Short Proofs are Hard to Find

Ian Mertz

University of Toronto

Joint work w/ Toniann Pitassi, Hao Wei

ICALP, July 10, 2019

Ian Mertz (U. of Toronto) [Short Proofs are Hard to Find](#page-52-0) ICALP, July 10, 2019 1/20

Proof propositional complexity

```
*54.43. \vdash: \alpha, \beta \in 1, \supset \alpha \cap \beta = \Lambda, \equiv, \alpha \cup \beta \in 2Dem\vdash. *54.26. \Box \vdash:. \alpha = t^t x. \beta = t^t y. \Box: \alpha \cup \beta \in \mathbb{2}. \equiv. x \neq y.
       [*51:231]\equiv \cdot \iota^{\iota}x \wedge \iota^{\iota}y = \Lambda.
       [*13:12]\equiv.\alpha \cap \beta = \Lambda(1)+, (1), *11.11.35.\vdash:. (\exists x, y) \cdot \alpha = t^{\epsilon}x \cdot \beta = t^{\epsilon}y \cdot \mathbf{D} : \alpha \cup \beta \in 2. \equiv. \alpha \cap \beta = \Lambda(2)\vdash. (2). *11.54. *52.1. \triangleright Prop
```
From this proposition it will follow, when arithmetical addition has been defined, that $1+1=2$.

Whitehead, A. N., & Russell, B. (1925). Principia mathematica. Cambridge [England]: The University Press. pp.379

Proof propositional complexity

```
*54.43. \vdash: \alpha, \beta\epsilon1. \supset: \alpha \cap \beta = \Lambda. \equiv. \alpha \cup \beta\epsilon2
Dem.
        \vdash. *54.26. \Box \vdash:. \alpha = t^t x. \beta = t^t y. \Box: \alpha \cup \beta \in \mathbb{2}. \equiv. x \neq y.
       [*51:231]\equiv \cdot \iota^{\iota}x \wedge \iota^{\iota}y = \Lambda.
        [*13:12]\equiv.\alpha \cap \beta = \Lambda(1)+, (1), *11.11.35.\vdash:. (\exists x, y) \cdot \alpha = t^{\epsilon}x \cdot \beta = t^{\epsilon}y \cdot \mathbf{D} : \alpha \cup \beta \epsilon 2 \cdot \equiv \cdot \alpha \cdot \beta = \Lambda(2)\vdash. (2). *11.54. *52.1. \triangleright Prop
```
From this proposition it will follow, when arithmetical addition has been defined, that $1+1=2$.

Whitehead, A. N., & Russell, B. (1925). Principia mathematica. Cambridge [England]: The University Press. pp.379

How long is the shortest P -proof of τ ?

Proof propositional complexity

```
*54.43. \vdash: \alpha, \beta\epsilon1. \supset: \alpha \cap \beta = \Lambda. \equiv. \alpha \cup \beta\epsilon2
Dem\vdash. *54.26. \Box \vdash:. \alpha = t^t x. \beta = t^t y. \Box: \alpha \cup \beta \in \mathbb{2}. \equiv. x \neq y.
       [*51.231]\equiv \cdot \iota^{\iota}x \cap \iota^{\iota}y = \Lambda.
                                                                                                           \equiv.\alpha \cap \beta = \Lambda[*13.12](1)+, (1), *11.11.35.\vdash:. (\exists x, y) \cdot \alpha = t^{\epsilon}x \cdot \beta = t^{\epsilon}y \cdot \mathbf{D} : \alpha \cup \beta \epsilon 2 \cdot \equiv \cdot \alpha \cdot \beta = \Lambda(2)\vdash. (2). *11.54. *52.1. \triangleright Prop
```
From this proposition it will follow, when arithmetical addition has been defined, that $1+1=2$.

Whitehead, A. N., & Russell, B. (1925). Principia mathematica. Cambridge [England]: The University Press. pp.379

How long is the shortest P -proof of τ ?

Can we find short P -proofs of τ ?

Resolution

One of the simplest and most important proof systems

Resolution

One of the simplest and most important proof systems

- SAT solvers ([Davis-Putnam-Logemann-Loveland], [Pipatsrisawat-Darwiche])
- automated theorem proving
- model checking
- \bullet planning/inference

Resolution

Automatizability

Automatizability [Bonet-Pitassi-Raz]

A proof system P is f-automatizable if there exists an algorithm A : UNSAT \rightarrow P that takes as input τ and returns a P-refutation of τ in time $f(n, S_{\mathcal{P}}(\tau))$, where $S_{\mathcal{P}}(\tau)$ is the size of the shortest \mathcal{P} -refutation of τ .

