Short Proofs are Hard to Find

lan Mertz

University of Toronto

Joint work w/ Toniann Pitassi, Hao Wei

ICALP, July 10, 2019

Proof propositional complexity

```
\begin{aligned} *54'43. & \vdash :. \alpha, \beta \in 1. \ \Im : \alpha \land \beta = \Lambda . \equiv . \alpha \lor \beta \in 2 \\ Dem. \\ & \vdash . *54'26. \ \Im \vdash :. \alpha = \iota^t x. \ \beta = \iota^t y. \ \Im : \alpha \lor \beta \in 2. \equiv . x \neq y. \\ & [*51'231] \\ & \equiv . \iota^t x \land \iota^t y = \Lambda. \\ & [*13'12] \\ & \vdash . \alpha \land \beta = \Lambda \end{aligned} (1)
\vdash . (1). *11'11'35. \ \Im \\ & \vdash :. (gx, y). \alpha = \iota^t x. \ \beta = \iota^t y. \ \Im : \alpha \lor \beta \in 2. \equiv . \alpha \land \beta = \Lambda \end{aligned}(2)
\vdash . (2). *11'54. *52'1. \ \Im \vdash . \operatorname{Prop} \end{aligned}
```

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

Whitehead, A. N., & Russell, B. (1925). Principia mathematica. Cambridge [England]: The University Press. pp.379

Proof propositional complexity

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

Whitehead, A. N., & Russell, B. (1925). Principia mathematica. Cambridge [England]: The University Press. pp.379

How long is the shortest \mathcal{P} -proof of τ ?

Proof propositional complexity

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

Whitehead, A. N., & Russell, B. (1925). Principia mathematica. Cambridge [England]: The University Press. pp.379

How long is the shortest \mathcal{P} -proof of τ ?

Can we find short \mathcal{P} -proofs of τ ?

Resolution

One of the simplest and most important proof systems

Resolution

One of the simplest and most important proof systems

- SAT solvers ([Davis-Putnam-Logemann-Loveland], [Pipatsrisawat-Darwiche])
- automated theorem proving
- model checking
- planning/inference

Resolution

Automatizability

Automatizability [Bonet-Pitassi-Raz]

A proof system \mathcal{P} is *f*-automatizable if there exists an algorithm $A: \text{UNSAT} \to \mathcal{P}$ that takes as input τ and returns a \mathcal{P} -refutation of τ in time $f(n, S_{\mathcal{P}}(\tau))$, where $S_{\mathcal{P}}(\tau)$ is the size of the shortest \mathcal{P} -refutation of τ .

Automatizability

Automatizability [Bonet-Pitassi-Raz]

A proof system \mathcal{P} is *f*-automatizable if there exists an algorithm $A: \text{UNSAT} \to \mathcal{P}$ that takes as input τ and returns a \mathcal{P} -refutation of τ in time $f(n, S_{\mathcal{P}}(\tau))$, where $S_{\mathcal{P}}(\tau)$ is the size of the shortest \mathcal{P} -refutation of τ .

Automatizability is connnected to many problems in computer science...

- theorem proving and SAT solvers
- algorithms for PAC learning ([Kothari-Livni], [Alekhnovich-Braverman-Feldman-Klivans-Pitassi])
- algorithms for unsupervised learning ([Bhattiprolu-Guruswami-Lee])
- approximation algorithms (many works...)

General results and results for strong systems

• approximating $S_{\mathcal{P}}(\tau)$ to within $2^{\log^{1-o(1)}n}$ is NP-hard for all "reasonable" \mathcal{P} ([Alekhnovich-Buss-Moran-Pitassi])

General results and results for strong systems

- approximating $S_{\mathcal{P}}(\tau)$ to within $2^{\log^{1-o(1)}n}$ is NP-hard for all "reasonable" \mathcal{P} ([Alekhnovich-Buss-Moran-Pitassi])
- lower bounds against different Frege systems under cryptographic assumptions ([Bonet-Domingo-Gavaldà-Maciel-Pitassi],[BPR],[Krajíček-Pudlák])

Results for weak systems

• first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]

Results for weak systems

- first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
- extended to Nullsatz, PC by [Galesi-Lauria]

Results for weak systems

- first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
- extended to Nullsatz, PC by [Galesi-Lauria]

Rest of this talk: a new version of [AR] + [GL]

- simplified construction and proofs
- stronger lower bounds via ETH assumption
- results also hold for Res(r)

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$ -automatizable for $\mathcal{P} = \text{Res}$, TreeRes, Nullsatz, PC.

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$ -automatizable for $\mathcal{P} = \text{Res}$, TreeRes, Nullsatz, PC.

