Lomeuring Wrmw A

~ULL [MARD)RIVE

Tl—(FORY OF (,OM PUTATION
B _SPA CE

Funtime memory

TH EORY OF (, OMPUTATION

-SP@@J wa COMPuJCC(inﬂ
(@.9- #010 PfOCESSOF CYC/@S)

TH EORY OF C OMPUTATION

—Speei hmf compujcafim
<6.3. #010 Pfocesgof‘ (,yc/es)

-MOS% OMmon (esource {:O
OP%I'M | 26 l‘n Pracﬁce

TH EORY OF C OMPUTATION

-SPeeJ howf cOmpufcainﬂ
<6.9. #010 Pfocesgof‘ (,yc/es)

-MOS% OMmMmon (esource {:O
OP%I'M | 26 l‘n Pracﬁce

- MOOF@CS Lau/ (Pfoceggom>

TH FORY OF C/ OMPUTATION
zne SpAcE

-SPeeoe wa (_Dmpujcafim
<6.3. #OWD Processor (,y(,/es)

-MOS% OMmMmon (esource tO
OP{:I'MILZ@ l‘f) PfaCﬁce

- MOOP@(S Lau/ (P/‘ocesgom)

-blg o[ues%iong'- s NID,

power 010 ramfomness, ete

TH FORY OF C OMPUTATION
1znme Seace

‘SP%’GE Oﬁ CDMPUJCQﬁiO“ ~comPu{img undler memory
(6.3, #op Processor a/(,/es) constraints

-MOS% OMmMmon (esource to
opﬂm{ze I‘F) Pfacf(ce

- MOOP@[S Lau/ (Pfocesgors>

-blg czues%iong'- s NIQ,

power 010 ramfomness, ete

_I-H FORY OF C OMPUTATION
Lnme Seace

-5})@84 OWE (_DMPUJCQ{JO"W *ComPu{img under\ fY)@!’Y)OFL/
(6.9, #010 Processor (,t/c/es) consfrainig

-MOS% (OMmon (esource tO - boj[Hé nec/()for‘ (J(SJC(‘I'[)MJWO(
Oplél'mfZ@ I‘F) pracf(cg Sl/S%é’MS, %uomjfum COMJDU%I'/JJ

. MOOP(’,ZS Lau/ (Pfocesgors>

—blg czuesjciong'- s NIQ,

Power 010 ranafomn@ss, e{c.

_I-H FORY OF C OMPUTATION
Lnme Seace

-5})@84 OW[(_DMPUJCQ{JO"W —ComPu{img uhder‘ memoﬂ/
(6.9, #010 Processor (,yc/es) consfrainig

-MOS% (OMmon (esource tO - \701%[8 nec[()[or‘ (J(SJC(‘I'[)MJWO(
Oplél'mfZ@ l‘r) pracf(ce St/S%t?MS, %uomjfum COWIJDU%('/JJ

: MOOF(’,B Lau/ (ProngF5> - MOO%{S Lau/ (chps)
—blg czuesjciong'- v N/Q,

power 010 randomness, e{c.

TH FORY OF (,OM PUTATION
Lnme SPA CE

-5})@84 01[CDMPUJCQ{JO“ —comPu{img uhdér\ memort/
(6.9, #0\0 Processor (,yc/es) consfrainig

-MOS% (OMmon (esource tO : bOH[e nec[()[or‘ oa(sftfl'bujteo(
Oplél'mf% l‘r) Pracf(ce St/Séé’MS, OLULO(/\{'MM COMJDU%I'@

: MOOF(’,B Lau/ (Procesgoﬁ) - MOOW,{S Lau/ (chps)

- blg czuesjciong'- P\/s N/D, -same o{ues{;{ong as time. ..
power 010 FO”JOV”V)BSS, etc f)uj(vecy o(i%peremt answers!

TH FORY OF C/ OMPUTATION

! IME SFME
—SP&?J OWF CDMPuJCthIOﬂ ComPu{mg unfjer\ memor\/

ONCE TTS |

_ /e neck Jfor‘ (J(S%Ff huted
USED (QOME St/sjaems, %uomffum comjau{,‘/\;j

; [_OK E\/ER Moore’s Law (chips)

-Same o[uesffong as flme
power OF ranJomness e{c f)uj(\/éfy o(Weremt MSW@(‘S'

TH FORY OF (, OMPUTATION
TMI; SPME

-speeoﬂ OWF (_DMPuJCCH[,IO'q “COMPU{M% under\ memory

‘ONCE ITS W (ANBE .
USED, GONE = ERAsED
JFOREVER " AND REUSED

power 010 rangfomness eﬂ; buj(\/é;y ofipperemtanswers,'

W1%E0Ry OF (;OMPUTATIOA/

lzne

Seace

(—umo{am@m% / Question

\/\/lﬂ % 'S ﬂwe (e m{tonsl/) e befween

11

ME ad SPACE?