Automatizability

Automatizability [Bonet-Pitassi-Raz]

A proof system P is f-automatizable if there exists an algorithm A : UNSAT \rightarrow P that takes as input τ and returns a P-refutation of τ in time $f(n, S_{\mathcal{P}}(\tau))$, where $S_{\mathcal{P}}(\tau)$ is the size of the shortest P-refutation of τ .

Automatizability is connnected to many problems in computer science...

- theorem proving and SAT solvers
- algorithms for PAC learning ([Kothari-Livni], [Alekhnovich-Braverman-Feldman-Klivans-Pitassi])
- algorithms for unsupervised learning ([Bhattiprolu-Guruswami-Lee])
- approximation algorithms (many works...)

General results and results for strong systems

approximating $S_\mathcal{P}(\tau)$ to within 2 $^{\log^{1-o(1)}n}$ is NP-hard for all "reasonable" $\mathcal P$ ([Alekhnovich-Buss-Moran-Pitassi])

General results and results for strong systems

- approximating $S_\mathcal{P}(\tau)$ to within 2 $^{\log^{1-o(1)}n}$ is NP-hard for all "reasonable" $\mathcal P$ ([Alekhnovich-Buss-Moran-Pitassi])
- **lower bounds against different Frege systems under cryptographic** assumptions ([Bonet-Domingo-Gavaldà-Maciel-Pitassi],[BPR],[Krajíček-Pudlák])

Results for weak systems

o first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]

Results for weak systems

- **•** first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
- extended to Nullsatz, PC by [Galesi-Lauria]

Results for weak systems

- **•** first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
- extended to Nullsatz, PC by [Galesi-Lauria]

Rest of this talk: a new version of $[AR] + [GL]$

- simplified construction and proofs
- **•** stronger lower bounds via ETH assumption
- \bullet results also hold for Res(r)

Theorem (Main Theorem)

Assuming ETH, ${\cal P}$ is not n $^{\tilde{o}(\log\log S_{\cal P}(\tau))}$ -automatizable for ${\cal P} = {\sf Res}$, TreeRes, Nullsatz, PC.

Theorem (Main Theorem)

Assuming ETH, ${\cal P}$ is not n $^{\tilde{o}(\log\log S_{\cal P}(\tau))}$ -automatizable for ${\cal P} = {\sf Res}$, TreeRes, Nullsatz, PC.

Theorem (Main Theorem for Res(r))

Assuming ETH, Res(r) is not $n^{\tilde{o}(\log\log S_\mathcal{P}(\tau)/\exp(r^2))}$ -automatizable for $r < \tilde{O}(\log \log \log n)$.

Theorem (Main Theorem)

Assuming ETH, ${\cal P}$ is not n $^{\tilde{o}(\log\log S_{\cal P}(\tau))}$ -automatizable for ${\cal P} = {\sf Res}$, TreeRes, Nullsatz, PC.

Theorem (Atserias-Muller'19)

Assuming $P \neq NP$, Res is not automatizable. Assuming ETH, Res is not automatizable in subexponential time.

Theorem (Main Theorem)

Assuming ETH, ${\cal P}$ is not n $^{\tilde{o}(\log\log S_{\cal P}(\tau))}$ -automatizable for ${\cal P} = {\sf Res}$, TreeRes, Nullsatz, PC.

Theorem (Atserias-Muller'19)

Assuming $P \neq NP$, Res is not automatizable. Assuming ETH, Res is not automatizable in subexponential time.

Theorem (Bonet-Pitassi; Ben-Sasson-Wigderson)

TreeRes is $n^{\frac{O(\log S_{\mathcal{P}}(\tau))}{\sim}}$ -automatizable. Res *is n^{O(}* $\sqrt{n \log S_{\mathcal{P}}(\tau)}$)-automatizable.

Getting an automatizability lower bound

Recipe:

- (1) Hard gap problem G
- (2) Turn an instance of G into a tautology τ such that
	- "yes" instances have small proofs
	- "no" instances have no small proofs

(3) Run automatizing algorithm Aut on τ and see how long the output is

 $S = \{S_1 \dots S_n\}$ over $[n]$

- $S = \{S_1 \dots S_n\}$ over $[n]$
- hitting set: $H \subseteq [n]$ s.t. $H \cap S_i \neq \emptyset$ for all $i \in [n]$

- $S = \{S_1 \dots S_n\}$ over $[n]$
- hitting set: $H \subset [n]$ s.t. $H \cap S_i \neq \emptyset$ for all $i \in [n]$
- $\gamma(S)$ is the size of the smallest H
- Gap hitting set: given S , distinguish whether $\gamma(S) \leq k$ or $\gamma(\mathcal{S}) > k^2$