Theorem (Main Theorem for Res(r))

Assuming ETH, Res(r) is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau)/\exp(r^2))}$ -automatizable for $r \leq \tilde{O}(\log \log \log n)$.

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$ -automatizable for $\mathcal{P} = \text{Res}$, TreeRes, Nullsatz, PC.

Theorem (Atserias-Muller'19)

Assuming $P \neq NP$, Res is not automatizable. Assuming ETH, Res is not automatizable in subexponential time.

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$ -automatizable for $\mathcal{P} = \text{Res}$, TreeRes, Nullsatz, PC.

Theorem (Atserias-Muller'19)

Assuming $P \neq NP$, Res is not automatizable. Assuming ETH, Res is not automatizable in subexponential time.

Theorem (Bonet-Pitassi; Ben-Sasson-Wigderson)

TreeRes is $n^{O(\log S_{\mathcal{P}}(\tau))}$ -automatizable. Res is $n^{O(\sqrt{n \log S_{\mathcal{P}}(\tau))}}$ -automatizable.

Getting an automatizability lower bound

Recipe:

- (1) Hard gap problem G
- (2) Turn an instance of G into a tautology au such that
 - "yes" instances have small proofs
 - "no" instances have no small proofs

(3) Run automatizing algorithm Aut on au and see how long the output is

Overview

Gap hitting set

• $S = \{S_1 \dots S_n\}$ over [n]

Gap hitting set

- $S = \{S_1 \dots S_n\}$ over [n]
- hitting set: $H \subseteq [n]$ s.t. $H \cap S_i \neq \emptyset$ for all $i \in [n]$

Gap hitting set

- $S = \{S_1 \dots S_n\}$ over [n]
- hitting set: $H \subseteq [n]$ s.t. $H \cap S_i \neq \emptyset$ for all $i \in [n]$
- $\gamma(\mathcal{S})$ is the size of the smallest H
- Gap hitting set: given S, distinguish whether $\gamma(S) \leq k$ or $\gamma(S) > k^2$

Gap hitting set

- $S = \{S_1 \dots S_n\}$ over [n]
- hitting set: $H \subseteq [n]$ s.t. $H \cap S_i \neq \emptyset$ for all $i \in [n]$
- $\gamma(\mathcal{S})$ is the size of the smallest H
- Gap hitting set: given S, distinguish whether $\gamma(S) \leq k$ or $\gamma(S) > k^2$

Theorem (Chen-Lin)

Assuming ETH the gap hitting set problem cannot be solved in time $n^{o(k)}$ for $k = \tilde{O}(\log \log n)$

Overview

From gap hitting set to automatizability

Theorem (Main Technical Lemma)

For $k = \tilde{O}(\log \log n)$, there exists a polytime algorithm mapping S to τ_S s.t.

• if
$$\gamma(S) \leq k$$
 then $S_{\mathcal{P}}(\tau_S) \leq n^{O(1)}$

• if
$$\gamma(\mathcal{S}) > k^2$$
 then $\mathcal{S}_{\mathcal{P}}(\tau_{\mathcal{S}}) \ge n^{\Omega(k)}$

where $\mathcal{P} \in \{\text{TreeRes}, \text{Res}, \text{Nullsatz}, \text{PC}\}$.

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

• if
$$\gamma(\mathcal{S}) \leq k$$
 then $\mathcal{S}_{\mathcal{P}}(au) \leq n^{\mathcal{O}(1)}$

• if
$$\gamma(\mathcal{S}) > k^2$$
 then $\mathcal{S}_\mathcal{P}(au) \geq n^{\Omega(k)}$

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log n)} = n^{o(k)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

• if
$$\gamma(S) \leq k$$
 then $S_{\mathcal{P}}(\tau) \leq n^{O(1)}$

• if
$$\gamma(\mathcal{S}) > k^2$$
 then $\mathcal{S}_\mathcal{P}(au) \geq n^{\Omega(k)}$

Theorem (Main Theorem)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S_{\mathcal{P}}(\tau))}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

• if
$$\gamma(\mathcal{S}) \leq k$$
 then $\mathcal{S}_{\mathcal{P}}(au) \leq n^{\mathcal{O}(1)}$

• if
$$\gamma(\mathcal{S}) > k^2$$
 then $S_{\mathcal{P}}(\tau) \ge n^{\Omega(k)}$

Detour: universal sets

 A_{m×m} is (m, q)-universal if for all I ⊆ [m], |I| ≤ q, all 2^{|I|} possible column vectors appear in A restricted to the rows I

Detour: universal sets

- A_{m×m} is (m, q)-universal if for all I ⊆ [m], |I| ≤ q, all 2^{|I|} possible column vectors appear in A restricted to the rows I
- A_{m×m} is (m, q)-dual universal if for all J ⊆ [m], |J| ≤ q, all 2^{|J|} possible row vectors appear in A restricted to the columns J