Tl—(FORY OF (,OM PUTATION
B _SPA CE

TIMELt] SPACE[s]

every Funcﬁon compu}a,)’e every quncﬁon compuILaHe
!‘ﬂ C({' MOS{' 1‘: S]Le(]S W"H'? a{- MOS{' 1‘: m@mory

Tl—(FORY OF (,OM PUTATION
B _SPA CE

Tl—(FORY OF (,OM PUTATION
B _SPA CE

SPACE[+] ¢ TIME[2']

ajﬁ m05£ 2{ oﬂfgerenf
se{{f'ags of £ bits

TH FORY OF (,OM PUTATION
B _SPA CE

TIME[t] ¢ SPACE[t) ¢ TIME[2']

Tl—(FORY OF (,OM PUTATION
B _SPA CE

TIME[t] # TIME[2Y]

more {fmt? = Morle {MC}':Z’V’)S

TH FORY OF (,OM PUTATION
B _SPA CE

TIMELL) € = SPACE [t] ¢ TIM[D |

F the
461 o pyulioyd

(bb‘-" wé 40/\1l kv\dw dl')lol'])

TH FORY OF (,OM PUTATION
B _SPA CE

TIME[t] ¢ SPACE[t) ¢ TIME[2']

{in SPACE[t] £ in TIME [2]
but not TIME [t] AND/OR but not SPACE [t]

IHEORY OF COMPUTATION

TH EORY OF (, OMPUTATION

-s{uoly olf W%CUL 1S POSS (6/@

TH EORY OF (, OMPUTATION

“S{bloly cﬂf W[/\a% 1S POSS ('b/t‘?

'c\ﬂieHY {{mierd by humon
"“jeﬂu'-{y [OF (&fik%e(‘eoﬁ

TH FORY OF C OMPUTATION

AL6oRTTHAS LOMPLEXITK/

——

AP F“’Cf-f Dounad s f ower Doun ds
|

“S{UOIV op wl’\mL S FOSS (b/e

-c‘ﬂieH7 i el by humar
iQﬂeﬂuf%/ (Orlack‘fhﬁreo¥>

T can fraﬂs(a%e &o Pracjcica(
imPlean(anions

_I-H FORY OF C OMPUTATION

ALGORITHMS QOMPLEXIﬂ
) U.PP@([[)O(ma{su ” ‘ O wer bowmfﬁ u
-5{ uAy Of wlf\cnl 1§ Foss ('Ble -5{ uAy owf wlf\ml K l'mPoss ('b/e

‘C/}Wit’i“y [e by humar
"”jeﬂu'-{y (Of IQCICJE”I(’,FE’,mt)

-~ can fraﬂs(a%a {;o Pracjtica(
imPler’,nJ{a{ions

TH FORY OF (,OM PUTATION

ALsoRITHMS QOMPLEX',[_%
WU-PP@-:” E>O(mo{3u ” ‘IOW&’" bou»ﬂ.o’&u
-sfudy o]f wlf\cnl 1§ POSS(H@ -sfudy owf w/f\ml K l'mPoss(b/e
—J‘;ieHy {imiJ[eJ by %uman “ﬂeeot {o Jisprove every

injenu!'{y (Or lack Jg’q@reom afﬂor{%m (oliscm/er@o(or no%)

T can fraﬂstoﬂ%e Eo Pracjtica(
implemw{a{ions

TH FORY OF (,OM PUTATION

ALsoRITHMS QOMPLEX'LQ
{/UPF@F {POWO{SH ”{OW@’“ bou»ﬁd{iu
-sfudy o]f wlf\af 1§ POSS(H@ -sfudy O]C w//\ml K l'mPoss(He
"c,‘ﬂi61q7 {imthed by %uman “ﬂeeot {o JESvae everg/

l'njenu!'{y (Or lack Jg’q@reoﬁ afﬂor{%m (oliscm/er@o(or noé)

T can fraﬂs(a%e tO Pracjti(,a('%6“5 N v'//’\en IL() loo!(1[0f
imPlemeﬂJtafions Qa O{flpﬁéfml[aPProacjﬂ

TH FORY OF (,OM PUTATION

ALgoRTTHMS QOMPLEX'LQ
WUPF@F bounds “"lower bounds"
-sfudy o]f wlf\af 1§ POSS(H@ -sfudy O]C w//\ml K l'mPoss(He

- ..T.., o ‘neeJ fo JESPm\/e EVeryY
Di F T C U[/ { afﬂor{%m (olfstovereof or HOO

- can fraﬂs lEO Pracjuca('%6“5 N vu/l’\en IL() lOO!(1[0F

lmPlemenfaflons Qa O{flpﬁéfml[aPProacjﬂ

TH EORY OF (, OMPUTATION

-S{uoly Cﬂf w[f\ajr 1S pOSS('Hf? =5 E XTRE MEL\

bl ” T U\L”{M " SUPER OUPER
R 0T C,L/LousLy

~ COF) %raﬂst &O mcjc\ca
el DTRFTWLT

|mP eM@ﬂJ[aJclons
- rr

TH EORY OF (, OMPUTATION

TIME[t] ¢ SPACE[t] € TIME[2']

Fin SPACELE] s € in TIMEL2!]
but nol TIME[t] Wi buf not SPACE[]

TH EORY OF (, OMPUTATION

SPACE[t] € TIME[2']

f in TIMEL ']
buf not SPACE[%]

TH EORY OF (, OMPUTATION

TIMELZ] requices SPACE[#]