- $S = \{S_1 \dots S_n\}$ over $[n]$
- hitting set: $H \subset [n]$ s.t. $H \cap S_i \neq \emptyset$ for all $i \in [n]$
- $\gamma(S)$ is the size of the smallest H
- Gap hitting set: given S , distinguish whether $\gamma(S) \leq k$ or $\gamma(\mathcal{S}) > k^2$

Theorem (Chen-Lin)

Assuming ETH the gap hitting set problem cannot be solved in time $n^{o(k)}$ for $k = \tilde{O}(\log \log n)$

From gap hitting set to automatizability

Theorem (Main Technical Lemma)

For $k = \tilde{O}(\log \log n)$, there exists a polytime algorithm mapping S to τ_S s.t.

• if
$$
\gamma(S) \leq k
$$
 then $S_{\mathcal{P}}(\tau_S) \leq n^{O(1)}$

• if
$$
\gamma(S) > k^2
$$
 then $S_{\mathcal{P}}(\tau_S) \geq n^{\Omega(k)}$

where $P \in \{TreeRes, Res, Nullsatz, PC\}$.

Theorem (Main Theorem)

Assuming ETH, ${\cal P}$ is not n $^{\tilde{o}(\log\log S_{\cal P}(\tau))}$ -automatizable.

Proof: Let Aut be the automatizing algorithm for P running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Theorem)

Assuming ETH, ${\cal P}$ is not n $^{\tilde{o}(\log\log S_{\cal P}(\tau))}$ -automatizable.

Proof: Let Aut be the automatizing algorithm for P running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Theorem)

Assuming ETH, ${\cal P}$ is not n $^{\tilde{o}(\log\log S_{\cal P}(\tau))}$ -automatizable.

Proof: Let Aut be the automatizing algorithm for P running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

\n- if
$$
\gamma(\mathcal{S}) \leq k
$$
 then $\mathcal{S}_{\mathcal{P}}(\tau) \leq n^{O(1)}$
\n- if $\gamma(\mathcal{S}) > k^2$ then $\mathcal{S}_{\mathcal{P}}(\tau) \geq n^{\Omega(k)}$
\n

Theorem (Main Theorem)

Assuming ETH, ${\cal P}$ is not n $^{\tilde{o}(\log\log S_{\cal P}(\tau))}$ -automatizable.

Proof: Let Aut be the automatizing algorithm for P running in time $f(n, S) = n^{\tilde{o}(\log \log n)} = n^{o(k)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

• if
$$
\gamma(S) \leq k
$$
 then $S_{\mathcal{P}}(\tau) \leq n^{O(1)}$

• if
$$
\gamma(S) > k^2
$$
 then $S_{\mathcal{P}}(\tau) \ge n^{\Omega(k)}$

Theorem (Main Theorem)

Assuming ETH, ${\cal P}$ is not n $^{\tilde{o}(\log\log S_{\cal P}(\tau))}$ -automatizable.

Proof: Let Aut be the automatizing algorithm for P running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

• if
$$
\gamma(S) \leq k
$$
 then $S_{\mathcal{P}}(\tau) \leq n^{O(1)}$

• if
$$
\gamma(S) > k^2
$$
 then $S_{\mathcal{P}}(\tau) \ge n^{\Omega(k)}$

Detour: universal sets

• $A_{m \times m}$ is (m, q) -universal if for all $I \subseteq [m]$, $|I| \leq q$, all 2^{|/|} possible column vectors appear in A restricted to the rows I

Detour: universal sets

- $A_{m \times m}$ is (m, q) -universal if for all $I \subseteq [m]$, $|I| \leq q$, all 2^{|/|} possible column vectors appear in A restricted to the rows I
- $A_{m \times m}$ is (m, q) -dual universal if for all $J \subseteq [m]$, $|J| \leq q$, all $2^{|J|}$ possible row vectors appear in A restricted to the columns J

Detour: universal sets

- $A_{m \times m}$ is (m, q) -universal if for all $I \subseteq [m]$, $|I| \leq q$, all 2^{|/|} possible column vectors appear in A restricted to the rows I
- $A_{m \times m}$ is (m, q) -dual universal if for all $J \subseteq [m]$, $|J| \leq q$, all $2^{|J|}$ possible row vectors appear in A restricted to the columns J
- constructions like the *Paley graph* work for $q = \frac{\log m}{4}$ 4

Variables of τ_S will implicitly define two matrices using A and S

Variables of τ_S will implicitly define two matrices using A and S

Variables of τ_S will implicitly define two matrices using A and S

 τ_S will state that there exist $\vec{\alpha}, \vec{\beta}$ such that there is no i, j where $Q[i, j] = R[i, j] = 1$

 $\tau_{\mathcal{S}}$ will state that there exist $\vec{\alpha}, \vec{\beta}$ such that there is no i, j where $Q[i, j] = R[i, j] = 1$

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_S)$)

If $\gamma(S) \leq k \leq \frac{\log m}{4}$ $\frac{\text{g}\text{ }m}{4}$, then $\tau_{\mathcal{S}}$ is unsatisfiable and $\mathcal{S}(\tau_{\mathcal{S}}) \leq m^{k}$ n for TreeRes.