Detour: universal sets

- A_{m×m} is (m, q)-universal if for all I ⊆ [m], |I| ≤ q, all 2^{|I|} possible column vectors appear in A restricted to the rows I
- A_{m×m} is (m, q)-dual universal if for all J ⊆ [m], |J| ≤ q, all 2^{|J|} possible row vectors appear in A restricted to the columns J
- constructions like the Paley graph work for $q = \frac{\log m}{4}$

Variables of $\tau_{\mathcal{S}}$ will implicitly define two matrices using A and \mathcal{S}

Variables of $\tau_{\mathcal{S}}$ will implicitly define two matrices using A and \mathcal{S}

Variables of $\tau_{\mathcal{S}}$ will implicitly define two matrices using A and \mathcal{S}

 $\tau_{\mathcal{S}}$ will state that there exist $\vec{\alpha},\vec{\beta}$ such that there is no i,j where Q[i,j]=R[i,j]=1

 $\tau_{\mathcal{S}}$ will state that there exist $\vec{\alpha},\vec{\beta}$ such that there is no i,j where Q[i,j]=R[i,j]=1

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$)

If $\gamma(S) \leq k \leq \frac{\log m}{4}$, then τ_S is unsatisfiable and $S(\tau_S) \leq m^k n$ for TreeRes.

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$)

If $\gamma(S) \leq k \leq \frac{\log m}{4}$, then τ_S is unsatisfiable and $S(\tau_S) \leq m^k n$ for TreeRes.

Lemma (Upper bound on $\mathcal{S}_{\mathcal{P}}(au_{\mathcal{S}})$)

If $\gamma(S) \leq k \leq \frac{\log m}{4}$, then τ_S is unsatisfiable and $S(\tau_S) \leq m^k n$ for TreeRes.

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$) If $\gamma(\mathcal{S}) \leq k \leq \frac{\log m}{4}$, then $\tau_{\mathcal{S}}$ is unsatisfiable and $S(\tau_{\mathcal{S}}) \leq m^{k}n$ for TreeRes.

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$) If $\gamma(\mathcal{S}) \leq k \leq \frac{\log m}{4}$, then $\tau_{\mathcal{S}}$ is unsatisfiable and $S(\tau_{\mathcal{S}}) \leq m^{k}n$ for TreeRes.

High-level idea: the universal property of A guarantees some column of Q will be a hitting set.

Size of the proof: $m^k n$

Ian Mertz (U. of Toronto)

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$) If $\gamma(\mathcal{S}) \leq k \leq \frac{\log m}{4}$, then $\tau_{\mathcal{S}}$ is unsatisfiable and $S(\tau_{\mathcal{S}}) \leq n^2$ for TreeRes.

High-level idea: the universal property of A guarantees some column of Q will be a hitting set.

Size of the proof:
$$m^k n = n^2$$
 for $m = n^{1/k}$

Ian Mertz (U. of Toronto)

High-level idea 1: any proof π must query all rows in some hitting set

• Res/TreeRes - prover-delayer game [Pudlák, Atserias-Lauria-Nordström]

- Res/TreeRes prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz/PC linear operator [Galesi-Lauria]

- Res/TreeRes prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz/PC linear operator [Galesi-Lauria]
- Res(k) switching lemma [Buss-Impagliazzo-Segerlend]

- Res/TreeRes prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz/PC linear operator [Galesi-Lauria]
- Res(k) switching lemma [Buss-Impagliazzo-Segerlend]
- TreeCP lifting [upcoming work]

High-level idea 2: π knows nothing about a row or column without setting lots of variables

High-level idea 2: π knows nothing about a row or column without setting lots of variables

Error-correcting codes

•
$$x_i \in \{0, 1\}^{6 \log m}$$
,
 $y_j \in \{0, 1\}^{6 \log n}$

•
$$f_x : \{0,1\}^{6 \log m} \to [m], f_y : \{0,1\}^{6 \log n} \to [n]$$

Open problems

Better hard k in gap hitting set \rightarrow better non-automatizability result

Open problems

Better hard k in gap hitting set \rightarrow better non-automatizability result

Theorem (Chen-Lin)

Assuming ETH the gap hitting set problem cannot be solved in time $n^{o(k)}$ for $k = O(\log^{1/7-o(1)} \log n)$

Theorem (Main Technical Lemma)

For $k = O(\sqrt{\log n})$, there exists a polytime algorithm mapping S to $\tau_S \ldots$

Thank you!

ɔ:'tɒmətaɪzə'bılıti ɔ:tp'mætaɪzə'bılıti