TH FORY OF C OMPUTATION
ExamP&aiTEWMzw;gPAgg*

TIME[T] reCtuires SPA(,E[»{]

D0 TIMEDY bot ek SPACEL]

TIMELY]
Of)\/lous a(gorr%m SPACEHZ_

Tricory oe ComputaTron
EXO&MP&E CTIME ve SPACE

CHJ{ : TIME[T] requices SPACE[»4]

eS| £ TIME] bk ok SPACEL]

\ ij / , \ -
/*@13&2} L0 /obv«‘ous\ al\(jomﬂ\m
= L i g X . .
show for Fis spuce- ophiml

_I-H FORY OF C OMPUTATION

ExamP(e - TIME vs SPACE

Coal - TIMELA reques SPACELE
CMWBS12] wa *in TIME(Z] but not SPACE[<4]
Veed to “obvious al\(jorifhm qj(r(via[u

< ?] - : :
SNOW WEOP]E*IS SFGCG'DP{‘IMG['(:O(C{S

Tricory of ComputaTzoN
EmmPZe - TIME vo SPACE

6%[| TIME[TE] requices SPACE[»{] _
[CMWBS1Z] f “n TIME [@f] ﬁb_ﬁ nojc=§ PACE[<t’]

Need éc? holpv(;)us“ al\(jori%m il
S %OW' WEOP]E < SFGC@-OP{‘{MG{ {:ac{s

{ |
i C‘)L/ (0SeS -) ’

J

TH FORY OF (,OM PUTATION

EX&MPk

(50a(i
[CMWBS12]

- TIME vwo SPACE

TIMER] requies SPACE]

Need to

s%owi

t

% TIMEL] bk nok SPACELE]

hobvmus“cﬁgoﬂfhm
wtor‘ 1’:* S SFGG‘_"OP{'{MGZ

(o 1
J(rivia[
facts

e

ion/ (0SS

U0 |

B

ail

[CMwss'(2]
[L'13]
[EMPI8)
[(IN'19]

IHEORY OF COMPUTATION

TH EORY OF C, OMPUTATION

EX&MP[€ - TIME ve SPACE
0Ne iﬂ'\/r‘a[fac%f

| compute T (- SPACE ()

) REMEMBER = mmmmmmmmm CPA(F

TH EORY OF C, OMPUTATION

F ample © TIME v SPACE
0Ne %rl'\/{a[Yfacf

| compure | B SPACE (f)
) REMEMBER > mEmmmmm CPA(T

f [T
300TH ; nmm SPACE (f, 2)

TH EORY OF C, OMPUTATION

F ample © TIME v SPACE
one trivial fact: Q‘.
|. compuTE 1E [T SP/\E;(H
) REMEMBER = mmmmmmmmm CPA(F

e?ua/s‘?

3. B0TH ;_LC ; SPACE (1, 2)

Tl—(FORY OF (,OM PUTATION

ExamP(e TIME v SPACE

ONe Frivial foct
OPJC on *]:

TH EORY OF C, OMPUTATION

EmeZe - TIME vwo SPACE
0Ne %rl'\/{‘a[facf

OPJUOV) "]

(z)

OPJCI'OV) ")
- completely full,

{

must be ceturned

to ifs stertivg data

TH EORY OF C, OMPUTATION

: o - @ N H’\ef‘e c) 1C
[Xampze - TIME ve SPACE <o luabl: by #2

Oﬂef%f“l-\/l‘aéu JFQCLL-' me D_Q_J.f #1?
OPJC{OV) #]. OPJCI.OV))

- - comp[el'efy ﬁu”,
{ must be rehmed

to ifs stertivg data

(z)

I HEO
RY OF (/OMPUTATION

|

FRR:QUT_ OF;ME/’/}

_I-H FORY OF C OMPUTATION

EmmPZe TIME v SPACE

0Ne trivial foct

_I-H FORY OF C OMPUTATION

EmmPZe TIME v SPACE

0Nne Hfm'\/ftﬁé” 7[0C1,L | /\/O WA \/

TH EORY OF (, OMPUTATION

false

“FOP mmy WE

ond every €

TH EORY OF C, OMPUTATION

Eme[- TIME v SPACE

ONne Tr r\/tu(,“ YFQC{'
ﬁzlse SPAUZ(?C)

SPACE(f.2) < <paCE(a

[BCKLS'H)
lfor‘ many f t ¢ but te
nd every T e

Z

TH FORY OF (,OM PUTATION

EXQMP[- TIME ve SPACE

one Tr Ivlu(,u YEC(C{'
False

[BCKLS'H)
\COP momy \E

OIfW{ QV?/VZ 'FUH memory Provaé
adds o / 1L of POWU‘

TH FORY OF (,OM PUTATION

ExamPk'iTIMEugSPACE

(50a(i
[CMWBS12]

Need to

s%owi

e

ion/ (0SS

TIMER] requies SPACE#]

t

£in TIMEDD bot nok SPACEL]

“obvious a[\(jori%m
wtor‘ 1’:* S SFGG‘_"OP{'{MGZ

“J(rivia[|

facts

Jqunn

B

11/

TH FORY OF (,OM PUTATION

EmmPZe TIME v SPACE

boal ; TIMELZ] requices SPACE[#t]
A BS T2
Meod L (%0 SPACELE s t]] [CM2021,91]

