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THE FUTURE OF REUSE

0

. Give a simple, direct proof of uSTConn € L.

. Give a simple, direct proof of uSTConn € GL.

. Give a simple, direct proof of STConn € CL.

. Try to improve Savich’s Theorem: prove NSPACE(s) C SPACE(o(s%)).
. Improve the deterministic space complexity of BPSPACE(s).

. Decide the space complexity of TreeEval.

. Give a register program for computing any polynomial p(x,...x,) using

(n) registers over a constant size ring ® and O(1) recursive calls to the
input x.

. Show that for any branching program B of sufficiently large width w = (1)

and length £, there exists a branching program B of width w/2 and length
O(f) computing the same function,

. Show that for any branching program B8 of sufficiently large width w and

length f, there exists a branching program B of width w — 1 and length
poly (f) computing the same function.

. Find any function whose optimal space algorithm can be made almost en-
tirely catalytic, i.e. a function requiring—or even that we only know how to
do in—SPACE(s) but which is computable in CSPACE(= s, = s).

. Prove CLCP.
. Show that P ¢ L/poly implies CL € P.
. Show that CL € P would give strong evidence ZPP C P.

. Show that NC?, or even any circuit of w(log n) depth, can be computed in

CL.

. Give a register program for computing x* in the non-commutative setting -

using linear space and a constant number of recursive calls to x.

. Show that BPNC' c CL.

. Design a catalytic branching program with 2% start nodes and total size

20 . O(n) for any function f.

. What is the power of CL/pely, and does it have a natural syntactic charac-

terization?

19.
20.

Show the existence of an oracle D such that CL” = EXP”,

Extend the BPL € CL simulation to show CBPL C CL.

. Show that CL is equivalent even if we allow w(1) many errors on the cat-

alytic tape at the end, or alternatively if we allow O(1) such errors in expec-
tation over all inputs x and catalytic tapes 1.

. Utilize non-determinism in conjunction with catalytic computing in a non-

trivial way.

. Prove CNSPACE(s, c) € CSPACE(s%, ¢).
. Implement a catalytic algorithm such that it is actually useful.
. What does quantum catalytic space look like?

. Devise a register program using basic instructions inspired by unitary com-

putation, and use it to show non-trivial results for e.g. BQP.

. Devise a circuit that uses known results from space reuse and catalytic com-

puting to efficiently solve some problem in a way that we do not know how
to do directly.

. Show TC' C VP.

. Is the network coding conjecture true or false?

30. Prove or disprove the network coding conjecture when all nodes are re-

stricted to sending linear transformations of their incoming messages.

. Is there a meaningful notion of a catalytic data structure, or is there anything

to be gained from a data structure stored in catalytic memory?

. Show CL is contained in some subclass of P, perhaps NC, given a believable

cryptographic assumption,

. Show evidence against objects in cryptography based on techniques in reusing

space.

. Show the existence, conditional or otherwise, of a natural class of crypto-

graphic objects by using clean computation.

. Prove that the existence of one-way functions in CL, or even any one-way

function computable by a poly-size poly-length register program, implies
the existence of one-way functions in NC’.
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REUSING SPACE: TECHNIQUES AND OPEN
PROBLEMS CATALYTIC COMPUTATION

Tan Mert#]‘ Michal Koucky*

Computer Science Institute
Charles University, Prague
Ao koucky@iuuk.mff . cuni.cz

In the world of space-bounded complexity, there is a strain of results
showing that space can, somewhat paradoxically, be used for multiple pur-

poses at once. Touchstone results include Barrington’s Theorem and the Abstract

recent line of work on catalytic computing. We refer to such techniques, in . .

contrast to the usual notion of reclaiming space, as reusing space. Catalytic computation was defined by Buhrman et al. (STOC,
In this survey we will dip our toes into the world of reusing space. We do 2014). It addresses the question whether memory, that already stores

50 in part by studying techniques, viewed through the lens of a few highlight some'unknown data that shoulq be preserved for later usfe, can Pe

results, but our main focus will be the wide variety of open problems in the meaningfully used for computation. Buhrman et al. provide an in-

field. triguing answer to this question by giving examples where the occu-
In addition to the broader and more challenging questions, we aim to pied memory can be used to perform computation. In this expository

provide a number of questions that are fairly simple to state, have clear article we survey what is known about this problem and how it relates

practical and theoretical implications, and, most importantly, that a new- to other problems.

comer with little background experience can still sit down and play with for
a while.
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iuuk.mff.cuni.cz/~iwmertz/ techniques (catalytic
computing)

Here is an overview of some of the major arguments/techniques that appear in the catalylic

introduction previous work methodology 8 S Mo Sk o G Al R Pt it T et e s
[my main interests] [past activities] [teaching & students] et al. (a great readl) to get oriented. For more info on specifics, | would suggest checking
out the resources page for suggested papers, talks, etc
main results acknowledgements appendix
[publications] [funding, positions, & visits] [the fun stuff] Taka & click on whalover slrikes your fancyl

compress-or-random

catalytic computation & reusing space .
register programs
How useful is full memory as a computational resource? Imagine trying to solve some functions on a
computer with only limited memory, but now you are also given additional access to a massive hard
drive which it can freely use, provided it keeps all the initial data on the hard drive intact at the end of structure in catalytic space
its computation. Considering this data could be arbitrary—obviously this memory has nothing to do
with the problem at hand—does this hard drive give us any additional power?

introduction
The surprising answer is that this hard drive, which we call catalytic memory, is very powerful. First, it
gives us at least as much power as any other well-studied resource, be it randomness or non- The only trivial upper bound on calalylic space is an equal amount of pure space. In order lo improve
determinism, in fact, catalytic memory alone is as powerful as being given catalytic memory, this result, we need to look deeper into the structure of catalytic algonthms. We will borrow from two
randomness, and non-determinism simuftaneously. Second, the techniques and subroutines fundamental results on ordinary space: first, the straightforward fact that space & algonthms can be

simulated in time euq)(s}; and second, the much more infriguing (and much more recently
discovered) fact that all algarithms can be made reversibie with only a constant amount of extra
space

developed for this catalytic computation model, which | (uncreatively) refer to as reusing space, have
given major breakthrough results in the ordinary space-bounded setting, mostly notably Williams'
recent simulation of ime ¢ in space /tlogt

Aauarann Aaca Hma
My central goal is to understand and characterize this catalytic model, as well as to further use the
techniques developed therein to solve longstanding open questions about space
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