclusion. For instance, the class of all finite permutations is atomic but not
well-quasi-ordered.

3.2 Examples of non-molecular finitely based classes

Recall that a hereditary class of relational structures is called finitely based, if its
set of minimal forbidden patterns is finite. We now present a finitely based class
of ordered graphs that is not molecular. Then we will show how this example
may be extended to similar classes of unordered graphs, permutations, and set
partitions. Our construction is related to previously known constructions of
infinite antichains of permutations [23].

An ordered graph is a (simple undirected) graph whose vertex set is linearly
ordered. We shall represent ordered graphs as relational structures with two
binary relations, where the first relation is a linear ordering of the ground set,
and the second relation is a symmetric relation that represents edge adjacency.
Note that in this representation, set partitions are represented as ordered graphs
whose every connected component is a clique.

Let C be the class of all ordered graphs that have no vertex of degree greater
than three, and at most two vertices of degree three. It is easily observed that
C is a finitely based hereditary class. We now present an infinite sequence of
elements of C that are incompatible in C, thus showing that C is not molecular.

For an even number n ≥ 8, let Gn be an ordered graph on the vertex set [n],
which is a union of two triangles on the vertices 1, 2, 3 and (n − 2), (n − 1), n
and a path connecting the vertices 1, 5, 4, 7, 6, 9, 8, . . . , 2i + 1, 2i, . . . , n − 5, n −
6, n− 3, n− 4, n. Note that Gn has exactly two vertices of degree three (1 and
n), while the remaining vertices have degree two. In particular, Gn ∈ C. Note
that each graph Gn consists simply of a pair of triangles joined by a path. The
purpose of the slightly peculiar vertex ordering is to ensure that Gn represents
a permutation, in the sense defined below.

It is not difficult to check that for any two distinct even numbers m,n ≥ 8,
the graphs Gm and Gn are incompatible in the class C. This shows that C is
not molecular.

This construction works in the same way within the realm of unordered
graphs, and it can be easily extended to hereditary classes of permutations:
indeed, let πn be the permutation

3, 2, 5, 1, 7, 4, 9, 6, . . . , 2i+ 1, 2i− 2, . . . , n− 3, n− 6, n, n− 4, n− 1, n− 2.

We say that an ordered graph G on the vertex set [n] represents a permutation π
if ij is an edge of G if and only if the two elements i, j have their order inverted
by the permutation. With this representation, the containment of permutations
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is translated into induced containment of ordered graphs. The graphs that
represent a permutation are called permutation graphs.

The permutation πn is represented by the graph Gn. Let Π be the class con-
taining all the permutations whose representing graphs belong to C. It follows
from the previous discussion that the permutations πn form an infinite sequence
of permutations which are pairwise incompatible in Π. It is not difficult to see
that the minimal forbidden permutations of Π are exactly those permutations
that are represented by the permutation graphs among the minimal forbidden
induced graphs of C. We conclude that Π is a non-molecular finitely based class
of permutations.

We remark that this construction can be further adapted to the poset of
set partitions. Note that a permutation π of order n can be represented by a
partition of the set [2n] into two-element sets {i, n+π(i)}, where the containment
relation of these special set partitions corresponds to the containment relation
among permutations. Thus, we might use the above construction to obtain a
finitely based hereditary class of set partitions that is not molecular. We omit
the details of the argument.

4 Conclusions and open problems

We have shown that classes of set partitions with a bounded number of blocks
admit a simple description in terms of finite ordinal duals, and that this de-
scription is useful in deriving enumeration results. While these results do not
generalize to arbitrary classes of partitions, there are classes of unbounded num-
ber of blocks that admit finite ordinal duals as well. It is at this point an open
problem to characterize the classes that have a finite ordinal dual.

In the setting of relational structures, we have introduced the concept of
molecular classes, and have provided a characterization of molecular classes in
terms of joint embeddability of their elements.

As we mentioned in the introduction, many researchers have recently studied
hereditary classes of various structures, with the goal of characterizing their
possible speeds. It appears, though, that many results in this area are of a
‘negative’ nature, i.e., they show that the speeds of hereditary classes can behave
in a rather arbitrary fashion. For instance, Balogh, Bollobás and Weinreich [6]
have constructed, for any c > 1 and any ε > 1/c, hereditary classes of graphs
with speeds oscillating infinitely often between n(c+o(1))n and 2n2−ε

.
In view of such results, it might be desirable to find more ‘well-behaved’

subfamily of hereditary classes, in which such arbitrary behavior does not ap-
pear. Molecular classes might provide such a convenient subfamily. Indeed, the
‘oscillating’ classes constructed by Balogh et al. are non-molecular (they in fact
contain infinitely many graphs that are not proper subgraphs of any other graph
in the class). In contrast, in the setting of graphs [5] as well as in the setting
of permutations [17, 24], there are ‘positive’ results which show that classes of
sufficiently small speeds are ‘well-behaved’, in the sense that their speeds are
tightly constrained. These results are based on structural descriptions of small
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classes, which actually easily imply that these small classes are molecular (or
even well-quasi-ordered). We may thus hope that by restricting our study to
molecular classes of ordered structures, as opposed to general hereditary classes,
we might recover some of the nice behavior that we observe in small speeds.
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