"y % [BCKLS 4]

TH FORY OF (,OM PUTATION

EmmPZe TIME v SPACE

Coal TIMED] requins SPACED]

A BSTIT SPACE[H] requices TIﬂE[>>{]

JTs [0 SPACELt]| [CM'2021,29]
Show r e

TOL/ 0SS

% [BCKLS'H]
;P [HPV'17]

W'25]

—1

_I-HEORY OF CO/"\ PUTATION
Eme(e - TIME v SPACE

TIMELt] ¢ SPACE[L] ¢ TINE[2']

Twis% (joa/

in SPACE[H] Fin TIMEL2)
but no \IIME[H bul not SPACE[t]

Rf’?. Su 1{: \L idecs for

B veded b £ SPACE[E logt]

_I-H FORY OF C OMPUTATION

EmmPZe TIME v SPACE

TIMELt] ¢ SPACE[L] ¢ TINE[2']

Twi:s% @;Qi{
fin SPACE[t] € in TIMEL2']
but not TIME[t] but no SPACE[{]
g i TP Rt llei:;%ff

¥
d for

EVEIV F N TIME[{] <\ neeyde
s in SPACE[IE log t]

P(fn SPACELL log]

_I-H FORY OF C OMPUTATION

EmmPZe TIME v SPACE

SPACE () every £ in TIME[4]
fz2) < i
SPACE[f,2) <€ SP/\EE(Z) s in SPACELIE log t]

ey O

SUCCESS

TH FORY OF (,OM PUTATION

ALGoRITHMS QOMPLEX'LQ
{/UPF@F {POWO{SH ”{OW@’“ bou»ﬁd{iu
-sfudy o]f wlf\af 1§ POSS(H@ -sfudy O]C w//\ml K l'mPoss(He
"c,‘ﬂi61q7 {imthed by %uman “ﬂeeot {o JESvae everg/

l'njenu!'{y (Or lack Jg’q@reoﬁ afﬂor{%m (oliscm/er@o(or noé)

T can fraﬂs(a%e tO Pracjti(,a('%6“5 N v'//’\en IL() loo!(1[0f
imPlemeﬂJtafions Qa O{flpﬁéfml[aPProacjﬂ

TH FORY OF (,OM PUTATION

ALGORITHMS k' moiiwfes\ COMP(_EXIU

WUPPU bounds \creafe.s 7 "lower bounds'
“S{lidy 01[\ WI’\CHL IS POSS (.{Dle -sfudy oWC WI/\CHL 1§ I'VY)POSS ('Hé
"c,‘ﬂielqy {imthed by }wmon “ﬂeeoe {o JESPM\/E everg/

l'njenu!-{y (or lac[c Jg’q@reojn alﬂor{%m (o[fSCovereo(or HOU

T can fraﬂsﬁa%a tO Pracjti(,a('%@“S N u/)"\en IL() ioo!(1[0f
imPlemeﬂJEafions Qa O{flpﬁéf‘C"?l[aPProacjﬂ

TH FORY OF (, OMPUTATION
TMI; SPME

-speeoﬂ OWF (_DMPuJCCH[,IO'q “COMPU{M% under\ memory

‘ONCE ITS W (ANBE .
USED, GONE = ERAsED
JFOREVER " AND REUSED

power 010 rangfomness eﬂ; buj(\/é;y ofipperemtanswers,'

TH FORY OF (, OMPUTATION
TMI; SPME

-speeoﬂ OWF (_DMPuJCCH[,IO'q “COMPU{M% under\ memory

‘DNCE ITS W (ANBE
US[D (70/\)’: " ERASER iy

| FOKE\/ER ' k#p- REUSED
| SbcuL MANY WAYS! |

POWc?(‘ OIC FOHD{OVVW)@SS @%C

QUT \/\/HAT C/\I\/ >/0U
LTUALLY)O \/\/.J TH /\

TULL ARD >R'\/E

THE STUDY OF REUSE

el

empfy wpul(

THE STUD‘/ OF REUSE

caj[a(yf{c COI’Y)PUJCfng BCKLSI4]

iniu+

main Memory output

- l can]Crec[Y use
must reset
Ca‘f-alt/‘l'f(, Memory 0——]

THE STUD‘/ OF REUSE

__-/_,_.———h

cata[yfl'c compuffng BCKLS 1]

iniu+

mMain memory OUhvqu

ca*‘aly"'fc Memory

enefj }’

‘{:if\n& of reaction

Ivo+ 0, — 2N,
No, + 50, > ND+ S0,

fojf - 250, 0, > 150,
+2NO +2NO

S—

T\/\/O KE‘/ _: DEAS

l LOMPRESSIO/\/

) Revepsterizry

S

T\/\/O KE‘/ _d: DEAS

) Revepsterizry

C OMPRESS-0R- RA/\/DO/"\

o[- - - -~ - [i]

C OMPRESS-0R- RA/\/DO/"\

C OMPRESS-0R- RA/\/DO/"\

cql-a{y‘)l'fc,
o[- - — -~ —]i]
_ \ {
access to r
more free space L

|

SUCCESS/_J

(_ oMPRESS-0R- Ranpom

Ca*é{y‘}'fc
o] 1|] - :]]
| access ﬁ | | access foe
more fiee spece - “rondom” ST7ing
- e L. -
| ppne