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$) If $\gamma(S) \leq k \leq \frac{\log m}{4}$ $\frac{\text{g}\text{ }m}{4}$, then $\tau_{\mathcal{S}}$ is unsatisfiable and $\mathcal{S}(\tau_{\mathcal{S}}) \leq m^{k}$ n for TreeRes.

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$) If $\gamma(S) \leq k \leq \frac{\log m}{4}$ $\frac{\text{g}\text{ }m}{4}$, then $\tau_{\mathcal{S}}$ is unsatisfiable and $\mathcal{S}(\tau_{\mathcal{S}}) \leq m^{k}$ n for TreeRes.

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$) If $\gamma(S) \leq k \leq \frac{\log m}{4}$ $\frac{\text{g}\text{ }m}{4}$, then $\tau_{\mathcal{S}}$ is unsatisfiable and $\mathcal{S}(\tau_{\mathcal{S}}) \leq m^{k}$ n for TreeRes.

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$) If $\gamma(S) \leq k \leq \frac{\log m}{4}$ $\frac{\text{g}\text{ }m}{4}$, then $\tau_{\mathcal{S}}$ is unsatisfiable and $\mathcal{S}(\tau_{\mathcal{S}}) \leq m^{k}$ n for TreeRes.

High-level idea: the universal property of A guarantees some column of Q will be a hitting set.

Size of the proof: $m^k n$

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$) If $\gamma(S) \leq k \leq \frac{\log m}{4}$ $\frac{\text{g } m}{4}$, then $\tau_{\mathcal{S}}$ is unsatisfiable and $\mathcal{S}(\tau_{\mathcal{S}}) \leq n^2$ for TreeRes.

High-level idea: the universal property of A guarantees some column of Q will be a hitting set.

Size of the proof: $m^kn=n^2$ for $m=n^{1/k}$

Lower bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$

Lower bound on $S_{\mathcal{P}}(\tau_S)$

High-level idea 1: any proof π must query all rows in some hitting set

 \bullet Res/TreeRes - prover-delayer game [Pudlák, Atserias-Lauria-Nordström]

Lower bound on $S_{\mathcal{P}}(\tau_S)$

- Res/TreeRes prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz/PC linear operator [Galesi-Lauria]

Lower bound on $S_{\mathcal{D}}(\tau_S)$

- \bullet Res/TreeRes prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz/PC linear operator [Galesi-Lauria]
- Res(k) switching lemma [Buss-Impagliazzo-Segerlend]

Lower bound on $S_{\mathcal{D}}(\tau_S)$

- \bullet Res/TreeRes prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz/PC linear operator [Galesi-Lauria]
- Res(k) switching lemma [Buss-Impagliazzo-Segerlend]
- TreeCP lifting [upcoming work]

Lower bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$

High-level idea 2: π knows nothing about a row or column without setting lots of variables

Lower bound on $S_{\mathcal{P}}(\tau_S)$

High-level idea 2: π knows nothing about a row or column without setting lots of variables

Error-correcting codes

$$
\bullet \enspace x_i \in \{0,1\}^{6 \log m},
$$

$$
y_j \in \{0,1\}^{6 \log n}
$$

$$
\begin{array}{c} \bullet \ f_x: \{0,1\}^{6 \log m} \to [m], \\ f_y: \{0,1\}^{6 \log n} \to [n] \end{array}
$$

Open problems

Better hard k in gap hitting set \rightarrow better non-automatizability result

Open problems

Better hard k in gap hitting set \rightarrow better non-automatizability result

Theorem (Chen-Lin)

Assuming ETH the gap hitting set problem cannot be solved in time $n^{o(k)}$ for $k = O(\log^{1/7 - o(1)} \log n)$

Theorem (Main Technical Lemma)

For $k = O($ √ $\overline{\log n})$, there exists a polytime algorithm mapping ${\cal S}$ to $\tau_{\cal S}$. . .

Thank you!

\rightarrow : 'tomataiza' biliti o:tp' mætaiza' biliti