[

SUCCESS/J

C OMPRESS- 0OR- RA/\/DO/"\

start .
O —— —)) G:sSumpLion
7

/ \ * 7/2/3 op A owells \(\/0"1
O / \ >O S‘)'af“} g0 'I‘D H\Q SAaMe
/ U e ¢

C OMPRESS-0R- RANDO/"\

,:Xamp[ai random Wa[[cS
s%af{

/ ?)O / 10, GsSumpton’
7/2/'_1, op &H vf"”(i 'F/
ﬂ / O s‘l'af“} 9o fo H’\Q S“M:H
O\] final node
\ /p \/ — random welk
/ Yy 0oes there with 7%
P/‘olyc.()f{f"}y

C OMPRESS-0R- RA/\/DO/"\

EXQMP[e ~ randow wa“(g many wallbs —>

I odds of right aswer

.S'lzf'L 60054@{ expoqen‘[fc”y

rancom
F_o/|010r'
11O (Il - -

onN Iy mecol f’D Fememée/

Compress-or- Rawpon 20722

EXOMPKCZ" FGOOPOM WQ“(S rilrzililmy
.chr{ I L .
[
random
(0/10 10 -
(1101 - - B

C OMPRESS-0R- RA/\/DO/"\

* Sy
O — A —0 +
[?’O\ 757 e
v é\é T
SN N .
\y Y b goed velk

OM
RESS- 0R- RA/\/D
[onp

mall y J
rilémm‘ ﬁ
|

14 WQUCS
[. rando |
F xample

[
Cm’.'a{y‘)"‘c

o/' 0 ' C’ | |
l
’ 0
, ,

, ?ﬁ
P | estimate
qeo

C OMPRESS-0R- RA/\/DO/"\

J11oid - - « «=-

F bod estimate ‘

C OMPRESS-0R- RANDO/"\

Ca l’a {y ‘)':'(,

POIIOIOrf
flEoLE « -

Vg - od eshinate __7

mMass (Ve {7 bia Se(ﬂ subseC‘)‘f&n

C OMPRESS- 0R- RA/\/DO/"\

Eq l— & {y ’)" c fﬁ

0/10 10 - - of -
[11o(l - - ./0]--
(o)
0
0

—t

QQ—

- od eshinate __7

Mass (Ve {7 bia setﬂ suBSG‘C‘)‘f&n

S

T\/\/O KE‘/ _: DEAS

I iOMPRESS " OR- RA(\}DOM \/

) Revepsterizry

S—

Two Kev Ioeas

I LOMPRESS " OR- RA{\JDOM \/

2. REVERSIBILITY

Arrmireric Macac

Arrmireric Macac

ARITHMETIC MAGIC

/\RITHMETIC MAGIC

ARITHMETIC /V[AGIC

ARITHMETIC MAGIC

ARITHMETIC MAGIC

ARITHMETIC /V[AGIC

A RITH METIC /VIA()IC FO/‘ Qf'MP[I'C.")L ;
Ot,b /)urv;be/ys

ARITHMETIC /V[AGIC

FOF S‘f'mp/{c:',ty"-
Ot,b /7{/1/‘/)6@/5

Artrimeric Macc STY
Ot,b /)urv;be/ys

i R,
a-b | b | s =K R

A RITHMETIC MA()IC Fof Q:‘mpfl'cf;Lyf
Ot,b Numbess

i R, _‘
a-b | b | 1. R =

A RITHMETIC MA()IC Fof Q:‘mpf{cflfyf
Ot,b Numbess

R, R,
6-b | enes | 1R =
~ R

A RITHMETIC MA()IC FOI‘ Qf'mpf{cfytyf
Ot,b Numbess

- o L swapplir ’
,:XUMDL@ M,W*’PP”’}j MQMOFE/J

K R,

A RITHMETIC MA()IC FOI‘ Qf'mpfl'cfytyf
Ot,b Numbess

EXC{MPK«@' SWQPPIIV}j mgmom//

i R,
&'(G‘b)ﬂ] & J 1
= b

NI
0 D
')
N
+
7 IO 7S

A RITHMETIC MA()IC FOI‘ Qf'mpf{cfytyf
Ot,b Numbess

- o L swapplir ’
,:XUMDL@ M,W*’PP”’}j MQMOFE/J

K R,

Arrmireric Macac

ARITHMETIC MAGIC

ARITHMETIC MAGIC

T +X]

Artmarerc Macc

| TH4xX-x j

— RESET
()(corn'ou{m(7Llfdtrce>

/\RITHMETIC MAGIC

/\RITHMETIC MAGIC

THx |

Artmarerc Macc

|

/\RITHMETIC /WAGIC

T X -x j

—RESET

(X Compu{eo{ 1Lw|'ce) l_‘Cy ¥ Xy

|

ARITHMETIC /VlA(;Ic

— RESET B
(X Compu{eo{ 1Lwl'ce) l ‘Cy ! Xy B ‘Cy]

Artmarerc Macc

S

T\/\/O KE‘/ _d: DEAS

I LOMPRESS " OR- RA(\IDOM \/

7 AertumeT T %

\2 EVERSIBILITY

QUT \/\/HAT C/\I\/ >/0U
LTUALLY)O \/\/.J TH /\

TULL ARD >R'\/E

| he HlsTom OF REUSE

--',‘ A i - " ;
) 4 i N g

‘ b h t

el ' Y 2 -
S I

: oo >

| £ ®. A

.\

M—
Caﬁlyjrn'c (S Eom-’
me u/lqﬂL 6[99 I/lapfenw{,?

THE HISTORY OF REUSE

{Oufw(a#l’oﬂﬁ’ (‘eSuH'S in spa e
Cod’gin Seaafs of ca‘ttz,/w)lfc ideas

X . i
ﬂ; o TIMECZ] bet ook SPACEL-#1]
.._._J

Obm

‘ for
]Uu

_|

\ ke

ﬂotr I;‘

]vr

[T -1 Wﬁ

:‘nsp;’rmta'on for cajz/yzL:'L

eaf/y 'l'"\éory
OF Cﬁhlyl'l'c (Dmpuh'/!j

| he HISTORY OF REUSE

YYYYY

Heslnfflj out theor g
dgwfm:'nj More mocf@/{,

mar\y becic resu /{s

| he HISTORY OF REUSE

YYY

| ue HISTOKY OF REUSE

GPPL"CG’liO/IS oF
Cﬁ!’aly{fc ;'deas ‘1(0

ora? NG ry S‘JJG L

THE HISTORY OF REUSE

[0 SPACELE Ieg 1]

s

e HISTORY OF REUSE

l SPACE[t] requices TIME[”M

Fin SPACEL ly 1]

K OF REUSE

THE POV/ER OF REUSE
Wﬁumc% 0NS cmla/y][fc space

COR* compress-of -fando

AR : ﬁﬁ"”wmeffc re vers:

bility

Tl-—lE POV/ER OF REUSE
W[mef 0nNS .- cmla/‘/l[l'c space

de{@ﬁm[ﬂam% .

COR - C,omp!‘ess ol

~Fano{om

AR: ar[‘”nmef:'(_ re Ucrs:'bf{r'f?/

Tl—l : P OWER OF RE USE Sy

{uﬂc%lfoms 0{00/7/6 with m%a/yll!'c space
(W%?C% are unknown wﬁ”mowL rjt) .‘

I determinant .

7 random walks™

[0'I5]

Tl 'E P OWER OF REUSE AT
1[ABE r‘L]O ns docble wil Cavla / ‘/JLIC SP&Ce

determinant AE SO\ 0 4
» o /L?%

random walks /

AR ON/ /)\J

C,omecéf'\/f'wly »

The F
OwW
ER
or K
Y,
SE
e e
g

fu
(ch%b
(%ms
- i@;é/é WH)
’ Mﬁa %C B

]
e
Lerm
|ﬂ&ﬂ£ﬂ2

)
random
walks
Sm2

3
- (o
/)
/)
€
ctivit

| Y AR

oR + AR

|
matehi
14

ThE Fower or Reuse

W[UWC%{O/IS 0(0()[/)/5 wrﬁ m%a/y%fc space
[

le’\?fi% are unKnowr w%‘“x@u% {H :

I determinant .

7 random walks™
5 (;omec{[vf'ﬂ/ h

cor + AR

9 mmﬁclnmﬁ S

COR* c.ompmss-or»ranolam
AR: arithmetic re uusf'bilffy

etc

Tl—-lE PO\A/ER OF REUSE
cmla/t/a[r'c space

THE POWER oF KEuse

lea/‘/{,c space

I SPACE v TI M F

THE PO\A/ER OF REUSE
mplications of catalytic space

I SPACE s TIME

J deranofomizafioﬂ

ThE Fower or Reuse

™ pfrcaf{o fs of atalgic space

I SPACE vs TIME

7. derandomization AR
| | / Z_,W/O
3. S I@ wa{[< Ot/ om“omg b p\J
P \@ p s / 0
O_/_/_/—/end

THE POWER oF Reuse

NNS OT CmLa / k/][l(. SP&CC’

I SPACE v TIME
) o[@ ~andom: ZG{ 101
Q/ﬁO(\l-H’)mg

3 simple walk

qu am% Um space

THE POWER oF KEuse

0NS OT cmta / (/1[{(, space

I SPACE vs TIME
o{@ran&fomiza{ioﬂ
sf'mp/e wak a/\@oﬁ“omg

CLU[QVYZ LM S/DC{CG

etc.

CO/\/CLUDINO REMAKKS

SuMMING Up

‘memory can be vsed for bofh storage
Oﬂd Compufafuon alL U\@ Sa e J[m/le

SuMMING Up

‘mQMOF\/ can be USQJ]Cor‘ bm[}) Storage
Oﬂd Compufaffon af UM‘Z SafY)e. JU(VI@

catalybic computing has led f
breaf(%%muj%s on JE)’\e SILMJt/ o‘F fffme ana(SPaée

SuMMING Up

‘mQMOF\/ can be USQJ][or bm[}) Sﬁorage
Oﬂd Compufaifon alt UM‘E SafY)e. fl'me

) CU%UL}/%f[C COMPUZLI'V@ J’)C(S led]LO
breaH%mujst on H’\e SILMJt/ o‘F £j,m6 ano(S‘Oaéé

- Hﬂ@ {%80/”7 Olp COMFM%QZL(\OW S{!‘/, I/WO/O{S

many S‘UFJQP/'SGS (So be Cﬁfcﬁh/ Msumm\qw

THE FUTURE OF REUSE

0

. Give a simple, direct proof of uSTConn € L.

. Give a simple, direct proof of uSTConn € GL.

. Give a simple, direct proof of STConn € CL.

. Try to improve Savich’s Theorem: prove NSPACE(s) C SPACE(o(s%)).
. Improve the deterministic space complexity of BPSPACE(s).

. Decide the space complexity of TreeEval.

. Give a register program for computing any polynomial p(x,...x,) using

(n) registers over a constant size ring ® and O(1) recursive calls to the
input x.

. Show that for any branching program B of sufficiently large width w = (1)

and length £, there exists a branching program B of width w/2 and length
O(f) computing the same function,

. Show that for any branching program B8 of sufficiently large width w and

length f, there exists a branching program B of width w — 1 and length
poly (f) computing the same function.

. Find any function whose optimal space algorithm can be made almost en-
tirely catalytic, i.e. a function requiring—or even that we only know how to
do in—SPACE(s) but which is computable in CSPACE(= s, = s).

. Prove CLCP.
. Show that P ¢ L/poly implies CL € P.
. Show that CL € P would give strong evidence ZPP C P.

. Show that NC?, or even any circuit of w(log n) depth, can be computed in

CL.

. Give a register program for computing x* in the non-commutative setting -

using linear space and a constant number of recursive calls to x.

. Show that BPNC' c CL.

. Design a catalytic branching program with 2% start nodes and total size

20 . O(n) for any function f.

. What is the power of CL/pely, and does it have a natural syntactic charac-

terization?

19.
20.

Show the existence of an oracle D such that CL” = EXP”,

Extend the BPL € CL simulation to show CBPL C CL.

. Show that CL is equivalent even if we allow w(1) many errors on the cat-

alytic tape at the end, or alternatively if we allow O(1) such errors in expec-
tation over all inputs x and catalytic tapes 1.

. Utilize non-determinism in conjunction with catalytic computing in a non-

trivial way.

. Prove CNSPACE(s, c) € CSPACE(s%, ¢).
. Implement a catalytic algorithm such that it is actually useful.
. What does quantum catalytic space look like?

. Devise a register program using basic instructions inspired by unitary com-

putation, and use it to show non-trivial results for e.g. BQP.

. Devise a circuit that uses known results from space reuse and catalytic com-

puting to efficiently solve some problem in a way that we do not know how
to do directly.

. Show TC' C VP.

. Is the network coding conjecture true or false?

30. Prove or disprove the network coding conjecture when all nodes are re-

stricted to sending linear transformations of their incoming messages.

. Is there a meaningful notion of a catalytic data structure, or is there anything

to be gained from a data structure stored in catalytic memory?

. Show CL is contained in some subclass of P, perhaps NC, given a believable

cryptographic assumption,

. Show evidence against objects in cryptography based on techniques in reusing

space.

. Show the existence, conditional or otherwise, of a natural class of crypto-

graphic objects by using clean computation.

. Prove that the existence of one-way functions in CL, or even any one-way

function computable by a poly-size poly-length register program, implies
the existence of one-way functions in NC’.

THE FUTURE OF REUSE

1. Give a simple, direct proof of uSTConn € L. KShuw the existence of an oracle D such that CL” = EXP”,
2. Give a simple, direct proof of uSTConn € CL. % Extend the BPL € CL simulation to show CBPL < CL.
x Give a simple, direct proof of STConn € CL. * Show that GL is equivalent even if we allow «w(1) many errors on the cat-
alytic tape at the end, or alternatively if we allow O(1) such errors in expec-
4. Try to improve Savich’s Theorem: prove NSPACE(s) C SPACE(a(s5")). tation over all inputs x and catalytic tapes 1.
5. Improve the deterministic space complexity of BPSPACE(s). K Utilize non-determinism in conjunction with catalytic computing in a non-
trivial way.

Decide the space complexity of TreeEval. Lo
W Prove CNSPACE(s.c) CSPACE(s”, c?).

’}'1 Give a register program for computing any polynomial p(x, ... x,) using
(n) registers over a constant size ring ® and O(1) recursive calls to the

input x. x What does quantum catalytic space look like?

K Implement a catalytic algorithm such that it is actually useful.

8. Show that for any branching program B of sufficiently large width w = Q(1) 26, Devise a register program using basic instructions inspired by unitary com-
and length £, there exists a branching program B’ of width w/2 and length putation, and use it to show non-trivial results for e.g. BQP.
O(f) computing the same function,
. Devise a circuit that uses known results from space reuse and catalytic com-
9. Show that for any branching program B of sufficiently large width w and puting to efficiently solve some problem in a way that we do not know how
length f, there exists a branching program B of width w — 1 and length to do directly.

poly (f) computing the same function.
. . : : 28. Show TC' C VP.
. Find any function whose optimal space algorithm can be made almost en-

tirely catalytic, i.e. a function requiring—or even that we only know how to 29, Is the network coding conjecture true or false?
do in—SPACE(s) but which is computable in CSPACE(= s, = s).
30. Prove or disprove the network coding conjecture when all nodes are re-

ili Prove CLCP. stricted to sending linear transformations of their incoming messages.

32, Show that g L ety Toaglics L G 31. Is there a meaningful notion of a catalytic data structure, or is there anything
Ksmw that CL C P would give strong evidence ZPP C P. to be gained from a data structure stored in catalytic memory?

¢ . Show that NC, or even any circuit of w(logn) depth, can be computed in 32. Show CLis contained in some subclass of P, perhaps NC, given a believable

cL cryptographic assumption.

45, Give a register program for computing x* in the non-commutative setting 33. Show evidence against objects in cryptography based on techniques in reusing
using linear space and a constant number of recursive calls to x. space.

16. Show that BPNC' c CL.

4

. Show the existence, conditional or otherwise, of a natural class of crypto-

. . = . - graphic objects by using clean computation.
17. Design a catalytic branching program with 2% start nodes and total size

20 . O(n) for any function f.

ek
h

. Prove that the existence of one-way functions in CL, or even any one-way
function computable by a poly-size poly-length register program, implies

18. What is the power of CL/pely, and does it have a natural syntactic charac- . ’ .
e { pol Y = the existence of one-way functions in NC’.

terization?

<ESOURCES

REUSING SPACE: TECHNIQUES AND OPEN
PROBLEMS CATALYTIC COMPUTATION

Tan Mert#]‘ Michal Koucky*

Computer Science Institute
Charles University, Prague
Ao koucky@iuuk.mff . cuni.cz

In the world of space-bounded complexity, there is a strain of results
showing that space can, somewhat paradoxically, be used for multiple pur-

poses at once. Touchstone results include Barrington’s Theorem and the Abstract

recent line of work on catalytic computing. We refer to such techniques, in . .

contrast to the usual notion of reclaiming space, as reusing space. Catalytic computation was defined by Buhrman et al. (STOC,
In this survey we will dip our toes into the world of reusing space. We do 2014). It addresses the question whether memory, that already stores

50 in part by studying techniques, viewed through the lens of a few highlight some'unknown data that shoulq be preserved for later usfe, can Pe

results, but our main focus will be the wide variety of open problems in the meaningfully used for computation. Buhrman et al. provide an in-

field. triguing answer to this question by giving examples where the occu-
In addition to the broader and more challenging questions, we aim to pied memory can be used to perform computation. In this expository

provide a number of questions that are fairly simple to state, have clear article we survey what is known about this problem and how it relates

practical and theoretical implications, and, most importantly, that a new- to other problems.

comer with little background experience can still sit down and play with for
a while.

<EsouRcE

iuuk.mff.cuni.cz/~iwmertz/ techniques (catalytic
computing)

Here is an overview of some of the major arguments/techniques that appear in the catalylic

introduction previous work methodology 8 S Mo Sk o G Al R Pt it T et e s
[my main interests] [past activities] [teaching & students] et al. (a great readl) to get oriented. For more info on specifics, | would suggest checking
out the resources page for suggested papers, talks, etc
main results acknowledgements appendix
[publications] [funding, positions, & visits] [the fun stuff] Taka & click on whalover slrikes your fancyl

compress-or-random

catalytic computation & reusing space .
register programs
How useful is full memory as a computational resource? Imagine trying to solve some functions on a
computer with only limited memory, but now you are also given additional access to a massive hard
drive which it can freely use, provided it keeps all the initial data on the hard drive intact at the end of structure in catalytic space
its computation. Considering this data could be arbitrary—obviously this memory has nothing to do
with the problem at hand—does this hard drive give us any additional power?

introduction
The surprising answer is that this hard drive, which we call catalytic memory, is very powerful. First, it
gives us at least as much power as any other well-studied resource, be it randomness or non- The only trivial upper bound on calalylic space is an equal amount of pure space. In order lo improve
determinism, in fact, catalytic memory alone is as powerful as being given catalytic memory, this result, we need to look deeper into the structure of catalytic algonthms. We will borrow from two
randomness, and non-determinism simuftaneously. Second, the techniques and subroutines fundamental results on ordinary space: first, the straightforward fact that space & algonthms can be

simulated in time euq)(s}; and second, the much more infriguing (and much more recently
discovered) fact that all algarithms can be made reversibie with only a constant amount of extra
space

developed for this catalytic computation model, which | (uncreatively) refer to as reusing space, have
given major breakthrough results in the ordinary space-bounded setting, mostly notably Williams'
recent simulation of ime ¢ in space /tlogt

Aauarann Aaca Hma
My central goal is to understand and characterize this catalytic model, as well as to further use the
techniques developed therein to solve longstanding open questions about space

e a———— OP@ N P[O b I ems

ota base To Come: ..

mefY)OF\/ run%ime

error
COF(‘ec{iOﬂ ’ - [O\@IC
- :
, J‘ Qﬁ "2]Qar‘/’)lﬂﬁ
CIrCUl ry | ERERRSR
r‘amﬁeomness

par‘aHe| 1S)

